生物多样性, 2022, 30(9): 22349- doi: 10.17520/biods.2022349

中国猫科动物研究与保护专题

中国云豹种群分布现状与关键栖息地信息更新

马子驭,1,#, 何再新2,#, 王一晴,,1,*, 宋大昭1, 夏凡,1,3, 崔士明1, 苏红信4, 邓建林2, 李平4, 李晟,,3,*

1.重庆江北飞地猫盟生态科普保护中心, 重庆 400020

2.云南西双版纳国家级自然保护区科学研究所, 云南景洪 666100

3.北京大学生命科学学院, 北京 100871

4.西双版纳易武州级自然保护区, 云南勐腊 666306

An update on the current distribution and key habitats of the clouded leopard (Neofelis nebulosa) populations in China

Ziyu Ma,1,#, Zaixin He2,#, Yiqing Wang,,1,*, Dazhao Song1, Fan Xia,1,3, Shiming Cui1, Hongxin Su4, Jianlin Deng2, Ping Li4, Sheng Li,,3,*

1. Chinese Felid Conservation Alliance, Chongqing 400020

2. Scientific Research Institute of Xishuangbanna National Nature Reserve, Jinghong, Yunnan 666100

3. School of Life Sciences, Peking University, Beijing 100871

4. Management Office of Yiwu Nature Reserve in Xishuangbanna Prefecture, Mengla, Yunnan 666306

通讯作者: * E-mail:office@felidchina.org;shengli@pku.edu.cn

第一联系人: # 共同第一作者

编委: 蒋学龙

责任编辑: 李会丽

收稿日期: 2022-06-25   接受日期: 2022-09-23  

基金资助: 香港海洋公园保育基金(TM01_1920)
生态环境部生物多样性调查
观测与评估项目(2019HJ2096001006)

Corresponding authors: * E-mail:office@felidchina.org;shengli@pku.edu.cn

First author contact: # Co-first author

Received: 2022-06-25   Accepted: 2022-09-23  

摘要

云豹(Neofelis nebulosa)是中国大型猫科动物中对森林生态系统依赖性最高的物种。中国作为云豹的主要分布区, 由于长期以来缺乏深入研究和有效保护, 在盗猎、森林采伐、土地利用变化等威胁因素的共同作用下, 云豹在中国的分布范围和种群数量近数十年来均大幅缩减, 其分布现状亟需全面评估。本研究系统检索和查阅了国内1950年以来的云豹标本、野外调查记录、地方志、新闻报道等直接证据, 整理了中国各省级行政区内云豹记录存在的年代; 基于2010-2020年国内55个地区的红外相机监测数据, 结合同期研究文献中记录的中国云豹确认分布位点, 校准了已发表的云豹栖息地适合度模型, 并在此基础上叠加保护地和行政区划图层, 根据2010-2020年间森林覆盖率的减量评估云豹栖息地适合度的变化, 以识别我国的云豹关键栖息地和保护优先区。结果显示, 1950-2009年, 我国的云南、西藏、四川、陕西、甘肃、重庆、贵州、广西、广东、海南、湖北、湖南、安徽、江西、浙江、福建以及台湾共17个省级行政区有云豹分布, 但其中12个迄今已超过20年无确凿记录, 且目前仅在云南省和西藏自治区仍有云豹记录延续。当前我国大陆地区云豹潜在栖息地总面积64,093 km2, 分别位于9个连续的栖息地斑块中, 其中3个为跨境斑块。2010-2020年间, 我国境内共在5个自然保护区的10个样区记录到云豹, 全部位于西藏东南部以及云南西部和南部的2个跨境栖息地斑块(即“喜马拉雅-横断山脉西侧-若开山脉”和“无量山南麓-安南山脉”)的边缘。2010-2020年间, 这两个斑块在中国境内区域的年均森林覆盖率减量(0.84%)小于境外(1.57%)。从本研究的结果推断, 中国目前确认分布的云豹种群极有可能维持在跨境分布的生境中, 面临内部和跨境的双重挑战。相关保护地应有针对性地加强反盗猎执法, 并开展栖息地恢复工作以提升云豹栖息地质量与斑块连通性, 同时与周边分布区国家开展跨境保护合作, 为现有云豹种群的长期生存和发展提供必要基础。

关键词: 大型食肉动物; 栖息地适合度; 物种分布; 森林覆盖率; 跨境保护; 保护地

Abstract

Aims: The clouded leopard (Neofelis nebulosa) is the most dependent species on forest ecosystems among all large felids native to China, its distribution is therefore sensitive to deforestation and its survival needs particular attention in conservation. China hosted the majority of N. nebulosa’s historical range, however with the impact of poaching, deforestation and land use change, the range and population of N. nebulosa had undergone severe contraction and decline throughout the past decades. In addition, relevant research and effective conservation actions were still lacking both in and out China. As the result of the drastic changes in recent decades, the current distribution and survival outlook of this charismatic large cat in China requires urgent and rigorous reassessment in order to raise more awareness and conservation investment to ensure the survival of this species in the future. Specifically, this study has 3 objectives: (1) to review the historical range of N. nebulosa in China since 1950; (2) to assess the current distribution of N. nebulosa in China from 2010 to 2020; (3) to identify the existing potential habitats of N. nebulosa in China and evaluate their habitat suitability in terms of area, quality, deforestation and protected area.
Methods: (1) To review the historical range of N. nebulosa in China, we searched and examined the occurrence records of N. nebulosa with solid evidence in specimen collections, peer-reviewed publications, local gazetteers and media reports since 1950, and summarized the confirmed years of attainable presence record in each provincial administrative division of China. (2) As for the current distribution of N. nebulosa from 2010 to 2020, we conducted camera-trapping surveys in 55 sites across China, and reviewed contemporary camera-trapping studies in China for confirmed captures of N. nebulosa. (3) To identify the existing potential habitats of N. nebulosa, we joined the results obtained in this study with results from previous studies to generate a presences/absence localities dataset of N. nebulosa in China, and then calibrated the habitat suitability models that was recently published with this dataset to determine the potential habitat patches within China. Lastly, potential habitat patches identified in this manner were overlaid with protection area and administrative divisions, and habitat suitability change was assessed by forest cover change in 2010‒2020.
Results: Back to the 20th century, the distribution of N. nebulosa in China spanned 17 provincial administrative divisions. However, the once widely distributed N. nebulosa can now only be confirmed to continuously occur in 10 study sites of 2 divisions: Yunnan Province and Tibetan Autonomous Region. There has been no evidence for the presence of N. nebulosa in 12 of its historically distributed divisions for more than 20 years. The species’ potentially suitable habitats in mainland China are now restricted to 9 patches with a total area of 64,093 km2, and in only 2 trans-border patches in the southwestern can we confirm the presence of the species from 2010 to 2020: the Himalaya-Western Hengduan-Arakan Mountains and South Wuliangshan-Annamite regions. Although in these 2 patches, the contiguous area abroad (428,511 km2) was much more extensive than that in China (41,373 km2), the extent of annual forest cover loss in 2010‒2020 was slighter in China (0.84%) comparing to abroad (1.57%). In addition, the percentage of protected area cover was higher in China (34.33%) than abroad (22.02%) in these 2 patches.
Conclusion: From 2010 to 2020, N. nebulosa occurrence in China was confirmed from southwest Tibet, west Yunnan, and south Yunnan, where populations were likely only sustained in transborder habitats with domestic challenges and ongoing severe threats abroad. Relevant departments should strengthen domestic anti-poaching law enforcement, restore habitat suitability and connectivity, and foster transborder collaboration among protected areas, research institutes, governmental organizations and local communities, in order to ensure the long-term survival and growth of N. nebulosa populations in such border regions. In particular, special attention and efforts should be put to Mengla County, Xishuangbanna, Yunnan, where N. nebulosa still exists and 68.36% of its potential habitat is already protected.

Keywords: large carnivores; habitat suitability; species distribution; forest cover; transborder conservation; protected area

PDF (1273KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

马子驭, 何再新, 王一晴, 宋大昭, 夏凡, 崔士明, 苏红信, 邓建林, 李平, 李晟 (2022) 中国云豹种群分布现状与关键栖息地信息更新. 生物多样性, 30, 22349- . doi:10.17520/biods.2022349.

Ziyu Ma, Zaixin He, Yiqing Wang, Dazhao Song, Fan Xia, Shiming Cui, Hongxin Su, Jianlin Deng, Ping Li, Sheng Li (2022) An update on the current distribution and key habitats of the clouded leopard (Neofelis nebulosa) populations in China. Biodiversity Science, 30, 22349- . doi:10.17520/biods.2022349.

云豹(Neofelis nebulosa)是豹亚科大型猫科动物中唯一具有半树栖习性的物种, 栖息于中国南方、喜马拉雅山南麓和中南半岛的热带和亚热带森林生态系统(Grassman et al, 2016; 刘少英等, 2020; 魏辅文等, 2021)。云豹的模式标本采集自中国广东(Griffith, 1821), 但此后中国的云豹研究仅有有限的捕捉记录和食性描述(盛和林, 1976; 陈文豪, 2003), 相比虎(Panthera tigris)、豹(P. pardus)、大熊猫(Ailuropoda melanoleuca)等明星物种, 云豹受到的保护关注极少(Mohamad et al, 2015)。在东南亚热带岛屿上的巽他云豹(N. diardi)被列为独立物种后(Buckley-Beason et al, 2006; Christiansen, 2008), 分布于亚洲大陆(包括中国、尼泊尔、不丹、老挝、越南、泰国、缅甸、马来西亚、印度等国)的云豹研究不足的问题更加凸显(Austin et al, 2007; Mohamad et al, 2015; Ghimirey & Acharya, 2018; Penjor et al, 2018)。20世纪90年代中期以来, 红外相机成为我国野生动物调查与监测的重要手段, 2000年以来我国先后建立了10多个区域性或全国性的红外相机监测网络(李晟等, 2014; 李晟, 2020)。直至今日, 除了在这些监测网络中偶尔获得的云豹记录外(例如贺如川等, 2020; 李学友等, 2020; 刘炎林等, 2020), 我国针对云豹的野外分布、种群数量、自然史等基本研究仍十分匮乏(李蔓等, 2020)。

自1986年以来, 在世界自然保护联盟(IUCN)物种红色名录发布的10次云豹受威胁等级评估中, 该种均被列为“易危” (VU) (Gray et al, 2021)。在我国, 自1988年起云豹一直被列为国家一级重点保护野生动物(http://www.forestry.gov.cn/)。据记载, 云豹在中国的历史分布范围较广: 北至秦岭, 东至台湾(Smith和解焱, 2009), 但这与我国云豹现存分布之间的差异较大, 亟需更新(Lau et al, 2010; Chiang et al, 2015)。Petersen等(2020)研究认为, 2000-2020年间中国云豹的适宜栖息地面积减少了97%。2021年9月, IUCN红色名录在新一轮的受威胁物种评估中, 将中国境内的云豹分布面积从1,211,284 km2 (Grassman et al, 2016)调整为62,199 km2的现存分布区(extant)和764,614 km2的可能尚存分布区(possibly extant) (Gray et al, 2021), 显示出中国云豹的生存和保护形势与过去相比已发生显著变化。

