生物多样性, 2022, 30(10): 22505 doi: 10.17520/biods.2022505

综述

中国极小种群野生植物保护理论与实践研究进展

许玥,1,2, 臧润国,,1,2,*

1.中国林业科学研究院森林生态环境与自然保护研究所/生物多样性保护国家林业和草原局重点实验室, 北京 100091

2.南京林业大学南方现代林业协同创新中心, 南京 210037

Theoretical and practical research on conservation of Wild Plants with Extremely Small Populations in China

Yue Xu,1,2, Runguo Zang,,1,2,*

1. Key Laboratory of Biodiversity Conservation of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091

2. Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037

通讯作者: * E-mail:zangrung@caf.ac.cn;zangrung@163.com

编委: 严岳鸿

责任编辑: 周玉荣

收稿日期: 2022-09-2   接受日期: 2022-10-13  

基金资助: 国家重点研发计划(2016YFC0503100)
“极小种群野生植物就地保护及生境恢复技术研究与示范”课题(2016YFC0503103)
国家自然科学基金(42271069)

Corresponding authors: * E-mail:zangrung@caf.ac.cn;zangrung@163.com

Received: 2022-09-2   Accepted: 2022-10-13  

摘要

极小种群野生植物大都分布范围狭窄、个体数量稀少且自然更新困难, 面临随时灭绝的风险, 迫切需要拯救性保护。极小种群野生植物这一概念自提出以来受到了保护生物学领域的广泛关注, 已成为当前中国生物多样性保护的一个热点方向。我国于2010年正式启动实施极小种群野生植物拯救保护工程, 并开展了大量的保护研究和实践。以“extremely small population*”和“plant”为检索词在Web of Science进行了主题检索, 以“极小种群”和“植物”为检索词在中国知网进行了主题检索, 对获取的的学术期刊论文、学位论文和会议论文进行了梳理。本文从极小种群野生植物种群、群落及生境调查与监测、适应性、遗传多样性、繁殖生物学、濒危机制、动态模型6个方面对近年来极小种群野生植物的理论研究工作进行了较为系统的综述。在此基础上, 从就地保护、迁地保护与种质资源保存、野外回归、人工繁育、标准化体系5个方面回顾了极小种群野生植物保护实践及取得的进展。基于极小种群野生植物保护理论与实践研究现状, 我们建议在极小种群野生植物未来保护工作中不断调整和完善保护名录, 加强种群结构的观测和预测、小种群形成和恢复机制的针对性研究以及特定物种的长期系统性研究, 同时促进这一概念在国际上的推广。希望本文能为国家生物多样性保护和生态文明建设提供参考。

关键词: 极小种群野生植物; 理论研究; 保护实践; 成效; 不足

Abstract

Aims: Wild Plants with Extremely Small Populations (WPESP) are plant species with high risk of extinction that are in urgent need of conservation. This concept has become a hotspot of biodiversity conservation in China since it was first proposed. In 2010, China officially launched the Implementation Plan of Rescuing and Conserving China’s WPESP (2011-2015), which initiated conservation research efforts and achieved successful progress.
Methods: We conducted a topic search on Web of Science and on China National Knowledge Infrastructure (CNKI) with “extremely small population*” and “plant” as the search terms. We reviewed the research results and achievements from academic papers, dissertations, and conference papers in order to evaluate the conservation of WPESP in China.
Results: WPESP research provides an important theoretical basis to guide conservation practice. We systematically reviewed research on the conservation of WPESP in recent years from six aspects: (1) the survey and monitoring of population, community and habitat, (2) adaptation, (3) genetic diversity, (4) reproductive biology, (5) endangered mechanisms, and (6) dynamic models. In this paper, we reviewed WPESP conservation progress from five aspects: (1) in situ conservation, (2) ex situ conservation and germplasm conservation, (3) reintroduction, (4) artificial propagation, and (5) technical regulation system construction. We also proposed several priorities for future conservation research.
Conclusions: Based on current theoretical and practical research, we propose five priorities for future conservation research of WPESP in China. We suggest that the conservation list should be adjusted and improved periodically. Researchers should highlight the observation and prediction of population structure, reinforce research on the formation and recovery mechanisms of small populations and conduct long-term systematic studies of specific species. The WPESP concept should be promoted at international levels to increase its influence. We hope this review may provide a reference for national biodiversity protection and ecological civilization construction.

Keywords: Wild Plants with Extremely Small Populations; theoretical research; conservation practice; progress; deficiency

PDF (716KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

许玥, 臧润国 (2022) 中国极小种群野生植物保护理论与实践研究进展. 生物多样性, 30, 22505. doi:10.17520/biods.2022505.

Yue Xu, Runguo Zang (2022) Theoretical and practical research on conservation of Wild Plants with Extremely Small Populations in China. Biodiversity Science, 30, 22505. doi:10.17520/biods.2022505.

目前人类正处于历史上前所未有的生物多样性危机之中。许多证据表明, 由于栖息地破坏、过度开发、生物入侵、气候变化和污染等的威胁(Mouillot et al, 2013), 当前的物种灭绝速度远远超过了估计的背景灭绝速度(De Vos et al, 2015)。世界自然保护联盟(International Union for Conservation of Nature, IUCN)评估了142,517个物种的濒危状况, 其中40,084个被认为是受威胁种, 包括极危(Critically Endangered)、濒危(Endangered)和易危(Vulnerable)等级, 占评估物种总数的28% (IUCN, 2022)。但是, 与前几次物种大灭绝不同的是, 人类既是此次物种灭绝的责任人和受害者, 也有能力成为拯救者(Bellard et al, 2022)。

我国地域辽阔、地形复杂、气候多样, 优越的自然条件使得我国成为世界上生物多样性最丰富的国家之一。最新发布的《中国生物物种名录2022版》(Catalogue of Life China, http://www.sp2000.org.cn/)显示, 中国有维管植物35,214种, 约占世界维管植物多样性的10%。作为地球上种子植物的起源和分化中心之一(Lu et al, 2018), 中国拥有丰富的特有物种, 占中国种子植物物种总数的52.1% (Huang et al, 2014)。由于悠久的历史、剧烈增长的人口和高速发展的经济, 中国濒危植物比例也较高, 中国高等植物红色名录评估确定了40种灭绝、野外灭绝和地区灭绝物种, 3,879种受威胁物种, 2,818种近危物种, 占被评估高等植物的18.83% (覃海宁等, 2017)。

