生物多样性, 2022, 30(5): 21480- doi: 10.17520/biods.2021480

综述

基于生物学物种定义探讨物种形成理论与验证的研究进展

肖钰,1,2, 王茜,1,2, 何梓晗1,2, 李玲玲1,2, 胡新生,,1,2,*

1.华南农业大学林学与风景园林学院, 广州 510642

2.广东省植物种质资源与利用重点实验室, 广州 510642

Advances in speciation theories and their verifications based on the biological species concept

Yu Xiao,1,2, Xi Wang,1,2, Zihan He1,2, Lingling Li1,2, Xinsheng Hu,,1,2,*

1 College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642

2 Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, Guangzhou 510642

通讯作者: * E-mail:xinsheng@scau.edu.cn

编委: 张大勇

责任编辑: 周玉荣

收稿日期: 2021-11-25   接受日期: 2022-03-1  

基金资助: 国家自然科学基金(32171819)
中央财政林业改革发展资金项目(2018-GDTK-08)
华南农业大学人才引进启动项目(4400-K16013)

Corresponding authors: * E-mail:xinsheng@scau.edu.cn

Received: 2021-11-25   Accepted: 2022-03-1  

摘要

物种形成是进化生物学研究的一个永恒主题, 由于生物群体进化是连续和动态的, 物种界限变得难于界定。本文首先讨论了3种地理物种形成模式(同域、邻域及异域), 并分析了近期报道的研究证据。其次, 评述了合子后生殖隔离机制的分子遗传基础和应用群体基因组数据分析的证据, 包括BDMI模型(Bateson-Dobzhansky-Muller incompatibility)、QTLs (quantitative trait loci)、霍尔丹法则及大X染色体效应。最后, 探讨了交配系统作为合子前隔离机制之一与物种形成的关系, 认为近交或自交通过扩大种群遗传结构分化, 增强不同交配系统的种群间不对称基因渐渗, 或种群间无基因渐渗等途径, 促进新物种形成。已知植物交配系统的演化更倾向于从异交(或自交不亲和)向自交(或近交亲和)方式, 花性状和基因组的分化推动形成所谓的自交综合征, 研究交配系统驱动或强化物种形成模式对认识植物物种形成机制有重要意义。

关键词: 物种形成; 物种概念; 地理物种形成; 合子后障碍; 交配系统

Abstract

Background & Aim: Speciation is a constant theme in the study of evolutionary biology. The nature of the dynamics and continuity of population evolution makes it hard to define the concept of species. Understanding the mechanisms of speciation remains crucial in the fields of evolutionary biology, taxonomy, conservation biology and biodiversity. Here we revisited the existent theories of speciation and reviewed the recent advances in empirical study.

Progresses: We discussed three geographical patterns of speciation (sympatric, parapatric, and allopatric speciation) and reviewed the corresponding empirical evidence from recent studies, based on the classical concept of biological species coined in terms of reproduction isolation. We further discussed the molecular genetics basis of postzygotic reproductive isolation and the evidence derived from analyses of applying population genomic data, including BDMI (Bateson-Dobzhansky-Muller incompatibility), QTLs (quantitative trait loci) analysis, Haldane’s rule and the large X-chromosome effects. We finally discussed the relationship between mating system, one of the pre-zygotic isolation barriers, and speciation. We inferred that selfing or inbreeding could drive speciation via either increasing population genetic differentiation or impeding gene flow between populations of different mating systems, or both.

Prospects: More evidence is needed to verify speciation theories. In addition, given the more frequent transitions to selfing from outcrossing in plant species, both flower characters and genomic differentiation could drive the so-called selfing syndromes. It is significant to clarify the role of mating system as a driver or as a reinforcer in plant speciation.

Keywords: speciation; species concept; geographic speciation; postzygotic barrier; mating system

PDF (641KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

肖钰, 王茜, 何梓晗, 李玲玲, 胡新生 (2022) 基于生物学物种定义探讨物种形成理论与验证的研究进展. 生物多样性, 30, 21480-. doi:10.17520/biods.2021480.

Yu Xiao, Xi Wang, Zihan He, Lingling Li, Xinsheng Hu (2022) Advances in speciation theories and their verifications based on the biological species concept. Biodiversity Science, 30, 21480-. doi:10.17520/biods.2021480.

自从达尔文的《物种起源》一书发表以来, 物种定义与物种形成的机制成为进化生物学、分类学、保护生物学及生物多样性等领域的重要研究内容; 物种作为生物分类阶元系统的一个低阶单元, 目前已有20种甚至更多定义(Coyne & Orr, 2004), 其中比较常用的有生物学物种概念(biological species concept, BSC)和系统发育物种概念(phylogenetic species concept, PSC)等。BSC是基于生殖隔离而界定的杂交群体(Mayr, 1942; Bock, 1986, 2004); PSC的定义为最小可识别的单系群体, 且群体内祖先-后代共存(Cracraft, 1983)。近年来物种概念又添加了新的定义, 如核相容性物种(Zachos, 2018)、基因和基因表达物种(Seifert, 2020)等。我国学者对物种概念也有深入探讨, 如遗传-形态物种(Hong, 2020)等。总之, 物种概念由于理论研究或实际应用的目标不同而始终难以统一(Freeland et al, 2011), 种群进化本身的动态性和连续性增加了物种界定的难度(Barton et al, 2007), 但其共同认识就是物种的分化是源于群体长期形成的遗传分化或基因组分化。

与物种概念关联且远没有澄清的是物种形成或生殖隔离的机制。理论上, 种群进化的动力(如突变、遗传漂变、基因流及选择等)影响群体的遗传分化, 促进群体因不同的过程或模式形成新物种。在相同的选择压下, 不同群体因积累不同的突变基因导致物种形成, 即突变主导的物种形成(mutation-order speciation; Schluter, 2009)。遗传漂变可以产生群体分化, 群体离散分布及群体规模大小影响物种形成进程(Orr & Orr, 1996)。早期Wright (1977)的动态平衡理论(shifting balance theory, SBT)认为遗传漂变驱动群体从一个适应峰经过低谷再到另一个适应峰, 然而理论分析显示遗传漂变驱动适应峰移位(peak shift)的概率很小(Barton & Charlesworth, 1984; Gavrilets, 2003), 因此, SBT理论一般不用于解释物种形成。与基因流相关的有异域(allopatry)、同域(sympatry)和邻域(parapatry)地理物种形成机制, 物种空间分布片断化和种群的地理结构形成有助于异域和邻域物种形成模式(Butlin et al, 2008), 选择是产生群体遗传适应分化的唯一过程。目前BDMI模型(Bateson-Dobzhansky-Muller incompatibility)成为解释物种形成机制的主要模型, 不亲和突变基因的积累最后导致群体遗传分化和生殖隔离; BDMI模型也解释了杂种不亲和的不对称性、霍尔丹法则、大X染色体效应等与选择相关的物种形成。这些进化动力往往是联合作用于不同的物种形成模式中, 起着不同程度的作用。

从传统的生殖隔离障碍角度看, 依据合子形成阶段可分为: (1)交配前隔离, 即在配子转移到其他物种之前, 阻碍基因扩散; (2)交配后-合子前隔离, 即交配行为隔离和配子竞争性与非竞争性隔离; (3)合子后隔离, 即合子败育或适合度降低。不同的群体进化动力作用于生殖隔离的不同阶段, 如基因流障碍作用于交配前隔离, 自然选择是交配后-合子前隔离的因素之一, BDMI物种形成模式主要作用于合子后隔离等。目前认为生态物种形成(ecological speciation), 即物种形成是由于群体对不同的环境适应导致不同自然选择而产生的生殖隔离, 可作用于生殖隔离的任意阶段(Schluter, 2009)。交配系统可作用于合子形成前隔离, 但交配系统与物种形成或生殖隔离的关系仍缺乏深入的研究(Hu, 2015; Pickup et al, 2019)。

虽然生殖隔离或地理物种形成过程已为人所知, 但人们对导致物种形成障碍的遗传基础、分子机制以及与其进化相关的交配系统模式作用的理解有限。高通量测序技术的应用和发展使得通过基因组数据来研究物种形成的分子遗传基础成为可能, 目前用数量遗传学的数量性状位点(quantitative trait loci, QTLs)定位方法及基因组学方法寻找与生殖隔离相关基因的研究已取得长足进展。Gavrilets (2003)和Schluter (2009)等对物种形成理论和实践研究进行了评述, 在此基础上本文结合已知的物种形成理论, 对近5年高等动植物种的生殖隔离机制的研究进行综述。我们首先讨论地理-生态等隔离物种形成模式, 将群体进化动力纳入每种模式中探讨; 其次, 讨论合子后隔离形成的理论与研究实例, 包括BDMI模型、QTLs定位分析及霍尔丹法则; 最后, 讨论合子前隔离即交配系统对生殖隔离形成的驱动或强化作用模式, 分析交配系统阻碍基因流及对物种形成的作用。

1 物种形成的地理-生态隔离模式

早期Mayr (1942)提出的3种地理物种形成模式至今仍用于解释物种形成的机制, 同域物种形成表示生殖隔离并非一定需要群体空间分布片断化, 而邻域和异域物种形成过程表示群体地理分布片断化的必要性或基因流限制对物种形成的影响。对于每种地理模式, 除基因流受限外, 其他基本进化动力(选择、遗传漂变及突变)也不同程度地作用于物种形成过程。

1.1 同域物种形成

同域物种形成被定义为在没有地理隔离的情况下产生了生殖隔离, 新物种从同一地域的祖先物种中演化而来的过程(Coyne & Orr, 2004), 但潜在的杂交和基因流仍然发生。目前认为导致群体生殖隔离的过程有自然选择和性选择(Foote, 2018; Richards et al, 2019), 这里的自然选择主要是歧化选择, 可以有多种表型性状, 或基因位点在选择驱动下, 强化群体遗传分化和子代群体间生殖隔离; 而性选择可以是选型交配(assortative mating)、交配系统差异等(图1)。

图1

图1   同域物种形成: 祖先群体经过歧化选择或性选择产生生殖隔离的后代

Fig. 1   Sympatric speciation: an ancestral population undergoes disruptive selection or sexual selection to produce reproductively isolated descendant species


Futuyma和Mayer (1980)把同域物种形成定义为: 在两个种群之间存在自由迁移(即迁移率m = 1/2), 基因流动的最初限制不是由地理或距离造成的, 而是由遗传变异所致。至今对同域物种形成的遗传基础和进化过程还远不清楚。Udovic (1980)提出两位点模型, 即, 一个控制选型交配位点(assortative mating locus, AM), 另一个控制歧化选择位点(disruptive selection locus, DS), DS位点受对称的频率依赖的歧化选择控制, 对稀有基因型有利。例如, 3种基因型(BB, Bbbb)的适合度为WBB = 1 + Spb, WBb = 1及Wbb = 1 + SpB, 式中S为选择系数, pbpB为等位基因频率, 杂合子适合度比纯合子的低。在混合交配系统条件下(自交率0 < α < 1), Udovic给出了两位点在连锁条件(两位点重组率r < 1/2)和不连锁(r = 1/2)条件下基因型频率向纯合子基因型转移的条件, 如α + S > 1, 该群体分化形成两个遗传组成不同的类群, 当该位点为与生殖有关的基因时, 形成的两类群则逐渐发展为两个新物种。同样, 性选择冲突(sexual conflict)也会促成遗传分离的类群。若雄性个体选择配偶的概率由两性所携带的等位基因差异或亲和性决定, 那么雌雄个体遗传距离越大, 等位基因间亲和力越小。同时, 考虑多个基因及分步突变(step-wise mutation)模型, 雌雄个体携带不同亲和力等位基因的数量影响雌雄个体选型交配的程度, 在满足一定的条件下, 如$\psi \left( \delta -1 \right)+\psi \left( \delta +1 \right)>2\psi \left( \delta \right)$时($\delta $为选型交配个体间的遗传距离, $\psi \left( \delta \right)$为两基因距离为$\delta $的个体的选型交配亲和概率), 产生生殖隔离的类群或新物种(Gavrilets, 2003)。除上述模型外, 还有其他理论用于解释同域物种形成(Richards et al, 2019)。

虽然同域物种形成在理论上有一定可信度, 但能够验证该理论的实际研究案例较少。喀麦隆西部的Barombi Mbo是一个小火山口湖, 该系统中的慈鲷科鱼类(cichlid fishes)成为最早被广泛接受的同域物种形成的例子之一(Schliewen & Klee, 2004; Carleton et al, 2019)。Wang等(2020)利用基因定位和基因组重测序手段对野生二粒小麦进行了群体遗传学研究, 其中SFS1亚群形成了一系列类型的罗伯逊易位(Robertsonian translocation), 导致它与其他群体间产生合子后隔离。歧化选择可源于植物开花时间的差异, 由控制开花时间的基因经历自然选择所致, 具有较强的合子前生殖隔离作用(Osborne et al, 2020)。同样, 花的颜色分化会通过传粉者的转移导致生殖隔离(Jordan et al, 2015)。在同域中同步开花的植物也可能由于遗传机制的差异导致花粉排斥(Lu et al, 2019)。近期研究表明在同域环境中生态位分化是多倍体物种形成的一个常见且重要的过程(Baniaga et al, 2020; Sutherland et al, 2021), 多倍体可推动同域物种形成(Coyne & Orr, 2004; Barringer, 2007)。而在同域分布的水生生物中, 歧化选择可能是因为不同群体对水域深浅的偏好不同而导致的基因表达变异, 进而产生新物种(Bongaerts et al, 2017; Titus et al, 2019)。

即使在物种形成初期存在基因流, 由于适应性基因选择作用大, 形成生态或偏好变异, 也会引发后来的同域分歧(Seehausen et al, 2014)。许多具有大范围分布重叠的物种可以在不同的生态位和栖息地中变得专门化, 从而可能在小的尺度上变得相互隔离(Richards et al, 2019)。因此, 同域物种形成受到与环境资源竞争、栖息地深度梯度变化和遗传分化等选择适应性因素的影响。

生殖隔离是一种复杂的数量性状, 一般认为由多基因控制, 也不排除少数基因控制生殖隔离(Wu, 2001)。目前应用全基因组变异研究同域物种形成, 分析对物种形成有影响的基因位点或障碍位点(barrier loci)。Kautt等(2020)利用基因组重测序分析新热带慈鲷(Amphilophus spp.)种和群体间变异, 证实了影响生态性能和/或交配选择的单基因或寡基因性状不同的物种显示出局部基因组分化, 相比之下, 多基因性状(polygenic trait)不同的物种间分化在基因组上是广泛分布的, 这与由许多微效位点共同作用而导致全基因组基因流障碍的进化一致, 说明多基因结构促进快速稳定的同域物种形成。

1.2 邻域物种形成

邻域物种形成发生在空间连续广泛分布的群体内, 遗传分化的群体通过杂交带的形式在空间上被隔离开来, 基因频率呈现梯度变异模式, 分离群体间存在基因流(0 < m < 1/2) (图2)。理论研究证明即使存在基因流, 种群也可以通过适应当地条件而产生遗传分化, 特别是在基因流有限的情况下(Slatkin, 1987), 选择或遗传漂变的效应能够阻止有限基因流的影响, 从而维持着分离群体的遗传分化。与两亲本相比, 杂交带内的杂合子适合度较小, 起到隔离两个已分化群体的作用。

图2

图2   邻域物种形成: 两物种交界处呈现杂交带。基因频率随地理距离而呈梯度变异。

Fig. 2   Parapatric speciation: A hybrid zone occurs in the boundaries between two species. The gene frequency changes in a clinal pattern with the geographic distance.