作为跨境生存的大型野生猫科动物, 云豹的保护成为日益迫切的国际问题。大型食肉动物的生存通常需要更充足的猎物资源与较大的活动空间, 因此相比其他野生动物更容易受到人类活动的影响(Ripple et al, 2014)。从1975年到2013年, 濒危野生动植物种国际贸易公约(CITES)的数据记录中, 国际间云豹的活体贸易量增长了42%, 其中最大的商业进口国是日本, 而私人饲养和出口云豹活体最多的国家是美国(D’Cruze & MacDonald, 2015)。作为云豹原生分布国, 中国在20世纪90年代开始大面积实施天然林保护工程和退耕还林工程(Liu et al, 2008), 但与此同时为顺应社会经济发展, 我国云豹历史分布区内的基础设施建设与城镇化也在快速发生, 土地利用变化成为了影响云豹栖息地的主要威胁(Tan et al, 2017; MacDonald et al, 2019)。在与我国接壤的其他分布国, 云豹也面临多种威胁, 尤其是老挝、缅甸等地近年来的毁林仍在加剧(Hansen et al, 2013; Zeng et al, 2018), 并且存在较严重的盗猎问题。虽然绝大部分的盗猎活动并不是以云豹为直接目标, 但以赤麂(Muntiacus vaginalis)等有蹄类食草动物为目标而设置的陷阱往往也会给云豹带来直接伤害(Oswell, 2010), 同时还会导致云豹的猎物资源出现严重下降(Carter et al, 2019)。因此, 厘清国内云豹分布现状也有助于跨境保护与合作的规划。

作为森林生态系统中的顶级捕食者之一, 云豹亟待成为亚洲热带和亚热带森林的大使物种(ambassador species), 从而获得更大的保护关注(MacDonald et al, 2017)。本研究通过系统汇总我国云豹的历史与当前分布记录, 希望明确中国云豹分布的历史变化与当前的分布格局, 具体研究目标包括: (1)整理中国境内1950年以来的云豹分布信息, 记录分布变化的时间和空间过程; (2)根据2010-2020年中国云豹的红外相机调查数据, 结合已有的栖息地适合度模型, 评估中国现存的云豹分布区; (3)结合最新的森林覆盖率遥感数据, 识别现存云豹的潜在高质量栖息地及其面临的关键威胁, 从而提出保护建议。

1 研究方法

1.1 历史分布记录(1950-2009年)

查询20世纪中期(1950年)至2010年前中国的云豹分布记录。(1)查阅国家动物博物馆、北京自然博物馆、上海自然博物馆、昆明动物博物馆、广东省科学院动物研究所标本馆和四川大学、北京大学等高校动物标本馆馆藏的实体标本记录, 以及国家动物标本资源库(http://museum.ioz.ac.cn/index.html)、国家标本资源共享平台(http://nsii.org.cn/2017/home.php)和中国自然保护区标本资源共享平台(http://www.papc.cn/)的数字标本记录, 从中提取尽可能精确的野生云豹标本采集时间、地点信息, 并剔除重复的记录。(2)使用“云豹”和“Neofelis nebulosa”作为检索词, 在中国知网(https://www.cnki.net/)检索云豹相关的中文和英文学术文献, 并从中提取云豹在中国具有实证证据(如活体、死体、红外相机照片或视频等)的分布记录; (3)使用相同检索词在百度(http://baidu.com/)和必应(https://cn.bing.com/)搜索引擎中进行全面检索, 识别确定为云豹的捕获、发现事件及相关的影像记录, 经核实实证证据后从中提取尽可能精确的时间、地点信息。(4)使用“云豹”和各省、市、自治区名称为检索词在方正新方志平台(https://fz.wanfangdata.com.cn/)查阅各地、各级林业与野生动物管理部门编写的地方志, 并尽量获取其他相关出版物、报告、毛皮收购记录、救助记录及部分未发表数据, 筛选具有实证证据的确定云豹记录, 也提取记录的时间、地点信息。最后, 将上述结果汇总, 统计有云豹出现的省、市、自治区以及确认记录的时间。

1.2 现存分布评估(2010-2020年)

以近10年来(2010-2020年)的分布记录作为云豹的当前分布。中国科学院昆明动物研究所、西双版纳热带植物园和中国林业科学研究院在西藏墨脱、云南尚勇地区曾有多条云豹的红外相机拍摄记录(吴建普等, 2016), 然而可以引用的确切位点仅有墨脱一处(Li et al, 2021)。本研究从2010年起在我国西藏、云南、四川、陕西、广西、江西和安徽7个省级行政区, 以及与云南省勐腊县临近的老挝丰沙里省边境地区开展了红外相机调查。为掌握我国云豹的当前分布区, 本文根据实地调查结果, 结合云豹历史分布区内的红外相机调查资料(贺如川等, 2020; 李佳等, 2020; 李晟等, 2020; 李学友等, 2020; 刘炎林等, 2020; 万雅琼等, 2020), 对我国云豹的分布进行了重新评估。调查结果和文献资料皆采取如下标准分类: (1)拍摄到云豹的, 认为该样区当前有云豹分布(presence); (2)累计5,000个及以上有效相机工作日(Li et al, 2020)仍未拍摄到云豹的, 则认为该样区当前没有云豹分布(absence: 高确定性)。此外, 本文还引用了Petersen等(2020)汇总的境外云豹数据, 其判断云豹无分布的标准为500个有效相机工作日未拍摄到, 我们将这些数据与国内低于5,000相机工作日未拍摄到云豹的数据也一并处理为没有云豹分布(absence: 低确定性)。

1.3 潜在栖息地识别与适合度变化

MacDonald等(2019)基于分布在南亚和东南亚9个国家、45个监测网络中的2,948个红外相机位点的调查数据, 结合森林覆盖率、地形、气候、土地覆盖类型、人口密度、自然保护地分布等13个环境变量在250 m、500 m、1 km、2 km、4 km、8 km、16 km和32 km 8个尺度的取值, 建立了广义线性混合模型(GLMM, generalized linear mixed model), 并以赤池信息量准则(AICc, Akaike information criterion)为标准选取了最优尺度和参数组合, 在云豹位于亚洲大陆上的整个分布区范围内(不包括台湾岛、海南岛等曾经有云豹分布的岛屿)评估了该物种的栖息地适合度。该模型中, 对云豹在红外相机位点探测率的影响因素按贡献度从高到低依次为: 16 km范围内的郁闭森林比例, 32 km范围内的年均降水量, 16 km范围内的灌丛/草地面积, 8 km范围内的保护地面积, 1 km范围内的景观破碎程度和500 m范围内的地形指数。其中, 最重要的郁闭森林比例和年均降水量皆与云豹探测率正相关: 当16 km范围内的郁闭森林比例低于65%或32 km内的年均降水量低于1,700 mm时云豹的探测率会降到不足其稳定分布区平均探测率的1/4水平(MacDonald et al, 2019)。本研究提取该模型的云豹栖息地适合度预测值, 采用2010年以来我国的红外相机调查结果, 进行了模型验证和潜在栖息地划分: 首先, 将我国红外相机平台中的云豹探测记录与文献中的东南亚云豹探测记录合并, 得到境内外有云豹分布样区(presence) 86个; 将我国红外相机平台中未探测到云豹的所在地区按每平方千米保留单笔记录的标准稀疏化, 并选取境内工作达到5,000及以上有效相机日的高确定性样区以及境外所有未探测到云豹的样区共130个作为无云豹分布样区(absence) (图1)。随后, 针对以上216个有或无云豹记录的样区提取模型预测值, 计算TSS (true skill statistics)评价指标最高的切分阈值, 并据此二值化模型结果以划分我国云豹的当前分布区域。MacDonald等(2019)将原模型预测值大于其90%分位数的区域定义为云豹的高质量栖息地, 且大于800 km2的连续栖息地被认为是支持云豹种群的必要条件(Petersen et al, 2020), 因此本研究沿用此标准, 并将二值化后包含连续高质量栖息地斑块的区域作为中国云豹的潜在栖息地。

图1

图1   1950-2010年云豹在标本、文献、地方志、报道和其他国内可查证的历史记录总结。横轴以10年为刻度, 各省、市、自治区名称后的黑色线段表示云豹分布证据延续的年代, 黑色圆点表示有确切采集时间、地点的标本以及可查证的活体或死体及其记录年份, 其大小表示当年记录总数(n); 黑线上的灰色数字表示该地区相应年代的年均云豹猎获量记载或估计。

Fig. 1   Overview of the historical records of Neofelis nebulosa collected from specimens, literature, local gazetteers, reports and other verifiable sources during 1950-2010 in China. With the decades marked on the horizontal axis, the black segment of lines following each administrative region’s name depict the time span of existing N. nebulosa evidence in the respective regions, while the black dots on them mark the well-curated specimens and valid reports of live or dead individuals and their year of collection, with the sizes of the dots showing tallies of the year’s individuals (n); and the grey numbers above the black lines present records or estimates of mean annual numbers of N. nebulosa hunted in relevant regions and time periods.


由于上述模型采用的是2000年的森林遥感数据(MacDonald et al, 2019), 而在随后的20年中, 云豹部分分布区内的森林分布发生了显著变化, 可能导致曾经的高质量栖息地不足以继续支撑云豹种群的生存。因此, 本研究计算了2010-2020年间森林覆盖率的减量(Hansen et al, 2013), 作为栖息地适合度变化的指标, 以评估当前云豹潜在栖息地的适合性和进一步退化的可能性。使用Hansen等(2013)发布且持续更新的全球森林遥感数据(https://glad.earthengine.app/view/global-forest-change), 计算2010-2020年间每平方公里地面上森林覆盖率的减量(即从“森林”变成“非森林”的像素点)。随后, 在识别出的我国云豹潜在栖息地斑块中, 统计森林覆盖率减量的平均值和标准误差。因模型指出云豹回避被采伐的森林(MacDonald et al, 2019), 本研究使用森林覆盖率减量来展示其预测值在最近10年间可能发生的偏差。

最后, 叠加中国行政区划、中国自然保护区边界(北京大学未发表数据), 以及WDPA自然保护地边界图层(UNEP-WCMC & IUCN, 2021), 并按栖息地地图投影栅格化保护地数据(网格分辨率1 km), 计算我国各省区云豹潜在栖息地斑块内的保护地覆盖比例与高质量栖息地占比。所有地理信息管理和作图使用QGIS 3.16.9 (QGIS Project, https://www.qgis.org/)完成, 所有数据分析使用R 4.0.5 (R Core Team, https://www.r-project.org/)及其raster (Hijmans, 2021)和rdgal (Bivand, 2021)程序包完成。

2 结果

2.1 历史分布记录(1950-2009年)

