生物多样性, 2023, 31(1): 22374 doi: 10.17520/biods.2022374

中国野生脊椎动物鸣声监测与生物声学研究专题

被动声学监测技术在陆生哺乳动物研究中的应用、进展和展望

马海港1, 范鹏来,,2,3,*

1.中山大学生命科学学院, 广州 510275

2.珍稀濒危动植物生态与环境保护教育部重点实验室, 广西桂林 541006

3.广西师范大学生命科学学院, 动物生态学重点实验室, 广西桂林 541006

Application, progress, and future perspective of passive acoustic monitoring in terrestrial mammal research

Haigang Ma1, Penglai Fan,,2,3,*

1. School of Life Sciences, Sun Yat-sen University, Guangzhou 510275

2. Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, Guangxi 541006

3. Key Laboratory of Animal Ecology, School of Life Sciences, Guangxi Normal University, Guilin, Guangxi 541006

通讯作者: *E-mail:fanpl@mailbox.gxnu.edu.cn

编委: 李晟

责任编辑: 周玉荣

收稿日期: 2022-07-1   接受日期: 2022-10-28  

基金资助: 国家自然科学基金(31900335)
广西自然科学基金粤桂联合重点项目(2022GXNSFDA080004)
广西科技基地和人才专项(桂科AD21220028(桂科AD21220028)

Corresponding authors: *E-mail:fanpl@mailbox.gxnu.edu.cn

Received: 2022-07-1   Accepted: 2022-10-28  

摘要

被动声学监测(passive acoustic monitoring, PAM)技术指将自动录音机安装在自然环境中收集野生动物及其所在环境的声音信号的监测方法。20世纪90年代以来, PAM技术陆续被应用于翼手目和灵长目等陆生哺乳动物的监测和研究, 探究了陆生哺乳动物行为学、生态学和保护生物学等方面的科学问题。然而, 当前缺乏对这些研究的系统性总结和展望。本文从活动规律和时间分配、栖息地利用、物种分布、种群大小与密度、生物多样性、人为干扰的影响等领域综述了PAM技术在陆生哺乳动物中的研究进展, 并列举了相关应用实例。总体上, PAM技术涉及到生物学、生态学、声学、计算机科学等多学科的交叉融合, 其应用受限于声学数据的储存和管理、物种或个体自动化识别以及声学指数评估的普适性, 设备价格也相对昂贵, 这些可能是导致该技术在我国陆生哺乳动物监测和研究方面的应用还相对滞后于其他国家的原因。最后, 本文对未来研究方向进行了展望, 并建议尽快建立和完善我国陆生哺乳动物PAM网络和数据共享平台、组织开展面对面访问调查或生物多样性保护相关的知识竞赛等公民科学项目、向更多科研机构或保护区推广PAM技术的应用, 使该技术成为陆生哺乳动物行为学、生态学、生物多样性保护等领域不可或缺的技术手段, 进一步服务于我国的生物多样性保护和生态文明建设。

关键词: 野生动物; 被动声学监测; 声音通讯; 生物多样性保护

Abstract

Background & Aims: Passive acoustic monitoring (PAM) is an observational method that collects acoustic signals of wildlife and the surrounding environment using automatic sound recorders. PAM itself is a multidisciplinary technique, integrating biology, ecology, acoustics, and computer science, and was developed in the 1990s first to study bats and primates. Since then, PAM has been utilized in a variety of research contexts to study animal behavior, ecology, and conservation biology. However, a systematic review of the progress of the field is lacking.

Progress: Here, we review how PAM has been used to monitor terrestrial mammal activity patterns, habitat use, species distribution, population size and density, biodiversity, and human influence. We also identify factors which prevent its wider application, such as the complexity of storing and managing acoustic data, limitations of acoustic indices, challenges associated with automated identification of species or individuals, and the overall cost of equipment. As a consequence, we observe limited use of PAM in terrestrial mammal research, especially in China.

Perspective: Finally, we discuss potential novel applications of PAM to study terrestrial mammals. We highlight the importance of establishing and improving standardized PAM networks and data management platforms, developing citizen science programs, encouraging participation of more scientific institutions, and expanding the presence of acoustic monitors particularly throughout protected areas. PAM is an indispensable technique which can further support efforts to conserve biodiversity and increase ecological consciousness in China.

Keywords: wildlife; passive acoustic monitoring (PAM); vocal communication; biodiversity conservation

PDF (508KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

马海港, 范鹏来 (2023) 被动声学监测技术在陆生哺乳动物研究中的应用、进展和展望. 生物多样性, 31, 22374. doi:10.17520/biods.2022374.

Haigang Ma, Penglai Fan (2023) Application, progress, and future perspective of passive acoustic monitoring in terrestrial mammal research. Biodiversity Science, 31, 22374. doi:10.17520/biods.2022374.

人类社会的发展对野生动物赖以生存的栖息地和食物资源造成严重威胁(Evers et al, 2018), 导致很多物种处于濒临灭绝的状态(Hui, 2022; Johnson et al, 2017)。为了更好地、有针对性地保护野生动物, 亟需采用高效的方式开展野生动物的种群动态、栖息地利用和行为等方面的监测和保护管理工作(Grooten & Almond, 2018)。声音信号可以向多个方向传播, 还可以穿过物理障碍进行远距离传播(Ma et al, 2020), 因此基于动物叫声特征开发的被动声学监测(passive acoustic monitoring, PAM)技术已成为生物多样性评估的一项重要手段(Rosenstock et al, 2002; Weir & Mossman, 2005)。该技术指将声音传感器(以下称自动录音机)安装在野外环境中收集野生动物及其所在环境的声音信号的监测方法(Parker, 1991; Sugai & Llusia, 2018)。自动录音机的数量可以是单一的, 也可以是多个的, 录音机矩阵能同步收集声音信号数据(Blumstein et al, 2011)。PAM技术在野外应用时能够根据需求选择特定时间段进行声音数据的收集(Dufourq et al, 2021)。与耗费大量的人力、物力和财力并且会侵扰动物的传统的距离抽样法(Buckland et al, 2010; 李月辉, 2021)和标志重捕法(Markolf et al, 2022)相比, PAM技术具有非侵入性, 监测成本更低, 调查物种(尤其是对人类敏感的、种群密度低的濒危物种)范围更广、时空尺度更大等优势(Froidevaux et al, 2014)。

历史上, PAM技术首先被应用于水生动物的监测和研究, 直到20世纪90年代该技术才被推广至陆生哺乳动物(Sugai et al, 2018)。相较于海洋环境, 栖息在茂密森林环境中的动物类群丰富多样、隐蔽性强、种群密度低, 声音信号传播还会受到植被影响, 这导致PAM技术监测陆生哺乳动物时收集的时空数据偏差较大(Myers et al, 2000; Zwerts et al, 2021)。另一方面, 森林中存在的声音信号特别复杂, 对信号的区分和识别非常困难, 也可能会造成不准确的监测结果以及过高的物种识别成本等(Heinicke et al, 2015)。然而, 随着科技的发展, 近几年PAM技术在长臂猿(Vu & Tran, 2019; Vu & Doherty, 2021; 钟恩主等, 2021; Wang et al, 2022)、蝙蝠(Dubos et al, 2021)、非洲象(Loxodonta africana, Thompson et al, 2010)、梅花鹿(Cervus Nippon, Enari et al, 2017)、黑猩猩(Pan troglodytes, Anders et al, 2021)等陆生哺乳动物中的监测和研究逐渐增多。

目前为止, 在我国PAM技术主要被用于划分和评价声景类型(蔡学林等, 2010)、声景中鸟类生物多样性(蒋锦刚等, 2016)以及探究森林生态系统中声学指数与海拔、植被类型之间的关系(Chen et al, 2021)。然而, 该技术在陆生哺乳动物监测和研究的应用几乎处于空白状态, 仅被用于两种濒危长臂猿的监测。例如, Dufourq等(2021)使用自动录音机录制了海南长臂猿(Nomascus hainanus)栖息地声学数据, 开发并应用物种自动识别模型从这些声学数据中提取出了海南长臂猿的鸣唱声, 证明了PAM技术结合物种自动识别模型是长期监测海南长臂猿种群动态的有效工具。钟恩主等(2021)设计了一套包含指向性拾音器阵列的PAM系统来用于西黑冠长臂猿(Nomascus concolor)的监测, 该监测系统实现了太阳能供电、无线网桥实时传输声学数据。为了推动PAM技术在我国的发展, 本文简要综述了PAM技术在全球陆生哺乳动物研究中应用的历史背景和现状, 并讨论了可能面临的一些挑战以及未来的发展趋势, 以期促进我国陆生哺乳动物行为学、生态学、生物多样性保护等方面的研究工作。

1 历史背景

PAM技术的首次应用要追溯到20世纪初期的水下环境监测, 甚至还被用于军事侦察(Sousa-Lima et al, 2013; Piel et al, 2022)。20世纪50年代以来, PAM技术开始被应用于渔业科学(Nordeide & Kjellsby, 1999; Hawkins & Amorim, 2000; Lobel, 2002)。20世纪80年代, 随着成本更低、操作更简单的水下自动录音机的出现, PAM技术开始被用于水生哺乳动物的定位和研究(Clark, 1980; Fripp et al, 2005; Mellinger & Heimlich, 2013)。PAM技术在陆地生态系统中的应用晚于水生生态系统, 直到20世纪90年代才逐渐出现在陆生哺乳动物的监测和研究中。实际上, PAM技术的发展与收集动物声音信号技术的革新呈现相辅相成的态势(Obrist et al, 2010)。从早期便携式的磁带录音机, 到数字录音机再到自动录音机, 每一次新技术的出现都极大地推动了PAM技术应用的快速发展(Parker, 1991; Vielliard, 1993)。AudioMoth和Solo这类可定制的低成本的生物声学传感器的出现预示着PAM技术新的发展阶段可能已经来临(Whytock & Christie, 2016)。PAM技术的发展也有助于研究人员更好地储存数据以及挖掘动物行为信息。

根据与PAM技术相关的科学问题、研究对象以及学科之间的交叉融合程度, PAM技术的发展被划分为3个阶段。2000年以前主要使用PAM技术调查本底资源、目标动物的活动规律以及探究动物如何利用栖息地, 称为PAM技术的建立阶段。2000‒2010年期间, PAM技术开始被应用于保护生物学、群落生态学和生态声学等多个学科, 因此该阶段被称为PAM技术的扩展阶段。2010年之后, 进一步整合了前两个阶段涉及的相关科学问题, 并基于人工智能的分析方法完成了PAM技术的快速积累过程, 称为PAM技术的整合阶段(Sugai et al, 2018)。1990‒2018年间, 围绕PAM技术在陆地生态系统的应用和研究发表的文章经历了一个指数增长过程(Sugai et al, 2018)。然而, 无论是从研究数量还是从研究领域的角度来看, 大多数研究都集中在翼手目和灵长目, 其他陆生哺乳动物的研究仍然较少(Wrege et al, 2017)。

