生物多样性, 2023, 31(3): 22427 doi: 10.17520/biods.2022427

综述

人为噪音、夜间人造光和路杀对两栖动物的影响

江艺欣,1, 时莹莹1, 高朔2, 王苏盆,,1,*

1.安徽师范大学生命科学学院, 安徽芜湖 241000

2.生态环境部南京环境科学研究所, 南京 210042

The impact of anthropogenic noise, artificial light at night and road kills on amphibians

Yixin Jiang,1, Yingying Shi1, Shuo Gao2, Supen Wang,,1,*

1 College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000

2 Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042

通讯作者: * E-mail:bullfrog2008@126.com

编委: 江建平

责任编辑: 闫文杰

收稿日期: 2022-07-26   接受日期: 2022-11-7  

基金资助: 北京市自然科学基金(5192016)
重要生物资源保护与利用研究安徽省重点实验室开放基金(swzy202006)

Corresponding authors: * E-mail:bullfrog2008@126.com

Received: 2022-07-26   Accepted: 2022-11-7  

摘要

全球生物多样性减少是当今世界面临的重大生态问题, 两栖动物作为衡量环境的重要指示物种, 近些年受到越来越多研究者的关注。本文以脊椎动物中生物多样性受威胁最严重的两栖动物为研究对象, 通过检索2003-2021年文献, 提取并整合关键词。首先分析了当代人类活动中的人为噪音、夜间人造光、路杀等3个因子对两栖动物的影响, 发现人为噪音导致两栖动物的鸣叫行为发生改变, 并且干扰两栖动物的繁殖行为, 夜间人造光降低了两栖动物的生长速度, 减少了行为活动时间, 路杀直接影响了两栖动物的种群数量。其次归纳相应的缓解措施, 提出改进意见, 如加强道路基础设施建设, 安装隔音屏障以缓冲噪音; 控制两栖动物密集区的光照强度; 建造两栖动物通道等。最后对今后人类活动对两栖动物影响研究中亟需解决的问题进行了展望, 应加强人类活动对两栖动物影响的研究, 努力减小人类活动对两栖动物的负面影响。

关键词: 两栖动物; 人类活动; 人为噪音; 夜间人造光; 路杀

Abstract

Background & Aim: Global biodiversity decline is a major ecological problem around the world today. As an important indicator for measuring the environment, amphibians have received more and more attention from researchers in recent years. In this paper, we focus on amphibians which are the most threatened species of vertebrate to analyze the existing problems and suggest the corresponding solutions.

Method: Firstly, we analyze the effects of three most prominent factors in human activities, i.e., anthropogenic noise, artificial light at night and road kills on amphibians reproduction, population growth rate, physiology, and behavior by retrieving existing literature from 2003 to 2021, and extracting and integrating key words. Secondly, the mitigation measures regarding anthropogenic noise, artificial light at night and road kills are summarized and suggestions for improvement are made.

Review Results: Amphibian calling behavior was altered by anthropogenic noise, showing variations in call rate, dominant frequency, and call duration. It is yet unclear how different amphibians calling respond to anthropogenic noise differently and whether call variations are advantageous to the amphibians’ long-term growth. By obscuring the perception of male acoustic signals by females and impacting sperm count and sperm viability in males, anthropogenic noise can also affect the reproductive behavior of amphibians. Amphibian growth rates and behavioral activity time were slowed down by artificial light at night. In addition, artificial light at night can change corticosterone levels in amphibians and hence have an impact on their physiology. Amphibian population size was directly impacted by road kills. This study makes recommendations for improvement in light of the aforementioned detrimental effects, including bolstering the road infrastructure, constructing noise barriers to muffle noise, reducing light intensity in dense amphibian areas, building amphibian corridors, etc.

Perspective: Specific conservation strategies that seek to improve protection measures, planning management and monitoring of amphibian population dynamics should be implemented in order to reduce the impact of human activities on this group of vertebrates.

Keywords: amphibians; human activities; anthropogenic noise; artificial light at night; road kills

PDF (455KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

江艺欣, 时莹莹, 高朔, 王苏盆 (2023) 人为噪音、夜间人造光和路杀对两栖动物的影响. 生物多样性, 31, 22427. doi:10.17520/biods.2022427.

Yixin Jiang, Yingying Shi, Shuo Gao, Supen Wang (2023) The impact of anthropogenic noise, artificial light at night and road kills on amphibians. Biodiversity Science, 31, 22427. doi:10.17520/biods.2022427.

两栖动物是指幼体在水中生活、成体水陆兼栖生活的变温四足脊椎动物, 包括有尾目、无尾目和蚓螈目(费梁等, 2006)。长期以来, 两栖动物一直作为衡量环境条件的重要指示物种(Wake, 1991)。特定的生活史和栖息地要求使某些两栖动物比其他物种更容易受到环境变化的影响(Sodhi et al, 2008)。人类活动直接或间接造成的栖息地丧失和碎片化、化学污染、病原体感染、外来物种入侵、气候变化等都对两栖动物产生了影响。自1990年发现两栖动物的种群下降以来, 各国虽采取了很多保护行动, 但与面临的威胁相比, 这些行动产生的正面效果却很有限, 无论是稀有物种还是常见物种, 它们的种群丰度和规模仍在继续下降(Grant et al, 2019)。

栖息地丧失和破碎化是影响两栖动物的主要威胁之一(Hamer & McDonnell, 2008), 城市化使大面积土地利用改变, 自然栖息地被改造成住宅区和商业区以及复杂的城市道路系统的建设成为导致两栖类自然栖息地丧失以及破碎化的主要原因(江建平等, 2016)。Skidds等(2007)发现池塘1 km范围内的住宅开发量与美洲林蛙(Rana sylvatica)的产卵数量之间存在负相关, 这表明美洲林蛙可能对人类活动导致的栖息地丧失或破碎特别敏感。两栖动物特殊的生理特征以及生活史使得它们对环境污染也极其敏感。经常生活和繁殖在受污染的环境, 如承载城市径流的雨水湿地(Sievers et al, 2019b)和喷洒了杀虫剂和施用了化肥的农业湿地(Hazell et al, 2001), 两栖动物的活动率、繁殖率、进食以及逃避捕食的能力降低(Sievers et al, 2019a)。在重金属和高N含量的水环境中, 两栖动物的存活率很低(Casey et al, 2005; Snodgrass et al, 2007)。病原体感染也是导致两栖动物种群数量下降的重要因素, 常见的病原体包括壶菌Batrachochytrium dendobatidis、B. salamandrivorans以及蛙病毒Ranavirus (Blaustein et al, 2018)。壶菌是一种真菌, 在两栖动物中有多个宿主(Olson et al, 2013), 可使感染的两栖动物皮肤角化过度和增生、皮肤糜烂和溃疡(Berger et al, 1998; Blaustein et al, 2018), 导致种群数量减少甚至灭绝; 蛙病毒是双链DNA病毒, 由6种已知病毒组成, 其中3种感染两栖动物(Chinchar, 2002)。外来物种通过竞争或捕食当地两栖动物从而对它们产生影响, 例如, 从北美东部引入到西部的牛蛙(Lithobates catesbeianus)可能会导致一些本地两栖动物的种群数量下降(Kiesecker et al, 2001)。全球气候变化, 如降水量和温度的变化, 影响了一些两栖动物种群的繁殖期, 表现出繁殖期提前的趋势(Blaustein et al, 2001b)。环境变化导致的紫外线(UV-B)辐射增加可能导致两栖动物数量减少, 许多暴露于UV-B辐射的两栖动物受精卵比未暴露于UV-B辐射的受精卵发育率低(Blaustein et al, 2001a)。

有关上述提及的栖息地丧失和破碎化、化学污染物、病原体感染、外来物种入侵等研究方向前人已做了详细的综述研究(Blaustein et al, 2001b, 2018; Kiesecker et al, 2001; Cushman, 2006; Hamer & McDonnell, 2008; Sievers et al, 2019a)。除此之外, 现代社会发展导致的人为噪音、夜间人造光以及路杀对两栖动物的影响也越来越严重, 但却少有研究综述。因此本文以两栖动物为研究对象, 从以上3个方面综述人类活动对两栖动物的影响, 并提出相应的保护意见。

1 研究方法

在Web of Science (http://apps.webofknowledge.com)核心数据库中搜索截至2022年5月发表的人类活动对两栖动物影响的英文文献。主题词选择“amphibian” AND “human activities” AND “anthropogenic noise” OR “artificial light at night” OR “roadkill”, 出版年限定在2003-2021年, 文献类型为“论文”或“综述论文”。查看每篇文章的摘要和关键词, 去除不能代表某个研究领域的文章(蓝方源等, 2021)。同时通过中国知网(https://www.cnki.net)搜集中文文献, 高级检索中使用主题搜索“两栖动物” AND “人类活动” AND “人为噪音” OR “夜间人造光” OR “路杀”, 补充搜索时在高级检索中使用主题搜索“两栖动物”, 发表年限定在2003-2021年, 文献类型为“研究论文”和“综述” (蓝方源等, 2021)。

共收集到95篇文献, 其中英文文献85篇, 中文文献10篇, 关于人为噪音、夜间人造光、路杀的文献年份分布见图1。3个方面的文章数量随着年份的增加而增加, 特别是最近8年, 表明人类活动对两栖动物的影响越来越受到关注, 但大部分为英文文献, 中文文献较少, 可以看出我国的研究人员对这方面的关注还有所欠缺。

图1

图1   2003-2021年人为噪音、夜间人造光、路杀的文献年份分布

Fig. 1   Year distribution of literature on anthropogenic noise, artificial light at night, and road kills from 2003 to 2021


2 人为噪音对两栖动物的影响

无尾目是两栖动物中主要的发声物种, 关于人为噪音影响的研究主要限于无尾目(Simmons & Narins, 2018)。大多数无尾目是合唱物种, 其中雄性形成密集的集群合唱, 通常包含同种和异种合唱, 以吸引雌性交配, 它们的交配行为是一种雌性选择,因此雌性必须能够定位雄性合唱, 并在这些合唱中区分出同种和异种的发声特征(Simmons & Narins, 2018)。目前, 道路等交通网络扩张的速度高于人口增长的速率, 道路噪音被视为在空间上传播最广泛的人为噪音, 已有研究表明, 人为噪音会对无尾目产生影响(Yi & Sheridan, 2019)。

2.1 人为噪音对鸣叫行为的影响

雄性无尾目的鸣声受人为噪声影响已在多个研究中得到证明, 不同物种对交通等人为噪音的影响反应是不一致的: 某些物种的鸣叫在暴露于人为噪音时显著改变, 而另一些物种的鸣叫则不受影响 (表1)。不同物种的鸣叫在面对人为噪音时表现不同的机制以及鸣叫改变对物种长期的发展是否有利目前仍不清楚。

表1   雄性无尾目面对人为噪音时的鸣声特征参数变化

Table 1  Changes of vocal characteristic parameters of male Anura in the face of anthropogenic noise

物种
Species
鸣叫频次
Call rate
鸣叫主频
Dominant frequency
鸣叫时长
Call duration
参考文献
Reference
粗皮姬蛙 Microphly butleri减少 DecreaseSun & Narins, 2005
黑带蛙 Rana nigrovittata减少 DecreaseSun & Narins, 2005
花狭口蛙 Kaloula pulchra减少 DecreaseSun & Narins, 2005
台北蛙 Rana taipehensis增加 IncreaseSun & Narins, 2005
雨蛙 Hyla arborea减少 DecreaseLengagne, 2008
蜂黄雨蛙 Dendropsophus triangulum增加 IncreaseKaiser & Hammers, 2009
豹蛙 Rana pipiens减少 Decrease增加 IncreaseCunnington & Fahrig, 2010
变色灰雨蛙 Hyla versicolor减少 Decrease不变 No changeCunnington & Fahrig, 2010
美洲蟾蜍 Bufo americanus不变 No change不变 No changeCunnington & Fahrig, 2010
绿池蛙 Rana clamitans减少 Decrease增加 IncreaseCunnington & Fahrig, 2010; Vargas-Salinas et al, 2014
牛蛙 Lithobates catesbeianus减少 DecreaseVargas-Salinas et al, 2014
赞氏树蛙 Kurixalus chaseni不变 No change不变 No changeYi & Sheridan, 2019
太平洋岸雨蛙 Pseudacris regilla不变 No change不变 No changeNelson et al, 2017
银瞬红眼蛙 Agalychnis moreletii不变 No changeKaiser et al, 2011
斑雨蛙 Tlalocohyla picta不变 No changeKaiser et al, 2011
浜岸蟾蜍 Incilius valliceps不变 No changeKaiser et al, 2011
丽红眼蛙 Agalychnis callidryas增加 IncreaseKaiser et al, 2011
红后股雨蛙 Tlalocohyla loquax增加 IncreaseKaiser et al, 2011
小头雨蛙 Dendropsophus microcephalus增加 IncreaseKaiser et al, 2011