已有文献采用不同的进化模型来分析邻域物种形成, 如基于迁移-选择过程的一因多效模型(Slatkin, 1982)和大陆-岛屿模型(Bank et al, 2012)、基于突变-漂变过程和BDMI模型(见下节内容; Gavrilets, 2003)。Gavrilets (2000)基于个体模型模拟证实: (1)在每世代邻近群体存在一定基因流条件下, 快速邻域物种形成是可能的, 时间上跨越几千世代; (2)在没有局部适应分化选择条件下也可快速物种形成; (3)若迁移分布范围小, 物种形成速率则高, 在不同的突变率、群体密度和遗传变异条件下, 群体分布中心可分裂形成新物种或边缘群体形成新物种。因此, 突变、遗传漂变和选择都有可能驱动邻域物种形成。基于BDMI模型, Gavrilets (2003)提出, 如果物种形成是由突变μ-漂变驱动的话, 新物种形成的等候时间T与邻近群体间基因交换率$m$呈正相关, 与突变率成负相关, 平均物种形成的持续时间$\tau $$\mu $成负相关。类似地, 当突变基因有选择优势的条件时(选择系数s), $T$$\tau $都与s呈负相关, 即突变基因选择越强, 邻域物种形成时间越短; 当存在基因流障碍$\gamma $时, 突变和遗传漂变驱动邻域物种形成的$T$$\gamma $呈正相关, $\tau $$\gamma $无关。

虽然这些理论给出了邻域物种形成的生物学解释, 但关键假设个体间或群体间究竟允许多少个不亲和基因位点才能产生生殖隔离? 控制物种生殖隔离的基因数量、效应大小及在基因组上的分布等结构还不清楚, 有待大量实验结果来回答。

目前已有一些实际案例分析邻域物种形成的机制, 多数与局部环境选择适应相关, 生态环境差异驱动群体适应性分化, 产生新物种, 而理论预测的突变-漂变机制的实际案例报道较少。例如, Rangel等(2018)从地理或环境梯度(如水分梯度)上研究种群之间的邻域物种形成, 认为生态适应为主要过程; Gao等(2019)利用遗传标记分析了绢毛蔷薇(Rosa sericea)和峨眉蔷薇(R. omeiensis)之间的物种边界, 发现它们在生态位上只是部分重叠, 因此, 这些物种可能正处于邻域物种形成的过程中, 沿着环境梯度的不同生态偏好, 表现出不同的生态型。Wainwright等(2020)认为印度尼西亚群岛的带状珊瑚虾(Snonopus hispidus)的物种形成是由于不同的栖息地类型, 增加了海洋、地理或生物的基因流障碍, 自然选择促进了生殖隔离, 最终导致邻域物种形成, 即群体局部选择(local selection)适应性分化促进邻域物种形成; Pirani等(2020)的研究证明由于大西洋森林和安第斯山脉之间存在南部走廊, 亚马逊新热带雨林中的一种树蛙(Dendropsophus leucophyllatus)种群通过迁移导致了亚马逊西南地区的物种变得多样化, 但生态因素的局部适应超过了其种群分化过程中的基因流的影响, 最后导致邻域物种形成。

邻域物种形成的一个显著特征就是基因频率梯度变化, 但由生态环境差异(外部环境因素)和由BDMI (内部遗传因素)导致的杂交带基因频率变化模式难以区分, 需要借助其他变量变化特征加以区分其形成机制(Hu, 2005)。应用群体基因组序列分析种间选择适应分化位点或QTL、基因流障碍位点(程祥等, 2020)以及杂合子败育位点, 有助于深入解释邻域物种生殖隔离形成的遗传基础, 目前这方面报道少。

1.3 异域物种形成

异域物种形成指由地理隔离的群体独自进化形成生殖隔离, 形成新物种(图3)。通常情况是同一物种中的两个或多个群体, 起初由于地理上的分离限制了它们之间的基因流动(m = 0), 在经历长时间逐渐累积遗传分化后产生生殖隔离。形成生殖隔离的进化过程可由遗传漂变作用所致, 如“奠基者效应”产生快速基因分化, 使群体达到某种程度的生殖隔离(Skeels & Cardillo, 2019); 也可以通过不同生境条件下产生的歧化选择作用, 产生生殖隔离之后, 即使随后可能发生二次接触, 但因杂合子适合度相对低或败育(远交衰退), 形成的杂交带可强化两物种的隔离状态(Kohlmann et al, 2018)。

图3

图3   异域物种形成: 两群体因地理隔离而独立进化, 形成生殖隔离, 无基因流。

Fig. 3   Allopatric speciation: The two populations evolve independently due to geographical isolation (without gene flow) and eventually produce reproductive isolation.


理论研究证明在突变-漂变作用驱动物种形成的情况下, 新物种形成的等候时间$T$与平均物种形成的持续时间$\tau $相等, 都与突变率$\mu $或每世代基因替换率$\omega $成负相关。在突变-漂变-选择作用下, 当突变基因对于所处的环境有选择优势时, $T$$\tau $缩短, 即局部选择加快物种形成速度(Gavrilets, 2003), 环境适应性变化改变物种形成的时间($T$, $\tau $)

地理隔离形成可源于隔离分化(vicariance), 即在物种地理范围内分裂成两个或更多的分离种群, 或边缘离散分布群体, 即指小种群在地理上分离或一个分离的栖息地被少数个体集聚。两种地理隔离模式都有可能促进物种形成, 但可以有不同的进化动力参与其中, 遗传漂变在边缘物种形成中起一定作用。

隔离分化可以通过各种地质事件导致物种形成, 包括河流屏障、冰川作用、山脉形成和气候变化等。例如, Kohlmann等(2018)报道末次冰盛期之后, 随着气温的升高和北极圈的温带森林向高海拔移动, 打破了原来森林的连续性而产生蜣螂的粪金龟属(Geotrupes)和Phanaeus之间的分化, 这类物种形成属于隔离物种形成模式。类似的隔离分化还有“天空之岛” (sky island; Knowles, 2000), 即物种在间冰期持续在高海拔避难所, 由于基因流动减少而增强了种间分化, 相反地, 在冰期期间低海拔地区呈现遗传混合。其他例子还有灰头灰雀(Pyrrhula erythaca) (Dong et al, 2020)。隔离分化群体通常在不同生态栖息地经历歧化选择和遗传漂变固定不同的等位基因, 从而最初的遗传分化被不断放大, 最终产生隔离。

边缘物种形成主要源于物种边域的小群体适应性分化, 因为边缘栖息地往往承受着很大的不同选择压力, 且受中心群体基因流影响小, 遗传多样性小(张新新等, 2019), 容易与中心分布群体间产生生殖隔离, 形成新物种。例如, Wang等(2017)结合细胞核和质体DNA数据进行的谱系地理分析, 阐明了中国亚热带特有的八角莲(Dysosma versipellis)和六角莲(D. pleiantha)的早期分化可能是由于早更新世气候变化触发的周期性分布范围的收缩/扩张。Nieto-Lugilde等(2018)对分布广泛的角齿藓(Ceratodon purpureus)和一个主要局限于西班牙南部山区的当地类群进行研究, 发现后者基因组比角齿藓基因组大25%, 而且样本全部由雌性组成, 说明边缘群体基因组扩张和偏雌性比(female-biased sex ratio), 导致生殖隔离。

多数解释物种起源过程的假说都集中在种群/物种的地理分离上, 这往往与异域特定情景关联, 例如避难所假说(Haffer, 1969; Wang et al, 2017)和河流屏障假说(Takagui et al, 2019; Roos et al, 2020)。这些假设忽略了复杂环境中物种形成的其他机制, 例如当地生态适应的作用(Sheu et al, 2020), 适应性分化选择在异域物种形成中有重要作用。

2 合子后隔离的分子遗传机制

在讨论物种形成的生态和进化过程后, 需要进一步理解生殖隔离形成的分子和遗传机制, 从而深入认识物种形成或维持过程, 以下从3个方面讨论合子后隔离机制, 包括BDMI模型、生殖隔离这一复杂数量性状的遗传基础以及性染色体参与生殖隔离的作用, 注重评述近几年的研究进展。

2.1 BDMI模型

早期, Bateson (1909)、Dobzhansky (1937)和Muller (1942)研究表明自身基因组适应性或接近中性的替换与外来基因组的等位基因在功能上存在不亲和的上位性互作, 从而导致杂种败育。例如, 同一祖先衍生出来的两物种在二次接触时会导致遗传不亲和。杂交带的形成就是BDMI的很好证明, 这种遗传不亲和性也是双亲物种遗传分化形成的一个标志。从文献中可以概括出3种进化途径产生BDMI:

(1)突变-漂变联合作用(Gavrilets, 2003)。中性突变并不影响生物大分子功能, 如多数同工酶, 但遗传漂变可导致基因组不亲和或者处于与环境无关的选择中, 例如减数分裂驱动导致个体间因等位基因数或序列的差异而产生不亲和(Lindholm et al, 2016; Nuckolls et al, 2017)。

(2)核基因组间杂交不亲和位点作用。传统观点认为, 当不同遗传背景的核基因组合时, 位点间的交互作用导致杂合子败育。近期的报道认为, 杂交不亲和也可能是由自私元件(selfish element)的遗传冲突(genetic conflict)造成的, 这种自私元件偏分离(segregation distortion, SD), 以牺牲基因组中其他基因为代价来增强自身的传播, 导致具有不同遗传冲突的基因组的谱系迅速分化(Crespi & Nosil, 2013; Sweigart et al, 2019; Postel & Touzet, 2020)。例如, Shen等(2017)对粳稻(Oryza sativa subsp. japonica)和籼稻(O. sativa subsp. indica)亚种进行杂交育种的研究, 发现在杂种雄性不育(hybrid male sterility, HMS)系统中, Sc-i等位基因变异已经进化成自私的物种形成基因, 可以导致杂种中带有Sc-j的花粉败育, 但不能导致携带Sc-i变异的花粉败育。这种单基因位点自私元件既是不亲和的原因, 也可充当“物种形成基因”。此外, 自交或近交融合物种通过遗传漂变或适应性进化固定等位基因, 当与其他物种杂交时, 杂交后代可能出现遗传不亲和性(Orr & Turelli, 2001; Cutter, 2019)。性染色体基因渐渗也会导致BDMI, Deitz等(2020)发现当M型Anopheles coluzzii的X染色体渐渗到四斑按蚊(A. quadriannulatus)或者阿拉伯按蚊(A. arabiensis)中时, 均发生了上位性互作, 染色体对杂种不育性有不成比例的主效效应, 这可能与冈比亚按蚊(A. gambiae)复合体的辐射演化早期有关, 进化产生BDMI。

(3)细胞核质基因互作。真核生物细胞起源首先面临的问题之一就是核质基因组是否融合(Barton et al, 2007), 细胞核质基因协同进化是长期自然选择的结果, 如为了维持与细胞器基因组共适应和细胞功能, 细胞核上的补偿性突变(compensatory mutations)发生正选择(positive selection; Sloan et al, 2018), 这种遗传补偿效应为杂交种群提供了生殖隔离的机会, 从而导致种内杂交不育(Thompson, 2020)。细胞核质不亲和性属于BDMI模型的范畴(Barnard-Kubow et al, 2017), 被认为是物种形成中最早出现的遗传不亲和性之一(Sambatti et al, 2008), 并在合子后生殖障碍的出现中发挥重要作用(Barnard-Kubow et al, 2017; Sloan et al, 2018)。每个谱系都会有特定的细胞核和细胞器的组合, 并带有共适应的基因序列, 当这些谱系发生杂交时, 细胞器发生交换, 破坏了基因组间的组合和共适应(Sambatti et al, 2008; Moison et al, 2010; Bogdanova et al, 2014)。近期, 王茜等(2019)对细胞核质基因互作产生BDMI的分子遗传机理进行了评述, 细胞核质基因间的BDMI导致后代杂种败育或适合度下降, 阻碍群体间基因流或种间基因渐渗, 有利于物种形成, 因此, 核质不亲和强化了遗传分化的群体间或种间形成生殖隔离。

2.2 QTLs

理解生殖隔离的遗传基础一直是研究物种形成的一个重要方面, 最明显的例子就是多倍体产生新物种。已知生殖隔离本身就是一个复杂数量性状, 一般由多个QTLs控制。现有文献中报道有些物种形成受少数主效位点控制, 这些位点也受自然选择的作用。例如, 前面提到的Kautt等(2020)研究新热带慈鲷(Amphilophus spp.)种和群体间变异, 证实了既有单基因或寡基因控制生态性能或交配选择差异性状, 又有广泛分布于基因组中的基因位点控制种间多基因数量性状分化。

至今很少有证据证明存在直接导致物种形成的基因, 但不同环境下的基因差异性表达已有很多报道。例如, 不同的传粉者可驱动被子植物物种形成(van der Niet & Johnson, 2012), 导致这些植物传粉综合征(pollination syndromes)之间差异的基因可以被视为“物种形成基因” (Esfeld et al, 2018; Yarahmadov et al, 2020)。

部分案例显示QTL定位方法可识别潜在的所谓物种形成基因。例如, 有花植物雌蕊对花粉管细胞壁的修饰也可能是植物花粉排斥的关键机制, Lu等(2019)的研究表明玉米(Zea mays)品系中‘Teosinte crossing barrier1-s’ (Tcb1-s)单倍型包含一个在雌蕊中表达的潜在物种形成基因, 该基因可编码果胶甲基酯酶(pectin methylesterase)同源物, 阻止雌蕊中花粉管继续生长, 导致该品系产生花粉排斥, 形成生殖隔离。有些模式物种已被鉴定出具有导致其杂交功能障碍的物种形成基因(Presgraves, 2010), 但对于非模式物种, 识别生殖隔离基因仍具挑战性。