为全面掌握我国野生植物资源状况, 国家林业局于1997-2003年组织开展了第一次全国重点保护野生植物资源调查, 共调查了189种国家重点保护野生植物的资源数量、分布和受威胁状况等。调查结果显示, 百山祖冷杉(Abies beshanzuensis)、银杉(Cathaya argyrophylla)、华盖木(Pachylarnax sinica)、落叶木莲(Manglietia decidua)等55种野生植物的野外种群低于稳定存活界限的最小存活种群(minimum viable population, MVP, 指特定物种以一定概率存活一定时间所需的最少个体数量) (Reed & McCoy, 2014), 随时面临着野外灭绝的危险。其中, 稳定存活界限是指保证种群在特定时间内能稳定健康生存所需的最小阈值, 低于这个阈值种群会逐渐趋向灭绝。基于此, 国家林业局提出了极小种群野生植物(Wild Plants with Extremely Small Populations, WPESP; 也有学者翻译为Plant Species with Extremely Small Populations, PSESP)的概念: 具体是指分布地域狭窄, 长期受到外界因素胁迫干扰, 呈现出种群退化和个体数量持续减少, 种群和个体数量都极少, 已经低于稳定存活界限的最小可存活种群, 而随时濒临灭绝的野生植物(国家林业局, 2010)(①国家林业局 (2010) 全国极小种群野生植物拯救保护工程规划(2010-2015). 非正式出版材料.)。极小种群植物保育强调的对象是野生植物种群, 对于栽培种群或人工繁育数量大的物种, 如水杉(Metasequoia glyptostroboides)、东北红豆杉(Taxus cuspidata)等更要注意区分野生种群和人工种群, 否则容易在保育实践中引起困惑(臧润国, 2020)。因此, 本文中极小种群野生植物统一使用WPESP的译法。《全国极小种群野生植物拯救保护工程规划(2011-2015年)》中选择首批保护极小种群野生植物的原则主要包括3个方面: 一是野外数量极小、极度濒危、随时有灭绝危险的野生植物; 二是生境要求独特、生态幅狭窄的野生植物; 三是潜在基因价值不清楚、其灭绝将引起基因流失、生物多样性降低、社会经济价值损失巨大的种群数量相对较小的野生植物。依据这些原则, 最终确定的首批120种重点保护极小种群野生植物包含36种国家I级保护植物, 26种国家II级保护植物, 59种省级重点保护植物。

尽管极小种群野生植物这一概念提出较晚, 但20世纪90年代前后部分学者开展的研究已经隐含了这一概念。例如, 陆素娟和邓莉兰(1994)发现云南昭通市巧家县特有的五针白皮松(Pinus squamata)仅存20株个体, 更新不良, 并通过分析其地质历史和生态需求探讨了它的潜在分布区。张文辉和祖元刚(1998a)调查濒危植物裂叶沙参(Adenophora lobophylla)时发现该物种的天然分布区局限在四川西北部金川县的5个乡, 分布面积不超过5,000 km2, 且该物种年龄结构老化, 种群呈衰退趋势, 并分析了该物种的生境条件和致危因素(张文辉和祖元刚, 1998b)。尽管这些研究并没有正式提出极小种群野生植物的概念, 但强调了这些物种狭窄的分布区、特殊的生物生态学特性、极小的种群数量和不断加剧的威胁因子, 与极小种群概念和保护对象的选择原则不谋而合。

极小种群野生植物概念的提出对促进我国生物多样性保护和生态文明建设具有重要意义。首先, 极小种群野生植物大多数为我国特有植物, 具有重要的生态、经济和文化价值(Ren et al, 2012)。由于分布狭窄、种群数量小、面临胁迫大, 极小种群野生植物是最易丧失的生物资源之一, 如果保护不够及时, 其独特基因、生物价值和生态功能将随着物种的灭绝而消失, 给自然生态系统和人类社会带来难以估量的损失。因此, 对其开展抢救性保护有助于避免物种灭绝, 维护生态平衡, 对于我国乃至世界的生物多样性保护都具有极为重要的意义(张则瑾等, 2018)。第二, 自然界的大多数物种都是稀有的, 具有较小的种群数量和狭窄的分布范围。Enquist等(2019)基于2亿条标本采集、野外调查等数据记录的详细评估发现, 约36.5%的陆生植物是“极其罕见的”。这一结果表明, 地球上很大比例的植物面临着日益加剧的灭绝风险, 了解这些稀有物种的种群形成过程和保育方法对于保护生物学以及应对全球变化的适应潜力至关重要, 而极小种群野生植物的研究和保护对于这些稀有物种具有重要的引领作用。第三, 很多极小种群野生植物起源较早, 是现存种子植物中较原始的类群, 对研究种子植物的起源与演化具有重要价值, 蕴藏的遗传信息可以为研究古植物区系、古地理和古气候变迁提供珍贵的素材, 研究其适应环境的机制也有助于解释物种的长期生存及对环境变迁的响应(Crane, 2020; 席辉辉等, 2022)。第四, 极小种群野生植物的概念易于理解和接受, 能够唤起公众对生物多样性的保护意识, 随着各种宣教活动的开展, 目前社会各界对极小种群野生植物拯救保护重要性的认识大为提高, 并积极参与到保护行动中来, 有助于减缓过度采集这些珍稀濒危物种带来的严重威胁。第五, 与现有其他同类概念相比, 极小种群野生植物的概念与物种选择标准具有独特性。我国曾多次发布和更新珍稀濒危保护植物和国家重点保护野生植物名录, 这些名录难以从字面理解其确切含义, 选列和评价物种的依据也多为定性标准。而极小种群野生植物物种选列的指标中提出了关于个体数和分布点的明确量化评定指标, 减少了专家的主观判断, 增强了物种选列的客观性(杨文忠等, 2015)。对比IUCN物种红色名录, 尽管其濒危等级和标准历经了多次修订, 评估标准也越来越细化和量化, 但IUCN红色名录假定种群表现出正常的包含所有生活史周期的种群结构, 并不适用于极小种群物种(Volis, 2016)。大部分极小种群物种由于繁殖或更新困难, 表现出种群性别结构或年龄结构的偏倚(宋垚彬等, 2020)。极小种群野生植物保护强调物种种群统计速率和种群动态的长期观察, 可以作为物种濒危程度的可靠评估指标。