2 研究现状

2.1 活动规律和时间分配

声音通讯行为是很多陆生哺乳动物最重要的行为之一(Charlton et al, 2010; Wyman et al, 2012), 叫声可以传播发声者物种、位置、数量、性别、个体等信息(McGregor, 2005; Wilkins et al, 2013; Fan et al, 2019), 能够实现警报危险(Blumstein & Daniel, 2004)、防御领域(Ma et al, 2020)、吸引配偶(Milich et al, 2014)等功能。PAM技术能够自动记录和储存声音信号, 并且可以在野外24 h不间断地工作, 这为探究全天候的声音通讯行为提供了条件。例如, 采用PAM技术探究了圭亚那红吼猴(Alouatta macconnelli)昼夜鸣叫的时空模式和声音结构的异同, 发现其主要在夜间鸣叫, 而在白天绝大多数时间都不发出叫声, 夜间的叫声持续时间更长, 频率和谐波/噪音比更低(Nascimento et al, 2021)。虽然动物的行为研究可能只针对单一行为, 但研究结果往往还能为其他行为提供启示。因此, PAM技术在探究声音通讯行为的同时, 往往还能为其他行为提供一定的参考价值。基于PAM技术的研究发现考拉(Phascolarctos cinereus)的叫声模式受到其繁殖状态的影响, 雄性考拉的叫声在繁殖季节有清晰的日节律和周节律, 并且考拉的繁殖状态还会影响种群调查结果(Hagens et al, 2018)。

有些陆生哺乳动物的移动能力强, 活动范围较大, 栖息地环境不利于人类接近, 对人类的观察也十分敏感, 如果没有一定的习惯化基础, 科研人员几乎不可能通过直接观察获得野外种群的行为学数据。然而, PAM技术非常适用于监测和研究未习惯化、活动隐秘且数量稀少的物种, 由此获得珍贵、有效的科研数据。例如, 利用PAM技术评估了未习惯化的黑猩猩的24 h发声模式, 发现其在一天中的所有时间都会发出叫声, 但白天发出的叫声要明显多于夜间, 同时存在清晨和傍晚两个鸣叫高峰期。研究还表明黑猩猩在温度较高、湿度较低的环境中鸣叫次数更多, 且下雨和刮风对它们的鸣叫没有影响(Piel, 2018)。

2.2 栖息地利用

PAM技术是探究陆生哺乳动物如何利用栖息地及其偏好的理想工具, 该技术可以通过记录叫声的有无和强度评估动物对栖息地的利用和偏好强度(Hending et al, 2017)。例如, 使用PAM技术监测新热带蝙蝠对树冠和林下层的利用模式, 发现袋翼蝠(Cormura brevirostris)更喜欢在林冠层活动, 粗毛蝠(Centronycteris maximiliani)偏好在林下层(Gomes et al, 2020)。不同栖息地的植被结构和气候特征存在差异, 这些特征影响和塑造了动物声音信号的声学特征(Wiley & Richards, 1982; Slabbekoorn & Smith, 2002), 因此还可以通过探究动物叫声的变化了解栖息地的变化。

将PAM技术与GPS等移动传感器结合起来探究陆生哺乳动物栖息地利用和偏好模式逐渐成为一种趋势。这些研究不仅能从单一物种水平探究动物的移动模式和空间利用模式, 还可以从多物种和大数据的角度建立移动数据库, 从而更好地理解动物的时空分布和运动特征(Lynch et al, 2013; Cvikel et al, 2015; Supp et al, 2021)。例如, 利用PAM技术调查黑猩猩在热带森林和热带草原林地中的移动行为、空间分布, 及其利用和防御领域的时空变化特征, 发现黑猩猩叫声位点的空间模式和已知黑猩猩群体的空间位置几乎相同。此外, 黑猩猩在家域核心区的移动模式在不同月份间存在差异(Kalan et al, 2016)。PAM技术也被用于探索蝙蝠的飞行路径, 研究发现水鼠耳蝠(Myotis daubentoni)在沿河流上方飞行时总是保持恒定的高度(Wallis & Elmeros, 2020)。总体而言, 当观察时间和地点受限时, PAM技术在探究动物行为模式、时间分配以及栖息地利用等方面具有得天独厚的优势和应用前景。

2.3 物种分布

了解物种分布信息是野生动物保护的基本前提之一, 近年来PAM技术陆续被用于调查野生陆生哺乳动物的分布状况(Garland et al, 2020)。PAM技术最初主要用来调查夜间活动且具有回声定位行为的蝙蝠(Banner et al, 2018)。随着声学传感器的精度提升, 应用范围扩大到考拉(Hagens et al, 2018)、非洲象(Thompson et al, 2010; Wrege et al, 2017)、狼(Canis lupus, Papin et al, 2018)以及灵长类(Spillmann et al, 2015)。Papin等(2018)探索了如何使用有限的自动录音机矩阵探究狼的分布, 结果显示狼的叫声能够被至少一台自动录音机捕捉到, 表明使用低密度自动录音机矩阵也能在大面积(30 km2)范围内调查目标物种的分布。利用PAM技术调查物种分布的相关研究已经在很多物种中开展, 但不同物种间的研究依然存在偏倚, 尤以蝙蝠分布的研究突出。

2.4 种群大小与密度

PAM技术可以有效估算动物种群大小和密度, 促进物种保护和管理工作。例如, 利用PAM技术对亚洲胡狼(Canis aureus)的种群密度展开调查, 记录到的42个声音信号中的18个(43%)是由个体单独发出的, 而在集体鸣叫中参与的亚洲胡狼个体数最多能达到5个(Comazzi et al, 2016)。Payne等(2003)发现非洲象的发声活动随群体大小、组成的不同而不同。他们比较了59头非洲象的发声密度, 发现它们的呼叫率随着非洲象数量的增加而增加。在有些区域, 梅花鹿分布区的不断扩大带来了生态威胁, PAM技术可以监测入侵初期的梅花鹿, 从而及时采取措施预防性控制其种群密度(Enari et al, 2017)。

2.5 生物多样性

利用PAM技术不仅可以实现种群水平上的监测, 而且还可以估计某一区域动物的物种丰度(MacSwiney et al, 2008; Heinicke et al, 2015)。MacSwiney等(2020)使用PAM技术调查了墨西哥中部干旱生态系统中食虫蝙蝠的物种丰度, 通过声学分析发现了该区域存在6种蝙蝠。Heinicke等(2015)在科特迪瓦国家公园通过PAM技术调查了灵长类的物种丰度, 结合高斯混合模型等多个自动识别系统进行物种识别, 最终识别出黑猩猩、黛安娜长尾猴(Cercopithecus diana)、黑白疣猴(Colobus polykomos)、红绿疣猴(Procolobus badius), 且黛安娜长尾猴和黑白疣猴的识别成功率要高于另两种。

通过PAM技术获取的声学数据也可以用于揭示声音变异和系统发育之间的关系, 从而更好地理解声音信号的演化。Luo等(2017)研究了5科31种蝙蝠的攻击性叫声的声学特征是否受系统发育关系的影响, 结果发现系统发育关系决定了叫声的持续时间和最小频率。除此之外, 该研究还发现蝙蝠的社会性、形态特征也会导致叫声差异。然而, 当前探索声音变异和系统发育之间的关系依然存在诸多挑战。一方面, 研究人员很难连续地对声音信号进行记录和测量, 尤其是那些具有复杂结构的声音信号; 另一方面, 需要选择合适的系统发育比较分析方法。目前, 贝叶斯祖先状态重建和系统发育控制混合模型可能是比较先进的系统发育比较分析方法, 这些方法可以同时考虑系统发育树以及复杂的数据结构的不确定性(Odom et al, 2021)。

许多地区的物种或个体的基础声学数据库缺乏, 识别物种或个体大多数时候只能依赖于人工, 从而造成评估生物多样性等相关研究工作异常繁重。随着人工智能和生物多样性保护的发展, 生态声学或声景生态学逐渐成为突破以上研究限制的新兴领域(Pijanowski et al, 2011; Sueur & Farina, 2015)。声景生态学旨在采用全谱图方法来量化声学记录中的生物声音水平, 使用声学指数来总结声音的声谱和时间特征, 然后探索其与生物多样性、景观特征和人为干扰之间的关系, 而不仅仅限于识别单个物种或个体(Pijanowski et al, 2011; Sueur & Farina, 2015)。然而, 目前声景生态学更倾向于评估昆虫和鸟类群落中的物种丰度、多度或组成, 以及某一区域环境的声景变化, 而很少应用于陆生哺乳动物(赵莹等, 2020)。

2.6 人为干扰的影响

探究人为干扰对陆生哺乳动物声音通讯及其他行为的影响也越来越受到关注, 这些研究有助于理解人类活动和动物行为之间的关系, 为生物多样性保护提供理论基础。利用PAM技术评估了非洲中部的非洲象受到石油地震勘探噪声影响后的行为变化, 发现非洲象数量和活动的变化与炸药爆炸和人类活动产生的声波、地震信号的频率和强度有关(Wrege et al, 2010)。Duarte等(2018)检验了黑额伶猴(Callicebus nigrifrons)当处于不同噪音水平的环境时(一个靠近露天煤矿, 另一个不靠近)它们的叫声频率、持续时间以及日间模式是否会发生变化。结果表明, 黑额伶猴的叫声与采矿噪声具有相似的频率, 并且采矿噪声的增加可能会影响黑额伶猴的远距离声音通讯模式。

不同型号的枪支射击时的声音存在差异, PAM技术可以监测环境中的枪声等人造声音从而监测非法盗猎活动。在喀麦隆的库尔鲁普国家公园中的非法盗猎者大多使用12号霰弹枪, 采用PAM技术记录并分析了该国家公园南部地区的枪声信号以此来评估了当地的非法盗猎活动(Astaras et al, 2015)。PAM技术还被用来监测和评估生态系统受干扰后生态恢复过程中的声景变化、动物对生态系统恢复的反应以及评估恢复工作的有效性, 然而目前这方面的证据更多来自于鸟、水生生物和昆虫, 陆生哺乳动物类群相关研究还未见报道。例如, 已有研究利用PAM技术记录并评估了哥斯达黎加瓜纳卡斯特保护区的鸟类群落, 发现鸟类物种多样性、丰富度和丰度随着森林的不断恢复而增加(Owen et al, 2020)。

由人类造成的物种灭绝或引入可能影响生态系统的结构和服务功能, PAM技术也被用于评估物种入侵过程中生物多样性变化的动态过程。例如, 基于PAM技术的数据分析发现, 经入侵种北美河狸(Castor canadensis)改造产生的池塘和草地栖息地中的鸟类声音信号多样性会变高(Francomano et al, 2021)。

3 挑战和展望

3.1 挑战

首先, 声学数据的储存和管理可能会是未来PAM技术应用的挑战之一。PAM技术经常被应用于长时间尺度的研究和保护, 自动录音机会在长期监测过程中通常按时间顺序收集大量声学数据(Sugai & Llusia, 2018)。为了确保声学数据不被损害或丢失, 未来需要高端的大数据储存设备(Dena et al, 2018)。虽然在线储存声学数据已经成为趋势, 但扩大储存空间、保障网络数据安全仍需关注(Kasten et al, 2012; Aide et al, 2013)。另外, 可能还需要聘请专业人员负责管理大量的声学数据(Riede, 2018)。

其次, 实现自动化物种或个体识别是当前PAM技术在陆生哺乳动物应用中的另一重大挑战。物种或个体识别是进行很多行为学和生物多样性保护研究的重要前提, 无法实现自动化识别将严重制约研究的进展(刘雪华等, 2018)。当前, 基于PAM的半自动化物种或个体识别技术已经在部分陆生哺乳动物应用, 但其应用范围窄、应用过程严重依赖科研人员的丰富经验和巨大的时间成本(Andreassen et al, 2014; Heinicke et al, 2015; Newson et al, 2015)。从事动物相关研究的学者往往不具备人工智能方向的知识积淀, 很多智能识别工具的开发权和使用权限制在部分商业机构而不能开源使用, 因此已有工具的准确性和稳定性缺乏有效的评估和优化是制约自动化识别物种或个体的主要原因。未来, 应进一步鼓励学科之间的交叉融合, 在陆生哺乳动物的声音通讯行为研究的基础之上建立声音数据库, 开发并评估自动化的物种或个体识别开源软件, 以有效应对这一挑战。