在交配后合子形成前也有报道单个QTL参与控制生殖隔离, 例如, Jewell等(2020)在野生番茄(Solanum pennellii)的自交不亲和(self-incompatibility, SI)和自交亲和(self-compatibility, SC)两种基因型群体衍生出来的F2群体, 通过花柱中排斥花粉而产生的不同花粉管长度等性状进行QTL定位, 鉴定出了一个主效QTL, 该QTL包含编码SI基因的位点。

目前, 高通量测序技术的发展和应用使得利用全基因组数据研究物种形成基因组学(speciation genomics)成为可能, 可分析种间基因组分化与生殖隔离之间的关系, 识别限制基因流动的隔离位点(Ravinet et al, 2017), 这些位点包括处于不同生态选择下的位点(Carleton et al, 2019; Berdan et al, 2021), 参与配偶选择(Byers et al, 2020)或内在合子后隔离(Hänniger et al, 2017)等位点, 这些位点的种间基因渐渗显著减少, 与生殖隔离相关。

研究同倍体杂交物种形成(homoploid hybrid speciation, HHS)为揭示生殖隔离机制提供了新途径, Wang等(2021)研究了桦木科虎榛子属(Ostryopsis) 3个物种中杂交物种与亲本物种间生殖隔离形成的关键基因(HHS基因), 发现亲本种间具有不同的生殖隔离性状, 其杂交后代通过继承来自不同父母本的生殖隔离性状相关基因(等位基因), 使得亲本种间不同的生殖隔离性状在杂交后代中发生了重新组合, 并进一步促使其成为新的杂交物种, 这样的隔离机制在有些动物种中同样存在, 但关于同倍体杂交物种形成存在很多有待研究的问题(Feliner et al, 2017; Schumer et al, 2018)。

2.3 霍尔丹法则

早在1922年, Haldane指出在两物种杂交产生的后代中, 异配性别(heterozygous sex)的个体缺失、稀少或不育, 如在XY性别决定的物种中, 雄性个体趋于不能成活或不育; 而在ZW性别决定的物种中, 雌性个体趋于不能成活或不育, 这种现象后来被称为霍尔丹法则(Haldane’s Rule)。在霍尔丹法则中异型配子的杂种比同型配子的杂种表达更多的BDMI, 可以认为霍尔丹法则证实了性染色体参与了物种生殖隔离, 揭示其形成机制对于理解物种形成有一定意义。

目前用于解释霍尔丹法则的理论有显性理论、Faster-male理论、Faster-X理论和减数分裂驱动理论(表1)。前两者已有证据证明, 而较少证据证明Faster-X理论和减数分裂驱动理论。Charlesworth等(1987)推测X连锁基因比常染色体基因进化得更快, 并提出Faster-X理论, X染色体上位点(中性)突变率高, 种群间在X位点的分化程度降低; 相反, 常染色体位点上表现出更高水平的遗传分化(Llopart et al, 2018; Moran et al, 2018)。而在减数分裂驱动理论中自私元件在进化生物学中发挥重要作用, 自私地操纵配子的产生以增加自身的传播速率, 并且可能对配子形成、交配系统、种群存活、生殖隔离的进化及BDMI的来源等产生影响(Zhang et al, 2015; Lindholm et al, 2016; Nuckolls et al, 2017; Postel & Touzet, 2020)。

表1   霍尔丹法则形成的相关理论

Table 1  Theories relevant to Haldane’s Rule

假设 Assumption理论 Theory参考文献 Reference
显性理论
Dominance
X染色体含有显性和隐性等位基因, 隐性基因在XY个体上暴露, 产生不育或不成活, 在XX个体中被显性基因掩盖。
The X chromosome has both dominant and recessive alleles. The recessive genes are exposed in XY individuals to produce sterility or infertility but are masked by dominant genes in XX individuals.
Muller, 1942
Faster-male由于精子发生在杂交种中容易受到干扰, 性选择可能使雄性表达的基因比雌性进化得更快, 导致杂交雄性不育比杂交雌性不育更常见。
Spermatogenesis is susceptible to interference in hybrids. Sexual selection could make the genes expressed in males evolve more rapidly than the genes expressed in females. This results in that the hybrid male sterility is more common than the hybrid female sterility.
Wu & Davis, 1993
Faster-X与常染色体相比, X染色体突变率更大, Ka/Ks比值较大。
X chromosome has a greater mutation rate and a larger Ka/Ks ratio than the autosomes.
Charlesworth et al, 1987
减数分裂驱动
Meiotic drive
性染色体在减数分裂时因自私基因干扰, 偏离孟德尔遗传期望比例。
Sex chromosomes deviate from the expected Mendelian ratio during meiosis due to the interference by selfish genes.
Frank, 1991; Hurst & Pomiankowski, 1991

新窗口打开| 下载CSV


霍尔丹法则说明异型性染色体组合(XY)在参与物种形成中的作用要比同型性染色体组合(XX)影响更明显, 即大X染色体效应(large-X effect)。与常染色体基因相比, X(或Z)连锁基因的种间基因流减少, 突显了它们与生殖隔离相关。例如, Höllinger和Hermisson (2017)根据大陆-岛屿模型(存在由大陆向岛屿单一方向基因流), 研究在岛屿群体产生和维持BDMI的条件, 结果表明, 相对于常染色体间或常染色体与线粒体间的BDMI, 参与维持BDMI的X-连锁基因需要较大的迁移范围, 特别是在存在剂量补偿(dosage compensation)的情况下。当存在雄性迁移偏向现象时, 对迁移率的影响进一步增大, 并在X染色体上形成更多的BDMI, 这也与实际观察到的常染色体基因渗入率比X-染色体基因渗入率高的结果一致。

有关植物性染色体在物种形成方面的研究较少, 这主要是由于有关植物性染色体报道较少(Geber et al, 1999)。已报道的文献证明了不同类型的性染色体如何阻碍种间基因流动, 带有性染色体的植物和许多动物一样表现出大X染色体效应, 例如, 具有同型性染色体的杨属(Populus)和柳属(Salix)植物(Ming et al, 2011), 和具有XY(或ZW)异型性染色体的蝇子草属(Silene) (Hu & Filatov, 2016)及裸子植物银杏(Ginkgo biloba) (Liao et al, 2020)。Hu和Filatov (2016)利用全基因组RNA-seq分析证实Silene latifoliaS. dioica种间X染色体基因流要比常染色体上基因流小得多, 间接支持X染色体可能参与种间生殖隔离过程。

3 交配系统驱动或强化物种形成

交配系统通常被认为是合子前隔离障碍之一, 但自交率α可以与配子和合子选择互作来改变群体基因型频率, 从而影响合子后群体遗传组成。交配系统可以通过增大种内群体结构分化与种间基因流障碍影响物种形成, 以下从这两个层次探讨自交或近交如何影响物种形成。

3.1 种内群体结构分化

在经典岛屿模型和混合交配系统下, 张新新等(2019)依据Wright (1969)、Caballlero和Hill (1992)及Hu (2011)的研究结果进行推导, 获得植物群体遗传分化系数为:

${{F}_{st}}=\frac{1}{1+4{{N}_{e}}\left( 1-\frac{1}{2}\alpha \right)\left( {{m}_{S}}+\frac{1}{2}\left( 1-\alpha \right){{m}_{P}} \right)}$

Ne为亚群体有效群体大小, mS为种子流, mP为花粉流。交配系统通过减小有效群体大小$4{{N}_{e}}\left( 1-\alpha /2 \right)$和直接排除外源花粉$\left( 1-\alpha \right){{m}_{P}}/2$来扩大群体遗传结构分化。当群体间存在不同的自然选择模式(如歧化选择)时, 交配系统通过调节迁移临界值以提高迁移覆盖局部适应基因的门槛(Hu, 2011), 进一步加大群体遗传结构分化。

在交配系统向自交或近交演化情况下($\alpha \to 1.0$), 因选择而导致的生殖性状的快速进化,为生殖隔离奠定了遗传基础, 产生了与自交相关的表型性状进化, 即所谓的自交综合征(selfing syndromes)。因此, 自交或近交使得原有的群体遗传结构分化增大, 对研究物种形成过程有重要意义(Wright et al, 2013; Cutter, 2019)。自交综合征的一个普遍特征是, 由于促进异花授粉的性状减少, 导致了传粉综合征(pollination syndromes)相关的基因及相关表型消失(Fornoni et al, 2015)。Crawford等(2019)研究发现, 在格拉西奥萨岛(Graciosa)上的一种菊科植物Tolpis succulenta, 其头状花序较小, 花粉/胚珠比较低, 显示出自交综合征。另一组研究表明报春花属鄂报春组(Primula section Obconicolisteri)中所有同型花柱物种中也出现明显的自交综合征现象, 突出体现在花展示水平、雌雄功能隔离等方面(Zhong et al, 2019)。基因组特征也显示出自交综合征(Shimizu & Tsuchimatsu, 2015), 例如, 连锁不平衡值(linkage disequilibrium, LD)增加, 蛋白编码区内的核苷酸位点遗传多样性及杂合度显著降低, 种内非同义突变位点与同义突变位点多态比率(${{\pi }_{a}}/{{\pi }_{s}}$)高, 种间非同义突变数与同义突变数比率(${{K}_{a}}/{{K}_{s}}$)也高等特点(Cutter, 2019; 李玲玲等, 2021)。这些实际观测结果证明自交综合征增强了种内群体遗传结构分化。

自交综合征的发生有利于形成种间BDMI机制或产生染色体隔离屏障, 因自交率升高使得个体减少异交授粉成功率, 从而强化了合子前障碍(Rausher, 2017)。动植物交配系统向自交或选型交配(assortative mating)演化可强化生殖隔离, Castillo 等(2016)利用模型模拟分析指出这两种交配系统都有利于形成生殖隔离并引发级联物种形成(cascade speciation), 动物线虫和植物沟酸浆属(Mimulus)物种都存在类似的现象。另外, 自交等位基因从同域群体扩散到异域群体也可促进级联物种形成, 因为同域群体自交繁殖阻碍基因流, 扩散后使得不同种群固定相同的自交等位基因, 导致群体间产生合子前隔离(Buide et al, 2015; Palma-Silva et al, 2015)。

一些物种的边缘群体的交配系统演化为自交, 与中心分布群体的异交系统不同(张新新等, 2019), 从而加大边缘群体与中心群体的遗传分化, 减小边缘群体的有效群体大小, 驱动边域物种形成(peripatric speciation)。联系到地理物种形成, 因自交导致的有效群体数(Ne)减小及群体间杂交减小, 进一步强化同域或邻域物种形成。

在动物中, 存在选型交配(即由交配偏好进化出合子前障碍)的选择压力, 增强了同域物种形成机会(Barreto, 2003), 或者在边域物种形成中, 当选型交配完成时, 种群之间没有基因流动, 根据BSC可判定物种形成(Rettelbach et al, 2016)。但也有研究认为交配偏好不是导致物种形成的直接原因, 而是有利于减少基因流动, 增强自然选择功效。Fernandez-Meirama等(2017)研究表明两组不同生态型的滨海腹足动物Littorina saxatilis种群在同域中相遇并交配时, 交配偏好继续维持, 通过稳定的自然选择或交配成本维持种间隔离。

3.2 种间基因流障碍

种间基因渐渗程度反映了两物种的生殖隔离程度, 当两个遗传亲缘关系相近的物种同域或邻域时, 基因渐渗可能发生。假设两物种已形成不同的交配系统, 种间基因渐渗不对称。Hu (2015)从理论上证明, 以自交为主的物种比以异交为主的物种对适应性基因的渐渗有更大的障碍, 由于连锁不平衡, 自交率在中等水平时, 中性的基因流障碍达最大值, 自交与物理障碍和密度制约的生态调节相互作用, 可以增强中性和选择性的基因流障碍, 这些相互作用有助于解释自交驱动或强化物种形成。当自交系统或异质交配系统发生在物种分化之前, 交配系统驱动物种形成, 物种形成后期呈现弱或无基因渐渗; 当自交系统或异质交配系统发生在物种分化后, 如把自交看成是物种生殖隔离的副产品, 分化早期仍存在基因渐渗, 交配系统起到强化物种形成作用(图4), 根据该理论推断有助于分析交配系统在物种形成过程中的作用, 有待实际验证。

图4

图4   交配系统驱动或强化物种形成作用模式

Fig. 4   A hypothetic model where mating system drives or reinforces speciation


长期以来交配系统与种间杂交属于两个相互独立发展的领域, 但两者结合可更好地理解不同交配系统的生殖隔离过程。Pickup等(2019)在自交不亲和(SI)、自交亲和(SC)和雌雄异株(dioecious, D)等不同交配系统的背景下探讨杂交带, 预测在SI × SI系统中, 稀有的等位基因优势可能促进了基因渐渗, 阻碍了群体分化。相比之下, 在SI × SC系统之间向自交和二次接触的过渡可能会产生强大且不对称的障碍。因此, 不同交配系统相互作用有可能直接影响进化谱系之间的基因流动, 并调节了物种形成的速度。Ostevik等(2020)认为在同域中, 由于自交的裂瓣牵牛花(Ipomoea lacunosa)的等位基因渐渗到混合交配系统的三叶牵牛花(I. cordatotrioba), 很可能直接导致三叶牵牛花种群同域和异域间的不亲和性增加, 正如Wright等(2013)强调自交会减少通过花粉返回到异交祖先的基因流动, 以及通过花粉在种群之间的基因流动。基因流的减少有利于隔离因子在种群中积累, 促进物种快速形成。

植物交配系统从异交进化到近交或自交要比反向演化更频繁些(Goodwillie et al, 2005; Charlesworth, 2006), 交配系统本身是动态的, 通常存在自交(α)和异交(1‒α)同时共存的中间状态, 即混合交配系统, 有关混合交配系统的进化稳定性仍有争议(Goodwillie et al, 2005; 胡文昭等, 2019), 该系统采用自交和异交两种策略将亲本基因组传递给后代。在对有花植物的研究中, 尽管高自交或亲缘个体的近交会导致近交衰退等有害的现象, 但是自交的优势在于适应新的栖息地时不依赖外源花粉, 容易打破遗传瓶颈效应从而建立新的居群(Baker, 1967), 以获得更广的分布范围(Hu et al, 2019), 自交通过完全排斥异源花粉阻碍了基因交换, 就自然增加了早期物种形成的机会。这方面已有一些报道(李玲玲等, 2021), 例如, 沟酸浆属植物由异交转变为自交, 驱动了新物种形成(Castillo et al, 2016), 尽管自交物种常分布于系统发育树进化支顶端, 进化分支长度短(Barton et al, 2007)。