新窗口打开| 下载CSV


Sun和Narins (2005)研究了在泰国半常绿季雨林中飞机飞越池塘上方时的噪音和低频摩托车的噪音对4种无尾两栖动物鸣叫行为的影响。他们记录了噪音播放前、播放中和播放后无尾目的鸣叫, 结果显示, 粗皮姬蛙(Microphly butleri)黑带蛙(Rana nigrovittata)花狭口蛙(Kaloula pulchra) 3种无尾目在噪音播放期间显著降低了鸣叫频次, 而雄性台北蛙(Rana taipehensis)却提高了鸣叫频次。他们认为人为噪音可能通过抑制一些合唱参与者的集群鸣叫从而刺激剩下物种的鸣叫来间接影响无尾目的鸣叫行为, 即台北蛙鸣叫频次的改变是对其他3个降低鸣叫频次物种的反应而不是对人为噪音的反应。这项研究表明在考虑人为噪音对无尾目鸣叫行为的影响时不能忽略集群鸣叫。

Lengagne (2008)在研究交通噪音对雨蛙(Hyla arborea)声学交流的影响时就把集群鸣叫考虑在内。雄性雨蛙既可以单独鸣叫也可以在多个物种存在时进行集群鸣叫, Lengagne (2008)使用交通噪音回放的方式把雨蛙置于两种不同的环境(单独播放噪音和在合唱中播放噪音), 以71 dB和88 dB两种不同的级别播放交通噪音。结果表明, 与单独置于交通噪音相比, 在合唱情况下, 雄性雨蛙受交通噪音的影响较小; 在单独播放交通噪音时, 与播放前相比, 噪音播放后雄性的鸣叫时长减少, 噪音播放的强度越高, 鸣叫时长降低的程度越高。

Kaiser和Hammers (2009)将蜂黄雨蛙(Dendro- psophus triangulum)分别置于连续的摩托车噪音、音乐(当地流行歌曲)以及间歇性摩托车噪音环境下, 并对比合唱噪音(多个蜂黄雨蛙鸣叫)和人为噪音对雄性蜂黄雨蛙鸣叫的影响, 比较了噪音播放前、播放中和播放后雄性蜂黄雨蛙的鸣叫反应。该物种在连续和间歇性播放噪音期间的鸣叫频次均有所增加, 而当合唱噪音和人为噪音以相同的强度呈现时, 雄性蜂黄雨蛙的鸣叫频次对两者的反应没有显著差异。

为了检验在不同交通噪音水平地区无尾目的鸣声特征是否不同, Cunnington和Fahrig (2010)在加拿大安大略省东部用4种无尾目进行测试, 分别是绿池蛙(Rana clamitans)、豹蛙(R. pipiens)、变色灰雨蛙(Hyla versicolor)、美洲蟾蜍(Bufo americanus)。他们比较了交通噪音低(< 50 dB)和交通噪音高(> 60 dB)的两个无尾目繁殖地点无尾目的鸣声情况, 发现绿池蛙、豹蛙、变色灰雨蛙在交通噪音低的地区的鸣叫频次明显高于交通噪音高的地区; 绿池蛙和豹蛙在交通噪音高的地区的鸣叫主频高于交通噪音低的地区, 绿池蛙在高噪音地区鸣声的振幅更低; 而繁殖季节最短的两个物种, 变色灰雨蛙和美洲蟾蜍, 并没有鸣叫主频上的差异。造成这些差异的原因, 一方面是由于它们的繁殖策略不同, 美洲蟾蜍和变色灰雨蛙是爆炸性的繁殖策略, 这意味着雄性积极寻找配偶, 而绿池蛙和豹蛙采用长期繁殖策略, 雌性积极寻找配偶; 另一方面, 没有改变鸣声特征的物种可能是因为它们原本的发声没有被环境噪音掩盖, 这些原因都有待进一步验证。除此之外, Cunnington和Fahrig (2010)还在交通噪音低的地区播放交通噪音, 并对比播放噪音之前和期间的无尾目鸣声特征, 在播放噪音期间, 绿池蛙和豹蛙的鸣叫频次与鸣声振幅和未播放噪音相比显著降低, 但鸣叫主频更高; 变色灰雨蛙的鸣叫频次较低, 但鸣叫主频和鸣声振幅没有显著差异; 美洲蟾蜍则没有鸣声改变。作者认为绿池蛙和豹蛙对交通噪音的声学响应是权衡利弊的结果, 由于鸣叫的能量消耗大, 无尾目通常会节省能量以便让它们的鸣声传播得更远。呼叫频次和鸣声振幅的降低伴随着鸣叫主频的增加, 而鸣叫主频的增加伴随着能量消耗的增加, 但此成本应远低于增加鸣声振幅和鸣叫频次的成本。

在同一地点的后续研究中, Vargas-Salinas等(2014)假设4种无尾目(美洲蟾蜍、变色灰雨蛙、绿池蛙、牛蛙 Lithobates catesbeianus)在交通噪音强度较低时更频繁地鸣叫, 而在噪音强度增加时停止鸣叫(即间隙鸣叫行为), 并对其进行了测试。这一假设在鸣叫频次低的两个物种(绿池蛙、牛蛙)中得到验证, 它们在交通噪音强度相对较低时更频繁地鸣叫, 这可能会增加它们的信噪比, 使它们能够在交通噪音存在的情况下进行交流, 而鸣叫频次高的两个物种(美洲蟾蜍、变色灰雨蛙)在交通噪声强度方面随机鸣叫。结果证明低频信号更容易被人为噪声掩盖, 因此需要调整行为(间隙鸣叫行为)来改善这种影响。

与Cunnington和Fahrig (2010)的研究结果相反, Yi和Sheridan (2019)观察到雄性赞氏树蛙(Kurixalus chaseni)暴露于高交通噪音地区时发声的平均鸣声振幅增加。他们的研究区域位于马来西亚拿笃区的丹浓谷保护区, 是婆罗洲为数不多的低地森林地区之一和东南亚最大的受保护森林之一。将雄性赞氏树蛙分别暴露于低交通噪音(48.2-70.0 dB声压级)和高交通噪音(56.3-83.7 dB声压级)的回放中, 并记录噪音播放前、中、后期赞氏树蛙的鸣声。暴露于高或低交通噪音下都没有对雄性赞氏树蛙的鸣叫频次或鸣叫主频造成显著影响, 但暴露于高交通噪音下鸣声振幅有所增加。由于交通噪音和雄性赞氏树蛙的鸣叫之间没有频率重叠, 因此没有改变鸣叫频次和主频也在情理之中, 但Cunnington和Fahrig (2010)的研究结果却发现, 绿池蛙和豹蛙的鸣叫主频和交通噪音之间没有重叠, 但增加了鸣叫主频且降低了鸣叫振幅, 这其中的机制尚不清楚, 还需要继续研究。此外, 能量成本随鸣声振幅的增加呈指数上升, 幅度每增加3 dB, 能量成本大约翻倍, 雄性赞氏树蛙暴露于高交通噪音地区时鸣声振幅增加导致了其能量消耗的增加, 这可能会限制它们的生长从而进一步影响繁殖(Parris, 2002)。

然而, 有些无尾目在面对交通噪音时的鸣声并不会发生改变。Nelson等(2017)选择了位于美国俄勒冈州威拉米特山谷附近的8个地点对道路噪音水平进行声学监测并记录了太平洋岸雨蛙(Pseudacris regilla)的鸣声情况。道路噪音水平因不同的地点而异, 靠近交通量大的道路地点的平均噪音水平为52.27 dB, 远离道路地点的平均噪音为37.48 dB, 在这些地点, 太平洋岸雨蛙的鸣声特征(鸣叫频次、鸣叫时长)并没有随着噪音水平的改变而有所变化, 他们认为太平洋岸雨蛙会改变其鸣声特征以应对道路噪音的想法并没有得到验证。

Kaiser等(2011)在伯利兹Las Cuevas研究站附近研究了交通噪音对7种无尾目鸣叫行为的影响。他们比较了无尾目在面对汽车噪音和白噪音时的发声情况, 分别记录噪音播放前、汽车噪音播放时、阳性对照(播放白噪音)、阴性对照(无声)以及播放噪音后的鸣叫, 在测试的物种中, 银瞬红眼蛙 (Agalychnis moreletii) (无干扰)、斑雨蛙(Tlalocohyla picta) (受干扰地区)和浜岸蟾蜍(Incilius valliceps) (受干扰地区) 3种无尾目物种面对汽车噪音和白噪音时均没有改变鸣叫频次; 相比之下, 丽红眼蛙 (Agalychnis callidryas) (无干扰)、红后股雨蛙 (Tlalocohyla loquax) (受干扰地区)和小头雨蛙 (Dendropsophus microcephalus) (受干扰地区)都增加了鸣叫频次以响应人为噪声和白噪声, 但响应白噪音和汽车噪音之间没有显著差异, 由此得出两栖动物的栖息地是否受到干扰与它们对交通噪音的响应之间没有必然联系。除此之外, Kaiser等(2011)还监测了小头雨蛙的合唱情况以确定噪音是否影响合唱水平, 实验池塘播放发动机噪音(60-70 dB声压级), 对照池塘未播放噪音且噪音水平低于50 dB。与对照组相比, 实验组小头雨蛙合唱长度(给定夜晚的合唱持续时间)和整个季节的总合唱时间显著缩短, 这些可能会对其繁殖率产生影响。

2.2 人为噪音对繁殖的影响

在大多数蛙类中, 成功繁殖的关键取决于声学交流(Gerhardt & Huber, 2003)。人为噪音会通过掩盖雌性对雄性声学信号的感知来干扰两栖动物的繁殖行为。Bee和Swanson (2007)对人为噪音会干扰雌性对雄性声学信号的感知进而影响两栖动物的繁殖行为的假设进行了检验。研究对象为雌性金肋雨蛙(Hyla chrysoscelis), 研究人员使用趋声性分析, 向雌性呈现不同信号水平(37-85 dB)的广告鸣叫, 分别为无背景噪音、繁殖合唱声、道路交通噪音, 结果显示在43-79 dB之间, 与无背景噪音相比, 存在合唱噪音和交通噪音时雌性对雄性鸣叫的响应率较低, 只有在高信号水平(79-85 dB)下, 3种条件下的雌性反应相似。Tennessen等(2014)使用雌性美洲林蛙(Lithobates sylvaticus)检验了交通噪音是否影响自然环境中的雌性繁殖迁徙行为。结果表明, 随着信噪比的降低(更多的交通噪音, 更少的合唱声), 雌性的繁殖迁徙行为受到影响, 运动减少。Kaiser等(2015)假设交通噪音不利于两栖动物的繁殖并进行了实验, 在实验中, 将雄性绿雨滨蛙(Litoria caerulea)单独暴露于同种合唱声或暴露于合唱声和交通噪音中, 与只暴露于合唱声的对照组相比, 暴露于合唱声和交通噪音的雄性绿雨滨蛙的精子数量和精子活力明显下降。

2.3 人为噪音对生理的影响

皮质酮浓度的短期升高有助于生物储存能量、抑制不必要的活动来应对压力源(Romero, 2004)。然而, 长期升高的皮质酮浓度会对生存、繁殖、生长和免疫功能产生有害影响(Sapolsky et al, 2000)。Tennessen等(2014)比较了暴露于合唱声和交通噪音的雌性美洲林蛙的皮质酮浓度, 结果显示, 与单独暴露于合唱声相比, 暴露于合唱声和交通噪音的雌性美洲林蛙的皮质酮浓度增加了5倍。在脊椎动物中, 糖皮质激素(皮质酮/皮质醇)的增加是压力的一种体现, Kaiser等(2015)检验了交通噪音会对两栖动物造成压力的假设。与只暴露于合唱声的对照组相比, 暴露于合唱声和交通噪音的雄性绿雨滨蛙的皮质酮浓度增加。这些都表明交通噪音会影响两栖动物的繁殖、生理, 长此以往甚至于影响整个种群数量。

3 夜间人造光对两栖动物的影响

城市化正在迅速改变自然环境, 其后果之一是生态光污染, 即由于夜间人造光而改变自然光水平(Longcore & Rich, 2004)。夜间人造光有多种形式, 包括公共街道照明, 以及来自广告、公共建筑和车辆的照明。2016年, 23%的地球表面、88%的欧洲和近50%的美国区域夜间光照值高于自然阈值(Falchi et al, 2016)。据估计, 在过去的100年里, 全球夜间人造光每年增长近6% (从0到20%) (Hölker et al, 2010), 这是过去几十年城市化、郊区化的水平提高、交通基础设施等发展的结果(Gaston et al, 2013)。大多数无尾目部分或完全在夜间活动, 因此很可能受到人为高亮度或波动照明的影响(Perry et al, 2008)。

3.1 夜间人造光对繁殖的影响

雄性鸣叫是保证种群繁衍的重要部分。关于夜间人造光对雄性鸣叫影响的研究近些年逐渐受到关注。Baker和Richardson (2006)量化了繁殖季节人工照明对雄性绿池蛙野外鸣叫的影响, 与在自然光条件下观察到的雄性绿池蛙相比, 接受人工光照的雄性鸣叫减少, 移动更加频繁。结果表明人工照明可能会对繁殖产生影响, 从而影响种群数量。