本研究共搜集到1950-2009年间确认的云豹分布信息161条。其中, 云豹标本87号(另有8号未查证到实物或电子标本信息), 野外调查记录和研究9篇共21条, 媒体报道6条, 地方志中存在记录47条。已查证的87号标本分别保藏于中国16个科研机构和自然保护区。其中, 昆明动物博物馆兽类标本库的记录最多(53号), 但其中有75% (40号)来自境外, 系由缅甸、老挝非法入境时被海关罚没的标本。因此, 本研究获得的中国境内确凿云豹分布记录共121条。

统计表明, 在此时间段内, 我国的云南、西藏、四川、陕西、甘肃、重庆、贵州、广西、广东、海南、湖北、湖南、安徽、江西、浙江、福建以及台湾共17个省区皆有云豹分布记录(图1)。其中, 广西和广东西部的记录数最少, 20世纪60年代后每年仅有少于10件的云豹皮毛收购(国家林业局, 2009), 同时缺乏标本和野外记录; 海南岛中西部山区以及低海拔区域都曾是云豹的分布区域(寿振黄, 1966), 但全岛已有40余年未记录到云豹; 台湾的云豹在1983年最后一次由猎户目击, 并于2014年被认为在岛上灭绝(Chiang et al, 2015); 四川西部、陕西、甘肃的云豹也超过30年未有记录; 四川东南、贵州、长江中下游山地和福建、粤东北山地的云豹种群存续时间相对较长, 其中湖南、湖北的云豹在标本与文献中记录较少但湖南有大量地方志记载, 对狩猎数量统计较全的是江西(盛和林, 1976; 盛和林等, 1984), 且福建、浙江、江西和安徽(陈文豪, 2003)在1990年后出现的云豹记录相对较多; 然而在2010年后, 仅有云南南部、西部和西藏东南部尚存云豹的持续确凿记录(表1)。在采集于我国境内的47号云豹标本中, 产地数量从高到低的前5个省份依次为云南、贵州、海南、福建和四川。

表1   中国南方各省、直辖市和自治区云豹的最后确认分布记录(省区按年份排列)

Table 1  Last confirmed Neofelis nebulosa presence records in each provincial administrative division of southern China. Records are listed in the order of years. NNR: National Nature Reserve.

省区 Province年 Year地区 Region数据来源 Source
西藏 Xizang现存 Extant墨脱县, 错那县 Medog and Cona本研究 This study; Li等, 2021
云南 Yunnan现存 Extant勐腊县、盈江县、陇川县、瑞丽市、贡山县 Mengla, Yingjiang, Longchuan, Ruili, and Gongshan本研究 This study; 刘炎林等, 2020; 李学友等, 2020
湖南 Hunan2008八大公山国家级自然保护区 Badagongshan NNR八大公山自然博物馆标本 Specimen
四川 Sichuan2007长宁县 Changning李蔓等, 2020
安徽 Anhui2006歙县 Shexian皖南国家野生动物救助中心记录 Rescue record
福建 Fujian2002梅花山国家级自然保护区 Meihuashan NNR龙岩市志 Gazetteer
江西 Jiangxi1998万载县 Wanzai万载县志 Gazetteer
浙江 Zhejiang1996临安区 Lin’an杭州电视台综合频道新闻报道 Media report
广东 Guangdong1990仁化县 Renhua韶关市林业志 Gazetteer
甘肃 Gansu1986白水江国家级自然保护区 Baishuijiang NNR马国瑶, 19881
贵州 Guizhou1986梵净山国家级自然保护区 Fanjingshan NNR梵净山保护区标本馆标本 Specimen in Fanjingshan NNR
湖北 Hubei1986利川市 Lichuan恩施州林业志 Gazetteer
台湾 Taiwan1983不详 UnknownChiang等, 2015
海南 Hainan1978东方市购入 Purchased from Dongfang华南濒危动物研究所标本 Specimen
重庆 Chongqing1971不详2 Unknown西华师范大学珍稀动植物研究所标本 Specimen
陕西 Shaanxi1963汉阴县 Hanyin闵芝兰等, 1966
广西 Guangxi1958靖西市 Jingxi汪松等, 1962

1: 标本未见。文献中记录为野外观察, 有与金猫混淆的可能。2: 该标本采集时间地点并未在国家动物标本资源库中录入, 年份系根据其编号推断。

1: Specimen unseen. Published as “Field observation”, possible confusion with the Asiatic golden cat (Catopuma temminckii). 2: Collection time and location of this specimen was not available online, the year was inferred from its item number in the database.

新窗口打开| 下载CSV


2.2 现存分布记录(2010‒2020年)

2010-2020年, 本研究共在西藏、云南、四川、陕西、广西、江西、安徽以及老挝丰沙里8个境内外省级行政区的55个样区布设11,924个红外相机位点, 累计有效相机工作日超过136万天(附录1)。其中, 23个相机位点获得云豹探测记录, 分别分布于我国西藏雅鲁藏布大峡谷国家级自然保护区、云南铜壁关省级自然保护区、云南西双版纳易武州级自然保护区, 以及老挝丰沙里省(附录1)。对国内外现有355个样区的红外相机监测结果(贺如川等, 2020; 李佳等, 2020; 李学友等, 2020; Petersen et al, 2020; 万雅琼等, 2020)进行整合后, 结果显示, 在我国云豹历史分布范围内, 2010‒2020年间有确凿云豹分布的样地共有10个(西藏林芝墨脱县3个, 云南怒江贡山县1个, 云南德宏盈江县3个, 云南西双版纳勐腊县3个), 共涉及5个自然保护区(西藏雅鲁藏布大峡谷国家级自然保护区、云南高黎贡山国家级自然保护区(独龙江片区)、云南铜壁关省级自然保护区、云南西双版纳国家级自然保护区、云南西双版纳易武州级自然保护区) (图2)。在我国20世纪中期以来有云豹分布记录的17个省区中, 有12个迄今已超过20年无确凿记录(表1)。

图2

图2   2010-2020年云豹历史分布区域内红外相机监测结果分布及现有云豹分布区的评估。图中点位代表红外相机监测样区: 圆点为有云豹、叉号为无云豹; 无云豹的样区又根据监测力度区分为黑色高确定性和蓝色低确定性结果; 背景分布区示意图为IUCN红色名录2020年的最新评估结果, 最大历史分布区范围数据来自MacDonald等(2019)。

Fig. 2   Neofelis nebulosa presence and absence records in its historical range from 2010-2020 camera trapping results, overlaid with its current IUCN Red List range assessment. Markings on the map represent camera-trapping sites and their results: Dots mark N. nebulosa presences and crosses mark absences; Moreover, absence sites are colored with black (high certainty) or blue (low certainty) according to their surveying efforts; Extant N. nebulosa range in the background illustrates the latest assessment by the IUCN Red List in 2020, and its maximum historical range represent data from MacDonald et al (2019).


2.3 潜在栖息地识别与适合度变化

运用当前境内外云豹有无分布的数据, 对云豹栖息地适合度模型预测值切分得出, TSS表现最好的阈值在86.41%分位数附近。随后以此切分阈值二值化模型结果, 识别出与我国大陆地区关联的大于800 km2的潜在栖息地斑块9块, 总面积494,841 km2, 涉及西藏、云南、广西、四川、湖南、湖北、江西、浙江、福建9个省级行政区, 其中, 位于西南边境的西藏、云南和广西的3个斑块(即1号、2号和3号斑块)为跨境斑块(图3, 表2, 附录2)。这些潜在栖息地位于我国境内的面积共64,093 km2 (占13.0%), 境外面积共430,748 km2 (占87.0%) (表2)。在我国云豹现存的分布区中, 藏东南的林芝墨脱县以及滇西的怒江贡山县、德宏盈江县的云豹记录地点位于“喜马拉雅-横断山脉西侧-若开山脉” 1号斑块, 滇南的西双版纳勐腊县的云豹记录地点位于“无量山南麓-安南山脉” 2号斑块(图3)。在这2个斑块中, 境外连续栖息的面积(428,511 km2)远高于境内部分(41,373 km2) (表2)。

图3

图3   本研究建议关注保护的云豹适宜栖息地斑块。背景为地区2010‒2020年森林覆盖率减量。深灰色区域为云豹可能的最大历史分布区; 镂空斑块为本研究关注的云豹现有潜在栖息地(斑块编号与名称参看表2); 黑点表示目前国内确认有云豹的监测样区。

Fig. 3   Potential habitats of Neofelis nebulosa that demand conservation attention suggested by this study, and forest cover loss from 2010 to 2020 in the region. Dark grey area represents the maximum potential historical distribution of N. nebulosa; Unshaded patches within the area represent the current potential habitats focused in this study (see Table 2 for patch ID and name); Black dots show sites with current confirmed N. nebulosa presences.


表2   中国大陆地区云豹潜在栖息地统计。列举每个潜在栖息地斑块的面积、该斑块内部高质量栖息地比例、保护地覆盖率,以及2010-2020年间年均森林覆盖率的减量和标准误差。各黑体编号条目为该栖息地斑块总论, 其下条目为该斑块中按行政区划的各论。

Table 2  Statistics of Neofelis nebulosa potential habitats relevant to mainland China. Area, high-quality habitat percentage, protected area percentage, annual forest loss were listed for each potential habitat patch from 2010-2020. Every numbered row in bold presents the overall statistics for each patch, with statistics according to administrative division present below.

编号
No.
潜在栖息地
Potential habitats
面积
Area (km2)
高质量栖息地比例
High-quality habitat (%)
保护地覆盖
Protected area (%)
年均森林覆盖率减量Annual forest loss (%)
1喜马拉雅-横断山脉西侧-若开山脉Himalaya-Western Hengduan-Arakan Mountains 274,40883.1813.920.412 ± 0.014
西藏自治区 Xizang38,59475.763.360.198 ± 0.002
云南省 Yunnan1,11058.3831.260.565 ± 0.021
境外 Abroad234,70484.5215.570.447 ± 0.015
2无量山南麓-安南山脉
South Wuliangshan-Annamite
195,47687.2028.811.118 ± 0.032
云南省 Yunnan1,66968.3068.360.081 ± 0.005
境外 Abroad193,80787.3728.471.127 ± 0.032
编号
No.
潜在栖息地
Potential habitats
面积
Area (km2)
高质量栖息地比例
High-quality habitat (%)
保护地覆盖
Protected area (%)
年均森林覆盖率减量Annual forest loss (%)
3十万大山‒越南北部高地
Shiwandashan-North Vietnam
4,37263.0619.991.299 ± 0.232
广西壮族自治区 Guangxi2,13557.1929.410.565 ± 0.020
境外 Abroad2,23768.6611.002.004 ± 0.252
4大瑶山 Dayaoshan 1,79056.3113.070.579 ± 0.013
广西壮族自治区 Guangxi1,79056.3113.070.579 ± 0.013
5桂林西北 Northwest of Guilin 4,39343.3232.550.404 ± 0.007
广西壮族自治区 Guangxi3,68851.3836.330.444 ± 0.008
湖南省 Hunan7051.1312.770.196 ± 0.011
6武陵山 Wuling Mountains2,37840.2441.670.031 ± 0.002
湖南省 Hunan71762.6277.680.016 ± 0.002
湖北省 Hubei1,66130.5826.130.038 ± 0.002
7邛崃山 Qionglai Mountains 4,36538.2641.530.049 ± 0.002
四川省 Sichuan4,36538.2641.530.049 ± 0.002
8武夷山-马头山
Wuyishan-Matoushan
4,38761.5918.050.168 ± 0.005
江西省 Jiangxi2,00959.187.860.094 ± 0.005
福建省 Fujian2,37863.6226.660.230 ± 0.009
9九龙山 Jiulongshan 3,27239.701.770.465 ± 0.008
浙江省 Zhejiang2,95154.521.970.482 ± 0.009
福建省 Fujian32138.090.000.309 ± 0.020