极小种群野生植物概念的提出及其拯救保护工程的实施对我国野生植物保护理念的转变影响深远。由于我国需要保护的野生植物种类众多, 此前保护管理部门只能针对珍稀濒危植物进行宏观的保护管理和规划, 以法律法规、行政手段和宣传教育等为主要策略, 而极小种群野生植物更加强调“基于种群管理的物种保护”理念, 运用植物种群生态学原理和方法针对明确的目标物种开展相应的保护实践(杨文忠等, 2015)。此外, 科学研究与管理实施之间的脱节一直被认为是影响中国生物多样性保护的系统障碍之一(Grumbine & Xu, 2011)。极小种群野生植物保护过程中特别强调科学研究要与拯救保护实践相接轨, 能够促进植物地理学、种群生态学、生殖生物学和保护生物学等相关学科的基础理论和应用技术相结合, 在实现学科发展的同时提升我国野生植物保护管理水平(杨文忠等, 2015; 臧润国等, 2016)。这一概念的提出标志着中国的植物保护事业进入了一个政策与保护更为匹配的全新时代(Ma et al, 2013)。

极小种群野生植物由于种群数量小、面临胁迫大及繁殖困难等固有特性, 决定了其保护生物学研究具有如下特点: (1)极小种群物种种群数量极少, 濒临高度灭绝风险, 极易因偶然事件的发生而永久消失, 因此对其研究具有紧迫性(孙卫邦和韩春艳, 2015)。(2)由于野外种群数量极小, 实施保护时强调在传统保护措施的基础上引入种群管理的理念和方法, 因此研究中需要运用种群生态学的原理和方法, 基于种群调查的基础数据对种群数量、规模、结构和动态等进行调节与管理(杨文忠等, 2015)。(3)植物种群理论大多是基于大样本方法发展起来的, 而极小种群物种种群数量极少, 很多遗传学、生态学研究缺乏统计意义, 样本量太少导致模拟时出现模型过度拟合(Breiner et al, 2015), 因此研发保育方案需要重点考虑基于小样本的方法和理论体系(臧润国等, 2016)。(4)繁殖能力低下是大多数极小种群物种的共同特征, 因此其繁殖生物学特性以及限制繁殖的内在和外在因素是研究的重要方面(邓莎等, 2020)。

随着中国国际地位的提升, 中国的环保行动也正变得越来越有影响力, 中国的自然保护事业将造福世界, 这一点毋庸置疑(Grumbine & Xu, 2011)。在此背景下, 世界植物保护行动可以通过以中国极小种群野生植物保护为代表的项目, 关注稀有物种的长远未来。通过确保这些极小种群野生植物的零灭绝, 中国彰显出对全球生物多样性负责任的大国形象(Crane, 2020), 也为其他国家野生植物保护提供宝贵经验。为更好地指导极小种群野生植物保护, 本文系统总结了极小种群野生植物保护的相关理论研究和保护实践进展, 并探讨了未来的工作重点。

1 极小种群野生植物保育相关文献概况

极小种群野生植物的概念自提出以来, 获得了学术界的广泛认可。在Web of Science以“extremely small population*”和“plant”为检索词进行主题检索, 检索时间为2022年8月3日, 得到核心合集(Web of Science Core Collection)的相关论文99篇; 在中国知网以“极小种群”和“植物”为检索词进行主题检索, 得到相关的学术期刊论文、学位论文和会议论文243篇。这些文章主要涉及了极小种群野生植物保育理论研究(260篇)、实践研究(50篇)、综述(31篇)和科普宣传(38篇)等方面(因部分论文涉及到多个研究方面, 总数量超过总数342篇)。从极小种群野生植物研究文献出版数量时间分布图(图1)可以看出, 极小种群野生植物的相关研究正在蓬勃发展。英文论文量前5位的期刊论文数量为61篇, 占英文论文总数的61.6%; Mitochondrial DNA Part B: Resources论文数量最多, 共21篇(21.2%), 其次为Plant DiversityGlobal Ecology and Conservation, 分别有18篇(18.2%)和10篇(10.1%)。出版论文数最多的前5个中文期刊为《生物多样性》《云南林业》《西部林业科学》《林业调查规划》和《安徽农业科学》, 分别出版论文20篇、13篇、11篇、7篇和6篇, 共57篇。

图1

图1   极小种群野生植物研究文献出版数量时间分布图

Fig. 1   Time distribution of articles about Wild Plants with Extremely Small Populations


Plant Diversity和《生物多样性》对于推动极小种群野生植物研究和实践起到了非常积极的作用。2015年6月《生物多样性》发表了3篇文章, 其中杨文忠等(2015)梳理了极小种群野生植物概念的提出背景、过程、理解途径及其对我国野生植物保护领域的重要意义, 孙卫邦和韩春艳(2015)对极小种群野生植物科学保护的多个研究方向进行了展望, 马永鹏和孙卫邦(2015)指出了极小种群野生植物抢救性保护面临的机遇与挑战。2016年10月Plant Diversity出版了极小种群野生植物保护研究专辑, 发表了种子及孢子的保存和萌发、遗传多样性与遗传结构、传粉生物学和种子传播、繁殖生物学、保护遗传学、野外回归种群适应性相关的7篇极小种群野生植物研究文章, 探讨了部分物种的濒危原因并提出了相应的保护建议(Sun, 2016)。2020年3月《生物多样性》出版了“极小种群野生植物保育专辑”, 基于14个典型物种的案例研究分析了极小种群野生植物的种群及群落动态、生境适应策略、遗传多样性及核心种质资源、繁殖特性和人工繁殖方法等内容, 并呼吁开展更多针对极小种群野生植物种群数量小、面临胁迫大及繁殖困难等固有特点的保护理论和技术研究(臧润国, 2020)。

此外, 《云南省极小种群野生植物保护实践与探索》(孙卫邦, 2013)和《云南省极小种群野生植物研究与保护》(孙卫邦等, 2019)两本专著对极小种群野生植物的概念、特点、价值及保护意义进行了梳理和论述, 总结了云南省在极小种群野生植物保护与研究方面的成果, 并对苏铁属(Cycas spp.)植物及华盖木等7个物种以典型保护实践案例的形式进行了系统研究和保护措施的分析和综述。《珍稀濒危植物种群与保护生物学研究》基于珍稀濒危植物(尤其是极小种群野生植物)保护与恢复的基本科学理论, 全面总结了珍稀濒危植物种群和保护生物学近年来的研究成果和发展态势, 并系统介绍了包括9种极小种群野生植物在内的23种珍稀濒危植物的保护生物学实践实例(董鸣和臧润国, 2021)。这些专著也能够为其他极小种群野生植物的保护提供重要参考。