4 结论

物种形成是进化生物学研究的一个永恒主题, 阐明物种形成的生态和进化机制对于理解物种概念有重要意义。由于群体进化的连续性, 物种界定有一定的不确定性, 至今已有20多种物种定义, 其共同特征就是定义的物种差异最终源于群体长期形成的遗传分化结果, 这样群体遗传分化是物种定义的遗传基础。本文探讨的内容是基于生殖隔离定义的生物学物种概念展开的。

理论上, 每种基本进化动力(迁移、突变、选择及遗传漂变)都有潜在驱动物种形成的可能, 虽然基于迁移程度划分的同域、邻域及异域地理物种形成模式其合理性仍有争议, 但它提供了一个很好的视角去研究物种形成, 且每种地理模式都可容纳不同进化动力的交互作用, 尽管作用程度不一样。同域物种形成的研究案例较少, 更多的案例是研究邻域物种形成。群体基因组数据的应用有助于揭示不同地理物种形成机制, 寻找生殖隔离障碍位点和选择适应分化位点。已有证据证明处于晚期的同域物种形成是存在的(Osborne et al, 2020), 其机制源于遗传不亲和或对异质环境适应(即生态或栖息地差异)而最终产生生殖隔离。更多的证据表明, 分化种群之间的基因流动对严格异域物种形成定义变得模糊, “天空之岛”种群可能会因为生态位保守性而减少对高海拔栖息地的基因流动, 并以异域的方式遵循分化。此外, 还有避难所假说和河流屏障假说, 这些假说往往低估了生态适应差异对物种形成的作用机制(Sheu et al, 2020)。

分析合子形成不同时期的隔离机制有助于深入理解物种形成过程, 目前利用全基因组分析揭示合子形成前后隔离的遗传基础, 对BDMI产生的3种途径已有深入认识, 包括突变-漂变作用、核基因互作不亲和以及核质基因互作等部分试验证据。一些基于QTL分析发现的多基因位点和基因组中少数的主效位点可以促进稳定的物种形成, 霍尔丹法则和大X染色体效应是性染色体参与物种形成的证据。当适应性基因流动发生在物种形成的过程中时, 限制基因组局部基因流动的障碍位点驱动群体遗传分化。未来更精确和更可靠地识别有关基因流动、歧化选择和生殖隔离的障碍位点是物种形成基因组学所面临的主要挑战。

交配系统作为合子形成前障碍对物种形成起重要作用, 一方面通过降低有效群体大小和减弱外源花粉流途径, 增强种内群体结构分化, 从而强化邻域或同域地理物种形成模式; 另一方面调节种间基因渐渗, 产生不对称或无基因流, 驱动或强化物种形成。自交物种比异交物种具更大的选择性基因流动障碍。已知植物交配系统由异交向自交演化, 花性状和基因组形成自交综合征, 提高了种间生殖隔离程度。尽管有证据支持交配系统可能是物种形成的重要隔离障碍, 但该理论需要更多数据加以验证。

致谢

真诚感谢两位评审人给予的宝贵评审意见。

参考文献

Baker HG (1967)

Support for Baker’s law―As a rule

Evolution, 21, 853-856.

DOI:10.1111/j.1558-5646.1967.tb03440.x      URL     [本文引用: 1]

Baniaga AE, Marx HE, Arrigo N, Barker MS (2020)

Polyploid plants have faster rates of multivariate niche differentiation than their diploid relatives

Ecology Letters, 23, 68-78.

DOI:10.1111/ele.13402      URL     [本文引用: 1]

Bank C, Bürger R, Hermisson J (2012)

The limits to parapatric speciation: Dobzhansky-Muller incompatibilities in a continent-island model

Genetics, 191, 845-863.

DOI:10.1534/genetics.111.137513      URL     [本文引用: 1]

Barnard-Kubow KB, McCoy MA, Galloway LF (2017)

Biparental chloroplast inheritance leads to rescue from cytonuclear incompatibility

New Phytologist, 213, 1466-1476.

DOI:10.1111/nph.14222      PMID:27686577      [本文引用: 2]

Although organelle inheritance is predominantly maternal across animals and plants, biparental chloroplast inheritance has arisen multiple times in the angiosperms. Biparental inheritance has the potential to impact the evolutionary dynamics of cytonuclear incompatibility, interactions between nuclear and organelle genomes that are proposed to be among the earliest types of genetic incompatibility to arise in speciation. We examine the interplay between biparental inheritance and cytonuclear incompatibility in Campanulastrum americanum, a plant species exhibiting both traits. We first determine patterns of chloroplast inheritance in genetically similar and divergent crosses, and then associate inheritance with hybrid survival across multiple generations. There is substantial biparental inheritance in C. americanum. The frequency of biparental inheritance is greater in divergent crosses and in the presence of cytonuclear incompatibility. Biparental inheritance helps to mitigate cytonuclear incompatibility, leading to increased fitness of F hybrids and recovery in the F generation. This study demonstrates the potential for biparental chloroplast inheritance to rescue cytonuclear compatibility, reducing cytonuclear incompatibility's contribution to reproductive isolation and potentially slowing speciation. The efficacy of rescue depended upon the strength of incompatibility, with a greater persistence of weak incompatibilities in later generations. These findings suggest that incompatible plastids may lead to selection for biparental inheritance.© 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

Barreto FS (2003)

Assotative Mating as a Barrier to Gene Flow in a Coral Reef Fish Species Flock

MSc Thesis, University of North Carolina, Wilmington.

[本文引用: 1]

Barringer BC (2007)

Polyploidy and self-fertilization in flowering plants

American Journal of Botany, 94, 1527-1533.

DOI:10.3732/ajb.94.9.1527      PMID:21636519      [本文引用: 1]

Mating systems directly control the transmission of genes across generations, and understanding the diversity and distribution of mating systems is central to understanding the evolution of any group of organisms. This basic idea has been the motivation for many studies that have explored the relationships between plant mating systems and other biological and/or ecological phenomena, including a variety of floral and environmental characteristics, conspecific and pollinator densities, growth form, parity, and genetic architecture. In addition to these examples, a potentially important but poorly understood association is the relationship between plant mating systems and genome duplication, i.e., polyploidy. It is widely held that polyploid plants self-fertilize more than their diploid relatives, yet a formal analysis of this pattern does not exist. Data from 235 species of flowering plants were used to analyze the association between self-fertilization and ploidy. Phylogenetically independent contrasts and cross-species analyses both lend support to the hypothesis that polyploids self-fertilize more than diploids. Because polyploidy and self-fertilization are so common among angiosperms, these results contribute not only to our understanding of the relationship between mating systems and polyploidy in particular, but more generally, to our understanding of the evolution of flowering plants.

Barton NH, Briggs DE, Eisen JA, Goldstein DB, Patel NH (2007) Evolution. Cold Spring Harbor Laboratory Press, New York.

[本文引用: 3]

Barton NH, Charlesworth B (1984)

Genetic revolution, founder effects, and speciation

Annual Review of Ecology and Systematics, 15,133-164.

DOI:10.1146/annurev.es.15.110184.001025      URL     [本文引用: 1]

Bateson W (1909) Heredity and Variation in Modern Lights. Cambridge University Press, Cambridge.

[本文引用: 1]

Berdan EL, Fuller RC, Kozak GM (2021)

Genomic landscape of reproductive isolation in Lucania killifish: The role of sex loci and salinity

Journal of Evolutionary Biology, 34, 157- 174.

DOI:10.1111/jeb.13725      PMID:33118222      [本文引用: 1]

Adaptation to different environments can directly and indirectly generate reproductive isolation between species. Bluefin killifish (Lucania goodei) and rainwater killifish (L. parva) are sister species that have diverged across a salinity gradient and are reproductively isolated by habitat, behavioural, extrinsic and intrinsic post-zygotic isolation. We asked if salinity adaptation contributes indirectly to other forms of reproductive isolation via linked selection and hypothesized that low recombination regions, such as sex chromosomes or chromosomal rearrangements, might facilitate this process. We conducted QTL mapping in backcrosses between L. parva and L. goodei to explore the genetic architecture of salinity tolerance, behavioural isolation and intrinsic isolation. We mapped traits relative to a chromosome that has undergone a centric fusion in L. parva (relative to L. goodei). We found that the sex locus appears to be male determining (XX-XY), was located on the fused chromosome and was implicated in intrinsic isolation. QTL associated with salinity tolerance were spread across the genome and did not overly co-localize with regions associated with behavioural or intrinsic isolation. This preliminary analysis of the genetic architecture of reproductive isolation between Lucania species does not support the hypothesis that divergent natural selection for salinity tolerance led to behavioural and intrinsic isolation as a by-product. Combined with previous studies in this system, our work suggests that adaptation as a function of salinity contributes to habitat isolation and that reinforcement may have contributed to the evolution of behavioural isolation instead, possibly facilitated by linkage between behavioural isolation and intrinsic isolation loci on the fused chromosome.© 2020 The Authors. Journal of Evolutionary Biology published by John Wiley & Sons Ltd on behalf of European Society for Evolutionary Biology.

Bock WJ (1986)

Species concepts, speciation and macroevolution

In: Modern Aspects of Species (eds Lwatsuki K, Raven PK, Bock WJ), pp. 31-57. University of Tokyo Press, Tokyo.

[本文引用: 1]

Bock WJ (2004)

Species: The concept, category and taxon

Journal of Zoological Systematics and Evolutionary Research, 42, 178-190.

DOI:10.1111/j.1439-0469.2004.00276.x      URL     [本文引用: 1]

Bogdanova VS, Kosterin OE, Yadrikhinskiy AK (2014)

Wild peas vary in their cross-compatibility with cultivated pea (Pisum sativum subsp. sativum L.) depending on alleles of a nuclear-cytoplasmic incompatibility locus

Theoretical and Applied Genetics, 127, 1163-1172.

DOI:10.1007/s00122-014-2288-9      PMID:24619163      [本文引用: 1]

Divergent wild and endemic peas differ in hybrid sterility in reciprocal crosses with cultivated pea depending on alleles of a nuclear 'speciation gene' involved in nuclear-cytoplasmic compatibility.In hybrids between cultivated and wild peas, nuclear-cytoplasmic conflict frequently occurs. One of the nuclear genes involved, Scs1, was earlier mapped on Linkage Group III.In reciprocal crosses of seven divergent pea accessions with cultivated P. sativum, some alleles of Scs1 manifested incompatibility with an alien cytoplasm as a decrease in pollen fertility to about 50 % in the heterozygotes and lack of some genotypic classes among F2 segregants. Earlier, we defined monophyletic evolutionary lineages A, B, C and D of pea according to allelic state of three markers, from nuclear, plastid and mitochondrial genomes. All tested representatives of wild peas from the lineages A and C exhibited incompatibility due to Scs1 deleterious effects in crosses with testerlines of P. sativum subsp. sativum (the common cultivated pea) at least in one direction. A wild pea from the lineage B and a cultivated pea from the lineage D were compatible with the testerline in both directions. The tested accession of cultivated P. abyssinicum (lineage A) was partially compatible in both directions. The Scs1 alleles of some pea accessions even originating from the same geographic area were remarkably different in their compatibility with cultivated Pisum sativum cytoplasm.Variability of a gene involved in reproductive isolation is of important evolutionary role and nominate Scs1 as a speciation gene.

Bongaerts P, Riginos C, Brunner R, Englebert N, Smith SR, Hoegh-Guldberg O (2017)

Deep reefs are not universal refuges: Reseeding potential varies among coral species

Science Advances, 3, e1602373.

DOI:10.1126/sciadv.1602373      URL     [本文引用: 1]

Buide ML, del Valle JC, Pissatto M, Narbona E (2015)

Night life on the beach: Selfing to avoid pollinator competition between two sympatric Silene species

Annals of Botany, 116, 201-211.

DOI:10.1093/aob/mcv078      URL     [本文引用: 1]

Butlin RK, Galindo J, Grahame JW (2008)

Sympatric, parapatric or allopatric: The most important way to classify speciation

Philosophical Transactions of the Royal Society of London B: Biological Sciences, 363, 2997-3007.

[本文引用: 1]

Byers KJRP, Darragh K, Fernanda Garza S, Abondano Almeida D, Warren IA, Rastas PMA, Merrill RM, Schulz S, McMillan WO, Jiggins CD (2020)

Clustering of loci controlling species differences in male chemical bouquets of sympatric Heliconius butterflies

Ecology and Evolution, 11, 89-107.

DOI:10.1002/ece3.6947      URL     [本文引用: 1]

Caballero A, Hill WG (1992)

Effective size of nonrandom mating populations

Genetics, 130, 909-916.

DOI:10.1093/genetics/130.4.909      PMID:1582565      [本文引用: 1]

Nonrandom mating whereby parents are related is expected to cause a reduction in effective population size because their gene frequencies are correlated and this will increase the genetic drift. The published equation for the variance effective size, Ne, which includes the possibility of nonrandom mating, does not take into account such a correlation, however. Further, previous equations to predict effective sizes in populations with partial sib mating are shown to be different, but also incorrect. In this paper, a corrected form of these equations is derived and checked by stochastic simulation. For the case of stable census number, N, and equal progeny distributions for each sex, the equation is [formula: see text], where Sk2 is the variance of family size and alpha is the departure from Hardy-Weinberg proportions. For a Poisson distribution of family size (Sk2 = 2), it reduces to Ne = N/(1 + alpha), as when inbreeding is due to selfing. When nonrandom mating occurs because there is a specified system of partial inbreeding every generation, alpha can be substituted by Wright's FIS statistic, to give the effective size as a function of the proportion of inbred mates.

Carleton KL, Escobar-Camacho D, Kocher TD (2019)

Visual adaptation could aid sympatric speciation in a deep crater lake

Molecular Ecology, 28, 5007-5009.

DOI:10.1111/mec.15278      PMID:31749242      [本文引用: 2]

Allopatric speciation was originally suggested to be the primary mechanism of animal speciation (Mayr, 1942; Figure 1). During allopatric speciation, populations diverge when gene flow is reduced across significant biogeographic barriers. Sympatric speciation, where species diverge while inhabiting the same location, was thought to be essentially impossible. However, the advent of theoretical models followed by new experimental evidence made sympatric speciation more plausible (Via, 2001). The cichlid fishes of Barombi Mbo, a small crater lake in western Cameroon, became one of the most widely accepted examples of sympatric speciation (Schliewen, Tautz, & Paabo, 1994). Although the phylogenetic history of this clade is not quite as simple as originally thought, it remains one of the best examples of sympatric speciation (Richards, Poelstra, & Martin, 2018). However, little is known about the molecular mechanisms contributing to the splitting of these species in situ. In a From the Cover article in this issue of Molecular Ecology, Musilova et al. (2019) focus on the diversity of visual systems among these fishes. They identify genetic changes associated with several aspects of visual adaptation that may have contributed to the ecological specialization and sympatric speciation of cichlids in this lake.© 2019 John Wiley & Sons Ltd.