新窗口打开| 下载CSV


2010-2020年间, 9个云豹潜在栖息地斑块在境内或境外的森林覆盖率均呈下降趋势(年均减量0.50%)。其中, 跨境分布于“十万大山‒越南北部高地”的3号斑块中森林覆盖率减量幅度最大, 年均减量高达1.30% (表2), 此斑块中已无尚存云豹分布的确凿证据。在我国有云豹现存分布的2个跨境栖息地斑块中, 1号斑块的年均森林覆盖率减量(0.41%)较2号斑块(1.12%)更低, 境内潜在栖息地的年均森林覆盖率减量(0.84%)相较境外(1.57%)更少, 特别是2号斑块(境内0.08%, 境外1.13%) (表2)。栖息地面积和质量方面, 2个斑块在我国境内的潜在栖息地面积均超过800 km2, 达到维持云豹种群生存的最低要求, 其中, 1号斑块高达约40,000 km2, 且高质量栖息地占比(75.27%)为我国境内最高, 但保护地覆盖比例较低(4.14%); 2号斑块在我国境内的高质量栖息地占比(68.30%)和保护地覆盖比例(68.36%)均较高, 主要覆盖云南西双版纳自治州的勐腊县及其周边区域(图4)。

图4

图4   云南省勐腊县云豹潜在栖息地分布和保护地覆盖情况。XNNR: 西双版纳国家级自然保护区。

Fig. 4   Neofelis nebulosa habitat distribution and protected area coverage in Mengla County, Yunnan Province. XNNR, Xishuangbanna National Nature Reserve.


3 讨论

云豹在中国的保护前景并不乐观。本研究通过文献标本信息搜集、实地红外相机监测, 以及栖息地模型与遥感数据分析, 2010-2020年仅能在我国西南边境确定位于西藏墨脱、云南贡山独龙江、盈江铜壁关和西双版纳勐腊的云豹分布记录(图2), 栖息地建模也显示中国境内的云豹潜在栖息地面积狭小且高度破碎化(图3), 相比历史分布范围已剧烈缩减(张荣祖, 1997; Smith和解焱, 2009)。在云豹曾经广泛分布的我国华中、华南、华东地区, 历史上还有虎、豹两种同域分布的大型猫科动物, 而这3个物种在这片区域内均呈现分布区剧烈退缩、种群数量剧烈下降乃至局域灭绝的情况(汪松等, 1962; 盛和林和陆厚基, 1982; Smith和解焱, 2009; 刘少英等, 2020)。就云豹而言, 现有的潜在栖息地均呈孤岛状分布, 连通性较低, 能支持云豹种群的连续高质量栖息地较少, 因此发生区域性灭绝的风险很高(MacArthur & Wilson, 2001)。此外, 虽然我国边境的云豹分布区与境外更大面积的连续高质量栖息地关联, 但境外栖息地正面临着严重盗猎和森林破坏的威胁, 并且随着边境隔离墙等基础设施建设, 未来境外可能难以持续地为境内种群输送云豹个体。

直到20世纪90年代, 江西和安徽仍被认为是云豹的常见分布区(Feng & Jutzeler, 2010)。如今, 除我国云南和西藏以外的15个云豹历史分布省区已有超过10年无确认的记录, 只存在理论上的潜在适宜栖息地, 例如皖南(刘凯等, 2017)、江西武夷山(郭英荣等, 2021)、浙江九龙山(郑伟成等, 2014)、湖南壶瓶山(于桂清等, 2018)、八大公山(谢文华等, 2014)、广西猫儿山和花坪(汪国海等, 2016)、四川中部邛崃山(李晟等, 2020), 以及四川东南部(李蔓等, 2020); 这些地区近年来均开展了累计有效相机工作日数千天到数十万天不等的红外相机调查, 都没有记录到云豹。当然不排除个别地区仍有零星云豹个体存在的可能。比如2013年5月21‒24日, 安徽黄山景区防火监控摄像头连续拍到与云豹身体比例、姿态高度相似的猫科动物, 同月29日又拍到两只类似的动物结伴活动(未发表资料), 但由于识别特征模糊, 因此不能断定为云豹个体。

盗猎是目前云豹生存面临的重要威胁。在20世纪中期之后, 我国南方曾为了经济发展组织狩猎, 当野生虎、豹被大量猎杀而种群数量快速下降, 云豹被猎杀贸易的数量随即上升(盛和林和陆厚基, 1982)。而云豹贸易量的上升, 可能导致当时野生动物资源调查中云豹的种群数量被高估(盛和林等, 1984; 国家林业局, 2009), 与1990年以后原云豹产区仅存少量个体, 甚至缺乏标本形成对比(图1)。在江西省, 仅在1955年一年就有超过200只云豹被猎杀(盛和林, 1976); 1963-1981年间, 每年云豹的猎取量维持在稳定的100只左右, 共计1,351只被猎杀(盛和林等, 1984)。在云豹被列为国家一级重点保护野生动物后, 部分地区的盗猎还在零星持续, 造成云豹种群数量下降。例如在安徽省石台县, 1998年仍有云豹被非法盗猎的报道(陈文豪, 2003)。而在地处中国-老挝边境的云南省南部, 近两年仍有老挝盗猎团伙非法越境捕杀云豹的事件发生(未发表数据)。

目前我国境内盗猎整体上得到基本控制, 但在与我国紧邻的南亚与东南亚地区, 云豹仍面临着更为猖獗的盗猎威胁。在2000-2001年间, 云南海关共罚没非法贸易的云豹制品40份, 其中37份来自缅甸、3份来自老挝。在缅甸的北部, 云豹皮及其制品是非法野生动物市场上最常见的野生猫科动物相关商品(Min et al, 2018), 而对盗猎目标物种的选择仅与野生动物的多度相关, 不受当地法律法规和保护地设置的影响(Rao et al, 2005)。面临巨大威胁的同时, 云豹种群在这些邻国的分布、密度、遗传结构等影响其存续的信息却依然缺乏(Petersen et al, 2020)。我国邻国中仅尼泊尔、不丹和印度开展过云豹的分布和生境选择研究(Borah et al, 2013; Ghimirey & Acharya, 2018; Penjor et al, 2018), 而东南亚地区的相关研究集中于泰国和马来西亚 (Austin et al, 2007; Mohamad et al, 2015; Tan et al, 2017), 难以据此定量评估受到更严重盗猎威胁的缅甸、老挝云豹种群的现状与未来。

威胁云豹生存的另一重要因素是栖息地的丧失。适宜栖息地模拟结果指出, 郁闭森林的占比是决定云豹栖息地适合度最重要的因素(MacDonald et al, 2019)。虽然云豹对成熟天然林的依赖程度相比同属的巽他云豹更低, 也可以利用部分开阔草地捕猎, 但仍然会回避采伐过的森林(Grassman et al, 2016; MacDonald et al, 2019)。因此, 人工林对天然林的取代是云豹生存面临的巨大威胁, 并可能是导致安徽和四川部分地区云豹局域灭绝的重要原因之一(陈文豪, 2003; 李蔓等, 2020)。必须指出, 本研究采用了2000年的森林覆盖率数据模拟的云豹栖息地, 当时我国境内共有9个面积大于800 km2的云豹连续高质量潜在栖息地斑块。而近年来, 这些斑块内仍有森林在被其他土地利用方式所取代(图3)。同时, 我国南方森林覆盖率在实施天然林保护和退耕还林工程后有所增长, 但因为部分造林方式的限制, 恢复的人工林相比未经采伐的成熟天然林仍然只有较低生物多样性和水土保持等生态价值(Hua et al, 2022), 而自然演替或人工恢复形成的林龄较小的次生林, 对于云豹这样需要较高生态系统完整性的食肉目物种来说也不能等价于原始自然栖息地(Cole et al, 2014)。

过去10年间, 我们通过红外相机调查确认我国仍然存在云豹的“喜马拉雅-横断山脉西侧-若开山脉”和“无量山南麓-安南山脉”两大潜在栖息地斑块都跨越了国境, 且境内与境外的云豹生存受到的威胁程度有很大不同。我国境内森林破坏和盗猎已得到相对有效的控制, 尤其是位于滇南的潜在栖息地在2010-2020年的森林覆盖率减量仅不到0.1%, 并且大部分区域已由各级自然保护区覆盖。在保护管理不断加强、境内栖息地连通性逐渐提升、境内外个体基因交流不受限制的前提下, 云豹在云南有望得到更大的生存空间。相比之下, 跨境斑块中我国境外的云豹适宜栖息地大部分都不存在有效的保护地, 盗猎活动难以管控且森林破坏仍在不断加剧。其中, 老挝北部的森林破坏最为严重, 缅甸西部的若开山脉和掸邦高原西北侧的莱别山脉的破坏程度也较高, 只有缅甸北部和印度、不丹、尼泊尔部分地区的破坏相对轻微。同时这些境外区域都面临着经济发展的压力, 因此存在被进一步破坏的风险(Kaszta et al, 2020)。因此, 保存并扩大境内栖息地可能是保证云豹持续生存的重要策略。

4 结论和保护建议

云豹在我国的保护现状已十分紧迫。根据本研究的结果, 我们得到如下结论, 并提出相应的保护建议。

(1) 20世纪中后期以来, 云豹在中国的分布范围和种群数量经历了剧烈衰减。当前中国境内的云豹仅在云南、西藏边境地区有确认分布, 在华东、华南的孤岛状潜在栖息地中可能已区域性灭绝(Chiang et al, 2015), 相关的境外栖息地中云豹的生存状况也在恶化(Petersen et al, 2020)。因此, 中国云豹的现今分布范围已远小于IUCN物种存续委员会(SSC)猫科专家组2010年的评估(Feng & Jutzeler, 2010), 在IUCN最新评估的云豹尚存分布区中也难以证实存在(Gray et al, 2021)。中国云豹的保护形势已经非常紧迫。在存在云豹历史分布和理论潜在适宜栖息地的地区, 我们建议野生动物主管部门和相关自然保护区开展更加长期深入的监测和专项调查, 根据实际情况对辖区内物种本底名录进行更新, 为云豹种群分布现状的评估提供更多实地、实时的调查数据支持, 以便对尚存云豹及其潜在栖息地实施更好的保护。