2 极小种群野生植物保育的理论研究

极小种群野生植物保育理论的论文主要涉及极小种群野生植物种群、群落及生境调查与监测、适应性、遗传多样性、繁殖生物学、濒危机制、动态模型6个方面(图2)。

图2

图2   极小种群野生植物保育理论研究涉及方面及文献数量

Fig. 2   Aspects and quantities of literatures on conservation theory of Wild Plants with Extremely Small Populations


2.1 种群、群落及生境调查与监测

栖息地的退化和破碎化已使许多物种的种群规模减少到临界水平。生境破坏与未来灭绝之间关系——即灭绝债(extinction debt) (在栖息地被破坏后暂时存在但注定要走向灭绝的物种数量)——的一个重要启示是, 即使生境破碎化已经停止, 它对生物多样性的影响仍将继续(Tilman et al, 1994;Dullinger et al, 2012)。以小而孤立的种群为代表的许多植物物种, 长时间存活(例如大乔木)掩盖了它们真正的濒危和保护状况。因此, 种群及群落结构、动态、影响因素的分析是保护生物学研究的重点(Volis, 2018b)。物种生态位、种群结构、年龄及性别组成和更新状况研究揭示了其生态需求、濒危原因、种群的生存能力和发展态势, 有助于理解种群动态和制定保护策略(Sá et al, 2018)。《中华人民共和国野生植物保护条例》规定“野生植物行政主管部门应当定期组织国家重点保护野生植物和地方重点保护野生植物资源调查, 建立资源档案”。但是, 目前在保护生物学中物种的空间分布、遗传变异、保护优先性评估等相关研究占主导地位, 却忽略了种群结构统计和物种生态位分析(Volis & Deng, 2020)。

自实施极小种群野生植物保护拯救工程以来, 很多省份(北京、新疆、黑龙江、广西、海南、四川、安徽、云南)、地区(西藏林芝市、广东河源市、云南文山州)和保护区(江西官山国家级自然保护区、海南霸王岭国家级自然保护区、浙江天目山国家级自然保护区、广东连山县大旭山市级自然保护区)等基于资源调查数据统计了当地的极小种群野生植物资源及保护现状。部分研究针对特定极小种群野生植物开展了其生存状况、种群动态、群落结构和生境特征调查, 共涉及到包括梓叶槭(Acer catalpifolium)、崖柏(Thuja sutchuenensis)、黄梅秤锤树(Sinojackia huangmeiensis)、水杉、东北红豆杉、坡垒(Hopea hainanensis)等在内的61个物种, 这些种群和群落调查数据为探索其濒危机制, 开展就地和迁地保护、生境修复等保护方案提供了理论依据。姚志等(2021)分析了中国28种极小种群野生植物的种群特征, 发现13个物种遗传多样性低, 11个呈现衰退型种群结构, 11个呈现狭域、聚集型分布。幼苗阶段是影响种群定居和更新的关键时期, 能够决定未来的物种组成和群落结构。猪血木(Euryodendron excelsum)野生种群的年龄结构和动态变化表明, 该物种幼树数量丰富, 但由于向小树发展的过程受阻, 种群无法及时更新补充(魏雪莹等, 2020)。云南梧桐(Firmiana major)在云南境内的所有分布点都位于自然保护地之外, 包括利用其树皮制造绳索和放牧等人为干扰导致了该物种数量的急剧下降(Li et al, 2020)。尽管目前中国有8个与东北红豆杉有关的自然保护区, 为了追求经济利益, 伐木、砍枝、采种等人类活动依然导致了其种群大小和栖息地面积显著减少(Long et al, 2021)。

部分极小种群野生植物由于被发现的时间短, 加之分布范围狭窄、资源稀少, 对其种群结构、群落组成及生境条件的描述较为粗略, 准确性和科学性也有待考证。对其地理分布和主要生态特征的详细调查能够为进一步的引种栽培和种质资源保护提供科学依据, 是开展有效保护的首要条件。唐凤鸾等(2022)通过对海伦兜兰(Paphiopedilum helenae)的系统调查, 共发现野生居群5个、植株162株, 较文献报道的35个植株显著增加。调查同时发现海伦兜兰生境完整、受干扰程度较低、适应性强, 自然更新困难是其致濒的主要原因, 对开展针对性保育具有重要意义。对野外仅记载5株的漾濞槭(A. yangbiense)充分调查后发现了12个种群共577株个体, 为评估该物种的受威胁状况和优化保护方案提供了科学数据(Tao et al, 2020)。

监测是掌握种群及其生境状况并实时管控的关键手段。我国的植物监测目前主要集中在群落或植被水平, 针对植物种群的连续监测相对较少。开展种群动态和繁殖物候的长期监测有助于确定物种的受威胁因素, 制定种质资源收集时间。谭绍斌等(2014)建议在保护小区或保护点内, 利用集成了传感器、远程遥测监控和数据判读技术的物联网技术对极小种群物种开展连续和实时监测。傅国林等(2021)对浙江安息香(Styrax zhejiangensis)开展了开花、结实和种子等不同生活史阶段的物候观测, 揭示了影响其种子萌发的生物学特性。

2.2 适应性

植物生理生态学研究生态因子与植物生理特性之间的关系, 能够从生理机制上探讨植物对不同环境条件的响应和适应能力。基于极小种群野生植物的调查、观测与实验数据, 研究不同生态因子对各个生活史阶段的作用, 分析极小种群野生植物对生境变化的响应和适应能力, 有助于揭示其致危的生理生态机制并采取有针对性的解濒措施(孙卫邦等, 2021)。目前, 极小种群野生植物生理生态学的相关研究还比较薄弱。大部分研究集中在分析极小种群野生植物光合生理特性, 如研究光照强度、土壤含水量和水分胁迫等对物种光合特性的影响(张珊珊等, 2018; 钟象景等, 2021), 为选择合适的迁地和回归地点及制定科学有效的管护措施提供依据。