最后, 如何评估已有声学指数在特定生态系统中的普适性也是PAM技术应用面临的一个重要挑战。虽然声学指数为评估生物多样性以及声景动态提供了很多见解(Lomolino et al, 2015), 但声学指数与实际的生物多样性之间的关系仍需有效评估(王言一等, 2023), 声学指数在不同生态系统和类群中的总体有效性仍不清楚(Gasc et al, 2013; Lellouch et al, 2014)。这意味着仍需使用PAM技术之外的其他方法收集生物多样性数据(Harris et al, 2016)。更重要的是, 天气条件、背景噪音等外部环境会对声学指数的应用产生不可忽视的影响(Farina et al, 2011), 从而限制声学指数的适用性(Fairbrass et al, 2017)。通过多种方式与PAM技术同步收集生物多样性数据并对其关系进行有效性评估, 在此基础上发展稳健的、广适性的声学指数是应对该挑战的必要策略(Pekin et al, 2012)。同时, 需要制定统一标准的PAM技术应用指南。录音时间、地点、范围等标准应该成为指南中必不可少的内容, PAM技术应用所需要的自动录音机和后期数据分析的软件介绍也应该成为该指南的重要内容(Brandes, 2008; Roch et al, 2016)。

3.2 展望

随着我国生物多样性就地保护和管理体系的建立以及多项严格的生物多样性保护恢复措施的实施, 大熊猫(Ailuropoda melanoluca)、川金丝猴(Rhinopithecus roxellanae)等多种珍稀濒危物种得到了有效保护(魏辅文, 2016)。然而, 由于调查方法的局限性, 我国依然有很多种陆生哺乳动物的种群数量未调查清楚, 未实现持续性监测。比如, 采用直接观察、红外相机等方法很难确定东黑冠长臂猿(Nomascus nasutus)、白头叶猴(Trachypithecus leucocephalus)等栖息在喀斯特石山森林中的珍稀濒危灵长类动物的种群数量、动态和栖息地利用状况。PAM技术在监测和研究这些树栖、能够发出鸣叫(唱)声的物种方面具有得天独厚的优势。尽管PAM技术的发展及其在陆生哺乳动物中的应用已经过去了几十年, 但国内很多保护区、科研机构或公众对该技术仍然非常陌生, 其内在的理论和应用前景仅被少数人所熟知。因此, 应快速推进PAM技术在国内一线科研团队和保护地操作和应用。

公民科学已经是生物多样性保护的关键力量, 极大地促进了物种分布、种群大小等信息库的建立(Heigl et al, 2019)。公民科学被认为是生物多样性监测网络的扩展, 尤其是一些缺少自动化监测的非科研热点区域。然而, 由于绝大多数公民对PAM技术尚不了解, 国内尚未设立PAM技术与公民科学相结合的项目。因此, 本文建议国内科研团队或保护区印刷相关的宣传册、悬挂宣传标语的指示牌、定期开展面对面访问调查、组织举办相关知识竞赛, 在其所在的单位、社区、学校推广PAM技术, 宣传生物多样性保护的重要性。科研团队或保护区还可以依靠网络平台开展相关线上讲座, 撰写推送科普文章、音频或短视频, 招募志愿者和科研人员或保护区工作人员一起安装自动录音机等, 进而全方位多层次促进社会大众对PAM技术和生物多样性保护重要性的了解。

在全球气候变化和人为干扰不断加剧的背景下, 围绕PAM技术建立多维度的监测网络与数据共享平台(声学传感器网络、跨区域监测网络、跨类群监测网络、多技术同步网络), 在更广的时空尺度上收集多动物类群及其所栖息的生态系统中的声学数据应是生物多样性保护的优先发展方向。整体而言, PAM技术在不同国家或地区的应用程度参差不齐。法国、日本、加拿大等国家已经开始大规模地利用PAM技术监测生物多样性(Cosentino et al, 2014; Saito et al, 2015; Jeliazkov et al, 2016)。我国作为全球生物多样性最为丰富的国家之一, 物种数量多, 特有物种的比例高(魏辅文等, 2021)。然而, 当前我国搭建的PAM技术监测网络非常少(赵莹等, 2020), 很难做到对珍稀濒危物种和区域生态系统的长期有效监测。因此, 为了更好地推动中国PAM技术应用网络的建立, 国内不同动物类群的研究团队以及声学数据自动识别研发团队之间可以积极开展合作。建议由历史悠久、科研实力雄厚的科研单位牵头, 其他高校科研院所参与, 以保护区或国家公园为基本单元, 统一布设自动录音机, 完善生物多样性监测管理系统。在系统运行之前, 各个团队之间可以签署数据和技术共享协议, 定期培训相关人员, 在数据收集方案设计、调查指南、数据格式等方面实现统一化和标准化。在系统运行之后, 成立生物、生态声学相关的专业性学术组织, 定期开展学术研讨会议, 集中力量解决共同关注的科学问题, 实时沟通在研究过程中遇到的理论性和技术性难题。海南长臂猿是全球最濒危的灵长类之一, 它们可以发出洪亮、传播距离远的鸣唱声, 具备采用PAM技术开展研究的良好理论和实践基础。因此我们建议率先在海南长臂猿栖息的热带雨林中开展PAM试点研究。

虽然PAM技术在一些陆生哺乳动物的研究领域得到应用, 但该技术仍然存在一定的局限性。例如, 有些物种虽然具有声音通讯行为, 但这些声音信号的发生频次和声响都很低, 声音信号也易受到环境噪音的干扰, 不利于自动录音机收集声音信号。使用或开发PAM技术之前应了解目标类群和它们的栖息环境。在海洋生态系统中应用PAM技术时受到的噪声影响更多来自渔船、客船或货船, 而陆生环境中的噪音可能更多地来自人的交谈声、伐木声、广播声、交通噪声等。有些陆生哺乳动物会产生超声波和次声波, 开发自动录音机时也应考虑录音机的频率响应范围。最后, 当前大部分自动录音机的价格仍然比较昂贵, 科研人员或保护地工作者很难承担相应的设备购买费用。为了更好地推动PAM技术在陆生哺乳动物中的应用, 建议国内或国际技术公司研发更多可定制的、低成本的自动录音机, 智能手机公司亦可开发形式多样、便于操作的声学APP。

致谢

感谢中山大学生命科学学院范朋飞教授对本文构思给予的建议, 以及张璐副教授、汪巧云、陈涛、郑凯丹、韩普、郭亭妍、王子荻等对完善本文写作的建议和无私支持!

参考文献

Aide TM, Corrada-Bravo C, Campos-Cerqueira M, Milan C, Vega G, Alvarez R (2013)

Real-time bioacoustics monitoring and automated species identification

PeerJ, 1, e103.

[本文引用: 1]

Anders F, Kalan AK, Kühl HS, Fuchs M (2021)

Compensating class imbalance for acoustic chimpanzee detection with convolutional recurrent neural networks

Ecological Informatics, 65, 101423.

[本文引用: 1]

Andreassen T, Surlykke A, Hallam J (2014)

Semi-automatic long-term acoustic surveying: A case study with bats

Ecological Informatics, 21, 13-24.

DOI:10.1016/j.ecoinf.2013.12.010      URL     [本文引用: 1]

Astaras C, MacDonald DW, Wrege P, Linder JM (2015) Darwin Initiative Annual Report: Improving Anti-Poaching Patrol Evaluation and Design in African Rainforests. https://www.darwininitiative.org.uk/project/DAR20012/. (accessed on 2022-06-09)

URL     [本文引用: 1]

Banner KM, Irvine KM, Rodhouse TJ, Wright WJ, Rodriguez RM, Litt AR (2018)

Improving geographically extensive acoustic survey designs for modeling species occurrence with imperfect detection and misidentification

Ecology and Evolution, 8, 6144-6156.

DOI:10.1002/ece3.4162      PMID:29988432      [本文引用: 1]

Acoustic recording units (ARUs) enable geographically extensive surveys of sensitive and elusive species. However, a hidden cost of using ARU data for modeling species occupancy is that prohibitive amounts of human verification may be required to correct species identifications made from automated software. Bat acoustic studies exemplify this challenge because large volumes of echolocation calls could be recorded and automatically classified to species. The standard occupancy model requires aggregating verified recordings to construct confirmed detection/non-detection datasets. The multistep data processing workflow is not necessarily transparent nor consistent among studies. We share a workflow diagramming strategy that could provide coherency among practitioners. A false-positive occupancy model is explored that accounts for misclassification errors and enables potential reduction in the number of confirmed detections. Simulations informed by real data were used to evaluate how much confirmation effort could be reduced without sacrificing site occupancy and detection error estimator bias and precision. We found even under a 50% reduction in total confirmation effort, estimator properties were reasonable for our assumed survey design, species-specific parameter values, and desired precision. For transferability, a fully documented r package, OCacoustic, for implementing a false-positive occupancy model is provided. Practitioners can apply OCacoustic to optimize their own study design (required sample sizes, number of visits, and confirmation scenarios) for properly implementing a false-positive occupancy model with bat or other wildlife acoustic data. Additionally, our work highlights the importance of clearly defining research objectives and data processing strategies at the outset to align the study design with desired statistical inferences.

Blumstein DT, Daniel JC (2004)

Yellow-bellied marmots discriminate among the alarm calls of individuals and are more responsive to the calls from juveniles

Animal Behaviour, 68, 1257-1265.

DOI:10.1016/j.anbehav.2003.12.024      URL     [本文引用: 1]

Blumstein DT, Mennill DJ, Clemins P, Girod L, Yao K, Patricelli G, Deppe JL, Krakauer AH, Clark C, Cortopassi KA, Hanser SF, McCowan B, Ali AM, Kirschel ANG (2011)

Acoustic monitoring in terrestrial environments using microphone arrays: Applications, technological considerations and prospectus

Journal of Applied Ecology, 48, 758-767.

DOI:10.1111/j.1365-2664.2011.01993.x      URL     [本文引用: 1]

Brandes ST (2008)

Automated sound recording and analysis techniques for bird surveys and conservation

Bird Conservation International, 18, S163-S173.

[本文引用: 1]

Buckland ST, Plumptre AJ, Thomas L, Rexstad EA (2010)

Line transect sampling of primates: Can animal-to-observer distance methods work?

International Journal of Primatology, 31, 485-499.

DOI:10.1007/s10764-010-9408-4      URL     [本文引用: 1]

Cai XL, Liao WM, Zhang TH, Li XM, Chen FP, Deng RG (2010)

Classification and evaluation of forest soundscape types

Acta Agriculturae Universitatis Jiangxiensis, 32, 1195-1201. (in Chinese with English abstract)

[本文引用: 1]

[蔡学林, 廖为明, 张天海, 李小毛, 陈飞平, 邓荣根 (2010)

森林声景类型的划分与评价初探

江西农业大学学报, 32, 1195-1201.]

[本文引用: 1]

Charlton BD, Keating JL, Li R, Huang Y, Swaisgood RR (2010) Female giant panda (Ailuropoda melanoleuca) chirps advertise the caller’s fertile phase. Proceedings of the Royal Society B: Biological Sciences, 277, 1101-1106.