除了雄性的鸣叫, 雌性的选择在无尾目的繁殖中同样重要。光线水平会影响雌性对雄性鸣叫的反应, Rand等(1997)将雌性水泡窄口蛙(Physalaemus pustulosus)分别置于黑暗条件下和3 lux光照条件下并播放雄性鸣叫来评估雌性的选择, 在黑暗中雌蛙向雄性鸣叫移动的频率比在光照条件下更频繁, 当光照水平增加时, 雌性对配偶的选择性较低, 可能更喜欢快速交配以避免交配活动所增加的捕食风险。总体上, 雌性水泡窄口蛙的择偶行为受光照条件的影响较大。

雌性变色灰雨蛙的择偶行为则不受光照条件的影响。Underhill和Höbel (2018)模拟静态光污染(路灯)和动态光污染(连续和间断性光照)来测试雌性变色灰雨蛙的择偶行为。静态光污染实验包含3种光照强度的对比, 分别为0.2 lux (自然夜间)、5 lux (相当于距离路灯3.5 m)和15 lux (相当于路灯正下方); 动态光实验使用相同的光照强度(15 lux)但时间不同, 一个为恒定光源, 另一个则是黑暗条件和15 lux交替进行。结果与预测相反, 无论是在静态光还是在动态光的实验中, 雌性变色灰雨蛙择偶行为的选择都几乎没有受到光照处理的影响。这说明人工照明对雌性择偶选择的影响具有高度的物种特异性, 这一方面需要更多的研究探索。

Touzot等(2020)将雄性大蟾蜍(Bufo bufo)置于3种夜间人造光强度(0.01 lux、0.1 lux、5 lux对应不同地区两栖动物生活的夜间光照水平)下, 研究了大蟾蜍的繁殖行为和受精成功率。与对照组(0.01 lux)相比, 暴露于0.1 lux和5 lux的雄性大蟾蜍需要更长的时间才能成功抱对, 初步抱对成功后, 经过1-7 d后, 发现对照组抱对成功率为100%, 而暴露于0.1 lux和5 lux雄性的分离率分别为20%和10%, 此外, 实验组中的平均受精率也远低于对照组。这些结果证明了暴露于夜间人造光下会影响雄性大蟾蜍的交配行为和受精成功率, 但这些改变的生理机制尚不清楚。

3.2 夜间人造光对生长与生理的影响

两栖动物的生活史中有两个显著不同的阶段: 水中生活的幼体阶段(蝌蚪)和能在陆地生活的成体阶段, 幼体经过变态发育转为成体。大多数夜间人造光的研究都集中在单一的生命阶段, 而Dananay和Benard (2018)对美洲蟾蜍的两个生命阶段都进行了研究, 以探究夜间人造光对发育和生长的影响。在幼体阶段, 经过夜间人造光处理的美洲蟾蜍蝌蚪变态发育时间约减少30%; 在登陆之后, 幼蟾暴露于夜间人造光的美洲蟾蜍生长速度降低15%。生长速度的降低会导致繁殖力降低、存活率降低等负面后果。May等(2019)为了了解光照条件改变的影响, 将美洲林蛙置于3种不同的光照条件下(对照组、增强的日间光照强度、夜间人造光), 经过加强的日间光照和夜间人造光处理的两组美洲林蛙卵的受精率明显低于对照组。与Dananay和Benard (2018)的结果不同, 此实验未发现对变态发育时间的影响, 造成结果的不同可能是由于实验方法的差异, 即不同的光照周期、光照强度以及模型物种, 未来的研究应关注不同的光照条件及物种的差异。

夜间人造光会打乱自然环境中的明暗循环并破坏昼夜节律, 这些都可以改变两栖动物的糖皮质激素水平(Forsburg et al, 2021)。长期的干扰可能导致糖皮质激素的持续升高或下降, 这可能是有害的(Cyr & Romero, 2009)。Forsburg等(2021)探究了190-250 lux夜间人造光对两种常见无尾目伯兰豹蛙(Rana berlandieri)和浜岸蟾蜍生理、生长的影响。他们对两种无尾目的幼体蝌蚪进行收集, 在12L∶12D光照下7 d, 再移至恒定夜间人造光(24L∶0D)或脉冲夜间人造光(12L∶夜间间隔12 h开启或关闭)进行观察。与对照组相比, 伯兰豹蛙在恒定和脉冲夜间人造光下的皮质酮激素释放率增加, 而浜岸蟾蜍降低, 但伯兰豹蛙和浜岸蟾蜍的生长没有受到影响。恒定和脉冲夜间人造光都是伯兰豹蛙和浜岸蟾蜍蝌蚪的压力源, 但两种无尾目蝌蚪应对压力源的方式不同。

3.3 夜间人造光对活动行为的影响

两栖动物在夜间的视觉敏感性高, 它们的夜间活动会受到光照水平变化的影响(Buchanan, 2006)。光照水平的增加可以阻碍两栖动物进出繁殖区的运动。有研究提到在夜间足球比赛期间, 由于附近体育场的灯光增加了夜间光照水平, 导致实验围栏中的蛙类停止交配活动, 只有当围栏被覆盖蛙类不受光线照射时, 交配活动才恢复(Longcore & Rich, 2004)。Touzot等(2019)将大蟾蜍随机暴露于3种光照强度(0.1 lux、5 lux、20 ux)中的一组, 记录每只蟾蜍24 h的活动持续时间以及食物摄入量和能量消耗。与对照组0.1 lux夜间人造光相比, 暴露于5 lux和20 lux下的大蟾蜍平均总移动时间分别减少了56.7%、73.9%, 夜间活动时间分别减少了73.4%、77.4%, 白天活动没有显著差异, 食物摄取量和体重均无影响。暴露于夜间人造光下大蟾蜍的能量进行了重新分配, 总能量消耗分为标准能量消耗(维持机体功能所需的最小能量)和活动能量消耗, 与对照组相比, 5 lux和20 lux下的大蟾蜍平均标准能量分别增加了28.1%、58.1%, 平均活动能量消耗分别下降了18.8%和38.9%。夜间人造光对大蟾蜍的活动和能量代谢产生了较大影响, 这些可能对大蟾蜍种群的适应性产生负面影响。

4 路杀对两栖动物的影响

近年来, 全球道路系统不断扩张, 2050年预计全球至少将新建2,500万km的道路(Laurance et al, 2014)。道路的快速建设加速了全球景观破碎的程度, 并对生态系统和野生动物造成复杂且持久的影响(Coffin, 2007; 阿卜杜赛麦提·买尔迪亚力等, 2022)。两栖动物是在道路上死亡最多的脊椎动物(Beebee, 2013), 它们独特的生活史或行为特征, 如季节性迁移、相对缓慢的运动和在面对迎面而来的车辆时保持不动, 这些都让它们比其他脊椎动物更容易受到道路的影响(Zhang et al, 2018)。此外, 由于自身体型较小, 驾驶员很难看到它们, 增加了碰撞的概率(Arévalo et al, 2017)。与车辆的致命碰撞, 即路杀(road-kill), 是对两栖动物的数量最直接的负面影响(Rytwinski & Fahrig, 2015)。

4.1 数据收集

对两栖动物路杀的研究主要集中在欧洲、北美等一些发达国家的温带地区(Puky, 2005)。原先评估路杀对两栖动物影响的方法是沿着一定的路线定期收集数据(Shilling et al, 2015), 但这种方法成本高且耗时(Costa et al, 2015)。现在多使用公众科学方法(citizen science approach), 即让公众报告路杀事件, 志愿者通过骑行或步行的方式在一条预先设定的路线监测路杀情况, 并把监测情况填写在专门的应用程序中, 包括现场坐标、动物照片、物种名称和个体数量(Heigl et al, 2017)。这些数据可能存在空间偏差, 其偏差的来源包括: (1)志愿者倾向于在公路上进行调查, 这些记录并不能完全代表两栖动物种群的现状; (2)一些离居住区较近、容易到达、危险性小的路段更有可能被志愿者选择; (3)道路具有不同的监测能力, 不同的交通量、交通高峰期导致了不同的路杀分布(Petrovan et al, 2020)。为了检测公众科学方法所获得的数据是否具有代表性, Petrovan等(2020)将公众科学项目获得的数据与其他途径获得的数据进行了对比, 结果表明这些数据具有代表性, 可以与其他现有数据集进行比较。

在过去的20年中, 公众科学项目的数量和志愿者工作量一直在增加(O’Donnell & Durso, 2014), 大多数项目侧重于数据收集, 这些数据可用于评估两栖动物的分布趋势(Petrovan & Schmidt, 2016)。在两栖动物迁徙期间, 常发生大规模路杀事件, 它们的迁徙繁殖活动为公众科学项目提供了保护机会, 志愿者在两栖动物迁徙期间捕获它们并将它们带离公路(Beebee, 2013)。Sterrett等(2019)评估了以道路为基础的公众科学项目对缓解两栖动物路杀事件的贡献, 与没有志愿者的保护相比, 志愿者参与保护减少了两栖动物的路杀数量。

4.2 路杀对繁殖的影响

路杀率随着道路网络的扩大而增加, 导致两栖动物数量减少(Cosentino et al, 2014)。Sutherland等(2010)研究发现两栖动物路杀率随着交通量的增加而增加。近些年来, 我国也加强了对两栖动物的路杀研究, 大多在保护区、高速公路等附近(杨韬等, 2022)。例如对广州郊区30条样线的调查, 共记录94只死亡两栖动物, 周围生境为水体的公路造成两栖动物公路死亡的数量最多, 个体数量和种类随着车流量的增长而增长( 谷颖乐 (2008) 广州市郊区公路交通系统对两栖爬行动物公路死亡的影响及对策. 硕士学位论文, 中南林业科技大学, 长沙.)。除此之外, 湖南莽山国家级自然保护区、长白山国家级自然保护区、王朗国家级自然保护区的公路上有两栖动物死亡个体的报道(莫吉炜, 2009(② 莫吉炜 (2009) 湖南莽山国家级自然保护区两栖爬行动物公路死亡研究及生物通道设计. 硕士学位论文, 中南林业科技大学, 长沙.); 罗玉梅等, 2015; Zhang et al, 2018)。路杀在一年中的分布各有不同, 两栖动物繁殖期间的路杀率最高, 其他时间段路杀率较低, 其空间分布也不是随机的, 具有聚集性, 多分布在繁殖池附近(Zhang et al, 2018)。不利的天气条件同样对路杀有影响(Kazemi et al, 2016), 由于强降水、大雾造成能见度低会影响司机和动物的视觉感知, 从而增加发生碰撞的可能性(Santos et al, 2011)。当降水量增加时, 无尾目的活动增加, 路杀率也随之增加(Coelho et al, 2012), 这些都会影响两栖动物的繁殖, 造成种群数量下降。这些影响因素研究多集中在保护区附近, 城市道路的路杀影响因素还有待继续研究。

4.3 缓解措施

为了降低路杀对两栖动物的严重影响, 欧洲已经制定和实施了40多年的道路缓解措施(Helldin & Petrovan, 2019), 包括改变驾驶员行为和改变动物行为两方面(Rytwinski et al, 2016)。前者包含各种类型的野生动物警告标志、减少交通量、限制车速以及临时封路等, 后者包括在道路沿线设置围栏、地下通道等(Huijser et al, 2007), 但关于两栖动物道路缓解措施的实际有效性方面仍然知之甚少。在瑞典斯德哥尔摩, 春季两栖动物迁徙期间会出现大量的路杀, Helldin和Petrovan (2019)选择3个地点建造了两栖动物通道, 在通道建设前后记录了道路上、围栏沿线和通道中的两栖动物数量以评估道路缓解措施的有效性。3个地点的监测结果表明, 实施道路缓解措施可以有效减少春季迁徙期间两栖动物的路杀, 且通过通道的两栖动物数量在不同站点间差异很大。

与无尾目不同, 有尾目使用通道以秋季为主。Jarvis等(2019)在春季和秋季对英国约克郡附近的4种两栖动物利用通道的情况进行监测发现, 不同物种使用通道情况不同, 与春季相比, 秋季通道内冠欧螈(Triturus cristatus)数量明显增加, 而大蟾蜍多在春季使用隧道。对于冠欧螈而言, 在通道监测开始(3月中旬)时, 个体可能已接近繁殖池, 不需要通过通道再到达繁殖池, 秋季大量的冠欧螈通过通道可能是由于繁殖后和变态发育后的扩散分布从而寻找新的栖息地(Jehle & Arntzen, 2000)。大蟾蜍在春季采用爆炸性繁殖策略, 到达池塘并在几天内离开(Reading, 1998), 与英国其他两栖动物相比, 普通蟾蜍的越冬地点距离池塘更远(Daversa et al, 2012), 这可能是它们春季通道使用率高的原因。在今后道路缓解措施评估中应把一年四季都考虑在内进行监测, 使结果更具准确性。

在中国, 对两栖动物的监测研究始于1997年对若尔盖湿地两栖动物的监测(Fellers et al, 2003), 至今已开展了25年, 早期以地区性监测为主, 自2011年起开展全国性的两栖动物监测(李成等, 2017), 但监测地点大多在自然保护区等地, 城市道路监测还较少。如, 我国研究人员对韶赣高速公路(粤境段)两种类型动物通道(人水同过通道和过水涵洞)进行了为期12个月的连续监测, 对两种动物通道对两栖动物的保护效果进行比较, 并研究了两栖动物使用动物通道的规律, 结果表明: (1)两栖动物对人水同过通道的使用效果优于过水涵洞; (2)两栖动物的生态类型可以作为动物通道类型的选择依据, 且通道内环境是决定两栖动物是否使用动物通道的首要因素; (3)两栖动物使用动物通道主要集中在繁殖期( 李斌 (2012) 韶赣高速公路野生动物通道两栖动物保护效果及改进措施研究. 硕士学位论文, 北京林业大学, 北京.)。在未来应加强两栖动物的通道建设以及监测。