(2)本研究在我国境内记录的云豹种群目前处于当地分布区的边缘, 可能面临更高的区域灭绝风险, 需要应对跨境联合保护的困难与挑战。在与我国云豹记录关联的2个潜在栖息地斑块中, “喜马拉雅-横断山脉西侧-若开山脉”斑块在我国境内的面积较大, 主要覆盖西藏东南部的栖息地, 也包括云南怒江傈僳族自治州和德宏傣族景颇族自治州的云豹分布区, 但境内面积仍不足15%; 而“无量山南麓-安南山脉”斑块在我国境内的面积不到1%。相比西藏, 我国云南的云豹种群可能面临更大的威胁, 不仅由于云南的栖息地更靠近斑块边缘, 还因为与其关联的境外栖息地尚未得到有效保护, 特别是与西双版纳傣族自治州相关的“无量山南麓-安南山脉”斑块, 其境外部分不仅保护地覆盖面积较低, 盗猎和森林破坏的威胁也均大于境内。我国境内已知云豹记录可能来自跨境种群, 需要更多如同中国滇南‒东南亚跨境监测平台(贺如川等, 2020)的数据支持, 也需要借鉴有类似经验的猫科动物保护工作, 比如东北虎豹国家公园的建设和跨境保护合作(Vitkalova et al, 2018; Wang et al, 2018; 徐卫华等, 2021), 才能有效解除我国境内云豹面临的危机。

(3)综合保护行动的迫切性、可行性和有效性, 我们建议在边境现有的云豹分布区和潜在栖息地加强反盗猎执法和天然林保护工作。相比西藏东南部, 云南南部的云豹分布区有更大的保护力度提升空间(Li et al, 2021)。因此建议以扩大境内高质量连续栖息地为目标, 在该区域规划中国云豹的保护重点区域, 并统一易武州级自然保护区与西双版纳国家级自然保护区的管理标准。未来云豹的监测应覆盖勐腊县全县的潜在栖息地, 从而摸清并跟踪云豹的分布与数量, 做好保护工作的及时调整和应对, 并增强西双版纳国家级自然保护区各子保护区和易武州级保护区之间的栖息地连通性、力求维持云豹个体跨境扩散和基因交流通道, 使中国在国际生物多样性保护中发挥更积极的作用。

附录 Supplementary Material

附录1 本研究红外相机调查地区、调查时段、相机工作日天数以及云豹探测结果

Appendix 1 The camera-trapping sites included in this study. Survey years, total number of trap days and number of independent detections of Neofelis nebulosa are listed for each site.

附录2 中国需要保护关注的云豹潜在栖息地斑块(*.shp矢量图层)

Appendix 2 Neofelis nebulosa potential habitats patches demanding conservation attention in China (*.shp Shapefiles)

致谢

本研究得到了江西省林业和草原局、安徽黄山风景区管委会、皖南野生动物救助中心、云南德宏傣族景颇族自治州州政府、铜壁关省级自然保护区、西双版纳国家级自然保护区科学研究所、老挝丰沙里省农林厅、自然影像中国、西藏生物影像保护的指导和支持。感谢所有相关单位野外工作人员的辛勤付出。感谢山水自然保护中心麦克阿瑟澜沧江保护基金项目、嘉道理农场暨植物园(香港)北京代表处、香港海洋公园保育基金、生态环境部对本项目的支持; 感谢中国科学院昆明动物研究所昆明动物博物馆、中国科学院动物研究所国家动物博物馆、北京自然博物馆、上海自然博物馆、广东省科学院动物研究所标本馆、四川大学动物标本馆、北京大学标本馆对本研究开放数据; 感谢上海交通大学李宇翔同学、西子江生态保育中心负责人李成和嘉道理农场暨植物园(香港)北京代表处高级保育主任李飞对本研究的贡献与建议。

参考文献

Austin SC, Tewes ME, Grassman LI Jr, Silvy NJ (2007)

Ecology and conservation of the leopard cat Prionailurus bengalensis and clouded leopard Neofelis nebulosa in Khao Yai National Park, Thailand

Acta Zoologica Sinica, 53, 1-14.

[本文引用: 2]

Bivand R, Keitt T, Rowlingson R (2021)

rgdal: Bindings for the 'Geospatial' Data Abstraction Library

R package version 1.5-23. https://CRAN.R-project.org/package=rgdal. (accessed on 2021-07-28)

URL     [本文引用: 1]

Borah J, Sharma T, Das D, Rabha N, Basumatary NKA, Ahmed MF, Vattakaven J (2013)

Abundance and density estimates for common leopard Panthera pardus and clouded leopard Neofelis nebulosa in Manas National Park, Assam, India

Oryx, 49, 149-155

[本文引用: 1]

Buckley-Beason VA, Johnson WE, Nash WG, Stanyon R, Menninger JC, Driscoll CA, Howard J, Bush M, Page JE, Roelke ME, Stone G, Martelli PP, Wen C, Ling L, Duraisingam RK, Lam PV, O’Brien SJ (2006)

Molecular evidence for species-level distinctions in clouded leopards

Current Biology, 16, 2371-2376.

PMID:17141620      [本文引用: 1]

Among the 37 living species of Felidae, the clouded leopard (Neofelis nebulosa) is generally classified as a monotypic genus basal to the Panthera lineage of great cats. This secretive, mid-sized (16-23 kg) carnivore, now severely endangered, is traditionally subdivided into four southeast Asian subspecies (Figure 1A). We used molecular genetic methods to re-evaluate subspecies partitions and to quantify patterns of population genetic variation among 109 clouded leopards of known geographic origin (Figure 1A, Tables S1 ans S2 in the Supplemental Data available online). We found strong phylogeographic monophyly and large genetic distances between N. n. nebulosa (mainland) and N. n. diardi (Borneo; n = 3 individuals) with mtDNA (771 bp), nuclear DNA (3100 bp), and 51 microsatellite loci. Thirty-six fixed mitochondrial and nuclear nucleotide differences and 20 microsatellite loci with nonoverlapping allele-size ranges distinguished N. n. nebulosa from N. n. diardi. Along with fixed subspecies-specific chromosomal differences, this degree of differentiation is equivalent to, or greater than, comparable measures among five recognized Panthera species (lion, tiger, leopard, jaguar, and snow leopard). These distinctions increase the urgency of clouded leopard conservation efforts, and if affirmed by morphological analysis and wider sampling of N. n. diardi in Borneo and Sumatra, would support reclassification of N. n. diardi as a new species (Neofelis diardi).

Carter NH, Levin SA, Grimm V (2019)

Effects of human-induced prey depletion on large carnivores in protected areas: Lessons from modeling tiger populations in stylized spatial scenarios

Ecology and Evolution, 9, 11298-11313.

DOI:10.1002/ece3.5632      [本文引用: 1]

Prey depletion is a major threat to the conservation of large carnivore species globally. However, at the policy-relevant scale of protected areas, we know little about how the spatial distribution of prey depletion affects carnivore space use and population persistence. We developed a spatially explicit, agent-based model to investigate the effects of different human-induced prey depletion experiments on the globally endangered tiger (Panthera tigris) in isolated protected areas-a situation that prevails throughout the tiger's range. Specifically, we generated 120 experiments that varied the spatial extent and intensity of prey depletion across a stylized (circle) landscape (1,000 km(2)) and Nepal's Chitwan National Park (1,239 km(2)). Experiments that created more spatially homogenous prey distributions (i.e., less prey removed per cell but over larger areas) resulted in larger tiger territories and smaller population sizes over time. Counterintuitively, we found that depleting prey along the edge of Chitwan National Park, while decreasing tiger numbers overall, also decreased female competition for those areas, leading to lower rates of female starvation. Overall our results suggest that subtle differences in the spatial distributions of prey densities created by various human activities, such as natural resource-use patterns, urban growth and infrastructure development, or conservation spatial zoning might have unintended, detrimental effects on carnivore populations. Our model is a useful planning tool as it incorporates information on animal behavioral ecology, resource spatial distribution, and the drivers of change to those resources, such as human activities.

Chen WH (2003)

Preliminary analysis on the reasons of the frequent occurrences of clouded leopards in Shitai, Anhui

Anhui Forestry Science & Technology, (4), 11-12. (in Chinese)

[本文引用: 4]

[陈文豪 (2003)

安徽石台云豹频繁出现的原因初探

安徽林业科技, (4), 11-12.]

[本文引用: 4]

Chiang PJ, Pei KJC, Vaughan MR, Li CF, Chen MT, Liu JN, Lin CY, Lin LK, Lai YC (2015)

Is the clouded leopard Neofelis nebulosa extinct in Taiwan, and could it be reintroduced? An assessment of prey and habitat

Oryx, 49, 261-269.

DOI:10.1017/S003060531300063X      URL     [本文引用: 4]

Christiansen P (2008)

Species distinction and evolutionary differences in the clouded leopard (Neofelis nebulosa) and Diard’s clouded leopard (Neofelis diardi)

Journal of Mammalogy, 89, 1435-1446.

DOI:10.1644/08-MAMM-A-013.1      URL     [本文引用: 1]

Cole LES, Bhagwat SA, Willis KJ (2014)

Recovery and resilience of tropical forests after disturbance

Nature Communications, 5, 3906.

DOI:10.1038/ncomms4906      PMID:24844297      [本文引用: 1]

The time taken for forested tropical ecosystems to re-establish post-disturbance is of widespread interest. Yet to date there has been no comparative study across tropical biomes to determine rates of forest re-growth, and how they vary through space and time. Here we present results from a meta-analysis of palaeoecological records that use fossil pollen as a proxy for vegetation change over the past 20,000 years. A total of 283 forest disturbance and recovery events, reported in 71 studies, are identified across four tropical regions. Results indicate that forests in Central America and Africa generally recover faster from past disturbances than those in South America and Asia, as do forests exposed to natural large infrequent disturbances compared with post-climatic and human impacts. Results also demonstrate that increasing frequency of disturbance events at a site through time elevates recovery rates, indicating a degree of resilience in forests exposed to recurrent past disturbance.

D’Cruze N, MacDonald DW (2015)

Clouded in mystery: The global trade in clouded leopards

Biodiversity and Conservation, 24, 3505-3526.

DOI:10.1007/s10531-015-1010-9      URL     [本文引用: 1]

Feng LM, Jutzeler E (2010)

Clouded leopard

Cat News, 5, 34-36.

[本文引用: 2]

Ghimirey Y, Acharya R (2018)

The vulnerable clouded leopard Neofelis nebulosa in Nepal: An update

Oryx, 52, 166-170.

DOI:10.1017/S0030605316000582      URL     [本文引用: 2]

Grassman L, Lynam A, Mohamad S, Duckworth JW, Bora J, Wilcox D, Ghimirey Y, Reza A, Rahman H (2016)

Neofelis nebulosa

The IUCN Red List of Threatened Species 2016. https://www.iucnredlist.org/species/14519/198843258. (acc- essed on 2021-07-28)

URL     [本文引用: 3]

Gray T, Borah J, Coudrat CNZ, Ghimirey Y, Giordano A, Greenspan E, Petersen W, Rostro-García S, Shariff M, Wai-Ming W (2021)

Neofelis nebulosa

The IUCN Red List of Threatened Species 2021. https://www.iucnredlist.org/species/14519/198843258. . (accessed on 2021-09-05)

URL     [本文引用: 3]

Griffith E (1821)

General and Particular Descriptions of the Vertebrated Animals: Arranged Conformably to the Modern Discoveries and Improvements in Zoology

Order Quadrumana, (vol. 1), pp. 36-37. Baldwin, Cradock, and Joy, London.