[本文引用: 1]

Chen YF, Luo Y, Mammides C, Cao KF, Goodale E (2021)

The relationship between acoustic indices, elevation, and vegetation, in a forest plot network of southern China

Ecological Indicators, 129, 107942.

[本文引用: 1]

Clark CW (1980)

A real-time direction finding device for determining the bearing to the underwater sounds of southern right whales, Eubalaena australis

The Journal of the Acoustical Society of America, 68, 508-511.

DOI:10.1121/1.384762      URL     [本文引用: 1]

Comazzi C, Mattiello S, Friard O, Filacorda S, Gamba M (2016)

Acoustic monitoring of golden jackals in Europe: Setting the frame for future analyses

Bioacoustics, 25, 267-278.

DOI:10.1080/09524622.2016.1152564      URL     [本文引用: 1]

Cosentino BJ, Marsh DM, Jones KS, Apodaca JJ, Bates C, Beach J, Beard KH, Becklin K, Bell JM, Crocketti C, Fawson G, Fjelsted J, Forys EA, Genet KS, Grover M, Holmes J, Indeck K, Karraker NE, Kilpatrick ES, Langen TA, Mugel SG, Molina A, Vonesh JR, Weaver RJ, Willey A (2014)

Citizen science reveals widespread negative effects of roads on amphibian distributions

Biological Conservation, 180, 31-38.

DOI:10.1016/j.biocon.2014.09.027      URL     [本文引用: 1]

Cvikel N, Levin E, Hurme E, Borissov I, Boonman A, Amichai E, Yovel Y (2015) On-board recordings reveal no jamming avoidance in wild bats. Proceedings of the Royal Society B: Biological Sciences, 282, 20142274.

[本文引用: 1]

Dena S, Rebouças R, Augusto-Alves G, Toledo LF (2018)

Lessons from recordings lost in Brazil fire: Deposit and back up

Nature, 563, 473.

[本文引用: 1]

Duarte MH, Kaizer MC, Young RJ, Rodrigues M, Sousa-Lima RS (2018)

Mining noise affects loud call structures and emission patterns of wild black-fronted titi monkeys

Primates, 59, 89-97.

DOI:10.1007/s10329-017-0629-4      PMID:28894994      [本文引用: 1]

Anthropogenic noise pollution is increasing and can constrain acoustic communication in animals. Our aim was to investigate if the acoustic parameters of loud calls and their diurnal pattern in the black-fronted titi monkey (Callicebus nigrifrons) are affected by noise produced by mining activity in a fragment of Atlantic Forest in Brazil. We installed two passive acoustic monitoring devices to record sound 24 h/day, 7 days every 2 months, for a year; one unit was close to an opencast mine and the other 2.5 km away from it. Both sites presented similar habitat structures and were inhabited by groups of black-fronted titi monkeys. We quantified the noise at both sites by measuring the equivalent continuous sound level every 2 months for 1 year and quantified the emission of loud calls by titi monkeys through visual inspection of the recordings. The close site presented higher ambient noise levels than the far site. The quantitative comparison of loud calls of black-fronted titi monkeys between the two sites showed less calling activity in the site close to the mine than in the site further away. Approximately 20 % of the calls detected at the site close to the mine were masked by noise from truck traffic. Loud calls were longer at the site far from the mine and the diurnal patterns of vocal activity differed in the amount of calling as well as in the timing of peak calling activity between the two sites. Our results indicate that mining noise may constrain titi monkeys' long-distance vocal communication. Loud calls occupy a similar frequency band to mining noise, and an increase in ambient noise may be triggering black-fronted titi monkeys to adjust their long-distance communication patterns to avoid masking of their calls. Given that vocalizations are an important means of social interaction in this species, there are concerns about the impact of mining noise on populations exposed to this human activity.

Dubos N, Kerbiriou C, Julien JF, Barbaro L, Barre K, Claireau F, Froidevaux J, Le Viol I, Lorrilliere R, Roemer C, Verfaillie F, Bas Y (2021)

Going beyond species richness and abundance: Robustness of community specialisation measures in short acoustic surveys

Biodiversity and Conservation, 30, 343-363.

DOI:10.1007/s10531-020-02092-5      URL     [本文引用: 1]

Dufourq E, Durbach I, Hansford JP, Hoepfner A, Ma H, Bryant JV, Stender CS, Li WY, Liu Z W, Chen Q, Zhou ZL, Turvey ST (2021)

Automated detection of Hainan gibbon calls for passive acoustic monitoring

Remote Sensing in Ecology and Conservation, 7, 475-487.

DOI:10.1002/rse2.201      URL     [本文引用: 2]

Enari H, Enari H, Okuda K, Yoshita M, Kuno T, Okuda K (2017)

Feasibility assessment of active and passive acoustic monitoring of sika deer populations

Ecological Indicators, 79, 155-162.

DOI:10.1016/j.ecolind.2017.04.004      URL     [本文引用: 2]

Evers CR, Wardropper CB, Branoff B, Granek EF, Hirsch SL, Link TE, Olivero-Lora S, Wilson C (2018)

The ecosystem services and biodiversity of novel ecosystems: A literature review

Global Ecology and Conservation, 13, e00362.

[本文引用: 1]

Fairbrass AJ, Rennett P, Williams C, Titheridge H, Jones KE (2017)

Biases of acoustic indices measuring biodiversity in urban areas

Ecological Indicators, 83, 169-177.

DOI:10.1016/j.ecolind.2017.07.064      URL     [本文引用: 1]

Fan PL, Liu RS, Grueter CC, Li F, Wu F, Huan, TP, Yao H, Liu DZ, Liu XC (2019)

Individuality in coo calls of adult male golden snub-nosed monkeys (Rhinopithecus roxellana) living in a multilevel society

Animal Cognition, 22, 71-79.

DOI:10.1007/s10071-018-1222-y      PMID:30460512      [本文引用: 1]

Vocal individuality is a prerequisite for individual recognition, especially when visual and chemical cues are not available or effective. Vocalizations encoding information of individual identity have been reported in many social animals and should be particularly adaptive for species living in large and complexly organized societies. Here, we examined the individuality in coo calls of adult male golden snub-nosed monkeys (Rhinopithecus roxellana) living in a large and multilevel society. Coo calls are one of the most frequently occurring call types in R. roxellana and likely serve as the signals for contact maintenance or advertisement in various contexts including group movement, foraging, and resting. From April to October 2016, April to July 2017, and September to October 2017, we recorded a total of 721 coo calls from six adult males in a provisioned, free-ranging group and one adult male in captivity in Shennongjia National Park, China. We selected 162 high-quality recordings to extract 14 acoustic parameters based on the source-filter theory. Results showed that each of all parameters significantly differed among individuals, while pairwise comparisons failed to detect any parameter that was different between all pairs. Furthermore, a discriminant function analysis indicated that the correct assignment rate was 80.2% (cross-validation: 67.3%), greater than expected by chance (14.3%). In conclusion, we found evidence that coo calls of adult male R. roxellana allowed the reliable accuracy of individual discrimination complementarily enhanced by multiple acoustic parameters. The results of our study point to the selective pressures acting on individual discrimination via vocal signals in a highly gregarious forest-living primate.

Farina A, Pieretti N, Piccioli L (2011)

The soundscape methodology for long-term bird monitoring: A Mediterranean Europe case-study

Ecological Informatics, 6, 354-363.

DOI:10.1016/j.ecoinf.2011.07.004      URL     [本文引用: 1]

Francomano D, Valenzuela A, Gottesman BL, González-Calderón A, Anderson CB, Hardiman BS, Pijanowski BC (2021)

Acoustic monitoring shows invasive beavers Castor canadensis increase patch‐level avian diversity in Tierra del Fuego

Journal of Applied Ecology, 58, 2987-2998.

DOI:10.1111/1365-2664.13999      URL     [本文引用: 1]

Fripp D, Owen C, Quintana-Rizzo E, Shapiro A, Buckstaff K, Jankowski K, Wells R, Tyack P (2005)

Bottlenose dolphin (Tursiops truncatus) calves appear to model their signature whistles on the signature whistles of community members

Animal Cognition, 8, 17-26.

PMID:15221637      [本文引用: 1]

Bottlenose dolphins are unusual among non-human mammals in their ability to learn new sounds. This study investigates the importance of vocal learning in the development of dolphin signature whistles and the influence of social interactions on that process. We used focal animal behavioral follows to observe six calves in Sarasota Bay, Fla., recording their social associations during their first summer, and their signature whistles during their second. The signature whistles of five calves were determined. Using dynamic time warping (DTW) of frequency contours, the calves' signature whistles were compared to the signature whistles of several sets of dolphins: their own associates, the other calves' associates, Tampa Bay dolphins, and captive dolphins. Whistles were considered similar if their DTW similarity score was greater than those of 95% of the whistle comparisons. Association was defined primarily in terms of time within 50 m of the mother/calf pair. On average, there were six dolphins with signature whistles similar to the signature whistles of each of the calves. These were significantly more likely to be Sarasota Bay resident dolphins than non-Sarasota dolphins, and (though not significantly) more likely to be dolphins that were within 50 m of the mother and calf less than 5% of the time. These results suggest that calves may model their signature whistles on the signature whistles of members of their community, possibly community members with whom they associate only rarely.

Froidevaux JSP, Zellweger F, Bollmann K, Obrist MK (2014)

Optimizing passive acoustic sampling of bats in forests

Ecology and Evolution, 4, 4690-4700.

DOI:10.1002/ece3.1296      PMID:25558363      [本文引用: 1]

Passive acoustic methods are increasingly used in biodiversity research and monitoring programs because they are cost-effective and permit the collection of large datasets. However, the accuracy of the results depends on the bioacoustic characteristics of the focal taxa and their habitat use. In particular, this applies to bats which exhibit distinct activity patterns in three-dimensionally structured habitats such as forests. We assessed the performance of 21 acoustic sampling schemes with three temporal sampling patterns and seven sampling designs. Acoustic sampling was performed in 32 forest plots, each containing three microhabitats: forest ground, canopy, and forest gap. We compared bat activity, species richness, and sampling effort using species accumulation curves fitted with the clench equation. In addition, we estimated the sampling costs to undertake the best sampling schemes. We recorded a total of 145,433 echolocation call sequences of 16 bat species. Our results indicated that to generate the best outcome, it was necessary to sample all three microhabitats of a given forest location simultaneously throughout the entire night. Sampling only the forest gaps and the forest ground simultaneously was the second best choice and proved to be a viable alternative when the number of available detectors is limited. When assessing bat species richness at the 1-km(2) scale, the implementation of these sampling schemes at three to four forest locations yielded highest labor cost-benefit ratios but increasing equipment costs. Our study illustrates that multiple passive acoustic sampling schemes require testing based on the target taxa and habitat complexity and should be performed with reference to cost-benefit ratios. Choosing a standardized and replicated sampling scheme is particularly important to optimize the level of precision in inventories, especially when rare or elusive species are expected.

Garland L, Crosby A, Hedley R, Boutin S, Bayne E (2020)

Acoustic vs. photographic monitoring of gray wolves (Canis lupus): A methodological comparison of two passive monitoring techniques

Canadian Journal of Zoology, 98, 219-228.

DOI:10.1139/cjz-2019-0081      URL     [本文引用: 1]

Gasc A, Sueur J, Jiguet F, Devictor V, Grandcolas P, Burrow C, Depraetere M, Pavoine S (2013)

Assessing biodiversity with sound: Do acoustic diversity indices reflect phylogenetic and functional diversities of bird communities?

Ecological Indicators, 25, 279-287.