5 展望

5.1 人为噪音

人为噪音可影响无尾目的繁殖和社会行为(Simmons & Narins, 2018), 而无尾目通过改变它们的鸣叫特征以及繁殖模式来应对人为噪音所带来的负面影响, 且结果因物种而异。这种行为的改变是否会对其自身的能量消耗以及健康产生影响尚不清楚。人为噪音对两栖动物生理影响的研究较少, 需要更多的研究来记录和量化暴露于人为噪音的长期后果, 以便对两栖动物有更好的了解和保护。

为了降低人为噪音对两栖动物特别是无尾目的影响, 可以加强道路旁基础设施的改进(Nelson et al, 2017)。在交通量密集、噪音较大的公路旁安装隔音屏障以缓冲噪音, 隔音屏障可以是人工建筑材料(Sanchez-Perez et al, 2002)或是以植被形成的天然屏障(van Renterghem et al, 2012)。除此之外, 编制可能受噪音影响的两栖动物清单, 了解其生物学要求, 对其分布地区附近的道路进行声学监测, 掌握并调节附近的噪音水平以确定无尾目受人为噪音影响的程度(Dutta, 2018)。

5.2 夜间人造光

夜间人造光的亮度通常远高于夜间自然光(月光、星光), 在城市地区尤为普遍(Deng et al, 2019)。两栖动物的繁殖、生长、生理、活动等行为均受到夜间人造光的影响, 但采取的缓解措施却很少。两栖动物对不同波长的光具有不同的敏感性(Jägerbrand & Bouroussis, 2021), 已有研究表明路灯会影响普通蟾蜍的迁移, 它们在迁移途中避开了白光和绿光的路段, 红光对其迁移没有影响(van Grunsven et al, 2017), 因此可以使用具有低光照水平短波长的红光来减轻影响。除此之外, 在敏感地区控制照明强度或在一定时间内关闭照明尤为重要, 许多两栖动物都适应黑暗, 控制或关闭照明有利于提高它们的存活率, 从而加强对物种种群的保护(Jägerbrand & Bouroussis, 2021)。树木也有助于减轻夜间人造光的影响, 树冠覆盖率的变化会影响光的穿透(Dutta, 2018), 较高的树冠覆盖率能够对光的穿透起到遮蔽作用, 因此, 适当的增加树木种植也是缓解光污染的有效途径之一。

5.3 路杀

道路交通对两栖动物种群构成威胁(Taylor et al, 2002), 尽管一些缓解措施很有效果, 但世界范围内仍有大量死亡事件。在过去的几十年里, 公众科学方法作为研究世界各地两栖动物的工具得到了广泛应用(McKinley et al, 2017; Sterrett et al, 2019)。为了更好地监测和保护两栖动物, 减少路杀情况的发生, 应加强两栖动物保护宣传, 鼓励更多的群众参与公众科学项目, 增强对城市环境中两栖动物的了解。在监测和保护过程中, 把两栖动物各个生命阶段纳入在内, 避免只关注两栖动物成年阶段而忽视幼年阶段(Petrovan & Schmidt, 2019), 对所有物种均应认真记录, 避免只专注于珍稀濒危物种。其次, 应将各个地区的监测考虑在内, 缓解个别地区两栖动物数据缺乏的困境。

路杀的缓解措施多种多样, 目前已经证明围栏、地下通道等措施能够有效减少两栖动物的死亡数量(Helldin & Petrovan, 2019), 但仍有两个问题需要考虑: (1)围栏的末端效应, 即在围栏末端发现大量的两栖动物死亡(Helldin & Petrovan, 2019)。不考虑围栏末端问题可能高估了缓解措施的有效性, 研究人员应对紧邻末端的区域以及区域外的路杀情况进行评估(Rytwinski et al, 2016)。(2)经济效益, 建造两栖动物通道成本昂贵, 在建造时应充分了解需建造缓解措施道路的路杀情况以及如何更好地设计通道, 并监测缓解措施前后两栖动物的数量(Rytwinski et al, 2016)。除此之外, 张贴野生动物警告标志、降低行驶速度、限制夜间交通量(Zhang et al, 2018)等相对经济的措施应受到重视, 目前关于它们的缓解路杀效果研究较少。

综上所述, 随着全球城市化进程不断加快, 两栖动物受人类活动的影响巨大, 我国应加强人为噪音、夜间人造光、路杀等方面的研究, 重视减少两栖动物死亡的缓解措施, 持续规划、管理和监测两栖动物种群动态, 建设和利用好自然环境, 助力我国“绿水青山就是金山银山”的生态文明理念建设。

致谢

感谢安徽师范大学赵娜老师指导作图, 感谢生态环境部南京环境科学研究所吴军老师对初稿的建议与修改。

参考文献

Arévalo JE, Honda W, Arce-Arias A, Häger A (2017)

Spatiotemporal variation of roadkills show mass mortality events for amphibians in a highly trafficked road adjacent to a national park, Costa Rica

Revista de Biología Tropical, 65, 1261-1276.

DOI:10.15517/rbt.v65i4      URL     [本文引用: 1]

Baker BJ, Richardson JML (2006)

The effect of artificial light on male breeding-season behaviour in green frogs, Rana clamitans melanota

Canadian Journal of Zoology, 84, 1528-1532.

DOI:10.1139/z06-142      URL     [本文引用: 1]

Artificial night lighting (or ecological light pollution) is only now gaining attention as a source of long-term effects on the ecology of both diurnal and nocturnal animals. The limited data available clearly indicate that artificial light can affect physiology and behaviour of animals, leading to ecological consequences at the population, community, and ecosystem levels. Aquatic ecosystems may be particularly vulnerable to such effects, and nocturnally breeding animals such as frogs may be especially affected. To address this potential, we quantify the effects of artificial light on calling and movement behaviour in a rural population of male green frogs ( Rana clamitans melanota (Rafinesque, 1820)) during the breeding season. When exposed to artificial light, frogs produced fewer advertisement calls and moved more frequently than under ambient light conditions. Results clearly demonstrate that male green frog behaviour is affected by the presence of artificial light in a manner that has the potential to reduce recruitment rates and thus affect population dynamics.

Bee MA, Swanson EM (2007)

Auditory masking of anuran advertisement calls by road traffic noise

Animal Behaviour, 74, 1765-1776.

DOI:10.1016/j.anbehav.2007.03.019      URL     [本文引用: 1]

Beebee TJC (2013)

Effects of road mortality and mitigation measures on amphibian populations

Conservation Biology, 27, 657-668.

DOI:10.1111/cobi.12063      PMID:23647090      [本文引用: 2]

Road mortality is a widely recognized but rarely quantified threat to the viability of amphibian populations. The global extent of the problem is substantial and factors affecting the number of animals killed on highways include life-history traits and landscape features. Secondary effects include genetic isolation due to roads acting as barriers to migration. Long-term effects of roads on population dynamics are often severe and mitigation methods include volunteer rescues and under-road tunnels. Despite the development of methods that reduce road kill in specific locations, especially under-road tunnels and culverts, there is scant evidence that such measures will protect populations over the long term. There also seems little likelihood that funding will be forthcoming to ameliorate the problem at the scale necessary to prevent further population declines.© 2013 Society for Conservation Biology.

Berger L, Speare R, Daszak P, Green DE, Cunningham AA, Goggin CL, Slocombe R, Ragan MA, Hyatt AD, McDonald KR, Hines HB, Lips KR, Marantelli G, Parkes H (1998)

Chytridiomycosis causes amphibian mortality associated with population declines in the rain forests of Australia and Central America

Proceedings of the National Academy of Sciences, USA, 95, 9031-9036.

[本文引用: 1]

Blaustein AR, Belden LK, Hatch AC, Kats LB, Hoffman PD, Hays JB, Marco A, Chivers DP, Kiesecker JM (2001a) Ultraviolet radiation and amphibians. In: Ecosystems, Evolution and Ultraviolet Radiation (eds Cockell CS, Blaustein AR), pp. 63-79. Springer, New York

[本文引用: 1]

Blaustein AR, Belden LK, Olson DH, Green DM, Root TL, Kiesecker JM (2001b)

Amphibian breeding and climate change

Conservation Biology, 15, 1804-1809.

DOI:10.1046/j.1523-1739.2001.00307.x      URL     [本文引用: 2]

Blaustein AR, Urbina J, Snyder PW, Reynolds E, Dang T, Hoverman JT, Han B, Olson DH, Searle C, Hambalek NM (2018)

Effects of emerging infectious diseases on amphibians: A review of experimental studies

Diversity, 10, 81.

DOI:10.3390/d10030081      URL     [本文引用: 3]

Numerous factors are contributing to the loss of biodiversity. These include complex effects of multiple abiotic and biotic stressors that may drive population losses. These losses are especially illustrated by amphibians, whose populations are declining worldwide. The causes of amphibian population declines are multifaceted and context-dependent. One major factor affecting amphibian populations is emerging infectious disease. Several pathogens and their associated diseases are especially significant contributors to amphibian population declines. These include the fungi Batrachochytrium dendrobatidis and B. salamandrivorans, and ranaviruses. In this review, we assess the effects of these three pathogens on amphibian hosts as found through experimental studies. Such studies offer valuable insights to the causal factors underpinning broad patterns reported through observational studies. We summarize key findings from experimental studies in the laboratory, in mesocosms, and from the field. We also summarize experiments that explore the interactive effects of these pathogens with other contributors of amphibian population declines. Though well-designed experimental studies are critical for understanding the impacts of disease, inconsistencies in experimental methodologies limit our ability to form comparisons and conclusions. Studies of the three pathogens we focus on show that host susceptibility varies with such factors as species, host age, life history stage, population and biotic (e.g., presence of competitors, predators) and abiotic conditions (e.g., temperature, presence of contaminants), as well as the strain and dose of the pathogen, to which hosts are exposed. Our findings suggest the importance of implementing standard protocols and reporting for experimental studies of amphibian disease.

Buchanan BW (2006) Observed and potential effects of artificial night lighting on anuran amphibians. In: Ecological Consequences of Artificial Night Lighting (eds Rich C, Longcore T), pp. 192-220. Island Press, Washington, DC.

[本文引用: 1]

Casey RE, Shaw AN, Massal LR, Snodgrass JW (2005)

Multimedia evaluation of trace metal distribution within stormwater retention ponds in suburban Maryland, USA

Bulletin of Environmental Contamination and Toxicology, 74, 273-280.

PMID:15841967      [本文引用: 1]

Chinchar VG (2002)

Ranaviruses (family Iridoviridae): Emerg- ing cold-blooded killers

Archives of Virology, 147, 447-470.

PMID:11958449      [本文引用: 1]

Although possessing novel replicative and structural features, the family Iridoviridae has not been as extensively studied as other families of large, DNA-containing viruses (e.g., poxviridae and herpesviridae). This oversight most likely reflects the inability of iridoviruses to infect mammals and birds, and their heretofore low pathogenicity among cold-blooded animals and invertebrates. In fact, the original frog virus isolates (e.g., frog viruses 1-3) would likely have been considered orphan viruses since they were isolated from apparently healthy frogs. However, recent disease outbreaks among commercially and recreationally important fish, cultured and wild frogs, and endangered salamanders has challenged this benign view and have implicated several members of the genus Ranavirus as pathogens. This review explores three facets of ranavirus biology. In the first the salient features of ranavirus replication are summarized using frog virus 3 as a model. Secondly, criteria for characterizing new ranavirus isolates, based on biochemical (viral protein profiles, DNA restriction fragment length polymorphisms, and nucleotide sequence analysis), ecological (host range, tissue tropism), and clinical considerations, are detailed. Lastly, the principal agents of ranavirus-mediated disease and immune responses to these viruses are discussed. In light of the above, it is clear that ranaviruses are no longer orphan viruses, and that they have a significant impact on diverse populations of ectothermic animals.

Coelho IP, Teixeira FZ, Colombo P, Coelho AVP, Kindel A (2012)

Anuran road-kills neighboring a peri-urban reserve in the Atlantic Forest, Brazil

Journal of Environmental Management, 112, 17-26.