研究不同生态因素如气候、土壤理化性质、微生境特征等对物种表型性状、幼苗更新等的影响, 有助于理解极小种群野生植物的生理生态适应性, 对预测极小种群野生植物的种群变化趋势和环境变化响应至关重要。尹雯丽(2020)(①尹雯丽 (2020) 极小种群野生植物旱地油杉抗旱机制研究. 硕士学位论文, 云南大学, 昆明.)利用解剖结构、生理指标和转录组分析探究了旱地油杉(Keteleeria xerophila)的干旱调控机制, 发现其在干旱胁迫下具有较强的水分协调能力及保水能力和渗透调节能力, 并揭示了旱地油杉的抗旱基因。通过分析土壤理化性质、土壤微生物和土壤酶活性, 发现海南假韶子(Paranephelium hainanensis)不同群落对土壤因子的响应较为显著, 为探究其对异质性土壤的适应性奠定了基础(蔡开朗等, 2018)。路兴慧等(2020)分析了生境特征对坡垒种群更新幼苗多度的影响, 揭示了其幼苗至幼树阶段种群的增补限制和关键限制因子。植物的功能性状变异和表型可塑性是其适应异质生境的主要机制, 对植物生长和分布有重要影响。陈俊等(2020)分析了水杉原生母树种群叶片功能性状对树木形态、地形因子及人为干扰的响应机制。王世彤等(2020)分析了黄梅秤锤树野生种群的叶片功能性状和生态化学计量特征对不同微生境的响应及其适应策略。还有一些研究基于MaxEnt模型分析了极小种群野生植物在不同情景模式下的潜在分布区(Cai et al, 2022; 陈舒豪和程广有, 2022)。Qu等(2018)采用生态位模型研究了我国6个极小种群野生植物在当前和未来的栖息地分布, 并确定了这些物种的保护优先区。这些研究有助于应对气候变化对极小种群野生植物带来的威胁, 确保保护地对其分布范围的覆盖能力。

生态群落中不同物种之间发生着多样化的相互作用, 种间互作是实现生态系统功能和服务的基础, 对于物种的分布、定居和长期存活至关重要。菌根共生是大多数陆生植物的共同特征, 据统计约有86%的维管植物都与菌根真菌共生, 其中兰科植物约占全部菌根植物的10% (Brundrett & Tedersoo, 2018), 菌根真菌对这些植物完成完整的生活史并成功存活必不可少。研究发现, 白旗兜兰(Paphiopedilum spicerianum)可以与多种真菌共生, 这些真菌显著提高了其成年个体忍耐干旱和环境变化的能力(Han et al, 2016)。物种间的竞争强度影响着植物的存活和自然更新, 并推动着群落的演替, 植物在群落中的竞争地位是指导其保护与恢复工作的重要依据。孙哲明等(2022)通过分析7种极小种群野生植物在群落中的优势度及种内、种间竞争状况, 提出了对应的就地保护和恢复措施。

2.3 遗传多样性

物种的遗传多样性大小是决定其环境适应性的重要因素。小种群容易发生遗传漂变, 使遗传多样性迅速减少, 甚至导致种群间遗传分化迅速增加。遗传多样性的丧失会降低种群的延续性和物种的进化潜力, 高度的遗传分化可能导致远交衰退(Yang et al, 2022)。探究极小种群野生植物的遗传组成、阐明其进化历史和种群动态、揭示其响应环境变化的遗传机制, 对理解其致濒机理并采取相应的保护措施极为重要, 也是保护生物学研究的重要内容。DNA测序技术的进步极大地促进了保护遗传学在生物多样性保护实践中的应用(Windig & Engelsma, 2010)。尤其是全基因组测序成本的降低, 使得通过分析物种的种群历史动态和适应性演化来揭示极小种群野生植物的灭绝风险成为研究热点。

检索到的中文文献中, 有22篇文章基于微卫星标记、叶绿体基因组等方法, 对包括白花兜兰(P. emersonii)、海南风吹楠(Horsfieldia hainanensis)、喙核桃(Annamocarya sinensis)等在内的21个物种进行了遗传多样性和遗传结构分析。另外, 贺水莲等(2016)综述了云南省极小种群野生植物基于分子标记的遗传多样性研究现状, 同时展望了遗传多样性分析在极小种群野生植物保护中的应用前景。苏金源等(2020)综述了极小种群裸子植物的遗传多样性研究案例, 探讨了濒危裸子植物的种群维持机制、致濒因素和保护方案, 表明通过遗传多样性研究揭示极小种群野生植物致濒机理对于高效保护的重要性。77篇英文文献中, 有43篇开展了种群遗传变异研究, 涉及到38个物种, 其中50%以上运用了全基因组技术。对漾濞槭10个种群105个个体的全基因组重测序结果表明, 该物种遗传多样性较低, 种群间基因流动频繁, 重复的瓶颈事件、人类活动导致的生境破碎化以及自然生境中成熟个体的性别偏倚现象共同造成了漾濞槭的濒危状态(Ma et al, 2022)。Zhang等(2021)通过采集红萼杜鹃(Rhododendron meddianum) 3个野生种群的45个个体, 发现该物种具有较高的遗传多样性, 其最有效的保护方式是就地保护, 由于不同种群间具有较高的遗传分化, 种质资源采集时各个种群需分别采样以避免远交衰退。Yang等(2022)利用基因组学的手段分析了显脉木兰(Magnolia fistulosa)的种群遗传多样性和种群大小波动, 发现该物种具有较高的遗传多样性和种群分化水平, 末次冰盛期后其有效种群规模恢复到较高的水平, 人为干扰是造成该物种目前种群规模较小和分布受限的主要因素。以上研究表明, 极小种群野生植物通常具有高度近交、遗传多样性低和遗传漂变频率高的特点, 亟需通过实施遗传拯救(genetic rescue)增加遗传多样性, 提高适合度, 增强适应能力, 以维持物种的长期存活(孙卫邦等, 2021)。

2.4 繁殖生物学

繁殖是植物最为关键的生活史阶段之一, 也是种群更新与维持的重要环节。极小种群野生植物自身生殖繁育力的衰退是导致其濒临灭绝的重要原因之一。开展繁殖生物学研究, 深入了解物种的个体成熟年龄、结果(种)时间动态、繁殖结构、授粉方式和主要传粉者、种子扩散、种子休眠情况和萌发条件等, 可为研发极小种群野生植物的人工扩繁技术奠定理论基础(Volis, 2016)。对于存在繁殖困难的种群可以借助实验来控制其发芽和生长条件, 揭示种群更新失败的原因, 并最终通过减少竞争物种、引入保育植物、增加传粉昆虫等相应的方式来促进自然更新。由于大部分极小种群野生植物生长在偏远的地方, 开展长期的观测和实验研究较为困难, 目前对于极小种群野生植物繁殖生物学的相关研究还较为欠缺。Wade等(2016)通过收集120种极小种群野生植物的繁殖生物学信息, 发现仅有28个物种可以获得萌发信息, 10个物种可以获得储存特性信息。