Castillo DM, Gibson AK, Moyle LC (2016)

Assortative mating and self-fertilization differ in their contributions to reinforcement, cascade speciation, and diversification

Current Zoology, 62, 169-181.

DOI:10.1093/cz/zow004      PMID:29491904      [本文引用: 2]

Cascade speciation and reinforcement can evolve rapidly when traits are pleiotropic and act as both signal/cue in nonrandom mating. Here, we examine the contribution of two key traits-assortative mating and self-fertilization-to reinforcement and (by extension) cascade speciation. First, using a population genetic model of reinforcement we find that both assortative mating and self-fertilization can make independent contributions to increased reproductive isolation, consistent with reinforcement. Self-fertilization primarily evolves due to its 2-fold transmission advantage when inbreeding depression () is lower (< 0.45) but evolves as a function of the cost of hybridization under higher inbreeding depression (0.45 << 0.48). When both traits can evolve simultaneously, increased self-fertilization often prohibits the evolution of assortative mating. We infer that, under specific conditions, mating system transitions are more likely to lead to increased reproductive isolation and initiate cascade speciation, than assortative mating. Based on the results of our simulations, we hypothesized that transitions to self-fertilization could contribute to clade-wide diversification if reinforcement or cascade speciation is common. We tested this hypothesis with comparative data from two different groups. Consistent with our hypothesis, there was a trend towards uniparental reproduction being associated with increased diversification rate in the Nematode phylum. For the plant genus, however, self-fertilization was associated with reduced diversification. Reinforcement driving speciation via transitions to self-fertilization might be short lived or unsustainable across macroevolutionary scales in some systems (some plants), but not others (such as nematodes), potentially due to differences in susceptibility to inbreeding depression and/or the ability to transition between reproductive modes.

Charlesworth B, Coyne JA, Barton NH (1987)

The relative rates of evolution of sex chromosomes and autosomes

The American Naturalist, 130, 113-146.

DOI:10.1086/284701      URL     [本文引用: 2]

Charlesworth D (2006)

Evolution of plant breeding systems

Current Biology, 16, R726-R735.

[本文引用: 1]

Cheng X, Li LL, Xiao Y, Chen XY, Hu XS (2020)

Advances in the methods of detecting interspecific gene introgression and their applications

Scientia Sinica Vitae, 50, 1388-1404. (in Chinese with English abstract)

DOI:10.1360/SSV-2020-0126      URL     [本文引用: 1]

[程祥, 李玲玲, 肖钰, 陈晓阳, 胡新生 (2020)

种间基因渐渗检测方法及其应用研究进展

中国科学: 生命科学, 50, 1388-1404.]

[本文引用: 1]

Coyne JA, Orr HA (2004) Speciation. Sinauer Associates, Inc. Sunderland, MA.

[本文引用: 3]

Cracraft J (1983)

Species concepts and speciation analysis

Current Ornithology, 1, 159-187.

[本文引用: 1]

Crawford DJ, Moura M, Borges Silva L, Mort ME, Kerbs B, Schaefer H, Kelly JK (2019) The transition to selfing in Azorean Tolpis (Asteraceae). Plant Systematics and Evolution, 305, 305-317.

[本文引用: 1]

Crespi B, Nosil P (2013)

Conflictual speciation: Species formation via genomic conflict

Trends in Ecology & Evolution, 28, 48-57.

DOI:10.1016/j.tree.2012.08.015      URL     [本文引用: 1]

Cutter AD (2019)

Reproductive transitions in plants and animals: Selfing syndrome, sexual selection and speciation

New Phytologist, 224, 1080-1094.

DOI:10.1111/nph.16075      PMID:31336389      [本文引用: 3]

The evolution of predominant self-fertilisation frequently coincides with the evolution of a collection of phenotypes that comprise the 'selfing syndrome', in both plants and animals. Genomic features also display a selfing syndrome. Selfing syndrome traits often involve changes to male and female reproductive characters that were subject to sexual selection and sexual conflict in the obligatorily outcrossing ancestor, including the gametic phase for both plants and animals. Rapid evolution of reproductive traits, due to both relaxed selection and directional selection under the new status of predominant selfing, lays the genetic groundwork for reproductive isolation. Consequently, shifts in sexual selection pressures coupled to transitions to selfing provide a powerful paradigm for investigating the speciation process. Plant and animal studies, however, emphasise distinct selective forces influencing reproductive-mode transitions: genetic transmission advantage to selfing or reproductive assurance outweighing the costs of inbreeding depression vs the costs of males and meiosis. Here, I synthesise links between sexual selection, evolution of selfing and speciation, with particular focus on identifying commonalities and differences between plant and animal systems and pointing to areas warranting further synergy.© 2019 The Author. New Phytologist © 2019 New Phytologist Trust.

Deitz KC, Takken W, Slotman MA (2020)

The genetic architecture of post-zygotic reproductive isolation between Anopheles coluzzii and A. quadriannulatus

Frontiers in Genetics, 11, 925.

DOI:10.3389/fgene.2020.00925      URL     [本文引用: 1]

Dobzhansky T (1937) Genetics and the Origin of Species. Columbia University Press, New York.

[本文引用: 1]

Dong F, Li SH, Chiu CC, Dong L, Yao CT, Yang XJ (2020)

Strict allopatric speciation of sky island Pyrrhula erythaca species complex

Molecular Phylogenetics and Evolution, 153, 106941.

DOI:10.1016/j.ympev.2020.106941      URL     [本文引用: 1]

Esfeld K, Berardi AE, Moser M, Bossolini E, Freitas L, Kuhlemeier C (2018)

Pseudogenization and resurrection of a speciation gene

Current Biology, 28, 3776-3786.

DOI:10.1016/j.cub.2018.10.019      [本文引用: 1]

A persistent question in evolutionary biology is how complex phenotypes evolve and whether phenotypic transitions are reversible. Multiple losses of floral pigmentation have been documented in the angiosperms, but color re-gain has not yet been described, supporting that re-gain is unlikely. Pollinator-mediated selection in Petunia has resulted in several color shifts comprised of both losses and gains of color. The R2R3-MYB transcription factor AN2 has been identified as a major locus responsible for shifts in pollinator preference. Whereas the loss of visible color has previously been attributed to repeated pseudogenization of AN2, here, we describe the mechanism of an independent re-gain of floral color via AN2 evolution. In P. secreta, purple color is restored through the improbable resurrection of AN2 gene function from a non-functional AN2-ancestor by a single reading-frame-restoring mutation. Thus, floral color evolution in Petunia is mechanistically dependent on AN2 functionality, highlighting its role as a hotspot in color transitions and a speciation gene for the genus.

Feliner GN, Álvarez I, Fuertes-Aguilar J, Heuertz M, Marques I, Moharrek F, Piñeiro R, Riina R, Rosselló JA, Soltis PS, Villa-Machío I (2017)

Is homoploid hybrid speciation that rare? An empiricist’s view

Heredity, 118, 513-516.

DOI:10.1038/hdy.2017.7      PMID:28295029      [本文引用: 1]

Fernández-Meirama M, Carvajal-Rodríguez A, Rolán-Alvarez E (2017)

Testing the role of mating preference in a case of incomplete ecological speciation with gene flow

Biological Journal of the Linnean Society, 122, 549-557.

DOI:10.1093/biolinnean/blx107      URL     [本文引用: 1]

Foote AD (2018)

Sympatric speciation in the genomic era

Trends in Ecology & Evolution, 33, 85-95.

DOI:10.1016/j.tree.2017.11.003      URL     [本文引用: 1]

Fornoni J, Ordano M, Pérez-Ishiwara R, Boege K, Domínguez CA (2015)

A comparison of floral integration between selfing and outcrossing species: A meta-analysis

Annals of Botany, 117, 299-306.

[本文引用: 1]

Frank SA (1991)

Divergence of meiotic drive-suppression systems as an explanation for sex-biased hybrid sterility and inviability

Evolution, 45, 262.

[本文引用: 1]

Freeland JR, Kirk H, Petersen S (2011)

Molecular Ecology

John Wiley & Sons, Chichester.

[本文引用: 1]

Futuyma DJ, Mayer GC (1980)

Non-allopatric speciation in animals

Systematic Biology, 29, 254-271.

DOI:10.1093/sysbio/29.3.254      URL     [本文引用: 1]

Gao YD, Gao XF, Harris A (2019)

Species boundaries and parapatric speciation in the complex of alpine shrubs, Rosa sericea (Rosaceae), based on population genetics and ecological tolerances

Frontiers in Plant Science, 10, 321.

DOI:10.3389/fpls.2019.00321      URL     [本文引用: 1]

Gavrilets S (2000) Waiting time to parapatric speciation. Proceedings of the Royal Society B: Biological Sciences, 267, 2483-2492.

[本文引用: 1]

Gavrilets S (2003)

Models of speciation: What have we learned in 40 years

Evolution, 57, 2197-2215.

PMID:14628909      [本文引用: 7]

Theoretical studies of speciation have been dominated by numerical simulations aiming to demonstrate that speciation in a certain scenario may occur. What is needed now is a shift in focus to identifying more general rules and patterns in the dynamics of speciation. The crucial step in achieving this goal is the development of simple and general dynamical models that can be studied not only numerically but analytically as well. I review some of the existing analytical results on speciation. I first show why the classical theories of speciation by peak shifts across adaptive valleys driven by random genetic drift run into trouble (and into what kind of trouble). Then I describe the Bateson-Dobzhansky-Muller (BDM) model of speciation that does not require overcoming selection. I describe exactly how the probability of speciation, the average waiting time to speciation, and the average duration of speciation depend on the mutation and migration rates, population size, and selection for local adaptation. The BDM model postulates a rather specific genetic architecture of reproductive isolation. I then show exactly why the genetic architecture required by the BDM model should be common in general. Next I consider the multilocus generalizations of the BDM model again concentrating on the qualitative characteristics of speciation such as the average waiting time to speciation and the average duration of speciation. Finally, I consider two models of sympatric speciation in which the conditions for sympatric speciation were found analytically. A number of important conclusions have emerged from analytical studies. Unless the population size is small and the adaptive valley is shallow, the waiting time to a stochastic transition between the adaptive peaks is extremely long. However, if transition does happen, it is very quick. Speciation can occur by mutation and random drift alone with no contribution from selection as different populations accumulate incompatible genes. The importance of mutations and drift in speciation is augmented by the general structure of adaptive landscapes. Speciation can be understood as the divergence along nearly neutral networks and holey adaptive landscapes (driven by mutation, drift, and selection for adaptation to a local biotic and/or abiotic environment) accompanied by the accumulation of reproductive isolation as a by-product. The waiting time to speciation driven by mutation and drift is typically very long. Selection for local adaptation (either acting directly on the loci underlying reproductive isolation via their pleiotropic effects or acting indirectly via establishing a genetic barrier to gene flow) can significantly decrease the waiting time to speciation. In the parapatric case the average actual duration of speciation is much shorter than the average waiting time to speciation. Speciation is expected to be triggered by changes in the environment. Once genetic changes underlying speciation start, they go to completion very rapidly. Sympatric speciation is possible if disruptive selection and/or assortativeness in mating are strong enough. Sympatric speciation is promoted if costs of being choosy are small (or absent) and if linkage between the loci experiencing disruptive selection and those controlling assortative mating is strong.

Geber MA, Dawson TE, Delph LF (1999) Gender and Sexual Dimorphism in Flowering Plants. Springer, Berlin.

[本文引用: 1]

Goodwillie C, Kalisz S, Eckert CG (2005)

The evolutionary Enigma of mixed mating systems in plants: Occurrence, theoretical explanations, and empirical evidence

Annual Review of Ecology, Evolution, and Systematics, 36, 47-79.

DOI:10.1146/annurev.ecolsys.36.091704.175539      URL     [本文引用: 2]

Haffer J (1969)

Speciation in amazonian forest birds

Science, 165, 131-137.

PMID:17834730      [本文引用: 1]

Haldane JBS (1922)

Sex ratio and unisexual sterility in hybrid animals

Journal of Genetics, 12, 101-109.

DOI:10.1007/BF02983075      URL    

Hänniger S, Dumas P, Schöfl G, Gebauer-Jung S, Vogel H, Unbehend M, Heckel DG, Groot AT (2017)

Genetic basis of allochronic differentiation in the fall armyworm

BMC Evolutionary Biology, 17, 68.

DOI:10.1186/s12862-017-0911-5      PMID:28264650      [本文引用: 1]

Background: Very little is known on how changes in circadian rhythms evolve. The noctuid moth Spodoptera frugiperda (Lepidoptera: Noctuidae) consists of two strains that exhibit allochronic differentiation in their mating time, which acts as a premating isolation barrier between the strains. We investigated the genetic basis of the strain-specific timing differences to identify the molecular mechanisms of differentiation in circadian rhythms.Results: Through QTL analyses we identified one major Quantitative trait chromosome (QTC) underlying differentiation in circadian timing of mating activity. Using RADtags, we identified this QTC to be homologous to Bombyx mori C27, on which the clock gene vrille is located, which thus became the major candidate gene. In S. frugiperda, vrille showed strain-specific polymorphisms. Also, vrille expression differed significantly between the strains, with the rice-strain showing higher expression levels than the corn-strain. In addition, RT-qPCR experiments with the other main clock genes showed that pdp1, antagonist of vrille in the modulatory feedback loop of the circadian clock, showed higher expression levels in the rice-strain than in the corn-strain.Conclusions: Together, our results indicate that the allochronic differentiation in the two strains of S. frugiperda is associated with differential transcription of vrille or a cis-acting gene close to vrille, which contributes to the evolution of prezygotic isolation in S. frugiperda.

Hong DY (2020)

Gen-morph species concept—A new and integrative species concept for outbreeding organisms

Journal of Systematics and Evolution, 58, 725-742.

DOI:10.1111/jse.12660      URL     [本文引用: 1]

Höllinger I, Hermisson J (2017)

Bounds to parapatric speciation: A Dobzhansky-Muller incompatibility model involving autosomes, X chromosomes, and mitochondria

Evolution, 71, 1366-1380.