DOI:10.1016/j.ecolind.2012.10.009      URL     [本文引用: 1]

Gomes D, Appel G, Barber JR (2020)

Time of night and moonlight structure vertical space use by insectivorous bats in a neotropical rainforest: An acoustic monitoring study

PeerJ, 8, e10591.

[本文引用: 1]

Grooten M, Almond REA (2018) Living Planet Report 2018:Aiming Higher. https://www.worldwildlife.org/pages/living-planet-report-2018. (accessed on 2022-06-09)

URL     [本文引用: 1]

Hagens SV, Rendall AR, Whisson DA (2018)

Passive acoustic surveys for predicting species’ distributions: Optimising detection probability

PLoS ONE, 13, e0199396.

[本文引用: 2]

Harris SA, Shears NT, Radford CA (2016)

Ecoacoustic indices as proxies for biodiversity on temperate reefs

Methods in Ecology and Evolution, 7, 713-724.

DOI:10.1111/2041-210X.12527      URL     [本文引用: 1]

Hawkins AD, Amorim MCP (2000)

Spawning sounds of the male haddock, Melanogrammus aeglefinus

Environmental Biology of Fishes, 59, 29-41.

DOI:10.1023/A:1007615517287      URL     [本文引用: 1]

Heigl F, Kieslinger B, Paul KT, Uhlik J, Dörler D (2019)

Opinion: Toward an international definition of citizen science

Proceedings of the National Academy of Sciences, USA, 116, 8089-8092.

[本文引用: 1]

Heinicke S, Kalan AK, Wagner OJJ, Mundry R, Lukashevich H, Kuehl HS (2015)

Assessing the performance of a semi-automated acoustic monitoring system for primates

Methods in Ecology and Evolution, 6, 753-763.

DOI:10.1111/2041-210X.12384      URL     [本文引用: 4]

Hending D, Holderied M, McCabe G (2017)

The use of vocalizations of the Sambirano mouse lemur (Microcebus sambiranensis) in an acoustic survey of habitat preference

International Journal of Primatology, 38, 732-750.

DOI:10.1007/s10764-017-9977-6      PMID:28845070      [本文引用: 1]

Primate vocalizations convey a variety of information to conspecifics. The acoustic traits of these vocalizations are an effective vocal fingerprint to discriminate between sibling species for taxonomic diagnosis. However, the vocal behavior of nocturnal primates has been poorly studied and there are few studies of their vocal repertoires. We compiled a vocal repertoire for the Endangered Sambirano mouse lemur,, an unstudied nocturnal primate of northwestern Madagascar, and compared the acoustic properties of one of their call types to those of and. We recorded vocalizations from radio-collared individuals using handheld recorders over 3 months. We also conducted an acoustic survey to measure the vocal activity of in four forest habitat types at the study site. We identified and classified five vocalization types in. The vocal repertoires of the three species contain very similar call types but have different acoustic properties, with one loud call type, the whistle, having significantly different acoustic properties between species. Our acoustic survey detected more calls of in secondary forest, riparian forest, and forest edge habitats, suggesting that individuals may prefer these habitat types over primary forest. Our results suggest interspecific differences in the vocal repertoire of mouse lemurs, and that these differences can be used to investigate habitat preference via acoustic surveys.

Hui A (2022)

Listening to extinction: Early conservation radio sounds and the silences of species

The American Historical Review, 126, 1371-1395.

DOI:10.1093/ahr/rhab533      URL     [本文引用: 1]

Jeliazkov A, Bas Y, Kerbiriou C, Julien JF, Penone C, Le Viol I (2016)

Large-scale semi-automated acoustic monitoring allows to detect temporal decline of bush-crickets

Global Ecology and Conservation, 6, 208-218.

DOI:10.1016/j.gecco.2016.02.008      URL     [本文引用: 1]

Jiang JG, Shao XY, Wan HB, Qi JG, Jing CW, Cheng TY (2016)

Bird diversity research using audio record files and the spectrogram segmentation method

Acta Ecologica Sinica, 36, 7713-7723. (in Chinese with English abstract)

[本文引用: 1]

[蒋锦刚, 邵小云, 万海波, 齐家国, 荆长伟, 程天 (2016)

基于语谱图特征信息分割提取的声景中鸟类生物多样性分析

生态学报, 36, 7713-7723.]

[本文引用: 1]

Johnson CN, Balmford A, Brook BW, Buettel JC, Galetti M, Guangchun L, Wilmshurst JM (2017)

Biodiversity losses and conservation responses in the Anthropocene

Science, 356, 270-275.

[本文引用: 1]

Kalan AK, Piel AK, Mundry R, Wittig RM, Boesch C, Kühl HS (2016)

Passive acoustic monitoring reveals group ranging and territory use: A case study of wild chimpanzees (Pan troglodytes)

Frontiers in Zoology, 13, 34.

DOI:10.1186/s12983-016-0167-8      PMID:27507999      [本文引用: 1]

Background: Assessing the range and territories of wild mammals traditionally requires years of data collection and often involves directly following individuals or using tracking devices. Indirect and non-invasive methods of monitoring wildlife have therefore emerged as attractive alternatives due to their ability to collect data at large spatiotemporal scales using standardized remote sensing technologies. Here, we investigate the use of two novel passive acoustic monitoring (PAM) systems used to capture long-distance sounds produced by the same species, wild chimpanzees (Pan troglodytes), living in two different habitats: forest (Tai, Cote d'Ivoire) and savanna-woodland (Issa valley, Tanzania). Results: Using data collected independently at two field sites, we show that detections of chimpanzee sounds on autonomous recording devices were predicted by direct and indirect indices of chimpanzee presence. At Tai, the number of chimpanzee buttress drums detected on recording devices was positively influenced by the number of hours chimpanzees were seen ranging within a 1 km radius of a device. We observed a similar but weaker relationship within a 500 m radius. At Issa, the number of indirect chimpanzee observations positively predicted detections of chimpanzee loud calls on a recording device within a 500 m but not a 1 km radius. Moreover, using just seven months of PAM data, we could locate two known chimpanzee communities in Tai and observed monthly spatial variation in the center of activity for each group. Conclusions: Our work shows PAM is a promising new tool for gathering information about the ranging behavior and habitat use of chimpanzees and can be easily adopted for other large territorial mammals, provided they produce long-distance acoustic signals that can be captured by autonomous recording devices (e.g., lions and wolves). With this study we hope to promote more interdisciplinary research in PAM to help overcome its challenges, particularly in data processing, to improve its wider application.

Kasten EP, Gage SH, Fox J, Joo W (2012)

The remote environmental assessment laboratory’s acoustic library: An archive for studying soundscape ecology

Ecological Informatics, 12, 50-67.

[本文引用: 1]

Lellouch L, Pavoine S, Jiguet F, Glotin H, Sueur J (2014)

Monitoring temporal change of bird communities with dissimilarity acoustic indices

Methods in Ecology and Evolution, 5, 495-505.

DOI:10.1111/2041-210X.12178      URL     [本文引用: 1]

Li YH (2021)

A review on estimating population size of large and medium-sized mammals

Biodiversity Science, 29, 1700-1717. (in Chinese with English abstract)

DOI:10.17520/biods.2021134      [本文引用: 1]

Context: Estimating the population size of large and medium-sized mammals is a fundamental issue in animal ecology, attracting great attention from researchers, managers, and the public. However, despite the fact that it has been explored from the mid-20th century to now, the population sizes of numerous species worldwide are unknown. In China, the research targeting large and medium-sized mammals have been explored since 1980s. Although it has made great progress, the population size of many species in China are still unknown. Aims: We aim to establish a framework to categorize existing estimation methods and further summarize the research development of population size estimation in China while highlighting strengths and trends under this framework. Results & Conclusions: First, we establish a concise hierarchical framework according to the estimation theory, data resources, and models used. This framework indicates that there are four classes of methods including distance sampling method, capture-recapture method, encounter-based method, and direct count method from remotely sensed imagery according to estimation theory. Then for each of the four methods, we illustrate the basic model and its assumptions, explaining how existing data resources (including insight, camera trap, DNA microsatellite, satellite tracking, acoustic monitor, and remote sensing data) realize each theory respectively. We summarize unique features, advantages, and disadvantages of each method and compare size or density estimation resulted from different methods. Secondly, we summarize the development of population size estimation methods in China in the context of this framework while highlighting trends and strengths. Numerous data obtained from infrared cameras in many study areas during the last decade can be used to estimate the population size by employing distance sampling, capture-recapture models, and encounter-based methods. Meanwhile, the pellet distance sampling method, fecal-DNA capture-recapture method and direct count method from remotely sensed imagery are suggested to be developed. Finally, a guide to select the estimation methods appropriate for their studies is provided as a reference for future researchers.

[李月辉 (2021)

大中型兽类种群数量估算的研究进展

生物多样性, 29, 1700-1717.]

DOI:10.17520/biods.2021134      [本文引用: 1]

大中型兽类种群数量的估算是动物生态学中重要的基本问题, 受到研究者、管理者和公众的共同关注。国际上从20世纪中期开始研究该问题, 已出现了多种研究方法和相应案例, 且还在快速发展, 但世界各地仍有很多物种的种群数量尚未知晓。在我国, 从20世纪80年代开始调查大中型兽类种群数量, 取得了重要进展, 也还有很多物种的种群数量尚不清楚。因此, 有必要归纳国际上种群数量估算的研究进展, 同时, 总结国内研究的现状、优势和趋势, 供研究者参考。本文首先选择估算大中型兽类种群数量的原理、数据来源和模型这3个要素归纳出简明的研究框架, 将现有的多种方法置于其中予以阐述。在该框架下, 根据估算原理分为4大类方法, 为距离取样法、标志重捕法、基于遇见率法和遥感影像直接计数法。针对每一大类方法, 论述其基本原理模型和模型假设, 说明能实现该原理的相应数据来源(视觉观测、红外相机拍摄、DNA微卫星识别、卫星定位跟踪、声音监测或遥感影像)的特点及如何实现该原理, 评价其适用性及优缺点, 并选择其中具有可比性的方法予以比较评价。其次, 参照该研究框架, 总结我国的研究现状, 分析未来发展的优势和趋势: 我国的红外相机数据积累充分, 可以发展以此为数据源的距离取样法、标志重捕法和基于遇见率法; 发展以粪便样品为数据来源的距离取样法和粪便DNA标志重捕法; 相比地面调查数据, 获取高分辨率遥感影像数据更容易, 尽量以此估算符合适用条件的大中型兽类的种群数量。最后, 本文提出了适用于我国大中型兽类种群数量的估算方法的选择流程, 供研究者参考。

Liu XH, Wu PF, He XB, Zhao XY (2018)

Application and data mining of infra-red camera in the monitoring of species

Biodiversity Science, 26, 850-861. (in Chinese with English abstract)

DOI:10.17520/biods.2018053      [本文引用: 1]

Wildlife population is low and most of them are very sensitive to human disturbing, which makes traditional survey difficult. As known, infra-red camera technology has many advantages in wildlife study. However, with its wide application and increased data amount, researchers are facing some problems concerning infra-red camera monitoring and later data processing and analyzing. This paper describes in details three key problems on infra-red camera data management and use, such as lacking standardization, integration and normalization. The present paper also lists and analyzes eight aspects about photo data mining, based on researches carried out in the Qinling Mountains, Wolong Nature Reserve, etc. It involves individual recognition, temporal/spatial activity pattern, information-extracting of occasional species, behavior and reproduction, disease situation and interference by humans. If all this information can be used effectively, we hope to provide scientific support at some extent on wildlife and biodiversity conservation and management in future.