仅检索到9篇英文文献开展了极小种群野生植物的繁殖生物学研究, 涉及到11个物种。Li等(2018)观测了大树杜鹃(Rhododendron protistum var. giganteum)的开花时间、繁殖结构、颜色、气味、可能传粉者等, 发现该物种野外种群的传粉限制并不严重。传粉实验结果表明, 毛果木莲(Manglietia ventii)对传粉者有依赖性, 但由于种群数量少、花粉落置量(pollen deposition)不足导致自然种群结实率低, 保护该物种需要通过增加可育个体密度来打破传粉限制(Wang et al, 2017)。Lin等(2022)研究了华盖木的种子休眠、萌发需求和储存条件, 发现其种子耐干燥, 能在传统条件和超低温贮藏条件下保存几个月。而西畴青冈(Cyclobalanopsis sichourensis)则是果实对干燥环境的敏感性限制了其更新(Xia et al., 2016)。旱地木槿(Hibiscus aridicola)、白魔芋(Amorphophallus albus)、细花百部(Stemona parviflora)和百部(S. japonica)的传粉媒介在不同地点或时间存在缺失, 影响了其种群的成功繁殖概率以及长期存在(Tang et al, 2020)。检索到15篇开展了繁殖生物学研究的中文文献, 研究内容包括云南蓝果树(Nyssa yunnanensis)的花药发育过程和败育原因(康洪梅等, 2019)、峨眉拟单性木兰(Parakmeria omeiensis)的开花生物学特性与繁育系统(余道平等, 2019)、崖柏的生殖物候及胚胎发育(金江群等, 2019)等。这些研究能够使保护工作者更加了解极小种群野生植物生存繁衍所需要的环境条件, 为物种繁殖技术的发展提供了关键信息, 也为在生境破碎化、气候变化、传粉媒介改变等背景下重建种群提供有效的指导意见(孙卫邦等, 2019)。

2.5 濒危机制

栖息地的退化和破碎化已经使得许多物种的种群规模减少到临界水平。理论预测和实证证据均表明, 小种群的灭绝风险高于大种群(Caughley, 1994)。只有了解“小种群”的形成原因, 才能制定相应的解决方案, 保持种群生存能力、防止种群灭绝(Volis & Deng, 2019)。极小种群野生植物一般是由自身和外部因素共同造成的, 自身因素包括遗传多样性低、近交衰退、繁殖障碍、种子萌发率低、适应性差等, 外部因素包括地质历史事件、冰期作用、自然灾害、病虫害、气候变化、人类利用、生境退化和破碎化等(Chen et al, 2014)。极小种群野生植物濒危机制的揭示是种群得以保护和恢复的重要基础。每一种极小种群野生植物都有其独特的生理生态特性和致危机理, 需要采取不同的保育措施。

很多物种在末次冰盛期分布范围急剧缩小, 以小而孤立的种群分布在避难所(Willi et al, 2006)。由于种群规模小导致了很多问题, 如遗传变异的丧失、有害等位基因的积累、近交衰退、对随机事件的敏感性、Allee效应导致的繁殖失败等, 都增加了物种的灭绝风险(Keller & Waller, 2002)。例如, 苏铁属植物雌雄异株, 由于居群较小, 成熟的开花植株较少, 花粉传播距离有限, 形成了传粉限制, 导致结实率较低, 自我更新困难(席辉辉等, 2022)。繁殖能力低下是大多数极小种群物种的共同特征, 也是导致它们濒危的一个重要因素(臧润国等, 2016)。例如种子休眠难以打破(如华盖木, Zheng & Sun, 2009)、种子活力和种子萌发差(如水杉, Liu et al, 2020)、花粉和种子传播效率低(如伯乐树Bretschneidera sinensis, Qiao et al, 2012)、种子产量低(如毛果木莲, Wang et al, 2017)等。中国28种纳入一级保护的极小种群野生植物的濒危原因和受威胁因素研究表明, 导致它们濒危的内在原因主要是繁殖力低(21种)和竞争能力弱(16种), 受威胁因素主要包括过度采挖等人类活动导致的种群数量减少(15种)和生境破坏(25种)以及气候变化等(姚志等, 2021)。

当前, 不断加剧的人为干扰和气候变暖增强了上述自然过程的发生, 对种群恢复产生负面影响, 进一步导致物种灭绝速度加快(Miraldo et al, 2016)。中国高等植物濒危状况评估结果表明, 高等植物最主要的致危因子是生境退化和丧失, 基础建设、经济作物种植以及生态旅游等均对野生植物的生存环境产生了巨大的压力; 人为过度采挖位列植物致危因子的第二位(覃海宁和赵莉娜, 2017)。20世纪70年代以来, 随着我国园林景观行业的发展、园艺博览会等的宣传以及野生植物线上交易的兴起, 原生的苏铁植物和兰科植物等被大量采挖贩卖。Wang等(2017)绘制了极小种群野生植物的威胁因子分布图, 发现它们主要受到过度利用、生境破碎化、种群太小的威胁。对海南岛极小种群野生植物分布格局的研究也发现首要威胁因素是人为干扰(Chen et al, 2014)。气候变暖通过改变极小种群野生植物的物候节律, 缩减了其气候适宜分布区, 从而增加了其灭绝风险(Chen et al, 2020)。野外和室内试验结果表明, 云南蓝果树对干旱胁迫的抗逆性和适应性差, 气候变化引起的水分亏缺加重严重影响了其自然更新, 栖息地恢复和小气候改善等有效的保护措施有助于该物种打破更新限制(Zhang et al, 2017)。

目前从机理上揭示珍稀濒危植物濒危机制或致濒因子的研究还较少。利用遗传多样性手段如保护基因组学分析濒危机制是最有效和最直接的方法, 能够为种群规模的进化历史和物种未来的恢复潜力提供重要见解(Garner et al, 2016)。研究发现, 天目铁木(Ostrya rehderiana)种群数量锐减是历史气候变化和人为干扰共同作用的结果。末次冰盛期天目铁木种群数量下降到阈值, 进入灭绝漩涡, 极小的种群规模、低水平的遗传多样性削弱了其适应能力, 全新世期间人类砍伐和耕种又进一步直接减小了其种群规模(Yang et al, 2018)。种群结实率和种子萌发率低、幼苗适应性和抗逆性差难以发育成幼树导致了海南风吹楠的濒危(蒋迎红, 2018)。自毒现象(autotoxicity)是植物化感作用的一种重要形式, 通过释放次生代谢物对自身或种内其他植物产生危害, 是植物适应种内竞争的结果, 在植物自然更新、种群结构调节、环境胁迫抵御等关键生态过程中均发挥着重要作用(彭少麟和邵华, 2001)。云南蓝果树通过根、茎、叶、蒴果产生的自毒作用显著抑制了其种子萌发和幼苗生长, 应通过清理凋落物、添加活性炭以及迁地保护等方式改善种群自然更新(Zhang et al, 2015)。大树杜鹃叶片也具有较强的自毒作用, 可能是导致其种群数量稀少和自然更新障碍的因素之一(刘芳黎等, 2017)。