DOI:10.1111/evo.13223      PMID:28272742      [本文引用: 1]

We investigate the conditions for the origin and maintenance of postzygotic isolation barriers, so called (Bateson-)Dobzhansky-Muller incompatibilities or DMIs, among populations that are connected by gene flow. Specifically, we compare the relative stability of pairwise DMIs among autosomes, X chromosomes, and mitochondrial genes. In an analytical approach based on a continent-island framework, we determine how the maximum permissible migration rates depend on the genomic architecture of the DMI, on sex bias in migration rates, and on sex-dependence of allelic and epistatic effects, such as dosage compensation. Our results show that X-linkage of DMIs can enlarge the migration bounds relative to autosomal DMIs or autosome-mitochondrial DMIs, in particular in the presence of dosage compensation. The effect is further strengthened with male-biased migration. This mechanism might contribute to a higher density of DMIs on the X chromosome (large X-effect) that has been observed in several species clades. Furthermore, our results agree with empirical findings of higher introgression rates of autosomal compared to X-linked loci.© 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

Hu WZ, Zhao JM, Zhang YW (2019)

Fitness advantage and maintenance mechanisms of dimorphic mixed mating plants

Biodiversity Science, 27, 468-474. (in Chinese with English abstract)

DOI:10.17520/biods.2019002      URL     [本文引用: 2]

[胡文昭, 赵骥民, 张彦文 (2019)

二态混合交配系统的适合度优势及其维持机制研究进展

生物多样性, 27, 468-474.]

DOI:10.17520/biods.2019002      [本文引用: 2]

由开花受精花(chasmogamous, CH)和闭花受精花(cleistogamous, CL)构成的二态混合交配系统植物有着特殊的繁殖策略, 对其进行深入研究有助于理解植物交配系统的维持机制、进化趋势以及植物对环境变化的应对策略。本文综述了国内外关于CH-CL系统两型花研究的文献资料, 包括非生物因素和生物因素对该繁育系统两型花的生长、发育及相对比例的影响, 两型花的维持机制及进化意义, 阐明了CH-CL系统的研究现状及科学问题, 重点评述了基于近年来对CH-CL系统研究成果的新认识。作者提出, 精确地检测两种花型的后代在异质生境下以及在生活史的不同阶段的适合度差异是十分必要的; 微环境(种子的散布模式及位置效应)对两型花种子萌发和子代生长发育的影响非常重要; 两型花表达的时空差异(即开花模式及对异质生境的敏感性差异)的表达机制可能与内源激素的水平变化相关; 对于多年生具CL系统植物来说, 不同性质、不同来源的后代在居群中的分布式样及对居群遗传结构的影响很可能是该系统维持的重要机制。因此, 深入研究和科学认识二态混合交配系统对认识整个植物界繁育系统的进化有十分重要的意义。

Hu XS (2005)

Tension versus ecological zones in a two-locus system

Theoretical Population Biology, 68, 119-131.

DOI:10.1016/j.tpb.2005.02.003      URL     [本文引用: 1]

Hu XS (2011)

Mating system and the critical migration rate for swamping selection

Genetics Research, 93, 233-254.

DOI:10.1017/S0016672311000127      URL     [本文引用: 2]

Hu XS (2015)

Mating system as a barrier to gene flow

Evolution, 69, 1158-1177.

DOI:10.1111/evo.12660      URL     [本文引用: 2]

Hu XS, Filatov DA (2016)

The large-X effect in plants: Increased species divergence and reduced gene flow on the Silene X-chromosome

Molecular Ecology, 25, 2609-2619.

DOI:10.1111/mec.13427      URL     [本文引用: 2]

Hu XS, Zhang XX, Zhou W, Hu Y, Wang X, Chen XY (2019)

Mating system shifts a species’ range

Evolution, 73, 158-174.

DOI:10.1111/evo.13663      URL    

Hurst LD, Pomiankowski A (1991)

Causes of sex ratio bias may account for unisexual sterility in hybrids: A new explanation of Haldane’s Rule and related phenomena

Genetics, 128, 841-858.

DOI:10.1093/genetics/128.4.841      PMID:1916248      [本文引用: 1]

Unisexual hybrid disruption can be accounted for by interactions between sex ratio distorters which have diverged in the species of the hybrid cross. One class of unisexual hybrid disruption is described by Haldane's rule, namely that the sex which is absent, inviable or sterile is the heterogametic sex. This effect is mainly due to incompatibility between X and Y chromosomes. We propose that this incompatibility is due to a mutual imbalance between meiotic drive genes, which are more likely to evolve on sex chromosomes than autosomes. The incidences of taxa with sex chromosome drive closely matches those where Haldane's rule applies: Aves, Mammalia, Lepidoptera and Diptera. We predict that Haldane's rule is not universal but is correct for taxa with sex chromosome meiotic drive. A second class of hybrid disruption affects the male of the species regardless of which sex is heterogametic. Typically the genes responsible for this form of disruption are cytoplasmic. These instances are accounted for by the release from suppression of cytoplasmic sex ratio distorters when in a novel nuclear cytotype. Due to the exclusively maternal transmission of cytoplasm, cytoplasmic sex ratio distorters cause only female-biased sex ratios. This asymmetry explains why hybrid disruption is limited to the male.

Jewell CP, Zhang SV, Gibson MJS, Tovar-Méndez A, McClure B, Moyle LC (2020)

Intraspecific genetic variation underlying postmating reproductive barriers between species in the wild tomato clade (Solanum sect

Lycopersicon). Journal of Heredity, 111, 216-226.

[本文引用: 1]

Jordan CY, Ally D, Hodgins KA (2015)

When can stress facilitate divergence by altering time to flowering

Ecology and Evolution, 5, 5962-5973.

DOI:10.1002/ece3.1821      URL     [本文引用: 1]

Kautt AF, Kratochwil CF, Nater A, Machado-Schiaffino G, Olave M, Henning F, Torres-Dowdall J, Härer A, Hulsey CD, Franchini P, Pippel M, Myers EW, Meyer A (2020)

Contrasting signatures of genomic divergence during sympatric speciation

Nature, 588, 106-111.

DOI:10.1038/s41586-020-2845-0      URL     [本文引用: 2]

Knowles LL (2000)

Tests of Pleistocene speciation in montane grasshoppers (genus Melanoplus) from the sky islands of western North America

Evolution, 54, 1337-1348.

PMID:11005300      [本文引用: 1]

There has a been a resurgence of debate on whether the Pleistocene glaciations inhibited speciation. This study tests a model of Pleistocene speciation, estimating the phylogenetic relationships and divergence times of 10 species of montane grasshoppers, genus Melanoplus, using 1300 bp of the mitochondrial gene cytochrome oxidase I (COI). Based on average pairwise distances (corrected for multiple substitutions using Kimura's two-parameter model), all species appear to have originated within the Pleistocene. Sequence divergences between species are less than 4%, corresponding to divergence times less than 1.7 million years ago. Branching patterns among the species suggest that speciation was associated with more than one glacial-interglacial cycle. A likelihood-ratio test rejected a model of simultaneous species origins, the predicted branching pattern if species arose from the fragmentation of a widespread ancestor. These grasshoppers live in an area that was previously glaciated and, as inhabitants of the northern Rocky Mountain sky islands, underwent latitudinal and probably altitudinal shifts in distribution in response to climatic fluctuations. Given the repeated distributional shifts and range overlap of the taxa, there most likely has been ample opportunity for population mixing. However, despite periodic glacial cycles, with more than 10 major glaciations over the past million years and climatic fluctuations over as short a time scale as 10(3) to 10(4) years, the dynamic history of the Pleistocene did not preclude speciation. Although relationships among some taxa remain unresolved, these grasshopper species, even with their recent origins, exhibit genetic coherence and monophyletic or paraphyletic gene trees. The frequency of glacial cycles suggests that the speciation process must have been extremely rapid. These species of grasshoppers are morphologically very similar, differing primarily in the shape of the male genitalia. These characters are posited to be under sexual selection, may play an important role in reproductive isolation, and are known to diverge rapidly. This suggests the rapidity of evolution of reproductive isolation may determine whether species divergences occurred during the Pleistocene glaciations.

Kohlmann B, Arriaga-Jiménez A, Rös M (2018) Dung beetle vicariant speciation in the mountains of Oaxaca, Mexico, with a description of a new species of Phanaeus (Coleoptera, Geotrupidae, Scarabaeidae). ZooKeys, (743), 67-93.

[本文引用: 2]

Li LL, Wang X, Xiao Y, Cheng X, Chen XY, Hu XS (2021)

On the theories of plant mating system and molecular evolution and their applications

Scientia Sinica Vitae, 51, doi: 10.1360/SSV-2021-0106. (in Chinese with English abstract)

[本文引用: 2]

[李玲玲, 王茜, 肖钰, 程祥, 陈晓阳, 胡新生 (2021)

植物交配系统与分子进化理论及其应用研究

中国科学: 生命科学, 51, doi: 10.1360/SSV-2021-0106.]

[本文引用: 2]

Liao Q, Du R, Gou J, Guo L, Shen H, Liu H, Nguyen JK, Ming R, Yin T, Huang S, Yan J (2020)

The genomic architecture of the sex-determining region and sex-related metabolic variation in Ginkgo biloba

The Plant Journal, 104, 1399- 1409.

DOI:10.1111/tpj.15009      URL     [本文引用: 1]

Lindholm AK, Dyer KA, Firman RC, Fishman L, Forstmeier W, Holman L, Johannesson H, Knief U, Kokko H, Larracuente AM, Manser A, Montchamp-Moreau C, Petrosyan VG, Pomiankowski A, Presgraves DC, Safronova LD, Sutter A, Unckless RL, Verspoor RL, Wedell N, Wilkinson GS, Price TAR (2016)

The ecology and evolutionary dynamics of meiotic drive

Trends in Ecology & Evolution, 31, 315-326.

DOI:10.1016/j.tree.2016.02.001      URL     [本文引用: 2]

Llopart A, Brud E, Pettie N, Comeron JM (2018)

Support for the dominance theory in Drosophila transcriptomes

Genetics, 210, 703-718.

DOI:10.1534/genetics.118.301229      PMID:30131345      [本文引用: 1]

Interactions among divergent elements of transcriptional networks from different species can lead to misexpression in hybrids through regulatory incompatibilities, some with the potential to generate sterility. While the possible contribution of faster-male evolution to this misexpression has been explored, the role of the hemizygous chromosome (, the dominance theory for transcriptomes) remains yet to be determined. Here, we study genome-wide patterns of gene expression in females and males of, and their hybrids. We used attached-X stocks to specifically test the dominance theory, and we uncovered a significant contribution of recessive alleles on the chromosome to hybrid misexpression. Our analyses also suggest a contribution of weakly deleterious regulatory mutations to gene expression divergence in genes with sex-biased expression, but only in the sex toward which the expression is biased (, genes with female-biased expression when analyzed in females). In the opposite sex, we found stronger selective constraints on gene expression divergence. Although genes with a high degree of male-biased expression show a clear signal of faster-X evolution of gene expression, we also detected slower-X evolution in other gene classes (, female-biased genes). This slower-X effect is mediated by significant decreases in - and -regulatory divergence. The distinct behavior of X-linked genes with a high degree of male-biased expression is consistent with these genes experiencing a higher incidence of positively selected regulatory mutations than their autosomal counterparts.Copyright © 2018 Llopart et al.

Lu Y, Hokin SA, Kermicle JL, Hartwig T, Evans MMS (2019)

A pistil-expressed pectin methylesterase confers cross-incompatibility between strains of Zea mays

Nature Communications, 10, 2304.

DOI:10.1038/s41467-019-10259-0      URL     [本文引用: 2]

Mayr E (1942) Systematics and the Origin of Species. Columbia University Press, New York.

[本文引用: 2]

Ming R, Bendahmane A, Renner SS (2011)

Sex chromosomes in land plants

Annual Review of Plant Biology, 62, 485- 514.

DOI:10.1146/annurev-arplant-042110-103914      PMID:21526970      [本文引用: 1]

Sex chromosomes in land plants can evolve as a consequence of close linkage between the two sex determination genes with complementary dominance required to establish stable dioecious populations, and they are found in at least 48 species across 20 families. The sex chromosomes in hepatics, mosses, and gymnosperms are morphologically heteromorphic. In angiosperms, heteromorphic sex chromosomes are found in at least 19 species from 4 families, while homomorphic sex chromosomes occur in 20 species from 13 families. The prevalence of the XY system found in 44 out of 48 species may reflect the predominance of the evolutionary pathway from gynodioecy towards dioecy. All dioecious species have the potential to evolve sex chromosomes, and reversions back from dioecy to various forms of monoecy, gynodioecy, or androdioecy have also occurred. Such reversals may occur especially during the early stages of sex chromosome evolution before the lethality of the YY (or WW) genotype is established.

Moison M, Roux F, Quadrado M, Duval R, Ekovich M, DH, Verzaux M, Budar F (2010)

Cytoplasmic phylogeny and evidence of cyto-nuclear co-adaptation in Arabidopsis thaliana

The Plant Journal, 63, 728-738.

DOI:10.1111/j.1365-313X.2010.04275.x      URL     [本文引用: 1]

Moran PA, Pascoal S, Cezard T, Risse JE, Ritchie MG, Bailey NW (2018)

Opposing patterns of intraspecific and interspecific differentiation in sex chromosomes and autosomes

Molecular Ecology, 27, 3905-3924.

DOI:10.1111/mec.14725      URL     [本文引用: 1]

Muller HJ (1942)

Isolating mechanisms, evolution, and temperature

Biology Symposium, 6, 71-125.

[本文引用: 2]

Nieto-Lugilde M, Werner O, McDaniel SF, Koutecký P, Kčera J, Rizk SM, Ros RM (2018)

Peripatric speciation associated with genome expansion and female-biased sex ratios in the moss genus Ceratodon

American Journal of Botany, 105, 1009-1020.

DOI:10.1002/ajb2.1107      PMID:29957852      [本文引用: 1]

A period of allopatry is widely believed to be essential for the evolution of reproductive isolation. However, strict allopatry may be difficult to achieve in some cosmopolitan, spore-dispersed groups, like mosses. We examined the genetic and genome size diversity in Mediterranean populations of the moss Ceratodon purpureus s.l. to evaluate the role of allopatry and ploidy change in population divergence.We sampled populations of the genus Ceratodon from mountainous areas and lowlands of the Mediterranean region, and from Western and Central Europe. We performed phylogenetic and coalescent analyses on sequences from five nuclear introns and a chloroplast locus to reconstruct their evolutionary history. We also estimated genome size using flow cytometry (employing propidium iodide) and determined the sex of samples using a sex-linked PCR marker.Two well-differentiated clades were resolved, discriminating two homogeneous groups: the widespread C. purpureus and a local group mostly restricted to the mountains in Southern Spain. The latter also possessed a genome size 25% larger than the widespread C. purpureus, and the samples of this group consist entirely of females. We also found hybrids, and some of them had a genome size equivalent to the sum of the C. purpureus and Spanish genome, suggesting that they arose by allopolyploidy.These data suggest that a new species of Ceratodon arose via peripatric speciation, potentially involving a genome size change and a strong female-biased sex ratio. The new species has hybridized in the past with C. purpureus.© 2018 Botanical Society of America.