[刘雪华, 武鹏峰, 何祥博, 赵翔宇 (2018)

红外相机技术在物种监测中的应用及数据挖掘

生物多样性, 26, 850-861.]

DOI:10.17520/biods.2018053      [本文引用: 1]

由于濒危物种数量稀少以及大多数野生动物对人类活动敏感, 增加了传统调查的难度。众所周知,红外相机在野生动物调查研究中具有天然优势; 然而随着红外相机技术的广泛推广应用及数据采集量的不断加大, 科研人员也面临了一系列关于红外相机监测及后续数据处理中出现的问题。本文详细阐述了红外相机数据管理和利用方面存在的3个关键问题: 数据管理缺乏规范化、数据网络缺乏一体化、数据获取缺乏标准化。同时以秦岭、卧龙等地的一些研究为主体, 列举分析了红外相机照片后续数据挖掘中8个方面的内容, 即兽类的个体识别、物种时间活动格局、物种空间活动格局、偶见物种信息利用、物种行为活动、繁殖信息、疾病情况、人为干扰。这些信息的有效利用可为野生动物及生物多样性的保护、管理提供一定科学支撑。

Lobel PS (2002)

Diversity of fish spawning sounds and the application of passive acoustic monitoring

Bioacoustics, 12, 286-289.

DOI:10.1080/09524622.2002.9753724      URL     [本文引用: 1]

Lomolino MV, Pijanowski BC, Gasc A (2015)

The silence of biogeography

Journal of Biogeography, 42, 1187-1196.

DOI:10.1111/jbi.12525      URL     [本文引用: 1]

Luo B, Huang XB, Li YY, Lu GJ, Zhao JL, Zhang KK, Zhao HB, Liu Y, Feng J (2017)

Social call divergence in bats: A comparative analysis

Behavioral Ecology, 28, 533-540.

[本文引用: 1]

Lynch E, Angeloni L, Fristrup K, Joyce D, Wittemyer G (2013)

The use of on-animal acoustical recording devices for studying animal behavior

Ecology and Evolution, 3, 2030-2037.

DOI:10.1002/ece3.608      PMID:23919149      [本文引用: 1]

Audio recordings made from free-ranging animals can be used to investigate aspects of physiology, behavior, and ecology through acoustic signal processing. On-animal acoustical monitoring applications allow continuous remote data collection, and can serve to address questions across temporal and spatial scales. We report on the design of an inexpensive collar-mounted recording device and present data on the activity budget of wild mule deer (Odocoileus hemionus) derived from these devices applied for a 2-week period. Over 3300 h of acoustical recordings were collected from 10 deer on their winter range in a natural gas extraction field in northwestern Colorado. Analysis of a subset of the data indicated deer spent approximately 33.5% of their time browsing, 20.8% of their time processing food through mastication, and nearly 38.3% of their time digesting through rumination, with marked differences in diel patterning of these activities. Systematic auditory vigilance was a salient activity when masticating, and these data offer options for quantifying wildlife responses to varying listening conditions and predation risk. These results (validated using direct observation) demonstrate that acoustical monitoring is a viable and accurate method for characterizing individual time budgets and behaviors of ungulates, and may provide new insight into the ways external forces affect wildlife behavior.

Ma HG, Ma CY, Fei HL, Yang L, Fan PF (2020)

Cao vit gibbons (Nomascus nasutus) sing at higher elevation but not in peripheral areas of their home range in a karst forest

International Journal of Primatology, 2, 1-13.

DOI:10.1007/BF02692295      URL     [本文引用: 2]

MacSwiney GMC, Avila-Flores R, Pech-Canché JM (2020)

Richness and activity of arthropodophagous bats in an arid landscape of central México

Therya, 11, 1-10.

DOI:10.12933/therya-20-872      URL     [本文引用: 1]

MacSwiney GMC, Clarke FM, Racey PA (2008)

What you see is not what you get: The role of ultrasonic detectors in increasing inventory completeness in neotropical bat assemblages

Journal of Applied Ecology, 45, 1364-1371.

DOI:10.1111/j.1365-2664.2008.01531.x      URL     [本文引用: 1]

Markolf M, Zinowsky M, Keller JK, Borys J, Cillov A, Schuelke O (2022)

Toward passive acoustic monitoring of lemurs: Using an affordable open-source system to monitor Phaner vocal activity and density

International Journal of Primatology, 43, 409-433.

DOI:10.1007/s10764-022-00285-z      URL     [本文引用: 1]

McGregor PK (2005) Animal Communication Networks. Cambridge University Press, Cambridge.

[本文引用: 1]

Mellinger DK, Heimlich SL (2013)

Introduction to the special issue on methods for marine mammal passive acoustics

The Journal of the Acoustical Society of America, 134, 2381-2382.

DOI:10.1121/1.4818149      URL     [本文引用: 1]

Milich KM, Bahr JM, Stumpf RM, Chapman CA (2014)

Timing is everything: Expanding the cost of sexual attraction hypothesis

Animal Behaviour, 88, 219-224.

DOI:10.1016/j.anbehav.2013.11.029      URL     [本文引用: 1]

Myers N, Mittermeier RA, Mittermeier CG, Da Fonseca GA, Kent J (2000)

Biodiversity hotspots for conservation priorities

Nature, 403, 853-858.

DOI:10.1038/35002501      URL     [本文引用: 1]

Nascimento LD, Granados CP, Beard KH (2021)

Passive acoustic monitoring and automatic detection of diel patterns and acoustic structure of howler monkey roars

Diversity, 13, 566.

DOI:10.3390/d13110566      URL     [本文引用: 1]

Newson SE, Evans HE, Gillings S (2015)

A novel citizen science approach for large-scale standardised monitoring of bat activity and distribution, evaluated in eastern England

Biological Conservation, 191, 38-49.

DOI:10.1016/j.biocon.2015.06.009      URL     [本文引用: 1]

Nordeide J, Kjellsby E (1999)

Sound from spawning cod at their spawning grounds

ICES Journal of Marine Science, 56, 326-332.

DOI:10.1006/jmsc.1999.0473      URL     [本文引用: 1]

Obrist MK, Pavan G, Sueur J, Riede K, Llusia D, Marquez R (2010)

Bioacoustics approaches in biodiversity inventories

In: Manual on Field Recording Techniques and Protocols for All Taxa Biodiversity Inventories, Vol. 8 (Part I) (eds Eymann J, Degreef J, Häuser C, Monje JC, Samyn Y, Vandenspiegel D), pp. 68-99. ABC Taxa, Belgium.

[本文引用: 1]

Odom KJ, Araya-Salas M, Morano JL, Ligon RA, Leighton GM, Taff CC, Dalziell AH, Billings AC, Germain RR, Pardo M, de Andrade LG, Hedwig D, Keen SC, Shiu Y, Charif RA, Webster MS, Rice AN (2021)

Comparative bioacoustics: A roadmap for quantifying and comparing animal sounds across diverse taxa

Biological Reviews of the Cambridge Philosophical Society, 96, 1135-1159.

DOI:10.1111/brv.12695      PMID:33652499      [本文引用: 1]

Animals produce a wide array of sounds with highly variable acoustic structures. It is possible to understand the causes and consequences of this variation across taxa with phylogenetic comparative analyses. Acoustic and evolutionary analyses are rapidly increasing in sophistication such that choosing appropriate acoustic and evolutionary approaches is increasingly difficult. However, the correct choice of analysis can have profound effects on output and evolutionary inferences. Here, we identify and address some of the challenges for this growing field by providing a roadmap for quantifying and comparing sound in a phylogenetic context for researchers with a broad range of scientific backgrounds. Sound, as a continuous, multidimensional trait can be particularly challenging to measure because it can be hard to identify variables that can be compared across taxa and it is also no small feat to process and analyse the resulting high-dimensional acoustic data using approaches that are appropriate for subsequent evolutionary analysis. Additionally, terminological inconsistencies and the role of learning in the development of acoustic traits need to be considered. Phylogenetic comparative analyses also have their own sets of caveats to consider. We provide a set of recommendations for delimiting acoustic signals into discrete, comparable acoustic units. We also present a three-stage workflow for extracting relevant acoustic data, including options for multivariate analyses and dimensionality reduction that is compatible with phylogenetic comparative analysis. We then summarize available phylogenetic comparative approaches and how they have been used in comparative bioacoustics, and address the limitations of comparative analyses with behavioural data. Lastly, we recommend how to apply these methods to acoustic data across a range of study systems. In this way, we provide an integrated framework to aid in quantitative analysis of cross-taxa variation in animal sounds for comparative phylogenetic analysis. In addition, we advocate the standardization of acoustic terminology across disciplines and taxa, adoption of automated methods for acoustic feature extraction, and establishment of strong data archival practices for acoustic recordings and data analyses. Combining such practices with our proposed workflow will greatly advance the reproducibility, biological interpretation, and longevity of comparative bioacoustic studies.© 2021 Cambridge Philosophical Society.

Owen KC, Melin AD, Campos FA, Fedigan LM, Gillespie TW, Mennill DJ (2020)

Bioacoustic analyses reveal that bird communities recover with forest succession in tropical dry forests

Avian Conservation and Ecology, 15, 25.

[本文引用: 1]

Papin M, Pichenot J, Guérold F, Germain E (2018)

Acoustic localization at large scales: A promising method for grey wolf monitoring

Frontiers in Zoology, 15, 1-10.

DOI:10.1186/s12983-017-0247-4      URL     [本文引用: 2]

Parker TA (1991)

On the use of tape recorders in avifaunal surveys

Auk, 108, 443-444.

[本文引用: 2]

Payne KB, Thompson M, Kramer L (2003)

Elephant calling patterns as indicators of group size and composition: The basis for an acoustic monitoring system

African Journal of Ecology, 41, 99-107.

DOI:10.1046/j.1365-2028.2003.00421.x      URL     [本文引用: 1]

Pekin BK, Jung J, Villanueva-Rivera LJ, Pijanowski BC, Ahumada JA (2012)

Modeling acoustic diversity using soundscape recordings and LIDAR-derived metrics of vertical forest structure in a neotropical rainforest

Landscape Ecology, 27, 1513-1522.

DOI:10.1007/s10980-012-9806-4      URL     [本文引用: 1]

Piel AK (2018)

Temporal patterns of chimpanzee loud calls in the Issa Valley, Tanzania: Evidence of nocturnal acoustic behavior in wild chimpanzees

American Journal of Physical Anthropology, 166, 530-540.

DOI:10.1002/ajpa.23609      PMID:29989161      [本文引用: 1]

Much is known about chimpanzee diurnal call patterns, but far less about night-time vocal behavior. I deployed a passive acoustic monitoring (PAM) system to assess 24-hr temporal acoustic activity of wild, unhabituated chimpanzees that live in a woodland mosaic habitat similar to hominin landscapes from the Plio-Pleistocene. A primary aim was to apply findings to our broader understanding to chimpanzee 24-hr activity patterns, and what implications this may have for reconstructing hominin adaptations to similarly hot, dry, and open landscapes. I also tested whether chimpanzees conform to the acoustic adaptation hypothesis, and produce loud calls during periods of optimal sound transmission.Nine custom-made solar-powered acoustic transmission units (SPATUs) recorded continuously for 250 days over 11 months in the Issa Valley, western Tanzania. I complemented acoustic data with environmental data from weather stations as well as behavioral data collected on chimpanzee nest group sizes to assess the relationship between party size and calling.Chimpanzees called at all hours of the day and night in both wet and dry seasons, and night and day calls exhibited parallel rates/month, although twilight calls were produced significantly more in the dry, compared to the wet season. Calls were more likely during warmer temperatures and lower humidity. Call rate was positively associated with (nest) party size and counter-calls exhibited no temporal variation in their origins (similar vs. adjacent valleys).Chimpanzees were acoustically active throughout the 24-hr cycle, although at low rates compared to diurnal activity, revealing night-time activity in an ape otherwise described as diurnal. Chimpanzee loud calls partially, and weakly, conformed to the acoustic adaptation hypothesis and likely responded to social, rather than environmental factors. Call rates accurately reflect grouping patterns and PAM is demonstrated to be an effective means of remotely assessing activity, especially at times and from places that are difficult to access for researchers.© 2018 Wiley Periodicals, Inc.