2.6 动态模型

研究极小种群野生植物的种群衰退原因, 预测多种胁迫下其种群的生存动态至关重要(Guisan et al, 2013)。生境质量的时空变化动态和种群的生活史特征决定了种群在持续恶化生境中的维持时间(Alexander et al, 2012)。种群动态是种群统计速率与个体间交互作用的具体体现(Hart et al, 2016), 在理论模型中考虑景观结构与种群动态之间复杂的相互作用, 对于准确预测极小种群野生植物的种群轨迹十分必要。由于极小种群物种样本数量极少, 获取的个体信息难以完整反映种群的特征; 且个体之间存在强烈的相关性, 单个个体的消亡可能对整个种群的延续造成严重影响, 不符合经典的种群统计学参数估计对大样本、正态性、样本间相互独立的前提要求。因此, 陈冬东和李镇清(2020)提出, 构建极小种群物种的种群动态模型时有必要采用基于小样本的非统计分析方法, 如灰色系统理论、贝叶斯方法以及自助法(bootstrap), 来提高种群统计学参数的估计精度, 同时在模型中考虑种群的适应力也有助于更加精准地模拟环境变化下的种群动态与灭绝概率, 为极小种群野生植物保护提供更适宜的理论指导。

3 极小种群野生植物保育的实践研究

2017年, 国家林业局评估了120种极小种群野生植物的保护成效, 发现尽管大多数物种都实施了全面的调查, 但包括海南石豆兰(Bulbophyllum hainanense)、海南鹤顶兰(Phaius hainanensis)和海南大苞兰(Sunipia hainanensis)在内的有些类群却没有找到; 有37个物种分布在自然保护区, 60个物种通过委托护林员或当地管理部门得到保护, 为26个物种建立了就地保护小区; 对80个物种进行了迁地保护试验示范, 56个物种开展了人工繁殖, 26个物种开展了种群增强与回归试验, 对一半物种进行了种质资源保存(孙卫邦和徐永福, 2022)。国家林业和草原局于2012-2018年组织开展的第二次全国重点保护野生植物资源调查发现, 与第一次调查有可比性的54种极小种群野生植物中, 有36种的野外种群数量稳中有升, 占67% (http://www.forestry.gov.cn/main/586/20220210/091653623218205.html)。可见, 尽管取得了一些可喜的成果, 但拯救规划的目标仅部分实现, 资金不足、缺乏保护生物学的科学指导和专业实践人员等原因影响了拯救规划工程的实施效果(Yang et al, 2020)。极小种群野生植物保育实践的论文主要涉及就地保护、迁地保护与种质资源保存、野外回归、人工繁育、标准化体系等5个方面(图3)。

图3

图3   极小种群野生植物保育实践研究涉及方面及文献数量

Fig. 3   Aspects and quantities of literatures on conservation practice of Wild Plants with Extremely Small Populations


3.1 就地保护

就地保护对于维持生物的繁衍、适应与进化, 维系生态系统服务和功能等均具有重要的作用(王伟和李俊生, 2021), 是生物多样性保护中最有效的措施之一。由于极小种群野生植物对生境的特殊要求, 维护其自然生境是保护的重要方式之一。国家公园、自然保护区、自然公园和生态保护红线各有侧重、相互弥补, 形成了中国的自然保护地体系(高吉喜等, 2021), 将我国最重要、最具代表性的生态系统纳入了最严格的保护体系,对于保护极小种群野生植物、维护国家和区域生态安全、建设生态文明发挥着重要作用。中国有苏铁属植物约20种, 均被列为国家一级重点保护野生植物, 其中50%被列入了极小种群野生植物名录。四川攀枝花市建立了以攀枝花苏铁(C. panzhihuaensis)为主要保护对象的国家级自然保护区, 云南普渡河的攀枝花苏铁分布区被纳入云南轿子雪山国家级自然保护区(席辉辉等, 2022)。野生东北红豆杉及其赖以生存的针阔混交林被纳入黑龙江穆棱东北红豆杉国家级自然保护区进行保护。张则瑾等(2018)整理了120种极小种群野生植物的高精度分布图, 发现国家级自然保护区对极小种群野生植物分布区的平均覆盖率为21.5%, 省级自然保护区的平均覆盖率为10.9%, 有14%的物种未受到任何国家级或省级自然保护区覆盖。云南省有21种国家重点保护野生植物及极小种群野生植物分布在59个国家级、省级自然保护区之外(王勇等, 2018)。广西已建立了各类自然保护区78个, 覆盖了82%的重点保护野生植物, 但部分物种的大多数分布点还位于保护区之外, 已被保护的部分种群所在生境破碎化严重或生境质量较差, 无法阻止种群数量的持续下降(王双玲等, 2011)。

由于极小种群野生植物种群生境面积小、破碎化程度高, 在很多情况下被受到严重破坏的环境所包围, 或者位于人口稠密、人类活动频繁的地区, 建立大面积的自然保护区是不现实的, 一个有效的解决办法是建立保护小区或微保护区。作为由县级及以下人民政府设立的面积较小的保护区(点), 自然保护小区面积一般不超过1,000 ha, 但对于保护国家或地方重点保护的分布范围较为狭窄的野生动植物群落及栖息地具有重要意义(崔国发, 2013)。深圳市梅林水库建立了仙湖苏铁(C. fairylakea)保护小区(Feng et al, 2021)。云南西双版纳分布的142种兰科植物中有44种位于青石寨自然保护小区内, 有42种位于银厂自然保护小区内(Liu et al, 2015)。基于极小种群野生植物云南蓝果树的保护小区建设实践, 杨文忠等(2016)探讨了保护小区规划的原则、内容、程序以及管理机构设置和运行机制, 为制定极小种群野生植物保护小区建设方案提供了指导和参考。