DOI:10.1016/j.jenvman.2012.07.004      PMID:22858802      [本文引用: 1]

Mortality from road-kills may figure among the important causes of decline in amphibian populations and species extinctions worldwide. Evaluation of the magnitude, composition, and temporal and spatial distributions of amphibian road-kills is a key step for mitigation planning, especially in peri-urban reserves. Once a month for 16 months, we surveyed, on foot, a 4.4 km section of state road ERS-389 bordering the Itapeva reserve in the southern Atlantic Forest. We recorded 1433 anuran road-kills and estimated a mortality rate of 9002 road-kills/km/year. The species most often recorded were the largest ones: Leptodactylus latrans, Rhinella icterica, Leptodactylus gracilis and Hypsiboas faber; 54.5% of the carcasses could not be identified. Anuran mortality was concentrated in summer, and was associated with temperature, rainfall and photoperiod. Leptodactylus road-kills were strongly influenced by vehicle traffic, probably because of its high abundance during the entire study period. Road-kill hotspots differed for anurans as a group and for single species, and we found an association among spatial patterns of mortality and types of land cover, distance from the nearest waterbody, roadside ditches, and artificial light. Traffic should be banned temporarily during periods of high mortality, which can be forecasted based on meteorological data. A comprehensive mitigation approach should take into account hotspots of all anuran records, and also of target species for selecting locations for amphibian passages and fencing. Roadside ditches, artificial waterbodies, and conventional street lights should be reduced as much as possible, since they may represent ecological traps for anuran populations.Copyright © 2012 Elsevier Ltd. All rights reserved.

Coffin AW (2007)

From roadkill to road ecology: A review of the ecological effects of roads

Journal of Transport Geography, 15, 396-406.

DOI:10.1016/j.jtrangeo.2006.11.006      URL     [本文引用: 1]

Cosentino BJ, Marsh DM, Jones KS, Apodaca JJ, Bates C, Beach J, Beard KH, Becklin K, Bell JM, Crockett C, Fawson G, Fjelsted J, Forys EA, Genet KS, Grover M, Holmes J, Indeck K, Karraker NE, Kilpatrick ES, Langen TA, Mugel SG, Molina A, Vonesh JR, Weaver RJ, Willey A (2014)

Citizen science reveals widespread negative effects of roads on amphibian distributions

Biological Conservation, 180, 31-38.

DOI:10.1016/j.biocon.2014.09.027      URL     [本文引用: 1]

Costa AS, Ascensão F, Bager A (2015)

Mixed sampling protocols improve the cost-effectiveness of roadkill surveys

Biodiversity and Conservation, 24, 2953-2965.

DOI:10.1007/s10531-015-0988-3      URL     [本文引用: 1]

Cunnington GM, Fahrig L (2010)

Plasticity in the vocalizations of anurans in response to traffic noise

Acta Oecologica, 36, 463-470.

DOI:10.1016/j.actao.2010.06.002      URL     [本文引用: 8]

Cushman SA (2006)

Effects of habitat loss and fragmentation on amphibians: A review and prospectus

Biological Conservation, 128, 231-240.

DOI:10.1016/j.biocon.2005.09.031      URL     [本文引用: 1]

Cyr NE, Romero LM (2009)

Identifying hormonal habituation in field studies of stress

General and Comparative Endocrinology, 161, 295-303.

DOI:10.1016/j.ygcen.2009.02.001      PMID:19523375      [本文引用: 1]

Habituation is a term commonly used to explain a decrement in response intensity to a repeated stimulus or set of stimuli. In the stress literature, hormonal habituation is often used to describe a situation where an individual has learned to perceive a repeated stressor as innocuous, and thus the intensity of the release of hormonal stress mediators reduces over time. Consequently, a habituated individual is not considered stressed. There are, however, situations where an individual may be chronically stressed despite a reduction in the response intensity of hormonal stress mediators to a repeated stimulus. These alternative explanations are rarely considered in field studies even though a false conclusion that an individual has habituated (i.e., is not stressed) may lead to false conclusions regarding the animal's overall physiology and health. The present paper provides four alternative explanations for an observed attenuation in the response of hormonal stress mediators to a repeated stimulus or set of stimuli which lead to six criteria that define habituation in a field context. Furthermore, we propose four diagnostic tests to help distinguish hormonal habituation from these alternative explanations in field studies. These tests will help identify hormonal habituation in free-living animals and prevent potential problems of falsely describing an individual or population of individuals as habituated.

Dananay KL, Benard MF (2018) Artificial light at night decreases metamorphic duration and juvenile growth in a widespread amphibian. Proceedings of the Royal Society B: Biological Sciences, 285, 20180367.

[本文引用: 2]

Daversa DR, Muths E, Bosch J (2012)

Terrestrial movement patterns of the common toad (Bufo bufo) in central Spain reveal habitat of conservation importance

Journal of Herpetology, 46, 658-664.

DOI:10.1670/11-012      URL     [本文引用: 1]

Deng K, Zhu BC, Zhou Y, Chen QH, Wang TL, Wang JC, Cui JG (2019)

Mate choice decisions of female serrate-legged small treefrogs are affected by ambient light under natural, but not enhanced artificial nocturnal light conditions

Behavioural Processes, 169, 103997.

DOI:10.1016/j.beproc.2019.103997      URL     [本文引用: 1]

Dutta H (2018)

Insights into the impacts of three current environmental problems on amphibians

European Journal of Ecology, 4, 15-27.

DOI:10.2478/eje-2018-0009      URL     [本文引用: 2]

Global warming, light pollution and noise are common human-induced environmental problems that are escalating at a high rate. Their consequences on wildlife have mostly been overlooked, with the exception of a few species with respect to climate change. The problems often occur simultaneously and exert their negative effects together at the same time. In other words, their impacts are combined. Studies have never focused on more than one problem, and so, such combined effects have never been understood properly. The review addresses this lacuna in the case of amphibians, which are a highly vulnerable group. It divides the overall impacts of the problems into seven categories (behaviour, health, movement, distribution, phenology, development and reproductive success) and then assesses their combined impact through statistical analyses. It revealed that amphibian calling is the most vulnerable aspect to the combined impacts. This could provide important input for conservation of amphibians.

Falchi F, Cinzano P, Duriscoe D, Kyba CCM, Elvidge CD, Baugh K, Portnov BA, Rybnikova NA, Furgoni R (2016)

The new world atlas of artificial night sky brightness

Science Advances, 2, e1600377.

[本文引用: 1]

Fei L, Hu SQ, Ye CY, Huang YZ (2006) Fauna Sinica•Amphibian (Vol. 1). Science Press, Beijing. (in Chinese)

[本文引用: 1]

[费梁, 胡淑琴, 叶昌媛, 黄永昭 (2006) 中国动物志•两栖纲(上卷). 科学出版社, 北京.]

[本文引用: 1]

Fellers GM, Wang YZ, Liu SY (2003)

Status of amphibians at the Zoige wetlands, Sichuan Province, China

Froglog, 58, 1.

[本文引用: 1]

Forsburg ZR, Guzman A, Gabor CR (2021)

Artificial light at night (ALAN) affects the stress physiology but not the behavior or growth of Rana berlandieri and Bufo valliceps

Environmental Pollution, 277, 116775.

DOI:10.1016/j.envpol.2021.116775      URL     [本文引用: 2]

Gaston KJ, Bennie J, Davies TW, Hopkins J (2013)

The ecological impacts of nighttime light pollution: A mechanistic appraisal

Biological Reviews, 88, 912-927.

DOI:10.1111/brv.12036      URL     [本文引用: 1]

Gerhardt HC, Huber F (2003)

Acoustic communication in insects and anurans: Common problems and diverse solutions

The Journal of the Acoustical Society of America, 114, 559.

DOI:10.1121/1.1591773      URL     [本文引用: 1]

Grant EHC, Muths E, Schmidt BR, Petrovan SO (2019)

Amphibian conservation in the Anthropocene

Biological Conservation, 236, 543-547.

DOI:10.1016/j.biocon.2019.03.003      [本文引用: 1]

Research is necessary to identify patterns in nature, to understand how a system functions, and to make predictions about the future state of an ecosystem. Applied research in conservation biology can identify effective strategies to maintain biodiversity, though many papers end with the conclusion that more research is needed. However, more research does not necessarily lead to solutions. We use the ongoing global decline of amphibians as a salient example to highlight limitations in current conservation research, and to focus on finding solutions which are directly relevant for conservation. While research has been conducted since declines were first detected in the 1990s, outside a few specific examples, little progress in conservation has been achieved. We suggest that the case of amphibian declines is relevant to conservation science in general, as the current paradigm for conservation is that management is planned after research is completed; research and management are not effectively (and not directly) connected. This disconnect illustrates the knowledge-action divide which has been identified as a serious deficiency in conservation. Accordingly, we use this introductory paper to the Special Issue (Amphibian conservation in the Anthropocene: Progress and challenges) to describe amphibians as a conservation dilemma, and to make the case for a different, more pragmatic, and more solutions-focused view of conservation research.

Hamer AJ, McDonnell MJ (2008)

Amphibian ecology and conservation in the urbanising world: A review

Biological Conservation, 141, 2432-2449.

DOI:10.1016/j.biocon.2008.07.020      URL     [本文引用: 2]

Hazell D, Cunnningham R, Lindenmayer D, Mackey B, Osborne W (2001)

Use of farm dams as frog habitat in an Australian agricultural landscape: Factors affecting species richness and distribution

Biological Conservation, 102, 155-169.

DOI:10.1016/S0006-3207(01)00096-9      URL     [本文引用: 1]

Heigl F, Horvath K, Laaha G, Zaller JG (2017)

Amphibian and reptile road-kills on tertiary roads in relation to landscape structure: Using a citizen science approach with open-access land cover data

BMC Ecology, 17, 1-11.

DOI:10.1186/s12898-016-0111-y      URL     [本文引用: 1]

Helldin JO, Petrovan SO (2019)

Effectiveness of small road tunnels and fences in reducing amphibian roadkill and barrier effects at retrofitted roads in Sweden

PeerJ, 7, e7518.

[本文引用: 4]

Hölker F, Moss T, Griefahn B, Kloas W, Voigt CC, Henckel D, Hänel A, Kappeler PM, Völker S, Schwope A, Franke S, Uhrlandt D, Fischer J, Klenke R, Wolter C, Tockner K (2010)

The dark side of light: A transdisciplinary research agenda for light pollution policy

Ecology and Society, 15, 13.

[本文引用: 1]

Huijser MP, McGowan P, Hardy A, Kociolek AL, Clevenger AP, Smith D, Ament R (2007) Wildlife-vehicle Collision Reduction Study: Report to Congress U.S. Department of Transportation, Federal Highway Administration, Washington, DC.

[本文引用: 1]

Jägerbrand AK, Bouroussis CA (2021)

Ecological impact of artificial light at night: Effective strategies and measures to deal with protected species and habitats

Sustainability, 13, 5991.

DOI:10.3390/su13115991      URL     [本文引用: 2]

When conserving or protecting rare or endangered species, current general guidelines for reducing light pollution might not suffice to ensure long-term threatened species’ survival. Many protected areas are exposed to artificial light at levels with the potential to induce ecological impacts with unknown implications for the ecosystems they are designated to protect. Consequently, it is recommended that precautionary methods for the avoidance and mitigation of light pollution in protected areas be integrated into their management plans. This paper’s aims are to present an overview of best practices in precautionary methods to avoid and mitigate light pollution in protected areas and to identify and discuss what ecosystems should be considered light-sensitive and how to prioritise species and habitats that need protection from artificial light, including examples of legislation covering ecological light pollution in the European Union and in Sweden. The important aspects to include when considering light pollution at a landscape level are listed, and a proposal for prioritisation among species and habitats is suggested. Sensitive and conservation areas and important habitats for particularly vulnerable species could be prioritised for measures to minimise artificial lighting’s negative effects on biodiversity. This may be done by classifying protected natural environments into different zones and applying more constrained principles to limit lighting. The light pollution sensitivity of various environments and ecosystems suggests that different mitigation strategies and adaptations should be used depending on landscape characteristics, species sensitivity and other factors that may determine whether artificial light may be detrimental. Issues of the currently used measurement methods for artificial light at night are reviewed. We also propose and discuss the principles and benefits of using standardized measurement methods and appropriate instrumentation for field measurements of artificial light concerning the environmental impact of light pollution.

Jarvis LE, Hartup M, Petrovan SO (2019)

Road mitigation using tunnels and fences promotes site connectivity and population expansion for a protected amphibian

European Journal of Wildlife Research, 65, 27-38.

DOI:10.1007/s10344-019-1263-9      [本文引用: 1]

Jehle R, Arntzen JW (2000)

Post-breeding migrations of newts (Triturus cristatus and T. marmoratus) with contrasting ecological requirements

Journal of Zoology, 251, 297-306.

DOI:10.1111/jzo.2000.251.issue-3      URL     [本文引用: 1]

Jiang JP, Xie F, Zang CX, Cai L, Li C, Wang B, Li JT, Wang J, Hu JH, Wang Y, Liu JY (2016)

Assessing the threat status of amphibians in China

Biodiversity Science, 24, 588-597. (in Chinese with English abstract)

DOI:10.17520/biods.2015348      [本文引用: 1]

In order to clarify the threat status of Chinese amphibians and the conditions threatening these species, we compiled a red list of amphibians in China based on the IUCN Red List Categories and Criteria (Version 3.1), and Guidelines for Application of IUCN Red List Criteria at Regional and National Levels (Version 4.0). This red list, which includes details on population and habitat status, rates of population decline, and projected population trends, will facilitate development of protective management agreements for Chinese administrative departments, the Chinese public, and international organizations. We evaluated 408 amphibian species and discovered that 43.1% of the evaluated species, i.e., 176 species, were threatened, which exceeds the net percentage of threatened amphibian species throughout the entire world. One species was classified as “Extinct” and another species was classified as “Regionally Extinct”. There are 272 amphibian species endemic to China, and 48.9% of them were threatened. The tailed amphibian order (Urodela) possessed the highest ratios of threatened species, followed by the tailless amphibian order (Anura). The families with the highest percentages of threatened species were Cryptobranchidae (100% threatened), Hynobiidae (86.7% threatened), and Dicroglossidae (78.1% threatened). In eleven provinces, more than 30% of the local amphibian species were classified as threatened species, with the provinces Sichuan (40.8%), Guangxi (39.2%), and Yunnan (37.0%) having the highest percentage of threatened amphibians. Most of China’s amphibians are distributed in southwestern and southern China and below 2,000 m altitude. Habitat degeneration and loss, human capture, and pollution were the three leading threats to amphibians in China. In order to restore endangered amphibian populations and conserve amphibian diversity in China, more population surveys and monitoring projects as well as scientific research on Chinese amphibians are necessary.