[本文引用: 1]

Guo YR, Lan WJ, Zou SC, Yuan RB, Dong XY, Cao JR, Yang QP, Song QN (2021)

Camera-trapping survey of wild mammals and ground-dwelling birds in the Jiangxi Wuyishan National Nature Reserve, China

Biodiversity Science, 29, 811-818. (in Chinese with English abstract)

DOI:10.17520/biods.2020307      URL     [本文引用: 1]

[郭英荣, 兰文军, 邹思成, 袁荣斌, 董晓雨, 曹吉锐, 杨清培, 宋庆妮 (2021)

江西武夷山国家级自然保护区林下鸟类和兽类资源的红外相机监测

生物多样性, 29, 811-818.]

[本文引用: 1]

Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova SA, Tyukavina A, Thau D, Stehman SV, Goetz SJ, Loveland TR, Kommareddy A, Egorov A, Chini L, Justice CO, Townshend JRG (2013)

High-resolution global maps of 21st-century forest cover change

Science, 342, 850-853.

DOI:10.1126/science.1244693      PMID:24233722      [本文引用: 3]

Quantification of global forest change has been lacking despite the recognized importance of forest ecosystem services. In this study, Earth observation satellite data were used to map global forest loss (2.3 million square kilometers) and gain (0.8 million square kilometers) from 2000 to 2012 at a spatial resolution of 30 meters. The tropics were the only climate domain to exhibit a trend, with forest loss increasing by 2101 square kilometers per year. Brazil's well-documented reduction in deforestation was offset by increasing forest loss in Indonesia, Malaysia, Paraguay, Bolivia, Zambia, Angola, and elsewhere. Intensive forestry practiced within subtropical forests resulted in the highest rates of forest change globally. Boreal forest loss due largely to fire and forestry was second to that in the tropics in absolute and proportional terms. These results depict a globally consistent and locally relevant record of forest change.

He RC, Wang L, Quan RC (2020)

Introduction to Transboundary Animal Diversity Monitoring Platform of Southern Yunnan, China and Southeast Asia

Biodiversity Science, 28, 1097-1103. (in Chinese with English abstract)

DOI:10.17520/biods.2020154      URL     [本文引用: 4]

[贺如川, 王林, 权锐昌 (2020)

中国滇南-东南亚跨境动物多样性监测平台概述

生物多样性, 28, 1097-1103.]

[本文引用: 4]

Hijmans JR (2021)

raster: Geographic Data Analysis and Modeling

R package version 3.4-10. https://CRAN.R-proj ect.org/package=raster. (accessed on 2021-07-28)

URL     [本文引用: 1]

Hua FY, Bruijnzeel LA, Meli P, Martin PA, Zhang J, Nakagawa S, Miao XR, Wang WY, McEvoy C, Peña-Arancibia JL, Brancalion PHS, Smith P, Edwards DP, Balmford A (2022)

The biodiversity and ecosystem service contributions and trade-offs of forest restoration approaches

Science, 376, 839-844.

DOI:10.1126/science.abl4649      URL     [本文引用: 1]

Kaszta Ż, Cushman SA, Htun S, Naing H, Burnham D, MacDonald DW (2020)

Simulating the impact of Belt and Road Initiative and other major developments in Myanmar on an ambassador felid, the clouded leopard, Neofelis nebulosa

Landscape Ecology, 35, 727-746.

DOI:10.1007/s10980-020-00976-z      URL     [本文引用: 1]

Lau MWN, Fellowes JR, Chan BPL (2010)

Carnivores (Mammalia: Carnivora) in South China: A status review with notes on the commercial trade

Mammal Review, 40, 247-292.

DOI:10.1111/j.1365-2907.2010.00163.x      URL     [本文引用: 1]

Li J, Wang XL, Yang MW, Chen DX, Wang XJ, Luo P, Liu F, Xue YD, Li GL, Zhang YG, Zhang Y, Li DQ (2020)

Construction progress of camera-trapping database from the Nature Reserves Biological Specimen Resources Sharing Sub-platform

Biodiversity Science, 28, 1081-1089. (in Chinese with English abstract)

[本文引用: 2]

[李佳, 王秀磊, 杨明伟, 陈大祥, 王晓菊, 罗平, 刘芳, 薛亚东, 李广良, 张于光, 张宇, 李迪强 (2020)

自然保护区生物标本资源共享子平台红外相机数据库建设进展

生物多样性, 28, 1081-1089.]

[本文引用: 2]

Li M, Fu YW, Liao T, Li DR, Ran JH, Du YP, Yang XY (2020)

Distribution change and its causes of the clouded leopard (Neofelis nebulosa) in southeastern Sichuan

Acta Ecologica Sinica, 40, 5940-5948. (in Chinese with English abstract)

[本文引用: 4]

[李蔓, 付焱文, 廖婷, 李东睿, 冉江洪, 杜一平, 杨旭煜 (2020)

四川东南地区云豹(Neofelis nebulosa)分布区变化及其成因

生态学报, 40, 5940-5948.]

[本文引用: 4]

Li S (2020)

Development progress and outlook of the wildlife camera-trapping networks in China

Biodiversity Science, 28, 1045-1048. (in Chinese)

DOI:10.17520/biods.2020425      [本文引用: 1]

[李晟 (2020)

中国野生动物红外相机监测网络建设进展与展望

生物多样性, 28, 1045-1048.]

DOI:10.17520/biods.2020425      [本文引用: 1]

Li S, McShea WJ, Wang DJ, Gu XD, Shen XL (2020)

Retreat of large carnivores across the giant panda distribution range

Nature Ecology & Evolution, 4, 1327-1331.

[本文引用: 1]

Li S, McShea WJ, Wang DJ, Shen XL, Bu HL, Guan TP, Wang F, Gu XD, Zhang XF, Liao HH (2020)

Construction progress of the Camera-trapping Network for the Mountains of Southwest China

Biodiversity Science, 28, 1049-1058. (in Chinese with English abstract)

DOI:10.17520/biods.2020038      URL     [本文引用: 2]

[李晟, McShea WJ, 王大军, 申小莉, 卜红亮, 官天培, 王放, 古晓东, 张晓峰, 廖灏泓 (2020)

西南山地红外相机监测网络建设进展

生物多样性, 28, 1049-1058.]

[本文引用: 2]

Li S, Wang DJ, Xiao ZS, Li XH, Wang TM, Feng LM, Wang Y (2014)

Camera-trapping in wildlife research and conservation in China: Review and outlook

Biodiversity Science, 22, 685-695. (in Chinese with English abstract)

DOI:10.3724/SP.J.1003.2014.14203      [本文引用: 1]

During the last two decades, infrared-triggered camera-trapping has been widely used in wildlife and biodiversity research and conservation. In the areas of wildlife ecology research, animal species inventory, biodiversity monitoring and protected area management in China, considerable outputs have been produced by scientific research and conservation applications based on camera-trapping. This technique has been successfully used to detect rare or elusive species, conduct biodiversity inventory, study animal behavior, estimate population parameters, and evaluate the effectiveness of protected area management. Along with the rapid development of modern ecological analysis and modeling tools, camera-trapping will play a more important role in wildlife research at various levels. Meanwhile, along with improvements in techniques, decreasing cost and increasing application interests, camera-trapping will be adopted by more researchers, wildlife managers and protected areas, and can be used for systematic wildlife monitoring using standard protocols. Efforts devoted to its future development and applications should focus on establishing systematically-designed monitoring networks and data-sharing protocols, and developing new analytical approaches and statistical models specifically based on camera-trapping data.

[李晟, 王大军, 肖治术, 李欣海, 王天明, 冯利民, 王云 (2014)

红外相机技术在我国野生动物研究与保护中的应用与前景

生物多样性, 22, 685-695.]

DOI:10.3724/SP.J.1003.2014.14203      [本文引用: 1]

20年来, 红外相机技术在国内外野生动物研究、监测与保护中得到了广泛应用。基于红外相机技术, 我国在野生动物生态学研究、动物行为学研究、稀有物种的探测与记录、动物本底资源调查、生物多样性监测及保护地管理与保护评价等领域取得了众多成果。目前, 数学模型、统计分析方法和新的概念正在促进红外相机技术在野生动物监测研究与保护管理中的发展和推广应用。同时, 随着红外相机技术的成熟、成本降低和应用普及, 这一技术也将会被更多的野生动物研究人员、管理人员和自然保护区管理者所采用, 并成为全国各级保护地和区域生物多样性监测研究的关键技术和方法。今后, 建立并完善系统化的监测网络和数据共享平台、开发新一代的数据分析方法与模型, 将是此项技术进一步发展和应用的主要方向。

Li XY, Bleisch WV, Liu XW, Jiang XL (2021)

Camera-trap surveys reveal high diversity of mammals and pheasants in Medog, Tibet

Oryx, 55, 177-180.

DOI:10.1017/S0030605319001467      URL     [本文引用: 3]

Li XY, Hu WQ, Pu CZ, Li Q, Yu QP, Hu ZC, Bleisch WV, Jiang X (2020)

Camera-trapping monitoring platform for mammals and pheasants in the Longitudinal Range and Gorge Region of Southwest China: Protocol, progress and future outlook

Biodiversity Science, 28, 1090-1096. (in Chinese with English abstract)

DOI:10.17520/biods.2020105      URL     [本文引用: 4]

[李学友, 胡文强, 普昌哲, 李权, 于秋鹏, 胡哲畅, William V. Bleisch, 蒋学龙 (2020)

西南纵向岭谷区兽类及雉类红外相机监测平台: 方案、进展与前景

生物多样性, 28, 1090-1096.]

[本文引用: 4]

Liu JG, Li SX, Ouyang ZY, Tam C, Chen XD (2008)

Ecological and socioeconomic effects of China’s policies for ecosystem services

Proceedings of the National Academy of Sciences, USA, 105, 9477-9482.