Nuckolls NL, Núñez MAB, Eickbush MT, Young JM, Lange JJ, Yu JS, Smith GR, Jaspersen SL, Malik HS, Zanders SE (2017)

wtf genes are prolific dual poison-antidote meiotic drivers

eLife, 6, e26033.

DOI:10.7554/eLife.26033      URL     [本文引用: 2]

Orr HA, Orr LH (1996)

Waiting for speciation: The effect of population subdivision on the time to speciation

Evolution, 50, 1742.

DOI:10.1111/j.1558-5646.1996.tb03561.x      URL     [本文引用: 1]

Orr HA, Turelli M (2001)

The evolution of postzygotic isolation: Accumulating Dobzhansky-Muller incompatibilities

ACS Applied Materials & Interfaces, 55, 1085-1094.

[本文引用: 1]

Osborne OG, Kafle T, Brewer T, Dobreva MP, Hutton I, Savolainen V (2020)

Sympatric speciation in mountain roses (Metrosideros) on an oceanic island

Philosophical Transactions of the Royal Society of London B: Biological Sciences, 375, 20190542.

[本文引用: 2]

Ostevik KL, Rifkin JL, Xia HH, Rausher MD (2020)

Morning glory species co-occurrence is associated with asymmetrically decreased and cascading reproductive isolation

Evolution Letters, 5, 75-85.

DOI:10.1002/evl3.205      URL     [本文引用: 1]

Palma-Silva C, Cozzolino S, Paggi GM, Lexer C, Wendt T (2015)

Mating system variation and assortative mating of sympatric bromeliads (Pitcairnia spp.) endemic to neotropical inselbergs

American Journal of Botany, 102, 758-764.

DOI:10.3732/ajb.1400513      PMID:26022489      [本文引用: 1]

The mating system is an important component of the complex set of reproductive isolation barriers causing plant speciation. However, empirical evidence showing that the mating system may promote reproductive isolation in co-occurring species is limited. The mechanisms by which the mating system can act as a reproductive isolation barrier are also largely unknown.Here we studied progeny arrays genotyped with microsatellites and patterns of stigma-anther separation (herkogamy) to understand the role of mating system shifts in promoting reproductive isolation between two hybridizing taxa with porous genomes, Pitcairnia albiflos and P. staminea (Bromeliaceae).In P. staminea, we detected increased selfing and reduced herkogamy in one sympatric relative to two allopatric populations, consistent with mating system shifts in sympatry acting to maintain the species integrity of P. staminea when in contact with P. albiflos.Mating system variation is a result of several factors acting simultaneously in these populations. We report mating system shifts as one possible reproductive barrier between these species, acting in addition to numerous other prezygotic (i.e., flower phenology and pollination syndromes) and postzygotic barriers (Bateson-Dobzhansky-Muller genetic incompatibilities).© 2015 Botanical Society of America, Inc.

Pickup M, Brandvain Y, Fraïsse C, Yakimowski S, Barton NH, Dixit T, Lexer C, Cereghetti E, Field DL (2019)

Mating system variation in hybrid zones: Facilitation, barriers and asymmetries to gene flow

New Phytologist, 224, 1035-1047.

DOI:10.1111/nph.16180      URL     [本文引用: 2]

Pirani RM, Peloso PLV, Prado JR, Polo ÉM, Knowles LL, Ron SR, Rodrigues MT, Sturaro MJ, Werneck FP (2020) Diversification history of clown tree frogs in Neotropical rainforests (Anura, Hylidae, Dendropsophus leucophyllatus group). Molecular Phylogenetics and Evolution, 150, 106877.

[本文引用: 1]

Postel Z, Touzet P (2020)

Cytonuclear genetic incompatibilities in plant speciation

Plants, 9, 487.

DOI:10.3390/plants9040487      URL     [本文引用: 2]

Presgraves DC (2010)

The molecular evolutionary basis of species formation

Nature Reviews Genetics, 11, 175-180.

DOI:10.1038/nrg2718      PMID:20051985      [本文引用: 1]

All plant and animal species arise by speciation - the evolutionary splitting of one species into two reproductively incompatible species. But until recently our understanding of the molecular genetic details of speciation was slow in coming and largely limited to Drosophila species. Here, I review progress in determining the molecular identities and evolutionary histories of several new 'speciation genes' that cause hybrid dysfunction between species of yeast, flies, mice and plants. The new work suggests that, surprisingly, the first steps in the evolution of hybrid dysfunction are not necessarily adaptive.

Rangel TF, Edwards NR, Holden PB, Diniz-Filho JAF, Gosling WD, Coelho MTP, Cassemiro FAS, Rahbek C, Colwell RK (2018)

Modeling the ecology and evolution of biodiversity: Biogeographical cradles, museums, and graves

Science, 361, eaar5452.

DOI:10.1126/science.aar5452      URL     [本文引用: 1]

Rausher MD (2017)

Selfing, local mate competition, and reinforcement

The American Naturalist, 189, 87-104.

DOI:10.1086/690009      PMID:28107056      [本文引用: 1]

Reinforcement can contribute to speciation by increasing the strength of prezygotic isolating mechanisms. Theoretical analyses over the past two decades have demonstrated that conditions for reinforcement are not unduly restrictive, and empirical investigations have documented over a dozen likely cases, indicating that it may be a reasonably common phenomenon in nature. Largely uncharacterized, however, is the diversity of biological scenarios that can create the reduced hybrid fitness that drives reinforcement. Here I examine one such scenario-the evolution of the "selfing syndrome" (a suite of characters including reductions in flower size and in nectar, pollen, and scent production) in highly selfing plant species. Using a four-locus model, where the loci are (1) a discrimination locus, (2) a target-of-discimination locus, (3) a pollen-production locus, and (4) a selfing-rate locus, I determine the conditions under which this syndrome can favor reinforcement, an increase in discrimination through change at locus 1, in an outcrossing species that experiences gene flow from a highly selfing species. In the absence of both linkage disequilibrium between loci and pollen discounting, reinforcement can occur, but only in a very small fraction of the parameter combinations examined. Moderate linkage ([Formula: see text]) between one pair of loci increases this fraction moderately, depending on which two loci are linked. Pollen discounting (a reduction in pollen exported to other plants due to increased selfing), by contrast, can increase the fraction of parameter combinations that result in reinforcement substantially. The evolution of reduced pollen production in highly selfing species thus facilitates reinforcement, especially if substantial pollen discounting is associated with selfing.

Ravinet M, Faria R, Butlin RK, Galindo J, Bierne N, Rafajlović M, Noor MAF, Mehlig B, Westram AM (2017)

Interpreting the genomic landscape of speciation: A road map for finding barriers to gene flow

Journal of Evolutionary Biology, 30, 1450-1477.

DOI:10.1111/jeb.13047      PMID:28786193      [本文引用: 1]

Speciation, the evolution of reproductive isolation among populations, is continuous, complex, and involves multiple, interacting barriers. Until it is complete, the effects of this process vary along the genome and can lead to a heterogeneous genomic landscape with peaks and troughs of differentiation and divergence. When gene flow occurs during speciation, barriers restricting gene flow locally in the genome lead to patterns of heterogeneity. However, genomic heterogeneity can also be produced or modified by variation in factors such as background selection and selective sweeps, recombination and mutation rate variation, and heterogeneous gene density. Extracting the effects of gene flow, divergent selection and reproductive isolation from such modifying factors presents a major challenge to speciation genomics. We argue one of the principal aims of the field is to identify the barrier loci involved in limiting gene flow. We first summarize the expected signatures of selection at barrier loci, at the genomic regions linked to them and across the entire genome. We then discuss the modifying factors that complicate the interpretation of the observed genomic landscape. Finally, we end with a road map for future speciation research: a proposal for how to account for these modifying factors and to progress towards understanding the nature of barrier loci. Despite the difficulties of interpreting empirical data, we argue that the availability of promising technical and analytical methods will shed further light on the important roles that gene flow and divergent selection have in shaping the genomic landscape of speciation.© 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

Rettelbach A, Servedio MR, Hermisson J (2016)

Speciation in peripheral populations: Effects of drift load and mating systems

Journal of Evolutionary Biology, 29, 1073-1090.

DOI:10.1111/jeb.12849      PMID:26929184      [本文引用: 1]

Speciation in peripheral populations has long been considered one of the most plausible scenarios for speciation with gene flow. In this study, however we identify two additional problems of peripatric speciation, as compared to the parapatric case, that may impede the completion of the speciation process for most parameter regions. First, with (predominantly) unidirectional gene flow, there is no selection pressure to evolve assortative mating on the continent. We discuss the implications of this for different mating schemes. Second, genetic load can build up in small populations. This can lead to extinction of the peripheral species, or generate selection pressure for lower assortative mating to avoid inbreeding. In this case, either a stable equilibrium with intermediate assortment evolves or there is cycling between phases of hybridization and phases of complete isolation.© 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

Richards EJ, Servedio MR, Martin CH (2019)

Searching for sympatric speciation in the genomic era

BioEssays, 41, e1900047.

[本文引用: 3]

Roos C, Helgen KM, Miguez RP, Thant NML, Lwin N, Lin AK, Lin A, Yi KM, Soe P, Hein ZM, Myint MNN, Ahmed T, Chetry D, Urh M, Veatch EG, Duncan N, Kamminga P, Chua MAH, Yao L, Matauschek C, Meyer D, Liu ZJ, Li M, Nadler T, Fan PF, Quyet LK, Hofreiter M, Zinner D, Momberg F (2020)

Mitogenomic phylogeny of the Asian colobine genus Trachypithecus with special focus on Trachypithecus phayrei (Blyth, 1847) and description of a new species

Zoological Research, 41, 656-669.

[本文引用: 1]

Rundle HD, Nosil P (2005)

Ecological speciation

Ecology Letters, 8, 336-352.

DOI:10.1111/j.1461-0248.2004.00715.x      URL    

Sambatti JBM, Ortiz-Barrientos D, Baack EJ, Rieseberg LH (2008)

Ecological selection maintains cytonuclear incompatibilities in hybridizing sunflowers

Ecology Letters, 11, 1082-1091.

DOI:10.1111/j.1461-0248.2008.01224.x      URL     [本文引用: 2]

Schliewen UK, Klee B (2004)

Reticulate sympatric speciation in Cameroonian crater lake cichlids

Frontiers in Zoology, 1, 5.

PMID:15679917      [本文引用: 1]

BACKGROUND: Traditionally the rapid origin of megadiverse species flocks of extremely closely related species is explained by the combinatory action of three factors: Disruptive natural selection, disruptive sexual selection and partial isolation by distance. However, recent empirical data and theoretical advances suggest that the diversity of complex species assemblages is based at least partially on the hybridization of numerous ancestral allopatric lineages that formed hybrids upon invasion of new environments. That reticulate speciation within species flocks may occur under sympatric conditions after the primary formation of species has been proposed but not been tested critically. RESULTS: We reconstructed the phylogeny of a complex cichlid species flock confined to the tiny Cameroonian crater lake Barombi Mbo using both mitochondrial and nuclear (AFLP) data. The nuclear phylogeny confirms previous findings which suggested the monophyly and sympatric origin of the flock. However, discordant intra-flock phylogenies reconstructed from mitochondrial and nuclear data suggest strongly that secondary hybridization among lineages that primarily diverged under sympatric conditions had occurred. Using canonical phylogenetic ordination and tree-based tests we infer that hybridization of two ancient lineages resulted in the formation of a new and ecologically highly distinct species, Pungu maclareni. CONCLUSIONS: Our findings show that sympatric hybrid speciation is able to contribute significantly to the evolution of complex species assemblages even without the prior formation of hybrids derived from allopatrically differentiated lineages.

Schluter D (2009)

Evidence for ecological speciation and its alternative

Science, 323, 737-741.

DOI:10.1126/science.1160006      PMID:19197053      [本文引用: 3]

Natural selection commonly drives the origin of species, as Darwin initially claimed. Mechanisms of speciation by selection fall into two broad categories: ecological and mutation-order. Under ecological speciation, divergence is driven by divergent natural selection between environments, whereas under mutation-order speciation, divergence occurs when different mutations arise and are fixed in separate populations adapting to similar selection pressures. Tests of parallel evolution of reproductive isolation, trait-based assortative mating, and reproductive isolation by active selection have demonstrated that ecological speciation is a common means by which new species arise. Evidence for mutation-order speciation by natural selection is more limited and has been best documented by instances of reproductive isolation resulting from intragenomic conflict. However, we still have not identified all aspects of selection, and identifying the underlying genes for reproductive isolation remains challenging.

Schumer M, Rosenthal GG, Andolfatto P (2018)

What do we mean when we talk about hybrid speciation

?. Heredity, 120, 379-382.

DOI:10.1038/s41437-017-0036-z      PMID:29302049      [本文引用: 1]

Seehausen O, Butlin RK, Keller I, Wagner CE, Boughman JW, Hohenlohe PA, Peichel CL, Saetre GP, Bank C, Brännström A, Brelsford A, Clarkson CS, Eroukhmanoff F, Feder JL, Fischer MC, Foote AD, Franchini P, Jiggins CD, Jones FC, Lindholm AK, Lucek K, Maan ME, Marques DA, Martin SH, Matthews B, Meier JI, Möst M, Nachman MW, Nonaka E, Rennison DJ, Schwarzer J, Watson ET, Westram AM, Widmer A (2014)

Genomics and the origin of species

Nature Reviews Genetics, 15, 176-192.

DOI:10.1038/nrg3644      PMID:24535286      [本文引用: 1]

Speciation is a fundamental evolutionary process, the knowledge of which is crucial for understanding the origins of biodiversity. Genomic approaches are an increasingly important aspect of this research field. We review current understanding of genome-wide effects of accumulating reproductive isolation and of genomic properties that influence the process of speciation. Building on this work, we identify emergent trends and gaps in our understanding, propose new approaches to more fully integrate genomics into speciation research, translate speciation theory into hypotheses that are testable using genomic tools and provide an integrative definition of the field of speciation genomics.

Seifert B (2020)

The gene and gene expression (GAGE) species concept: An universal approach for all eukaryotic organisms

Systematic Biology, 69, 1033-1038.

DOI:10.1093/sysbio/syaa032      URL     [本文引用: 1]

Shen R, Wang L, Liu X, Wu J, Jin W, Zhao X, Xie X, Zhu Q, Tang H, Li Q, Chen L, Liu YG (2017)

Genomic structural variation-mediated allelic suppression causes hybrid male sterility in rice

Nature Communications, 8, 1310.