[江建平, 谢锋, 臧春鑫, 蔡蕾, 李成, 王斌, 李家堂, 王杰, 胡军华, 王燕, 刘炯宇 (2016)

中国两栖动物受威胁现状评估

生物多样性, 24, 588-597.]

DOI:10.17520/biods.2015348      [本文引用: 1]

为了了解我国两栖动物受威胁现状和致危因素, 进而制定相关的保护措施和开展国际合作, 本文依据中国两栖动物野生种群与生境现状, 利用《IUCN物种红色名录濒危等级和标准》(3.1版)和《IUCN物种红色名录标准在国家或地区的应用指南》(4.0版), 对中国已知的408种两栖动物的濒危状况进行了评估, 并编制了《中国两栖动物红色名录》。评估结果表明: 中国两栖动物有1种灭绝, 1种区域灭绝, 受威胁的两栖动物共计176种, 占评估物种总数的43.1%, 明显高于《IUCN濒危物种红色名录》(2015)的物种受威胁率(30.8%)。中国两栖动物特有种272种, 其中48.9%属于受威胁物种。中国两栖动物受威胁比例最高的目是有尾目(63.4%), 明显高于无尾目(39.0%); 受威胁比例最高的科是隐鳃鲵科(Cryptobranchidae) (仅有1种, 100%受威胁), 小鲵科(Hynobiidae) (86.7%)和叉舌蛙科(Dicroglossidae) (78.1%)。有11个省区的受威胁物种数占本省区两栖动物物种总数的30%及以上, 前3位分别是四川(40.8%)、广西(39.2%)和云南(37%)。中国大多数两栖动物物种分布在西南山地和华南地区, 以海拔2,000 m以下区域为主。栖息地退化或丧失、捕捉、环境污染列受威胁两栖动物致危因子的前3位。鉴于中国两栖动物区系的复杂性和独特性, 进一步加强两栖动物资源调查、种群和生境监测及相关科学研究, 仍是今后一段时期开展两栖动物多样性保护和濒危物种拯救行动的关键性基础工作。

Kaiser K, Devito J, Jones CG, Marentes A, Perez R, Umeh L, Weickum RM, McGovern KE, Wilson EH, Saltzman W (2015)

Effects of anthropogenic noise on endocrine and reproductive function in White’s treefrog, Litoria caerulea

Conservation Physiology, 3, cou061.

[本文引用: 2]

Kaiser K, Hammers J (2009)

The effect of anthropogenic noise on male advertisement call rate in the neotropical treefrog, Dendropsophus triangulum

Behaviour, 146, 1053-1069.

DOI:10.1163/156853909X404457      URL     [本文引用: 2]

Kaiser K, Scofield DG, Alloush M, Jones RM, Marczak S, Martineau K, Oliva MA, Narins PM (2011)

When sounds collide: The effect of anthropogenic noise on a breeding assemblage of frogs in Belize, Central America

Behaviour, 148, 215-232.

DOI:10.1163/000579510X551660      URL     [本文引用: 8]

Many organisms depend on acoustic communication for myriad functions, and have evolved behaviours to minimize effects of naturally occurring acoustic interference. However, as habitats are subject to increased alteration, anthropogenic noise becomes unavoidable, and how animals overcome such interference is not well understood. In most ecosystems, only a subset of frog species is associated with disturbed habitats; the ability of these species to overcome exogenous noise suggests that habitat associations may be related to species' response to noise. We tested the hypothesis that frogs associated with largely undisturbed forest habitat would be less likely to increase call output in response to exogenous noise than would those associated with disturbed or open habitat. While this relationship was not significant, we found a slight trend supporting the hypothesis. We then asked whether anthropogenic noise affects chorus tenure at individual- or at chorus-levels. Male frogs exposed to anthropogenic noise decreased both the number of days present at the chorus and the nightly chorus duration relative to controls. Because females generally join choruses late at night to breed, the effects of noise shown here are likely to substantially decrease frog reproductive success; thus, the acoustic environment may play an important role in shaping population dynamics and in amphibian declines.

Kazemi VD, Jafari H, Yavari A (2016)

Spatio-temporal patterns of wildlife road mortality in Golestan National Park, northeast of Iran

Open Journal of Ecology, 6, 312-324.

DOI:10.4236/oje.2016.66031      URL     [本文引用: 1]

Kiesecker JM, Blaustein AR, Miller CL (2001)

Potential mechanisms underlying the displacement of native red- legged frogs by introduced bullfrogs

Ecology, 82, 1964-1970.

DOI:10.1890/0012-9658(2001)082[1964:PMUTDO]2.0.CO;2      URL     [本文引用: 2]

Lan FY, Ma XJ, Lu JY, Li YG, Chai RS, Li X, Luo YO, Zhang YZ, Ye ZL, Fu CJ, Bao WS, Li L, Xing XY (2021)

Effects of urbanization on bird nesting: A review

Biodiversity Science, 29, 1539-1553. (in Chinese with English abstract)

DOI:10.17520/biods.2021215      [本文引用: 2]

<p id="p00015"><strong>Background &#x00026; Aim:</strong> Nesting behavior is important for birds because this stage is critical for breeding success. Since urbanization is expanding worldwide, birds living in cities face huge challenges but the urban environment can also provide living opportunities. This review summarizes bird nesting behaviors in cities, analyzing the influence of factors such as climate, food resources, nest site availability, predation pressure, pollution, and anthropogenic disturbance on bird nesting based on publications in Biblioshiny programme. <br><strong>Summary: </strong>This study demonstrates that urbanization influences bird nesting period, nest site and nest material selection significantly, and that spatio-temporal nesting ranges and nesting materials differ between urban and rural birds. We highlight the need to evaluate whether city birds are well adapted or negatively affected by urbanization, which would require specific analysis of target populations and habitat conditions. <br><strong> Perspectives: </strong>We should propose effective and specific suggestions to protect city birds during urbanization based on our research results, instead of simply providing general guidelines. Developing citizen science to solve practical issues in urban animal ecology is a promising direction for the future.</p>

[蓝方源, 马行健, 逯金瑶, 李雨果, 柴汝松, 李翔, 罗亦欧, 张宇泽, 叶子凌, 付昌健, 暴文爽, 李立, 邢晓莹 (2021)

城市化对鸟类筑巢的影响研究综述

生物多样性, 29, 1539-1553.]

DOI:10.17520/biods.2021215      [本文引用: 2]

繁殖期筑巢是鸟类生活史的重要阶段, 是鸟类繁殖成功的关键保障。全球范围的城市化加速推进, 使城市中筑巢繁殖的鸟类面临挑战的同时又为其提供了特殊机遇。本文通过搜索现有文献, 利用Biblioshiny程序提取并整合关键词, 得到城市鸟类生态研究的热点领域, 分析了城市气候、食物资源、巢址资源、捕食压力、污染和人为干扰对鸟类筑巢的影响, 并对今后城市化对鸟类筑巢影响研究中亟需解决的问题进行了展望。城市化对鸟类筑巢期、巢址选择及巢材选择产生显著影响, 与栖息在村镇生境的鸟类相比, 在城市中繁殖的鸟类在筑巢时间、空间和巢材使用上出现变化。在城市中筑巢的鸟类到底是通过调整行为策略作出积极适应, 还是被动接受城市环境中的诸多负面干扰, 需要针对研究对象和特定的城市栖息生境进行及时评估, 而非泛泛之谈。要在研究结论基础上, 深入思考并提出城市化建设过程中有利于鸟类种群和群落保护的具体措施, 高效发挥公民科学作用以解决城市中的鸟类保护实践问题。

Laurance WF, Clements GR, Sloan S, O’Connell CS, Mueller ND, Goosem M, Venter O, Edwards DP, Phalan B, Balmford A, van der Ree R, Arrea IB (2014)

A global strategy for road building

Nature, 513, 229-232.

DOI:10.1038/nature13717      [本文引用: 1]

Lengagne T (2008)

Traffic noise affects communication behaviour in a breeding anuran, Hyla arborea

Biological Conservation, 141, 2023-2031.

DOI:10.1016/j.biocon.2008.05.017      URL     [本文引用: 3]

Li C, Xie F, Che J, Jiang JP (2017)

Monitoring and research of amphibians and reptiles diversity in key areas of China

Biodiversity Science, 25, 246-254. (in Chinese with English abstract)

DOI:10.17520/biods.2016137      [本文引用: 1]

Amphibians and reptiles are important indicator species of ecosystem health, and they are sensitive to environmental changes and are often regarded as critical “early warning systems”. Many of their populations are undergoing rapid decline and therefore a long-term monitoring system is imperative to identify immediate threats to the animals. Monitoring program on Chinese amphibians began in the Zoige wetlands in 1997. Since 2000, a great number of monitoring studies of amphibians and reptiles have been carried out in mountains of Southwest China, Taiwan, and other regions with rich biodiversity. In 2011, the Ministry of Environmental Protection officially launched the “Amphibian Observation Initiative of China” program, which expanded regional programs to country-wide using both qualitative and quantitative methods to collect amphibian biodiversity data across long-term temporal scales. From an ecosystem viewpoint, long-term monitoring studies should include not only species distribution, richness, and population structure, but also population growth, key life-history traits, species interactions (e.g., predation, competition, and mutualism), community structure, and other dynamic factors. The program “Monitoring and Research of Amphibians and Reptiles in Key Areas of China” will cover 22 key areas with rich biodiversity and high habitat heterogeneity across China. As part of the Chinese Biodiversity Monitoring and Research Network (Sino BON), this program aims to combine intensive field surveys and ecological modeling techniques to evaluate population dynamics and community structures of amphibian and reptile species in the study areas.

[李成, 谢锋, 车静, 江建平 (2017)

中国关键地区两栖爬行动物多样性监测与研究

生物多样性, 25, 246-254.]

DOI:10.17520/biods.2016137      [本文引用: 1]

两栖爬行动物是良好的环境指示物种, 是环境变化的早期预警系统之一, 目前正经历着全球范围的种群快速下降和物种灭绝。为了观测和研究物种及种群下降或灭绝的态势和机制, 亟需对我国两栖爬行动物多样性开展长期监测和研究。在中国, 对两栖爬行动物的监测研究始于1997年对若尔盖湿地两栖动物的监测。此后, 两栖爬行动物监测率先在西南山地、台湾等生物多样性丰富地区开展起来。2011年, 在借鉴美国和英国的两栖爬行动物监测计划的基础上, 环境保护部启动了&#x0201c;两栖类示范观测项目&#x0201d;, 初步实现了由点到面、由定性到定量、由静态向动态的突破。因为单一类群的监测仅代表生态系统的基本组成, 而从生态系统角度考量, 必须深入研究生态系统的结构(食物网中各类群的捕食、竞争、共生等种间关系)和动态(各类群的生长、繁殖、种群波动和致危因素等)。因此, 作为中国生物多样性监测与研究网络(Sino BON)的重要组成部分, &#x0201c;中国关键地区两栖爬行动物监测与研究专项网&#x0201d;项目将在22个生物多样性关键地区对典型生态系统中的两栖爬行动物组成、种群动态和结构进行长期监测与研究, 构建生态模型, 探讨两栖爬行动物的种群现状、群落结构及其动态趋势和相关机制, 制定和不断完善我国两栖爬行动物应对未来环境变化的保护和管理对策。

Longcore T, Rich C (2004)

Ecological light pollution

Frontiers in Ecology and the Environment, 2, 191-198.

DOI:10.1890/1540-9295(2004)002[0191:ELP]2.0.CO;2      URL     [本文引用: 2]

Luo YM, Wang ZC, Wang C, Piao ZJ, Li Z, Huang LY, Zhang R, Sui YC (2015)

Survey and conservation of amphibian populations losses in roadside of Changbai Mountain

Journal of Beihua University (Natural Science), 16, 108-112. (in Chinese with English abstract)

[本文引用: 1]

[罗玉梅, 王卓聪, 王超, 朴正吉, 李卓, 黄利亚, 张睿, 睢亚橙 (2015)

长白山路域两栖类动物损失调查及保护

北华大学学报(自然科学版), 16, 108-112.]