[本文引用: 1]

Liu K, He J, Zhang JH, Feng J, Yu Q, Gu CM, Wu HL (2017)

Mammal resource status in the mountain forest ecosystems of southern Anhui Province based on camera trap data

Biodiversity Science, 25, 896-903. (in Chinese with English abstract)

DOI:10.17520/biods.2017031      [本文引用: 1]

To examine the diversity and abundance of mammals in the mountain forest ecosystems of southern mountainous areas in Anhui Province, a total of 121 cameras were installed at eight sample plots including two national and five provincial nature reserves and the Huangshan Mountain Scenic Area between July 2013 and October 2015. In total, 6,375 trap days and 1,361 effective independent photographs were collected. 19 species belonging to 5 orders and 12 families were recorded. The first five species of photographic rate and relative abundance index were Muntiacus reevesi, Sus scrofa, Macaca thibetana, Callosciurus erythraeus, and Arctonyx collaris. Except Macaca thibetana, the other four species among the five and Paguma larvata were widely distributed in mountainous areas of south Anhui Province. For those species under special state protection, the relative abundance index of Macaca mulatta was nearly two fifths of Macaca thibetana; the relative abundance index of Muntiacus crinifrons was nearly one fifth of Muntiacus reevesi; Martes flavigula and Capricornis sumatraensis was about one fourth of Muntiacus crinifrons. The relative abundance index of Ursus thibetanus was minimal among these recorded species. Compared to historical records collected thirty years ago, Ursus thibetanus was the sole large species in Carnivora captured by camera traps in this study, which indicates that the top predators, including Panthera pardus, Neofelis nebulosa, Canis lupus and Cuon alpines, were extremely sparse or had vanished from this area. As a result, the vegetarian Muntiacus reevesi and omnivorous Sus scrofa had the highest abundance amongst those mammals in this area. Correlation analysis with generalized linear models indicated that the number of species captured by infrared cameras positively correlated with the surveyed area (z = 2.04, P = 0.04) and effective independent photographs (z = 2.10, P = 0.04), while it did not associate with effective camera sites (z = 1.63, P = 0.10) and total trap days (z = 1.85, P = 0.06). Results of this study provide baseline data for a follow-up to the dynamic monitoring, protection and management of key national protected mammals.

[刘凯, 贺君, 张继辉, 冯俊, 宇强, 顾长明, 吴海龙 (2017)

基于红外相机技术的皖南山区森林生态系统兽类资源现状

生物多样性, 25, 896-903.]

DOI:10.17520/biods.2017031      [本文引用: 1]

皖南山区是安徽省陆生脊椎动物资源最丰富的动物地理区域, 为获得该区域森林生态系统中兽类资源的概况, 本研究于2013年7月至2015年10月利用红外相机技术对该区8个省级以上自然保护区(或风景名胜区)的兽类资源进行调查, 并通过与文献记录进行比较, 分析该区兽类资源的变化趋势及其原因。本研究共布设了121个相机位点, 其中有效相机位点109个, 累计6,375个相机工作日, 共获得兽类有效独立照片1,361张, 鉴定兽类5目12科19种。拍摄率和相对丰富度较高的前5种依次为小麂(Muntiacus reevesi)、野猪(Sus scrofa)、藏酋猴(Macaca thibetana)、赤腹松鼠(Callosciurus erythraeus)和猪獾(Arctonyx collaris), 除藏酋猴外, 其他4种以及果子狸(Paguma larvata)在皖南山区广泛分布。就所监测到的国家重点保护动物而言, 猕猴(Macaca mulatta)的相对丰富度约为藏酋猴的2/5, 黑麂(Muntiacus crinifrons)约为小麂的1/5, 黄喉貂(Martes flavigula)和中华鬣羚(Capricornis milneedwardsii)均不到黑麂的1/4, 而黑熊(Ursus thibetanus)在所监测到的兽类中相对丰富度最低。与30多年前的历史记录相比, 除黑熊外, 大中型食肉目动物无一拍摄记录, 暗示皖南山区森林生态系统中的豹(Panthera pardus)、云豹(Neofelis nebulosa)、狼(Canis lupus)等顶级捕食者已极其稀少, 或已消失, 而草食性的小麂和杂食性的野猪成为该区相对丰富度最高的前两种兽类。广义线性模型(generalized linear model)分析结果显示, 在2个月的监测时间内, 红外相机捕获的物种数与调查区域面积(z = 2.04, P = 0.04)和有效独立照片数(z = 2.10, P = 0.04)呈正相关, 而与有效相机位点数(z = 1.63, P = 0.10)以及相机工作日(z = 1.85, P = 0.06)无显著相关性。本研究结果客观地反映出皖南山区森林生态系统大中型兽类资源现状, 为后续针对国家重点保护兽类开展动态监测以及保护和管理提供了基础资料。

Liu SY, Wu Y, Li S (2020) Handbook of the Mammals of China, 2nd edn. The Straits Publishing & Distributing Group, Fuzhou. (in Chinese)

[本文引用: 2]

[刘少英, 吴毅, 李晟 (2020) 中国兽类图鉴(第二版). 海峡出版发行集团, 福州.]

[本文引用: 2]

Liu YL, Song DZ, Liu BB, Xia F, Chen YL, Wang YQ, Huang QW (2020)

Overview of the Camera-trapping Platform for Felid Species in China: Data integration by a conservation NGO

Biodiversity Science, 28, 1067-1074. (in Chinese with English abstract)

DOI:10.17520/biods.2020049      URL     [本文引用: 3]

[刘炎林, 宋大昭, 刘蓓蓓, 夏凡, 陈月龙, 王一晴, 黄巧雯 (2020)

中国猫科动物红外相机监测平台介绍: 民间环保机构的数据整合

生物多样性, 28, 1067-1074.]

[本文引用: 3]

Ma GY (1988)

Preliminary report on the inventory of mammals in Baishuijiang Nature Reserve

Chinese Journal of Zoology, 23(5), 26-28. (in Chinese)

[本文引用: 1]

[马国瑶 (1988)

白水江自然保护区兽类调查初报

动物学杂志, 23(5), 26-28.]

[本文引用: 1]

MacArthur RH, Wilson EO (2001) The Theory of Island Biogeography. Princeton University Press, Princeton.

[本文引用: 1]

MacDonald DW, Bothwell HM, Kaszta Ż, Ash E, Bolongon G, Burnham D, Can ÖE, Campos-Arceiz A, Channa P, Clements GR, Hearn AJ, Hedges L, Htun S, Kamler JF, Kawanishi K, MacDonald EA, Mohamad SW, Moore J, Naing H, Onuma M, Penjor U, Rasphone A, Rayan DM, Ross J, Singh P, Tan CKW, Wadey J, Yadav BP, Cushman SA (2019)

Multi-scale habitat modelling identifies spatial conservation priorities for mainland clouded leopards (Neofelis nebulosa)

Diversity and Distributions, 25, 1639-1654.

DOI:10.1111/ddi.12967      URL     [本文引用: 10]

MacDonald EA, Hinks A, Weiss DJ, Dickman A, Burnham D, Sandom CJ, Malhi Y, MacDonald DW (2017)

Identifying ambassador species for conservation marketing

Global Ecology and Conservation, 12, 204-214.

DOI:10.1016/j.gecco.2017.11.006      URL     [本文引用: 1]

Min S, D’Cruze N, MacDonald DW (2018)

A note on felid trade at local markets in Myanmar

Cat News, 67, 25-28.

[本文引用: 1]

Min ZL, Chen FG, Huang HF (1966)

New records on the mammals of Shaanxi Province

Chinese Journal of Zoology, 2(3), 54-55. (in Chinese)

[本文引用: 1]

[闵芝兰, 陈服官, 黄洪富 (1966)

陕西省兽类新纪录

动物学杂志, 2(3), 54-55.]

[本文引用: 1]

Mohamad SW, Rayan DM, Christopher WCT, Hamirul M, Mohamed A, Lau CF, Siwan ES (2015)

The first description of population density and habitat use of the mainland clouded leopard Neofelis nebulosa within a logged-primary forest in South East Asia

Population Ecology, 57, 495-503.

DOI:10.1007/s10144-015-0494-1      URL     [本文引用: 3]

Oswell AH (2010)

The Big Cat Trade in Myanmar and Thailand

TRAFFIC Southeast Asia, Petaling Jaya, Selangor, Malaysia.

[本文引用: 1]

Penjor U, MacDonald DW, Wangchuk S, Tandin T, Tan CKW (2018)

Identifying important conservation areas for the clouded leopard Neofelis nebulosa in a mountainous landscape: Inference from spatial modeling techniques

Ecology and Evolution, 8, 4278-4291.

DOI:10.1002/ece3.3970      PMID:29721297      [本文引用: 2]

The survival of large carnivores is increasingly precarious due to extensive human development that causes the habitat loss and fragmentation. Habitat selection is influenced by anthropogenic as well as environmental factors, and understanding these relationships is important for conservation management. We assessed the environmental and anthropogenic variables that influence site use of clouded leopard in Bhutan, estimated their population density, and used the results to predict the species' site use across Bhutan. We used a large camera-trap dataset from the national tiger survey to estimate for clouded leopards, for the first time in Bhutan, (1) population density using spatially explicit capture-recapture models and (2) site-use probability using occupancy models accounting for spatial autocorrelation. Population density was estimated at D^Bayesian=0.40 (0.10 ) and D^maximum-likelihood=0.30 (0.12 ) per 100 km. Clouded leopard site use was positively associated with forest cover and distance to river while negatively associated with elevation. Mean site-use probability (from the Bayesian spatial model) was ψ^spatial=0.448 (0.076 ). When spatial autocorrelation was ignored, the probability of site use was overestimated, ψ^nonspatial=0.826 (0.066 ). Predictive mapping allowed us to identify important conservation areas and priority habitats to sustain the future of these elusive, ambassador felids and associated guilds. Multiple sites in the south, many of them outside of protected areas, were identified as habitats suitable for this species, adding evidence to conservation planning for clouded leopards in continental South Asia.

Petersen WJ, Savini T, Ngoprasert D (2020)

Strongholds under siege: Range-wide deforestation and poaching threaten mainland clouded leopards (Neofelis nebulosa)

Global Ecology and Conservation, 24, e01354.

[本文引用: 6]

Rao M, Myint T, Zaw T, Htun S (2005)

Hunting patterns in tropical forests adjoining the Hkakaborazi National Park, north Myanmar

Oryx, 39, 292-300.

DOI:10.1017/S0030605305000724      URL     [本文引用: 1]

Ripple WJ, Estes JA, Beschta RL, Wilmers CC, Ritchie EG (2014)

Status and ecological effects of the world’s largest carnivores

Science, 343, 1241484.

[本文引用: 1]

Sheng HL (1976)

Diets of the tiger, leopard and clouded leopard

Chinese Journal of Zoology, 11(1), 41. (in Chinese)

[本文引用: 3]

[盛和林 (1976)

虎、豹和云豹的食物

动物学杂志, 11(1), 41.]

[本文引用: 3]

Sheng HL, Lu HJ (1982)

Valuable mammals in Jiangxi Province

Chinese Journal of Wildlife, (4), 6-8. (in Chinese)

[本文引用: 2]

[盛和林, 陆厚基 (1982)

江西省的珍贵兽类

野生动物, (4), 6-8.]

[本文引用: 2]

Sheng HL, Lu HJ, Wang PC (1984)

Problems in the exploitation of wild mammal resources in Jiangxi Province

Journal of East China Normal University (Natural Science), (2), 89-94. (in Chinese)

[本文引用: 3]

[盛和林, 陆厚基, 王培潮 (1984)

江西省哺乳动物资源的开发问题

华东师范大学学报(自然科学版), (2), 89-94.]