Piel AK, Crunchant A, Knot IE, Chalmers C, Fergus P, Mulero-Pázmány M, Wich SA (2022)

Noninvasive technologies for primate conservation in the 21st century

International Journal of Primatology, 43, 133-167.

DOI:10.1007/s10764-021-00245-z      URL     [本文引用: 1]

Pijanowski BC, Villanueva-Rivera LJ, Dumyahn SL, Almo F, Krause BL, Napoletano BM, Gage SH, Nadia P (2011)

Soundscape ecology: The science of sound in the landscape

BioScience, 61, 203-216.

DOI:10.1525/bio.2011.61.3.6      URL     [本文引用: 2]

Riede K (2018)

Acoustic profiling of Orthoptera: Present state and future needs

Journal of Orthoptera Research, 27, 203-215.

DOI:10.3897/jor.27.23700      URL     [本文引用: 1]

Roch MA, Batchelor H, Baumann-Pickering S, Berchok CL, Cholewiak D, Fujioka E, Garland EC, Herbert S, Hildebrand JA, Oleson EM, Van Parijs S, Risch D, Širović A, Soldevilla MS (2016)

Management of acoustic metadata for bioacoustics

Ecological Informatics, 31, 122-136.

DOI:10.1016/j.ecoinf.2015.12.002      URL     [本文引用: 1]

Rosenstock SS, Anderson DR, Giesen KM, Tony L, Carter MF (2002)

Landbird counting techniques: Current practices and an alternative

Auk, 119, 46-53.

DOI:10.1093/auk/119.1.46      URL     [本文引用: 1]

Saito K, Nakamura K, Ueta M, Kurosawa R, Fujiwara A, Kobayashi HH, Nakayama M, Toko A, Nagahama K (2015)

Utilizing the cyberforest live sound system with social media to remotely conduct woodland bird censuses in central Japan

Ambio, 44, 572-583.

DOI:10.1007/s13280-015-0708-y      URL     [本文引用: 1]

Slabbekoorn H, Smith TB (2002)

Habitat-dependent song divergence in the little greenbul: An analysis of environmental selection pressures on acoustic signals

Evolution, 56, 1849-1858.

PMID:12389730      [本文引用: 1]

Bird song is a sexual trait important in mate choice and known to be shaped by environmental selection. Here we investigate the ecological factors shaping song variation across a rainforest gradient in central Africa. We show that the little greenbul (Andropadus virens), previously shown to vary morphologically across the gradient in fitness-related characters, also varies with respect to song characteristics. Acoustic features, including minimum and maximum frequency, and delivery rate of song notes showed significant differences between habitats. In contrast, we found dialectal variation independent of habitat in population-typical songtype sequences. This pattern is consistent with ongoing gene flow across habitats and in line with the view that song variation in the order in which songtypes are produced is not dependent on habitat characteristics in the same way physical song characteristics are. Sound transmission characteristics of the two habitats did not vary significantly, but analyses of ambient noise spectra revealed dramatic and consistent habitat-dependent differences. Matching between low ambient noise levels for low frequencies in the rainforest and lower minimal frequencies in greenbul songs in this habitat suggests that part of the song divergence may be driven by habitat-dependent ambient noise patterns. These results suggest that habitat-dependent selection may act simultaneously on traits of ecological importance and those important in prezygotic isolation, leading to an association between morphological and acoustic divergence. Such an association may promote assortative mating and may be a mechanism driving reproductive divergence across ecological gradients.

Sousa-Lima RS, Norris TF, Oswald JN, Fernandes DP (2013)

A review and inventory of fixed autonomous recorders for passive acoustic monitoring of marine mammals

Aquatic Mammals, 39, 23-53.

DOI:10.1578/AM.39.1.2013.23      URL     [本文引用: 1]

Spillmann B, van Noordwijk MA, Willems EP, Mitra ST, Wipfli U, van Schaik CP (2015)

Validation of an acoustic location system to monitor Bornean orangutan (Pongo pygmaeus wurmbii) long calls

American Journal of Primatology, 77, 767-776.

DOI:10.1002/ajp.22398      PMID:25773926      [本文引用: 1]

The long call is an important vocal communication signal in the widely dispersed, semi-solitary orangutan. Long calls affect individuals' ranging behavior and mediate social relationships and regulate encounters between dispersed individuals in a dense rainforest. The aim of this study was to test the utility of an Acoustic Location System (ALS) for recording and triangulating the loud calls of free-living primates. We developed and validated a data extraction protocol for an ALS used to record wild orangutan males' long calls at the Tuanan field site (Central Kalimantan). We installed an ALS in a grid of 300 ha, containing 20 SM2+ recorders placed in a regular lattice at 500 m intervals, to monitor the distribution of calling males in the area. The validated system had the following main features: (i) a user-trained software algorithm (Song Scope) that reliably recognized orangutan long calls from sound files at distances up to 700 m from the nearest recorder, resulting in a total area of approximately 900 ha that could be monitored continuously; (ii) acoustic location of calling males up to 200 m outside the microphone grid, which meant that within an area of approximately 450 ha, call locations could be calculated through triangulation. The mean accuracy was 58 m, an error that is modest relative to orangutan mobility and average inter-individual distances. We conclude that an ALS is a highly effective method for detecting long-distance calls of wild primates and triangulating their position. In combination with conventional individual focal follow data, an ALS can greatly improve our knowledge of orangutans' social organization, and is readily adaptable for studying other highly vocal animals.© 2015 Wiley Periodicals, Inc.

Sueur J, Farina A (2015)

Ecoacoustics: The ecological investigation and interpretation of environmental sound

Biosemiotics, 8, 493-502.

DOI:10.1007/s12304-015-9248-x      URL     [本文引用: 2]

Sugai LSM, Llusia D (2018)

Bioacoustic time capsules: Using acoustic monitoring to document biodiversity

Ecological Indicators, 99, 149-152.

DOI:10.1016/j.ecolind.2018.12.021      URL     [本文引用: 5]

Sugai LSM, Silva TSF, Ribeiro JW, Llusia D (2018)

Terrestrial passive acoustic monitoring: Review and perspectives

BioScience, 69, 15-25.

DOI:10.1093/biosci/biy147      URL    

Supp SR, Bohrer G, Fieberg J, Sorte FAL (2021)

Estimating the movements of terrestrial animal populations using broad-scale occurrence data

Movement Ecology, 9, 60.

DOI:10.1186/s40462-021-00294-2      PMID:34895345      [本文引用: 1]

As human and automated sensor networks collect increasingly massive volumes of animal observations, new opportunities have arisen to use these data to infer or track species movements. Sources of broad scale occurrence datasets include crowdsourced databases, such as eBird and iNaturalist, weather surveillance radars, and passive automated sensors including acoustic monitoring units and camera trap networks. Such data resources represent static observations, typically at the species level, at a given location. Nonetheless, by combining multiple observations across many locations and times it is possible to infer spatially continuous population-level movements. Population-level movement characterizes the aggregated movement of individuals comprising a population, such as range contractions, expansions, climate tracking, or migration, that can result from physical, behavioral, or demographic processes. A desire to model population movements from such forms of occurrence data has led to an evolving field that has created new analytical and statistical approaches that can account for spatial and temporal sampling bias in the observations. The insights generated from the growth of population-level movement research can complement the insights from focal tracking studies, and elucidate mechanisms driving changes in population distributions at potentially larger spatial and temporal scales. This review will summarize current broad-scale occurrence datasets, discuss the latest approaches for utilizing them in population-level movement analyses, and highlight studies where such analyses have provided ecological insights. We outline the conceptual approaches and common methodological steps to infer movements from spatially distributed occurrence data that currently exist for terrestrial animals, though similar approaches may be applicable to plants, freshwater, or marine organisms.© 2021. The Author(s).

Thompson ME, Schwager SJ, Payne KB (2010)

Heard but not seen: An acoustic survey of the African forest elephant population at Kakum Conservation Area, Ghana

African Journal of Ecology, 48, 224-231.

DOI:10.1111/j.1365-2028.2009.01106.x      URL     [本文引用: 2]

Vielliard J (1993)

Recording wildlife in tropical rainforest

Bioacoustics, 4, 305-311.

DOI:10.1080/09524622.1993.10510441      URL     [本文引用: 1]

Vu TT, Doherty PF (2021)

Using bioacoustics to monitor gibbons

Biodiversity and Conservation, 30, 1189-1198.

DOI:10.1007/s10531-021-02139-1      URL     [本文引用: 1]

Vu TT, Tran LM (2019)

An application of autonomous recorders for gibbon monitoring

International Journal of Primatology, 40, 169-186.

DOI:10.1007/s10764-018-0073-3      URL     [本文引用: 1]

Wallis D, Elmeros M (2020)

Tracking European bat species with passive acoustic directional monitoring

Bioacoustics, 30, 418-436.

DOI:10.1080/09524622.2020.1801506      URL     [本文引用: 1]

Wang Y, Ye J, Borchers DL (2022)

Automated call detection for acoustic surveys with structured calls of varying length

Methods in Ecology and Evolution, 13, 1-16.

DOI:10.1111/2041-210X.13631      URL     [本文引用: 1]

Wang YY, Zhang YM, Xia CW, Møller AP (2023)

A meta-analysis of the effects in alpha acoustic indices

Biodiversity Science, 31, 22369. (in Chinese with English abstract)

[本文引用: 1]

[王言一, 张屹美, 夏灿玮, Anders Pape Møller (2023)

Alpha声学指数效用的meta分析

生物多样性, 31, 22369.]