[本文引用: 1]

Maierdiyali A, Wang Y, Tao SC, Kong YP, Wang H, Z (2022)

Research status and challenges of road impacts on wildlife in China

Biodiversity Science, 30, 22209. (in Chinese with English abstract)

DOI:10.17520/biods.2022209      [本文引用: 1]

<p id="p00005"><strong>Background &#x00026; Aim:</strong> Habitat loss and fragmentation, driven by expansion of global transport infrastructure networks, has become one of the significant factors contributing to the decline of biodiversity. Many studies on the impact of roads on wildlife have been conducted abroad, yet only a modest number of studies have been conducted in China.</p> <p id="p00010"><strong>Summary: </strong>This review summarizes 144 case studies conducted in China by the year 2021 and 210 posts relating to roadkill from Sina Microblog. The impacts of roads on wildlife in China were divided into seven types: habitat loss, habitat fragmentation, avoid or gather at the roadside, hinder or promote migration, population isolation, wildlife crossing structures and roadkill. Recent, relevant studies in China are mainly concentrated in Hoh Xil, Changbai Mountains, and Qinling Mountains. The main species studied are ungulates on Tibetan Plateau, the giant panda (<i>Ailuropoda melanoleuca</i>) and Asian elephant (<i>Elephas maximus</i>).</p> <p id="p00015"><strong>Perspectives: </strong>Collecting data on the impacts of roads on wildlife, is critical to inform interdisciplinary and multi-departmental management and conservation solutions of road-wildlife conflicts in China. Social media platforms can be important sources of data on roadkill occurrences.</p>

[阿卜杜赛麦提·买尔迪亚力, 王云, 陶双成, 孔亚平, 王昊, 吕植 (2022)

我国道路对野生动物影响研究的现状与挑战

生物多样性, 30, 22209.]

DOI:10.17520/biods.2022209      [本文引用: 1]

全球交通基础设施网络的不断扩张导致的栖息地丧失和破碎化已成为生物多样性下降的主要影响因素之一。国外开展了大量的道路对野生动物生存影响的研究, 相对而言, 我国在该领域的研究刚刚起步。本文通过总结截止于2021年国内的144篇案例研究文献以及新浪微博中210条道路交通伤害信息, 将我国道路对野生动物的影响分为栖息地丧失、栖息地破碎化、回避或聚集路边、阻碍或促进迁移、种群隔离、野生动物通道和道路交通伤害等方面, 从研究方法、研究地点、研究物种和研究结果等不同角度进行梳理和总结。近年来, 我国的相关研究呈现不断增长的趋势, 研究地点主要集中在可可西里、长白山和秦岭地区; 研究物种主要为青藏高原有蹄类、大熊猫(Ailuropoda melanoleuca)和亚洲象(Elephas maximus)。未来重点发展方向应包括: (1)道路野生动物基础数据采集平台建设; (2)我国不同动物地理分区的道路野生动物相关研究; (3)深入开展学科交叉与部门合作以及国际交流合作。公众在社交媒体发布的相关信息表明近年来公众对道路交通伤害问题越来越关注, 未来开展基于公民科学收集道路交通伤害数据具有迫切性和可行性。

May D, Shidemantle G, Melnick-Kelley Q, Crane K, Hua J (2019)

The effect of intensified illuminance and artificial light at night on fitness and susceptibility to abiotic and biotic stressors

Environmental Pollution, 251, 600-608.

DOI:S0269-7491(18)34912-1      PMID:31108293      [本文引用: 1]

Changing light conditions due to human activities represents an important emerging environmental concern. Although changes to natural light conditions can be independently detrimental, in nature, organisms commonly face multiple stressors. To understand the consequences of altered light conditions, we exposed a model amphibian (wood frog; Lithobates sylvaticus) to a control and two anthropogenic light conditions: intensified daytime illuminance and artificial light at night - ALAN (intensified daytime illuminance + extended photoperiod). We measured (1) metrics of fitness (hatching success as well as survival to, size at, and time to metamorphosis) (2) susceptibility (time to death) to a commonly co-occurring anthropogenic stressor, road salt (NaCl) and (3) susceptibility (infection load) to a common parasite (trematode). We also explored behavioral (swimming activity) and physiological (baseline corticosterone (CORT) release rates) changes induced by these light conditions, which may mediate changes in the other measured parameters. We found that both intensified daytime illuminance and ALAN reduced hatching success. In contrast, for amphibians that successfully hatched, neither treatment affected amphibian survival or time to metamorphosis but individuals exposed to ALAN were larger at metamorphosis. The light treatments also had marginal effects; individuals in ALAN treatments were more susceptible to NaCl and trematodes. Finally, tadpoles exposed to ALAN moved significantly less than tadpoles in the control and intensified daytime illuminance treatments, while light had no effect on CORT release rate. Overall, changes in light conditions, in particular ALAN, significantly impacted an amphibian model in laboratory conditions. This work underscores the importance of considering not only the direct effects of light on fitness metrics but also the indirect effects of light with other abiotic and biotic stressors. Anthropogenic-induced changes to light conditions are expected to continue increasing over time so understanding the diverse consequences of shifting light conditions will be paramount to protecting wildlife populations.Copyright © 2019 Elsevier Ltd. All rights reserved.

McKinley DC, Miller-Rushing AJ, Ballard HL, Bonney R, Brown H, Cook-Patton SC, Evans DM, French RA, Parrish JK, Phillips TB, Ryan SF, Shanley LA, Shirk JL, Stepenuck KF, Weltzin JF, Wiggins A, Boyle OD, Briggs RD, Chapin SF III, Hewitt DA, Preuss PW, Soukup MA (2017)

Citizen science can improve conservation science, natural resource management, and environmental protection

Biological Conservation, 208, 15-28.

DOI:10.1016/j.biocon.2016.05.015      URL     [本文引用: 1]

Nelson DV, Klinck H, Carbaugh-Rutland A, Mathis CL, Morzillo AT, Garcia TS (2017)

Calling at the highway: The spatiotemporal constraint of road noise on Pacific chorus frog communication

Ecology and Evolution, 7, 429-440.

DOI:10.1002/ece3.2622      PMID:28070305      [本文引用: 3]

Loss of acoustic habitat due to anthropogenic noise is a key environmental stressor for vocal amphibian species, a taxonomic group that is experiencing global population declines. The Pacific chorus frog () is the most common vocal species of the Pacific Northwest and can occupy human-dominated habitat types, including agricultural and urban wetlands. This species is exposed to anthropogenic noise, which can interfere with vocalizations during the breeding season. We hypothesized that Pacific chorus frogs would alter the spatial and temporal structure of their breeding vocalizations in response to road noise, a widespread anthropogenic stressor. We compared Pacific chorus frog call structure and ambient road noise levels along a gradient of road noise exposures in the Willamette Valley, Oregon, USA. We used both passive acoustic monitoring and directional recordings to determine source level (i.e., amplitude or volume), dominant frequency (i.e., pitch), call duration, and call rate of individual frogs and to quantify ambient road noise levels. Pacific chorus frogs were unable to change their vocalizations to compensate for road noise. A model of the active space and time ("spatiotemporal communication") over which a Pacific chorus frog vocalization could be heard revealed that in high-noise habitats, spatiotemporal communication was drastically reduced for an individual. This may have implications for the reproductive success of this species, which relies on specific call repertoires to portray relative fitness and attract mates. Using the acoustic call parameters defined by this study (frequency, source level, call rate, and call duration), we developed a simplified model of acoustic communication space-time for this species. This model can be used in combination with models that determine the insertion loss for various acoustic barriers to define the impact of anthropogenic noise on the radius of communication in threatened species. Additionally, this model can be applied to other vocal taxonomic groups provided the necessary acoustic parameters are determined, including the frequency parameters and perception thresholds. Reduction in acoustic habitat by anthropogenic noise may emerge as a compounding environmental stressor for an already sensitive taxonomic group.

O’Donnell RP, Durso AM (2014)

Harnessing the power of a global network of citizen herpetologists by improving citizen science databases

Herpetological Review, 45, 151-157.

[本文引用: 1]

Olson DH, Aanensen DM, Ronnenberg KL, Powell CI, Walker SF, Bielby J, Garner TWJ, Weaver G, Fisher MC (2013) Mapping the global emergence of Batrachochytrium dendrobatidis, the amphibian chytrid fungus. PLoS ONE, 8, e56802.

[本文引用: 1]

Parris KM (2002)

More bang for your buck: The effect of caller position, habitat and chorus noise on the efficiency of calling in the spring peeper

Ecological Modelling, 156, 213-224.

DOI:10.1016/S0304-3800(02)00170-9      URL     [本文引用: 1]

Perry G, Buchanan B, Fisher R, Salmon M, Wise S (2008)

Effects of artigicial night lighting on amphibians and reptiles in urban environments

Herpetological Conservation, 3, 211-228.

[本文引用: 1]

Petrovan SO, Schmidt BR (2016) Volunteer conservation action data reveals large-scale and long-term negative population trends of a widespread amphibian, the common toad (Bufo bufo). PLoS ONE, 11, e0161943.

[本文引用: 1]

Petrovan SO, Schmidt BR (2019)

Neglected juveniles; a call for integrating all amphibian life stages in assessments of mitigation success (and how to do it)

Biological Conservation, 236, 252-260.

DOI:10.1016/j.biocon.2019.05.023      [本文引用: 1]

Road networks are central drivers of biodiversity loss and their impacts are rapidly expanding. Pond-breeding amphibians are highly vulnerable to road impacts because they typically travel from terrestrial to aquatic habitats to breed and leave the aquatic habitat for the terrestrial as newly emerged juveniles. If amphibians must cross roads during migrations, mass mortalities and local extirpation can result. While mortality at any life stage is concerning, juveniles should be of special interest when assessing road mortality and mitigation (e.g., tunnels to facilitate safe seasonal migrations) because their fate can have a disproportionate impact on population dynamics. We highlight a pervasive lack of information about juveniles which contributes to an inability to demonstrate the effect of road mitigation actions at the population level. This limits our capacity to implement conservation strategies and improve outcomes for vulnerable amphibian populations. We examine this knowledge gap using published mathematical models of amphibian populations and studies on efforts to mitigate road impacts. We further discuss the successful use of volunteers (i.e., citizen science) and identify how these efforts might be more broadly applied to address the dearth of data on juveniles and to mitigate the levels of mortality caused by roads. There are discrepancies between theoretical population models and conservation practice and we evaluate the potential causes and implications for the effectiveness of conservation projects in improving population persistence. Road mortality is a common and increasingly important challenge for amphibian conservation. Understanding juvenile demographics, movement ecology and response to mitigation structures is critical for expanding beyond short-term road mortality prevention to long-term mitigation (population persistence).

Petrovan SO, Vale CG, Sillero N (2020) Using citizen science in road surveys for large-scale amphibian monitoring: Are biased data representative for species distribution? Biodiversity and Conservation, 29, 1767-1781.

[本文引用: 2]

Puky M (Irwin CL, 2005) Amphibian road kills: A global perspective. In:Proceedings of the 2005 International Conference on Ecology and Transportation (eds Garrett P, McDermott KP), pp. 325-338. Center for Transportation and the Environment, North Carolina State University, Raleigh.

[本文引用: 1]

Rand AS, Bridarolli ME, Dries L, Ryan MJ (1997) Light levels influence female choice in túngara frogs: Predation risk assessment? Copeia, 2, 447-450.

[本文引用: 1]

Reading CJ (1998)

The effect of winter temperatures on the timing of breeding activity in the common toad Bufo bufo

Oecologia, 117, 469-475.

DOI:10.1007/s004420050682      PMID:28307671      [本文引用: 1]

A 19-year study of a common toad population in south Dorset, UK, was carried out between 1980 and 1998. The daily arrival of sexually mature male and female toads at a breeding pond was recorded each year. The timing of the main arrival of toads at the breeding pond was highly correlated with the mean daily temperatures over the 40 days immediately preceding the main arrival. When the temperatures were higher than average, breeding occurred significantly earlier in the year than if they were either average or lower than average. During the study, the toad breeding seasons were early (2-13 February) in 5 years (1989, 1990, 1993, 1995, 1998), late (16-23 March) in 2 years (1986, 1996) and average (25 February-8 March) during the remaining 12 years. Evidence was found suggesting that common toads have a daylength threshold of about 9 h, below which the migration to the breeding pond does not occur. Evidence was also found indicating that common toads in southern England have a threshold temperature for activity of about 6°C and that the onset of breeding activity is highly correlated with the number of days during the 40 days prior to the main arrival at the breeding pond that were at or above this temperature. Predicting the start of the main breeding migration to a pond in any year may be possible by comparing the pattern of the 40-day running mean daily temperatures from 21 December the preceding year with those from previous years when the start of breeding activity is known. Although all five of the earliest recorded toad breeding years occurred during the last 10 years, and were associated with the occurrence of particularly mild winters, a significant trend towards earlier breeding in recent years compared with previous years was not found.

Romero LM (2004)

Physiological stress in ecology: Lessons from biomedical research

Trends in Ecology & Evolution, 19, 249-255.

DOI:10.1016/j.tree.2004.03.008      URL     [本文引用: 1]

Rytwinski T, Fahrig L (2015) The impacts of roads and traffic on terrestrial animal populations. In: Handbook of Road Ecology (eds van der Ree R, Smith DJ, Grilo C), pp. 237-246. Springer, New York.