DOI:10.1038/s41467-017-01400-y      URL     [本文引用: 1]

Sheu Y, Zurano JP, Ribeiro MA, Avila-Pires TC, Rodrigues MT, Colli GR, Werneck FP (2020)

The combined role of dispersal and niche evolution in the diversification of Neotropical lizards

Ecology and Evolution, 10, 2608-2625.

DOI:10.1002/ece3.6091      URL     [本文引用: 2]

Shimizu KK, Tsuchimatsu T (2015)

Evolution of selfing: Recurrent patterns in molecular adaptation

Annual Review of Ecology, Evolution, and Systematics, 46, 593-622.

DOI:10.1146/annurev-ecolsys-112414-054249      URL     [本文引用: 1]

Skeels A, Cardillo M (2019)

Reconstructing the geography of speciation from contemporary biodiversity data

The American Naturalist, 193, 240-255.

DOI:10.1086/701125      URL     [本文引用: 1]

Slatkin M (1982)

Pleiotropy and parapatric speciation

Evolution, 36, 263.

DOI:10.1111/j.1558-5646.1982.tb05040.x      URL     [本文引用: 1]

Slatkin M (1987)

Gene flow and the geographic structure of natural populations

Science, 236, 787-792.

PMID:3576198      [本文引用: 1]

There is abundant geographic variation in both morphology and gene frequency in most species. The extent of geographic variation results from a balance of forces tending to produce local genetic differentiation and forces tending to produce genetic homogeneity. Mutation, genetic drift due to finite population size, and natural selection favoring adaptations to local environmental conditions will all lead to the genetic differentiation of local populations, and the movement of gametes, individuals, and even entire populations--collectively called gene flow--will oppose that differentiation. Gene flow may either constrain evolution by preventing adaptation to local conditions or promote evolution by spreading new genes and combinations of genes throughout a species' range. Several methods are available for estimating the amount of gene flow. Direct methods monitor ongoing gene flow, and indirect methods use spatial distributions of gene frequencies to infer past gene flow. Applications of these methods show that species differ widely in the gene flow that they experience. Of particular interest are those species for which direct methods indicate little current gene flow but indirect methods indicate much higher levels of gene flow in the recent past. Such species probably have undergone large-scale demographic changes relatively frequently.

Sloan DB, Warren JM, Williams AM, Wu Z, Abdel-Ghany SE, Chicco AJ, Havird JC (2018)

Cytonuclear integration and co-evolution

Nature Reviews Genetics, 19, 635-648.

[本文引用: 2]

Sutherland BL, Galloway LF (2021)

Variation in heteroploid reproduction and gene flow across a polyploid complex: One size does not fit all

Ecology and Evolution, 11, 9676-9788.

DOI:10.1002/ece3.7791      PMID:34306653      [本文引用: 1]

Whole-genome duplication is considered an important speciation mechanism in plants. However, its effect on reproductive isolation between higher cytotypes is not well understood. We used backcrosses between different ploidy levels and surveys of mixed-ploidy contact zones to determine how reproductive barriers differed with cytotype across a polyploid complex. We backcrossed F1 hybrids derived from 2X-4X and 4X-6X crosses in the autopolyploid complex, measured backcross fitness, and estimated backcross DNA cytotype. We then sampled four natural mixed-ploidy contact zones (two 2X-4X and two 4X-6X), estimated ploidy, and genotyped individuals across each contact zone. Reproductive success and capacity for gene flow was markedly lower for 2X-4X than 4X-6X hybrids. In fact, 3X hybrids could not backcross; all 2X-4X backcross progeny resulted from neotetraploid F1 hybrids. Further, no 3X individuals were found in 2X-4X contact zones, and 2X and 4X individuals were genetically distinct. By contrast, backcrosses of 5X hybrids were relatively successful, particularly when crossed to 6X individuals. In 4X-6X contact zones, 5X individuals and aneuploids were common and all cytotypes were largely genetically similar and spatially intermixed. Taken together, these results provide strong evidence that reproduction is low between 2X and 4X cytotypes, primarily occurring via unreduced gamete production, but that reproduction and gene flow are ongoing between 4X and 6X cytotypes. Further, it suggests whole-genome duplication can result in speciation between diploids and polyploids, but is less likely to create reproductive barriers between different polyploid cytotypes, resulting in two fundamentally different potentials for speciation across polyploid complexes.© 2021 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.

Sweigart AL, Brandvain Y, Fishman L (2019)

Making a murderer: The evolutionary framing of hybrid gamete-killers

Trends in Genetics, 35, 245-252.

DOI:S0168-9525(19)30014-9      PMID:30826132      [本文引用: 1]

Recent molecular investigations of hybrid incompatibilities have revealed fascinating patterns of genetic interactions that have been interpreted as the remnants of a history of selfish evolution. Instead of framing hybrid incompatibilities in light of genetic conflict, we advocate assuming their innocence. Researchers must build a strong theory for each case, supported by population genetic evidence, such that the role of conflict in the evolution of a hybrid incompatibility can be proven beyond reasonable doubt. This will require careful investigation of the evolutionary history of these incompatibilities, a reckoning of how the reproductive biology of study organisms impacts on the likelihood of genetic conflict, and molecular evidence of the rapid selfish spread of these alleles.Copyright © 2019 Elsevier Ltd. All rights reserved.

Takagui FH, Baumgärtner L, Baldissera JN, Laridondo Lui R, Margarido VP, Fonteles SBA, Garcia C, Birindelli JO, Moreira-Filho O, Almeida FS, Giuliano-Caetano L (2019)

Chromosomal diversity of thorny catfishes (SiluriformesDoradidae): A case of allopatric speciation among Wertheimerinae species of São Francisco and Brazilian eastern coastal drainages

Zebrafish, 16, 477-485.

DOI:10.1089/zeb.2019.1769      URL     [本文引用: 1]

Thompson KA (2020)

Experimental hybridization studies suggest that pleiotropic alleles commonly underlie adaptive divergence between natural populations

The American Naturalist, 196, E16-E22.

[本文引用: 1]

Titus BM, Blischak PD, Daly M (2019)

Genomic signatures of sympatric speciation with historical and contemporary gene flow in a tropical anthozoan (Hexacorallia: Actiniaria)

Molecular Ecology, 28, 3572-3586.

DOI:10.1111/mec.15157      URL     [本文引用: 1]

Udovic D (1980)

Frequency-dependent selection, disruptive selection, and the evolution of reproductive isolation

The American Naturalist, 116, 621-641.

DOI:10.1086/283654      URL     [本文引用: 1]

van der Niet T, Johnson SD (2012)

Phylogenetic evidence for pollinator-driven diversification of angiosperms

Trends in Ecology & Evolution, 27, 353-361.

DOI:10.1016/j.tree.2012.02.002      URL     [本文引用: 1]

Wainwright BJ, Arlyza IS, Karl SA (2020)

Population genetics of the banded coral shrimp, Stenopus hispidus (Olivier, 1811), in the Indonesian Archipelago

Journal of Experimental Marine Biology and Ecology, 525, 151325.

DOI:10.1016/j.jembe.2020.151325      URL     [本文引用: 1]

Wang HW, Yin HY, Jiao CZ, Fang XJ, Wang GP, Li GR, Ni F, Li PH, Su PS, Ge WY, Lyu ZF, Xu SS, Yang YH, Hao YC, Cheng XX, Zhao JX, Liu C, Xu FF, Ma X, Sun SL, Zhao Y, Bao YG, Liu C, Zhang JJ, Pavlicek T, Li AF, Yang ZJ, Nevo E, Kong LR (2020)

Sympatric speciation of wild emmer wheat driven by ecology and chromosomal rearrangements

Proceedings of the National Academy of Sciences, USA, 117, 5955-5963.

[本文引用: 1]

Wang X, Cheng X, Zhou W, Zhang XX, Hu Y, Chen XY, Hu XS (2019)

Assessing the ecological and evolutionary processes underlying cytonuclear interactions

Scientia Sinica Vitae, 49, 951-964. (in Chinese with English abstract)

DOI:10.1360/SSV-2019-0049      URL     [本文引用: 1]

[王茜, 程祥, 周玮, 张新新, 胡颖, 陈晓阳, 胡新生 (2019)

细胞核质互作形成的生态与进化过程分析

中国科学: 生命科学, 49, 951-964.]

[本文引用: 1]

Wang YH, Comes HP, Cao YN, Guo R, Mao YR, Qiu YX (2017)

Quaternary climate change drives allo-peripatric speciation and refugial divergence in the Dysosma versipellis-pleiantha complex from different forest types in China

Scientific Reports, 7, 40261.

DOI:10.1038/srep40261      URL     [本文引用: 2]

Wang ZF, Jiang YZ, Bi H, Lu ZQ, Ma YZ, Yang XY, Chen NN, Tian B, Liu BB, Mao XX, Ma T, DiFazio SP, Hu QJ, Abbott RJ, Liu JQ (2021)

Hybrid speciation via inheritance of alternate alleles of parental isolating genes

Molecular Plant, 14, 208-222.

DOI:10.1016/j.molp.2020.11.008      URL     [本文引用: 1]

Wright S (1969) Evolution and the Genetics of Populations. Vol. 2. The Theory of Gene Frequencies. University of Chicago Press, Chicago.

[本文引用: 1]

Wright S (1977) Evolution and the Genetics of Populations. Vol.3. Experimental Results and Evolutionary Deductions. University of Chicago Press, Chicago.

[本文引用: 1]

Wright SI, Kalisz S, Slotte T (2013) Evolutionary consequences of self-fertilization in plants. Proceedings of the Royal Society B: Biological Sciences, 280, 20130133.

[本文引用: 2]

Wu CI (2001)

The genic view of the process of speciation

Journal of Evolutionary Biology, 14, 851-865.

DOI:10.1046/j.1420-9101.2001.00335.x      URL     [本文引用: 1]

Wu CI, Davis AW (1993)

Evolution of postmating reproductive isolation: The composite nature of Haldane’s rule and its genetic bases

The American Naturalist, 142, 187-212.

DOI:10.1086/285534      URL     [本文引用: 1]

Yarahmadov T, Robinson S, Hanemian M, Pulver V, Kuhlemeier C (2020)

Identification of transcription factors controlling floral morphology in wild Petunia species with contrasting pollination syndromes

The Plant Journal, 104, 289-301.

DOI:10.1111/tpj.14962      URL     [本文引用: 1]

Zachos FE (2018)

Species concepts, species delimitation and the inherent limitations of taxonomy

Journal of Genetics, 97, 811-815.

PMID:30262692      [本文引用: 1]

The species problem, despite decades of heated debates, has not been resolved yet. Recently, two new species concepts have been published, the mitonuclear compatibility species concept and the inclusive species concept. I briefly discuss them, together with a recent attempt at standardizing taxonomic decisions, in the broader framework of what I believe is an inherent limitation of taxonomy-imposing a discrete system on a continuous process (evolution) that leads to fuzzy boundaries in nature. In the light of this, taxonomists, biologists in general and conservationists alike will have to accept the fact that completely nonarbitrary species delimitation is impossible. This has serious ramifications in all disciplines that rely on species, and particularly species counts, as a basic currency for quantitative analyses (ecology, evolutionary biology) and practical decision-making (conservation and environmental policy).

Zhang LB, Sun TA, Woldesellassie F, Xiao HL, Tao Y (2015)

Sex ratio meiotic drive as a plausible evolutionary mechanism for hybrid male sterility

PLoS Genetics, 11, e1005073.

DOI:10.1371/journal.pgen.1005073      URL     [本文引用: 1]

Zhang XX, Wang X, Hu Y, Zhou W, Chen XY, Hu XS (2019)

Advances in the study of population genetic diversity at plant species’ margins

Chinese Journal of Plant Ecology, 43, 383-395. (in Chinese with English abstract)

DOI:10.17521/cjpe.2018.0252      URL     [本文引用: 3]

[张新新, 王茜, 胡颖, 周玮, 陈晓阳, 胡新生 (2019)

植物边缘种群遗传多样性研究进展

植物生态学报, 43, 383-395.]

DOI:10.17521/cjpe.2018.0252      [本文引用: 3]

边缘种群指地理分布边缘可检测到的一定数量的同种个体集合, 准确评价其遗传多样性对于理解第四纪冰期后气候变化对物种边缘扩展或收缩、遗传资源保护与利用以及物种形成等有重要意义。该文探讨了维持植物边缘种群遗传多样性的进化机制, 分析交配系统对物种边缘及其遗传多样性的影响, 比较了边缘与中心种群遗传多样性的差异及其形成的生态与进化过程, 并探讨了边缘种群遗传多样性与其所在的群落物种多样性的关系及理论基础。该文提出今后研究的重点是应用全基因组序列或转录组基因序列研究前缘-后缘种群之间或边缘-中心种群之间的适应性差异, 边缘种群与所在群落其他物种之间相互作用的分子机制, 深入解析边缘种群对环境的适应及边缘种群遗传多样性与群落物种多样性关系的生态与进化过程。

Zhong L, Barrett SCH, Wang XJ, Wu ZK, Sun HY, Li DZ, Wang H, Zhou W (2019)

Phylogenomic analysis reveals multiple evolutionary origins of selfing from outcrossing in a lineage of heterostylous plants

New Phytologist, 224, 1290-1303.

DOI:10.1111/nph.15905      PMID:31077611      [本文引用: 1]

Evolutionary transitions from outcrossing to selfing often occur in heterostylous plants. Selfing homostyles originate within distylous populations and frequently evolve to become reproductively isolated species. We investigated this process in 10 species of Primula section Obconicolisteri using phylogenomic approaches and inferred how often homostyly originated from distyly and its consequences for population genetic diversity and floral trait evolution. We estimated phylogenetic relationships and reconstructed character evolution using the whole plastome comprised of 76 protein-coding genes. To investigate mating patterns and genetic diversity we screened 15 microsatellite loci in 40 populations. We compared floral traits among distylous and homostylous populations to determine how phenotypically differentiated homostyles were from their distylous ancestors. Section Obconicolisteri was monophyletic and we estimated multiple independent transitions from distyly to homostyly. High selfing rates characterised homostylous populations and this was associated with reduced genetic diversity. Flower size and pollen production were reduced in homostylous populations, but pollen size was significantly larger in some homostyles than in distylous morphs. Repeated transitions to selfing in section Obconicolisteri are likely to have been fostered by the complex montane environments that species occupy. Unsatisfactory pollinator service is likely to have promoted reproductive assurance in homostyles leading to subsequent population divergence through isolation.© 2019 The Authors. New Phytologist © 2019 New Phytologist Trust.

/