DOI:10.17520/biods.2022369      [本文引用: 1]

通过声学指数量化声音的特征反映生物的组成和生境信息, 是一种高效率、低干扰的监测方式。该研究领域在近十多年来得到了快速的发展, 不断有新的声学指数被提出, 同时也有大量的实证研究。声学指数可分为反映录音内信息的alpha声学指数和比较不同录音之间差异的beta声学指数, 其中alpha声学指数的实证研究较多。本文在汇总已有研究数据的基础上进行meta分析, 关注alpha声学指数与动物多样性、生境质量、动物活跃性之间关联的方向和程度。基于文献调研, 本文对8个常用的声学指数进行了总结分析: 声学复杂度指数(acoustic complexity index,ACI)、声学熵指数(acoustic entropy index, H)、生物声学指数(bioacoustic index, BI)、标准化声景差异指数(normalized differencesoundscape index, NDSI)、声学多样性指数(acoustic diversity index,ADI)、声学均匀度指数(acoustic evenness index,AEI)、声学丰富度指数(acoustic richness index,AR)和频峰数(number of peaks, NP)。其中, ACI是使用频次最高的声学指数, 与动物多样性、生境质量和动物活跃性均存在正相关的关系。ACI与陆地动物活跃性之间的联系最为密切, 总效应量的均值达到0.53。然而, 其他声学指数与动物多样性、生境质量和动物活跃性之间的关联程度普遍不高, 平均解释力不足10%。此外, AEI与生境质量呈显著负相关的关系(相关系数的均值为–0.18, 符号检验P = 0.001), 是本研究发现的唯一显著负相关的联系。本研究结果可为常用alpha声学指数的选用提供参考依据。

Wei FW (2016)

Research progress in conservation biology of endangered mammals in China

Acta Theriologica Sinica, 36, 255-269. (in Chinese with English abstract)

DOI:10.16829/j.slxb.201603001      [本文引用: 1]

Research progress achieved by Chinese scientists in conservation biology of endangered mammals (e.g. Carnivores, primates, ungulates and cetaceans) from 2010-2015 was reviewed. These researches are mainly related to different branches of the conservation biology, such as evolutionary biology, ecology, behavior, physiology, genetics, genomics and meta-genomics, as well as policy and practices. The remarkable research achievements have been made in Conservation Biology of endangered mammals in China, especially for giant pandas and golden monkeys. Evidence from multidisciplinary researches indicated that the giant panda is not an evolutionary cul-de-sac, remaining evolutionary potential. Although the panda is facing environmental problems such as habitat fragmentations, its population is growing and available habitat is expanding. It turned out that its Red List Category could be downlisted from

[魏辅文 (2016)

我国濒危哺乳动物保护生物学研究进展

兽类学报, 36, 255-269.]

DOI:10.16829/j.slxb.201603001      [本文引用: 1]

本文简要论述了2010-1015年间,我国濒危哺乳动物(主要是食肉类、灵长类、有蹄类和鲸类) 保护生物学的研究进展,涉及进化保护生物学、保护生态学、保护行为学、保护生理学、保护遗传学、保护基因组学与宏基因组学和保护政策建议与实践等诸多领域。以大熊猫和金丝猴为代表的濒危动物保护生物学研究成绩显著。各项研究结果表明,大熊猫并非是一个已走到“进化尽头”的物种,仍具进化潜力。虽然大熊猫仍然面临栖息地破碎等环境问题,总的来看其种群数量在逐渐增长,栖息地面积在逐渐扩大,已走出困境并脱离“濒危”的状态,可降为“易危”。我国大熊猫的保护为世界生物多样性保护树立了成功的范例。根据国内研究进展和国际发展动态,该文还对未来保护生物学的研究提出了一些建议,包括加强长期定点监测与系统性的研究工作,加强新理论、新方法和新技术的研发及应用,加强宏微观研究手段的结合从机制上揭示科学问题,加强动物对食物、高原极端环境和水生生态环境的适应性进化分子机制的揭示,加强理论与实践相结合积极推动研究成果的应用,为濒危动物的有效保护保驾护航。

Wei FW, Ma TX, Hu YB (2021)

Research advances and perspectives of conservation genetics of threatened mammals in China

Acta Theriologica Sinica, 41, 571-580. (in Chinese with English abstract)

DOI:10.16829/j.slxb.150517      [本文引用: 1]

China is one of the world's mega-diverse countries. There are diverse terrestrial and marine mammals in China, including endemic and flagship species like the giant panda, snub-nosed monkey, South China tiger, Milu, and Baiji. However, habitat loss and fragmentation, poaching, pollution, and climate change imposed direct threats to mammals' survival, which resulted in the genetic diversity loss of species. Genetic diversity is the basic component of biodiversity and affects the long-term survival of species and populations. Therefore, conservation genetics was established as an important branch subject of conservation biology, aiming to investigate the population genetic variation and genetic mechanisms of species endangerment and extinction. With rapid development in research techniques and methods, great progress has been made in China in the past 40 years in the evaluation of genetic diversity and inbreeding, landscape genetics, ecological genetics, and genetic management on threatened mammals. Meanwhile, the threats to mammals' survival caused by human activities still exist. The further development of new techniques, such as high-throughput sequencing, could deepen our understanding of the genetic adaptation and endangerment processes of threatened mammals, and lead to more effective management and conservation.

[魏辅文, 马天笑, 胡义波 (2021)

中国濒危兽类保护遗传学研究进展与展望

兽类学报, 41, 571-580.]

DOI:10.16829/j.slxb.150517      [本文引用: 1]

我国是全球生物多样性大国,拥有包括大熊猫、金丝猴、华南虎、麋鹿、白鱀豚等特有物种和旗舰物种在内的丰富兽类资源。近几十年来,土地利用模式转变、盗猎、环境污染、气候变化等因素使许多兽类物种面临生存威胁,导致物种遗传多样性丧失。而遗传多样性是生物多样性的基本组成部分,决定了物种和种群能否长期生存。保护遗传学作为保护生物学的一大分支学科,旨在通过遗传学分析探明种群遗传变异和物种濒危的遗传学机制。近40年来,随着研究手段和技术的不断发展,我国兽类保护遗传学在遗传多样性和近交水平评估、景观遗传学、生态遗传学和圈养种群遗传管理等方面都取得了重要成果。然而,未来人类社会发展可能为濒危兽类带来的威胁依然存在,高通量测序等新技术的进一步发展则能够帮助我们更加深入地了解濒危物种和种群遗传适应与濒危机制,从而实现对濒危兽类的有效管理与保护。

Weir LA, Mossman MJ (2005)

North American amphibian monitoring program (NAAMP)

In: Amphibian Declines: The Conservation Status of United States Species (ed. Lanoo M), pp. 307-313. University of California Press, Berkeley, CA.

[本文引用: 1]

Whytock RC, Christie J (2016)

Solo: An open source, customisable and inexpensive audio recorder for bioacoustic research

Methods in Ecology and Evolution, 8, 308-312.

DOI:10.1111/2041-210X.12678      URL     [本文引用: 1]

Wiley RH, Richards DG (1982)

Adaptations for acoustic communication in birds:Sound transmission and signal detection

In: Acoustic Communication in Birds (Vol. 1) (eds Kroodsma DE, Miller EH), pp. 131-181. Academic Press, New York.

[本文引用: 1]

Wilkins MR, Seddon N, Safran RJ (2013)

Evolutionary divergence in acoustic signals: Causes and consequences

Trends in Ecology & Evolution, 28, 156-166.

DOI:10.1016/j.tree.2012.10.002      URL     [本文引用: 1]

Wrege PH, Rowland ED, Keen S, Shiu Y (2017)

Acoustic monitoring for conservation in tropical forests: Examples from forest elephants

Methods in Ecology & Evolution, 8, 1292-1301.

[本文引用: 2]

Wrege PH, Rowland ED, Thompson BG, Batruch N (2010)

Use of acoustic tools to reveal otherwise cryptic responses of forest elephants to oil exploration

Conservation Biology, 24, 1578-1585.

DOI:10.1111/j.1523-1739.2010.01559.x      PMID:20666800      [本文引用: 1]

Most evaluations of the effects of human activities on wild animals have focused on estimating changes in abundance and distribution of threatened species; however, ecosystem disturbances also affect aspects of animal behavior such as short-term movement, activity budgets, and reproduction. It may take a long time for changes in behavior to manifest as changes in abundance or distribution. Therefore, it is important to have methods with which to detect short-term behavioral responses to human activity. We used continuous acoustic and seismic monitoring to evaluate the short-term effects of seismic prospecting for oil on forest elephants (Loxodonta cyclotis) in Gabon, Central Africa. We monitored changes in elephant abundance and activity as a function of the frequency and intensity of acoustic and seismic signals from dynamite detonation and human activity. Elephants did not flee the area being explored; the relative number of elephants increased in a seasonal pattern typical of elsewhere in the ecosystem. In the exploration area, however, they became more nocturnal. Neither the intensity nor the frequency of dynamite blasts affected the frequency of calling or the daily pattern of elephant activity. Nevertheless, the shift of activity to nocturnal hours became more pronounced as human activity neared each monitored area of forest. This change in activity pattern and its likely causes would not have been detected through standard monitoring methods, which are not sensitive to behavioral changes over short time scales (e.g., dung transects, point counts) or cover a limited area (e.g., camera traps). Simultaneous acoustic monitoring of animal communication, human, and environmental sounds allows the documentation of short-term behavioral changes in response to human disturbance.© 2010 Society for Conservation Biology.

Wyman MT, Mooring MS, Mccowan B, Penedo M, Reby D, Hart LA (2012)

Acoustic cues to size and quality in the vocalizations of male North American bison, Bison bison

Animal Behaviour, 84, 1381-1391.

DOI:10.1016/j.anbehav.2012.08.037      URL     [本文引用: 1]

Zhao Y, Shen XL, Li S, Zhang YY, Peng RH, Ma KP (2020)

Progress and outlook for soundscape ecology

Biodiversity Science, 28, 806-820. (in Chinese with English abstract)

DOI:10.17520/biods.2020114      [本文引用: 2]

Soundscape ecology studies the patterns of sounds across a variety of spatial and temporal scales, which reflects coupled natural-human dynamics in a changing landscape. We reviewed peer-reviewed studies on soundscape ecology, and summarized the conceptual framework of soundscape ecology, the methodology used and acoustic indices developed in these studies. Current studies primarily focus on the following aspects: 1) acoustic composition of soundscape; 2) acoustic interactions between soundscape components; 3) temporal patterns and spatial variability in the soundscapes; 4) acoustic indices developed for biodiversity monitoring and their efficacy. For future studies on soundscape ecology and biodiversity conservation, we suggest: 1) establishing systematic acoustic monitoring network and data management platform; 2) developing new methods for data collection and analysis (e.g., recording matrix and machine learning algorithm); and 3) treating soundscape as an important resource in future research and conservation.

[赵莹, 申小莉, 李晟, 张雁云, 彭任华, 马克平 (2020)

声景生态学研究进展和展望

生物多样性, 28, 806-820.]

DOI:10.17520/biods.2020114      [本文引用: 2]

声景生态学以景观中的声音为研究对象,探讨其在不同时空维度上的分布和变化模式,从而揭示自然环境、野生动物和人类活动的相互作用关系。通过系统检索声景生态学研究的相关文献,本文回顾了该学科的研究框架、研究方法,总结了目前常用的声学指标,重点归纳了声景生态学的研究内容,包括声景组成和各组分间的相互作用,声景的时空格局,以及声景生态学在生物多样性监测中的应用。目前,声景监测中存在的问题主要包括监测的生态系统类型和物种类群有限、声学指标效力有待提高等。建议未来着重推进建立系统性的声景监测网络和数据管理平台;开发和完善音频数据采集、分析方法和评估指标;并重视声景数据的采集,将声景视作一种资源进行研究和保护。

Zhong EZ, Guan ZH, Zhou XC, Zhao YJ, Hu KR (2021)

Application of passive acoustic monitoring technology in the monitoring of western black crested gibbons

Biodiversity Science, 29, 109-117. (in Chinese with English abstract)

DOI:10.17520/biods.2020215      URL     [本文引用: 2]

[钟恩主, 管振华, 周兴策, 赵友杰, 胡坤融 (2021)

被动声学监测技术在西黑冠长臂猿监测中的应用

生物多样性, 29, 109-117.]

[本文引用: 2]

Zwerts JA, Stephenson PJ, Maisels F, Rowcliffe M, Astaras C, Jansen PA, Waarde J, Sterck LEHM, Verweij PA, Bruce T, Brittain S, Kuijk M (2021)

Methods for wildlife monitoring in tropical forests: Comparing human observations, camera traps, and passive acoustic sensors

Conservation Science and Practice, 3, e568.

[本文引用: 1]

/