[本文引用: 3]

Shou ZH, Wang S, Lu CK, Zhang LG (1966)

A survey of the mammals of Hainan Island, China

Acta Zootaxonomica Sinica, 3, 260-275. (in Chinese with English abstract)

[本文引用: 1]

[寿振黄, 汪松, 陆长坤, 张銮光 (1966)

海南岛的兽类调查

动物分类学报, 3, 260-275.]

[本文引用: 1]

Smith A, Xie Y (2009) A Guide to the Mammals of China. Hunan Education Publishing House, Changsha. (in Chinese)

[本文引用: 3]

[Smith A, 解焱 (2009) 中国兽类野外手册. 湖南教育出版社, 长沙.]

[本文引用: 3]

State Forestry Administration (2009) Survey of Key Protected Terrestrial Animal in China. China Forestry Publishing House, Beijing. (in Chinese)

[本文引用: 2]

[国家林业局 (2009) 中国重点陆生野生动物资源调查. 中国林业出版社, 北京.]

[本文引用: 2]

Tan CKW, Rocha DG, Clements GR, Brenes-Mora E, Hedges L, Kawanishi K, Mohamad SW, Mark Rayan D, Bolongon G, Moore J, Wadey J, Campos-Arceiz A, MacDonald DW (2017)

Habitat use and predicted range for the mainland clouded leopard Neofelis nebulosa in Peninsular Malaysia

Biological Conservation, 206, 65-74.

DOI:10.1016/j.biocon.2016.12.012      URL     [本文引用: 2]

UNEP-WCMC, IUCN (2021) Protected Planet: The World Database on Protected Areas (WDPA) and World Database on Other Effective Area-based Conservation Measures (WD-OECM), August 2021, UNEP-WCMC and IUCN, Cambridge, UK. http://www.protectedplanet.net. (accessed on 2021-07-28)

URL     [本文引用: 1]

Vitkalova A, Feng LM, Rybin A, Gerber B, Miquelle D, Wang TM, Yang HT, Shevtsova E, Aramile V, Ge JP (2018)

Transboundary cooperation improves endangered species monitoring and conservation actions: A case study of the global population of Amur leopards

Conservation Letters, 11, e12574.

[本文引用: 1]

Wan YQ, Li JQ, Yang XW, Li S, Xu HG (2020)

Progress of the China mammal diversity observation network (China BON-Mammal) based on camera-trapping

Biodiversity Science, 28, 1115-1124. (in Chinese with English abstract)

DOI:10.17520/biods.2020142      URL     [本文引用: 2]

[万雅琼, 李佳琦, 杨兴文, 李晟, 徐海根 (2020)

基于红外相机的中国哺乳动物多样性观测网络建设进展

生物多样性, 28, 1115-1124.]

[本文引用: 2]

Wang GH, Li SQ, Shi ZP, Wang SN, Ye JP, Zhou QH (2016)

Preliminary survey of mammal and bird diversity of Guangxi Maoershan National Nature Reserve: Based on infrared camera monitoring

Acta Theriologica Sinica, 36, 338-347. (in Chinese with English abstract)

[本文引用: 1]

[汪国海, 李生强, 施泽攀, 王绍能, 叶建平, 周岐海 (2016)

广西猫儿山自然保护区的兽类和鸟类多样性初步调查——基于红外相机监测数据

兽类学报, 36, 338-347.]

[本文引用: 1]

Wang S, Lu CK, Gao YT, Lu TC (1962)

Mammal research in southwest Guangxi

Acta Zoologica Sinica, 14, 555-570. (in Chinese)

[本文引用: 2]

[汪松, 陆长坤, 高耀亭, 卢汰春 (1962)

广西西南部兽类的研究

动物学报, 14, 555-570.]

[本文引用: 2]

Wang TM, Royle JA, Smith JLD, Zou L, Lu XY, Li T, Yang HT, Li ZL, Feng RN, Bian YJ, Feng LM, Ge JP (2018)

Living on the edge: Opportunities for Amur tiger recovery in China

Biological Conservation, 217, 269-279.

DOI:10.1016/j.biocon.2017.11.008      URL     [本文引用: 1]

Wei FW, Yang QS, Wu Y, Jiang XL, Liu SY, Li BG, Yang G, Li M, Zhou J, Li S, Hu YB, Ge DY, Li S, Yu WH, Chen BY, Zhang ZJ, Zhou CQ, Wu SB, Zhang L, Chen ZZ, Chen SD, Deng HQ, Jiang TL, Zhang LB, Shi HY, Lu XL, Li Q, Liu Z, Cui YQ, Li YC (2021)

Catalogue of mammals in China (2021)

Acta Theriologica Sinica, 41, 487-501. (in Chinese with English abstract)

[本文引用: 1]

[魏辅文, 杨奇森, 吴毅, 蒋学龙, 刘少英, 李保国, 杨光, 李明, 周江, 李松, 胡义波, 葛德燕, 李晟, 余文华, 陈炳耀, 张泽均, 周材权, 吴诗宝, 张立, 陈中正, 陈顺德, 邓怀庆, 江廷磊, 张礼标, 石红艳, 卢学理, 李权, 刘铸, 崔雅倩, 李玉春 (2021)

中国兽类名录(2021)

兽类学报, 41, 487-501.]

DOI:10.16829/j.slxb.150595      [本文引用: 1]

中国是全球兽类物种多样性最高的国家之一,掌握我国兽类物种多样性和分类地位是兽类学研究的基础前提,也是科学保护野生种群的前提。为厘清中国兽类的物种数量及分类地位等关键分类学信息,中国动物学会兽类学分会组织国内长期致力于兽类各类群分类的科学研究人员,在总结前人研究的基础上,根据最新的形态学和分子遗传学证据,综合现代兽类分类学家意见,经编委会充分讨论,形成了最新的中国兽类名录,包括我国现阶段兽类12目59科254属686种。该中国兽类名录使用基于系统发生关系的分类系统,并对物种有效性进行了充分慎重的确认和讨论。

Wu JP, Luo H, Zhu XL, Li BZ, Liu WL, Ci P (2016)

Monitoring mammals and birds with camera traps at different altitudes of Medog, Tibet

Biodiversity Science, 24, 351-354. (in Chinese)

DOI:10.17520/biods.2015106      [本文引用: 1]

[吴建普, 罗红, 朱雪林, 李炳章, 刘务林, 次平 (2016)

西藏墨脱不同海拔区鸟兽红外相机监测

生物多样性, 24, 351-354.]

DOI:10.17520/biods.2015106      [本文引用: 1]

Xie WH, Yang XF, Yu JJ, Li JN, Tao SL, Lu ZJ, Wang XZ, Xiao ZS (2014)

A survey of mammals and birds using camera traps in Badagongshan Forest Dynamics Plot, Central China

Biodiversity Science, 22, 816-818. (in Chinese)

DOI:10.3724/SP.J.1003.2014.14022      [本文引用: 1]

[谢文华, 杨锡福, 于家捷, 李俊年, 陶双伦, 卢志军, 王学志, 肖治术 (2014)

运用红外相机对八大公山森林动态样地鸟兽的初步调查

生物多样性, 22, 816-818.]

DOI:10.3724/SP.J.1003.2014.14022      [本文引用: 1]

Xu WH, Zang ZH, Du A, Ouyang ZY (2021)

The experiences of Northeast China Tiger and Leopard National Park pilot

Biodiversity Science, 29, 295-297. (in Chinese)

DOI:10.17520/biods.2021044      [本文引用: 1]

[徐卫华, 臧振华, 杜傲, 欧阳志云 (2021)

东北虎豹国家公园试点经验

生物多样性, 29, 295-297.]

DOI:10.17520/biods.2021044      [本文引用: 1]

Yu GQ, Kang ZJ, Liu MS, Chen ZF, Deng ZC (2018)

Preliminary survey using infrared camera reveals fauna and avifauna diversity at Hupingshan National Nature Reserve, Hunan, China

Acta Theriologica Sinica, 38, 104-112. (in Chinese with English abstract)

DOI:10.16829/j.slxb.150137      [本文引用: 1]

From August 2012 to August 2015, 20 infrared camera-traps were installed in a monitoring grid to investigate terrestrial fauna and avifauna population in the Hupingshan National Nature Reserve of Hunan Province, China. Based on 19,592 camera-days in the field, we identified 21 mammal species belonging to 4 orders and 11 families and 33 bird species belonging to 4 orders and 8 families. Among these, forest musk deer (<em>Moschus berezovskii</em>) was listed as Category I state key protected wild animals and eight species as Category II. Red-hipped squirrel (<em>Dremomys pyrrhomerus</em>) was recorded for the first time in the reserve. Carnivora had the highest species richness among mammals (9 species), followed by Cetartiodactyla (6 species) and Rodentia (5 species). Tufted deer (<em>Elaphodus cephalophus</em>), wild boar (<em>Sus scrofa</em>), red-hipped squirrel, Reeve&rsquo;s muntjac (<em>Muntiacus reevesi</em>) and Hog badger (<em>Arctonyx collaris</em>) ranked as the five most abundant mammal species according to a relative abundance index. Passeriformes had the highest species richness in bird (25 species), followed by Galliformes (5 species) and Piciformes (2 species). Golden pheasant (<em>Chrysolophus pictus</em>), Temminck's tragopan (<em>Tragopan temminckii</em>) and spotted laughingthrush (<em>Garrulax ocellatus</em>) rank as the three most abundant bird species. In addition, we also analyzed daily and annual activity patterns of the six common species such as golden pheasant, Temminck's tragopan, red-hipped squirrel, tufted deer, wild boar and Reeve&rsquo;s muntjac.&nbsp; Our results provide basic information for long-term monitoring of the diversity and density of terrestrial fauna and avifauna inhabiting the Hupingshan region.<br>

[于桂清, 康祖杰, 刘美斯, 陈振法, 邓忠次 (2018)

利用红外相机对湖南壶瓶山国家级自然保护区兽类和鸟类多样性的初步调查

兽类学报, 38, 104-112.]

[本文引用: 1]

Zeng ZZ, Estes L, Ziegler AD, Chen AP, Searchinger T, Hua FY, Guan KY, Jintrawet A, Wood EF (2018)

Highland cropland expansion and forest loss in Southeast Asia in the twenty-first century

Nature Geoscience, 11, 556-562.

DOI:10.1038/s41561-018-0166-9      URL     [本文引用: 1]

Zhang YZ (1997) Distribution of Mammalian Species in China. China Forestry Publishing House, Beijing. (in Chinese)

[本文引用: 1]

[张荣祖 (1997) 中国哺乳动物分布. 中国林业出版社, 北京.]

[本文引用: 1]

Zheng WC, Zhang SS, Pan CC, Liu JL, Ji GH (2014)

Mammal and avian diversities detected by infrared camera in Jiulongshan National Nature Reserve

Journal of Zhejiang Forestry Science and Technology, 34(1), 17-22. (in Chinese with English abstract)

[本文引用: 1]

[郑伟成, 章书声, 潘成椿, 刘菊莲, 季国华 (2014)

红外相机技术监测九龙山国家级自然保护区鸟兽多样性

浙江林业科技, 34(1), 17-22.]

[本文引用: 1]

/