[本文引用: 1]

Rytwinski T, Soanes K, Jaeger JAG, Fahrig L, Findlay CS, Houlahan J, van der Ree R, van der Grift EA (2016)

How effective is road mitigation at reducing road-kill? A meta-analysis

PLoS ONE, 11, e0166941.

[本文引用: 3]

Sanchez-Perez JV, Rubio C, Martinez-Sala R, Sanchez-Grandia R, Gomez V (2002)

Acoustic barriers based on periodic arrays of scatterers

Applied Physics Letters, 81, 5240-5242.

DOI:10.1063/1.1533112      URL     [本文引用: 1]

Santos SM, Carvalho F, Mira A (2011)

How long do the dead survive on the road? Carcass persistence probability and implications for road-kill monitoring surveys

PLoS ONE, 6, e25383.

[本文引用: 1]

Sapolsky RM, Romero LM, Munck AU (2000)

How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions

Endocrine Reviews, 21, 55-89.

DOI:10.1210/edrv.21.1.0389      PMID:10696570      [本文引用: 1]

The secretion of glucocorticoids (GCs) is a classic endocrine response to stress. Despite that, it remains controversial as to what purpose GCs serve at such times. One view, stretching back to the time of Hans Selye, posits that GCs help mediate the ongoing or pending stress response, either via basal levels of GCs permitting other facets of the stress response to emerge efficaciously, and/or by stress levels of GCs actively stimulating the stress response. In contrast, a revisionist viewpoint posits that GCs suppress the stress response, preventing it from being pathologically overactivated. In this review, we consider recent findings regarding GC action and, based on them, generate criteria for determining whether a particular GC action permits, stimulates, or suppresses an ongoing stress-response or, as an additional category, is preparative for a subsequent stressor. We apply these GC actions to the realms of cardiovascular function, fluid volume and hemorrhage, immunity and inflammation, metabolism, neurobiology, and reproductive physiology. We find that GC actions fall into markedly different categories, depending on the physiological endpoint in question, with evidence for mediating effects in some cases, and suppressive or preparative in others. We then attempt to assimilate these heterogeneous GC actions into a physiological whole.

Shilling F, Perkins SE, Collinson W (2015)

Wildlife/roadkill observation and reporting systems

In: Handbook of Road Ecology (eds van der Ree R, Smith DJ, Grilo C), pp. 492-501. John Wiley & Sons, New York.

[本文引用: 1]

Sievers M, Hale R, Parris KM, Melvin SD, Lanctôt CM, Swearer SE (2019a)

Contaminant-induced behavioural changes in amphibians: A meta-analysis

Science of the Total Environment, 693, 133570.

DOI:10.1016/j.scitotenv.2019.07.376      URL     [本文引用: 2]

Sievers M, Hale R, Swearer SE, Parris KM (2019b)

Frog occupancy of polluted wetlands in urban landscapes

Conservation Biology, 33, 389-402.

DOI:10.1111/cobi.2019.33.issue-2      URL     [本文引用: 1]

Simmons AM, Narins PM (2018) Effects of anthropogenic noise on amphibians and reptiles. In: Effects of Anthropogenic Noise on Animals (eds Slabbekoorn H, Dooling R, Popper A, Fay R), pp. 179-208. Springer, New York.

[本文引用: 3]

Skidds DE, Golet FC, Paton PWC, Mitchell JC (2007)

Habitat correlates of reproductive effort in wood frogs and spotted salamanders in an urbanizing watershed

Journal of Herpetology, 41, 439-450.

DOI:10.1670/0022-1511(2007)41[439:HCOREI]2.0.CO;2      URL     [本文引用: 1]

Snodgrass J, Casey R, Massal L (2007)

Nitrogen pollution of stormwater ponds: Potential for toxic effects on amphibian embryos and larvae

Applied Herpetology, 4, 19-29.

DOI:10.1163/157075407779766714      URL     [本文引用: 1]

Sodhi NS, Bickford D, Diesmos AC, Lee TM, Koh LP, Brook BW, Sekercioglu CH, Bradshaw CJA (2008) Measuring the meltdown: Drivers of global amphibian extinction and decline. PLoS ONE, 3, e1636.

[本文引用: 1]

Sterrett SC, Katz RA, Fields WR, Grant EHC (2019)

The contribution of road-based citizen science to the conservation of pond-breeding amphibians

Journal of Applied Ecology, 56, 988-995.

DOI:10.1111/1365-2664.13330      [本文引用: 2]

Roadside amphibian citizen science (CS) programmes bring together volunteers focused on collecting scientific data while working to mitigate population declines by reducing road mortality of pond-breeding amphibians. Despite the international popularity of these movement-based, roadside conservation efforts (i.e. big nights, bucket brigades and toad patrols), direct benefits to conservation have rarely been quantified or evaluated. As a case study, we used a population simulation approach to evaluate how volunteer intensity, frequency and distribution influence three conservation outcomes (minimum population size, population growth rate and years to extinction) of the spotted salamander (Ambystoma maculatum), often a focal pond-breeding amphibian of CS and conservation programmes in the United States. Sensitivity analysis supported the expectation that spotted salamander populations were primarily recruitment-driven. Thus, conservation outcomes were highest when volunteers focused on metamorph outmigration as opposed to adult in-migrationcontrary to the typical timing of such volunteer events. Almost every volunteer strategy resulted in increased conservation outcomes compared to a no-volunteer strategy. Specifically, volunteer frequency during metamorph migration increased outcomes more than the same increases in volunteer effort during adult migration. Small population sizes resulted in a negligible effect of volunteer intensity. Volunteers during the first adult in-migration had a relatively small effect compared to most other strategies. Synthesis and applications. Although citizen science (CS)-focused conservation actions could directly benefit declining populations, additional conservation measures are needed to halt or reverse local amphibian declines. This study demonstrates a need to evaluate the effectiveness of focusing CS mitigation efforts on the metamorph stage, as opposed to the adult stage. This may be challenging, compared to other management actions such as road-crossing infrastructure. Current amphibian CS programmes will be challenged to balance implementing evidence-based conservation measures on the most limiting life stage, while retaining social and community benefits for volunteers. Although citizen science (CS)-focused conservation actions could directly benefit declining populations, additional conservation measures are needed to halt or reverse local amphibian declines. This study demonstrates a need to evaluate the effectiveness of focusing CS mitigation efforts on the metamorph stage, as opposed to the adult stage. This may be challenging, compared to other management actions such as road-crossing infrastructure. Current amphibian CS programmes will be challenged to balance implementing evidence-based conservation measures on the most limiting life stage, while retaining social and community benefits for volunteers.

Sun JWC, Narins PM (2005)

Anthropogenic sounds differentially affect amphibian call rate

Biological Conservation, 121, 419-427.

DOI:10.1016/j.biocon.2004.05.017      URL     [本文引用: 5]

Sutherland RW, Dunning PR, Baker WM (2010)

Amphibian encounter rates on roads with different amounts of traffic and urbanization

Conservation Biology, 24, 1626-1635.

DOI:10.1111/j.1523-1739.2010.01570.x      PMID:20735450      [本文引用: 1]

Although amphibians have relatively high rates of road mortality in urban areas, the conditions under which traffic threatens the survival of local amphibian populations remain unclear. In the Sandhills region of North Carolina (U.S.A.), we counted living and dead amphibians along two transects (total length 165 km) established on roads in areas with varying degrees of urbanization. We found 2665 individuals of 15 species, and amphibian encounter rates declined sharply as traffic and urban development increased. Regression-tree models indicated that 35 amphibians/100 km occurred on roads with <535 vehicles/day, whereas the encounter rate decreased to only 2 amphibians/100 km on roads with >2048 vehicles/day. Although mortality rate peaked at higher traffic levels (47% dead on roads with >5200 vehicles/day), the number of dead amphibians was highest at low levels of traffic. This suggests that areas where amphibian mortality is concentrated may actually contain the largest populations remaining on a given road transect.© 2010 Society for Conservation Biology.

Taylor SK, Buergelt CD, Roelke-Parker ME, Homer BL, Rotstein DS (2002)

Causes of mortality of free-ranging Florida panthers

Journal of Wildlife Diseases, 38, 107-114.

PMID:11838201      [本文引用: 1]

The Florida panther (Puma concolor coryi) is one of the most endangered mammals, with the entire population estimated to consist of only 30-50 adult animals. Between 1978 and 1999, 73 free-ranging Florida panther carcasses were submitted for postmortem evaluation, of which 47 (64%) were radiocollared and 26 (36%) were uncollared cats. Overall, mortality of panthers > 6-mo-old was due to vehicular trauma in 25 (35%), intraspecific aggression in 19 (26%), illegal kill in seven (10%), research activities in two (3%), infectious diseases in two (3%), esophageal tear in one (1%), pleuritis in one (1%), pyothorax in one (1%), aortic aneurysm in one (1%), atrial septal defect in one (1%), and causes of death were undetermined in 13 (18%) due to autolysis. Of the 25 panthers that were killed by vehicular trauma, 20 (80%) died between October and April. This coincides with increased number of winter visitors to south Florida. Among radiocollared panthers, intraspecific aggression was the primary cause of mortality for 19 (41%) dead cats. Of these cats, 16 (84%) were males and 14 (88%) were either less than 3 or more than 8-yr-old. These animals were probably fighting to establish or retain territory. Among the 26 uncollared panthers, vehicular trauma was the primary cause of mortality and was responsible for 16 (62%) deaths. This study documents the causes of mortality and the age, sex, and seasonal mortality trends for both radiocollared and uncollared free-ranging endangered Florida panthers over a 21-yr-period.

Tennessen JB, Parks SE, Langkilde T (2014)

Traffic noise causes physiological stress and impairs breeding migration behaviour in frogs

Conservation Physiology, 2, cou032.

[本文引用: 2]

Touzot M, Lengagne T, Secondi J, Desouhant E, Théry M, Dumet A, Duchamp C, Mondy N (2020)

Artificial light at night alters the sexual behaviour and fertilisation success of the common toad

Environmental Pollution, 259, 113883.

DOI:10.1016/j.envpol.2019.113883      URL     [本文引用: 1]

Touzot M, Teulier L, Lengagne T, Secondi J, Théry M, Libourel PA, Guillard L, Mondy N (2019)

Artificial light at night disturbs the activity and energy allocation of the common toad during the breeding period

Conservation Physiology, 7, coz002.

[本文引用: 1]

Underhill VA, Höbel G (2018)

Mate choice behavior of female Eastern Gray Treefrogs (Hyla versicolor) is robust to anthropogenic light pollution

Ethology, 124, 537-548.

DOI:10.1111/eth.2018.124.issue-8      URL     [本文引用: 1]

Creemers R, Joosten K, Donners M, Veenendaal EM (2017)

Behaviour of migrating toads under artificial lights differs from other phases of their life cycle

Amphibia-Reptilia, 38, 49-55.

DOI:10.1163/15685381-00003081      URL    

During annual spring migration in Western Europe many amphibians are killed by traffic when they cross roads moving to reproduction sites. Especially in urban settings these roads are often equipped with street lighting. The response of amphibians to this light during migration is however poorly known. Street lighting may attract migrating amphibians increasing the risk of being struck by traffic. Using experimental illumination we tested whether light affected the migration and if adjustment of the spectral composition could mitigate effects. Barriers used to catch toads and help them cross roads safely were divided in 25 meter long sections and these were illuminated with white, green or red light or kept dark. The number of toads caught in each section was counted. Common toads avoided sections of roads that were illuminated with white or green light but not red light. Street light thus affects migrating toads but not as expected and red light with low levels of short wavelength can be used to mitigate effects.

van Renterghem T, Botteldooren D, Verheyen K (2012)

Road traffic noise shielding by vegetation belts of limited depth

Journal of Sound and Vibration, 331, 2404-2425.

DOI:10.1016/j.jsv.2012.01.006      URL     [本文引用: 1]

Vargas-Salinas F, Cunnington GM, Amézquita A, Fahrig L (2014)

Does traffic noise alter calling time in frogs and toads? A case study of anurans in Eastern Ontario, Canada

Urban Ecosystems, 17, 945-953.

DOI:10.1007/s11252-014-0374-z      URL     [本文引用: 3]

Wake DB (1991)

Declining amphibian populations

Science, 253, 860.

[本文引用: 1]

Yang T, Zhang WY, Dai R, Zheng PY, Shu GC, Zou Q, Li C (2022)

Reptile road-kills in Simao District of Pu’er City, Yunnan Province, China

Acta Ecologica Sinica, 42, 2648-2656. (in Chinese with English abstract)

[本文引用: 1]

[杨韬, 章文艳, 戴蓉, 郑普阳, 舒国成, 邹琪, 李成 (2022)

云南省普洱市思茅区路杀爬行动物研究

生态学报, 42, 2648-2656.]

[本文引用: 1]

Yi YZ, Sheridan JA (2019)

Effects of traffic noise on vocalisations of the rhacophorid tree frog Kurixalus chaseni (Anura: Rhacophoridae) in Borneo

Raffles Bulletin of Zoology, 67, 77-82.

[本文引用: 3]

Zhang WY, Shu GC, Li YL, Xiong S, Liang CP, Li C (2018)

Daytime driving decreases amphibian roadkill

PeerJ, 6, e5385.

[本文引用: 4]

/