3.2 迁地保护与种质资源保存

作为最古老的保护策略之一, 迁地保护能够为珍稀濒危植物在其自然栖息地以外的特定区域提供生长和繁殖所需的条件。随着生境丧失、人类采伐和气候变化影响的加剧, 迁地保护的需求不断增长(Abeli et al, 2020)。迁地保护与就地保护相辅相成, 通过在人为干预和精细管护下保护、研究、评价和利用植物多样性, 不仅是收集和保存珍稀濒危植物种质资源的重要方式, 也是植物回归引种及野生种群恢复重建的材料保障(Westwood et al, 2020)。

对于极小种群野生植物来说, 通过迁地保护收集和保存种质资源, 为就地保护和野外回归提供了至关重要的备份。云南省已对61种极小种群野生植物开展了迁地保护; 昆明植物园极小种群野生植物专类园迁地保存了44种极小种群植物物种, 部分物种已开花结实; 中国西南野生生物种质资源库保存了极小种群野生植物种子20种94份、DNA材料28种156份(孙卫邦等, 2019)。华东师范大学收集了包括水杉、东北红豆杉、天目铁木等9种极小种群物种在内的种质资源1,500份, 并在湖北利川建立了种质资源圃。十三五重点研发计划“典型极小种群野生植物保护与恢复技术研究”在不同气候区建立了8处迁地保护示范基地, 迁地保存了14种极小种群物种的27,215株个体(臧润国和黄继红, 2020)。

植物迁地保护是一个长期的过程。迁地保护种群是否能够在自然条件下完成从“种子到种子”的生活史全过程, 是迁地效果评价的重要标准之一(He, 2002)。深圳仙湖植物园于2002年建立了“国家苏铁种质资源保护中心”, 目前已收集、保存全球苏铁类植物2科10属240余种, 迁地保护的部分物种已经可以完成生活周期(席辉辉等, 2022)。将仅分布于我国新疆阿勒泰地区的盐桦(Betula halophila)迁地保护到山东烟台, 发现其在烟台地区适应性良好, 第3年即能开花结果(黄睿智等, 2020)。基于11个植物园的植物迁地保护的生长适应与开花结果统计, 发现植物生长适应良好的占48%, 中等的占40%, 差的占12%; 已开花的种类占38%, 结果的种类仅占24% (许再富等, 2008)。迁地保护的目标是建立一个能够应对和适应环境变化并且完成自我维持和更新的种群, 但迁地保护的个体数有限导致的遗传漂变、自交衰退等问题, 可能使迁地种群无法长期延续(Enßlin et al, 2011)。我国植物园目前保存的珍稀濒危植物, 大多数种子都来自个别自然种群和少数母株, 而且其中40%-60%的物种是在植物园间相互引种的, 此外其中45%的物种仅保存了1-5株个体(许再富等, 2008)。通过比较迁地种群和野生种群的生活史特征和遗传多样性差异, 来评价迁地保护的有效性和合理性十分必要。比较黄梅秤锤树迁地保护种群与野生种群的果实性状, 发现迁地保护种群与野生种群果实重量差异不显著, 果实形态性状的种内变异程度不低于野生种群, 表明该物种的迁地保护基本成功(刘梦婷等, 2018)。荟萃分析表明, 由于不完善的取样策略以及迁地保护过程中的遗传侵蚀, 大部分迁地保护种群不能有效涵盖其野生种群的遗传变异。当迁地保护样本数不少于30或50时, 迁地保护种群与野生种群的遗传多样性才没有表现出显著差异(Wei & Jiang, 2021)。因此, 未来迁地实践中必须采取全面采样的策略, 对于已有的迁地种群进行周期性的遗传多样性检测和适应性评价, 必要时补充新的个体。

云南林业厅基于保护实践, 提出了极小种群野生植物的“近地保护” (near situ conservation)方法, 即在物种现有分布区/点附近选择气候、生境和群落相似的自然或半自然地段建立人工保护点(许再富和郭辉军, 2014)。由于该方法也是将保护对象转移到其自然栖息地以外并进行人工管护, 本文将其归为迁地保护的一种形式。云南省对云南蓝果树、华盖木、西畴青冈、巧家五针松、滇桐(Craigia yunnanensis)等9种极小种群野生植物开展了近地保护试验, 发现近地保护种群的成活率和生长情况良好(孙卫邦等, 2019)。近地保护方法已被认为是我国极小种群野生植物主要拯救性保护措施之一(许再富和郭辉军, 2014)。中国科学院西双版纳热带植物园近地保护了38种国家重点保护植物, 其中适应性良好的占总数的92%, 已开花结果的占84% (许再富等, 2012), 证明近地保护是一种有效而资源投入较小的方法, 这一结果也强调了植物园应注重当地区系成分植物的引种、栽培和保护。

3.3 野外回归

鉴于全球物种和自然栖息地的加速消失, 目前对破碎化栖息地的被动保护是不够的(Heywood, 2017)。野外回归是野生植物种群重建的重要途径, 作为就地保护和迁地保护之间的桥梁以及迁地保护的最终目标,其保护效果超过了单一的物种保护措施(Ren et al, 2020)。在人类世, 保护的未来在于栖息地的恢复和大规模的植物回归(Volis, 2018a)。作为克服生境丧失、破碎化和繁殖隔离等问题的方法, 回归已成为完整的物种恢复计划的一个重要组成部分(Dalrymple et al, 2012)。

回归已在越来越多的珍稀濒危植物保护实践中得到应用。云南省目前建立了“极小种群野生植物回归自然试验示范研究基地”, 成功开展了华盖木、毛果木莲、西畴青冈、漾濞槭等极小种群物种的野外回归工作(孙卫邦等, 2019)。“典型极小种群野生植物保护与恢复技术研究”项目组建立了回归示范区6处, 回归了东北红豆杉、崖柏、坡垒、盐桦、瑶山苣苔(Dayaoshania cotinifolia)、海伦兜兰个体超过3万株。国家苏铁种质资源保护中心于2008年在广西黄连山自然保护区开展德保苏铁(Cycas debaoensis)回归试验, 回归5年后的调查表明, 德保苏铁回归种群生长良好, 17.6%的个体长出了大、小孢子叶球, 利用回归居群产生的种子培育苗木约5,300株(王运华等, 2018)。截至2019年底, 中国有300个植物回归项目, 涉及206个物种, 其中中国特有物种112种。中国科学院华南植物园负责完成的“华南珍稀濒危植物的野外回归研究与应用”项目建立了“选取适当的珍稀植物进行基础研究和繁殖技术攻关, 再进行野外回归和市场化生产, 实现其有效保护, 同时通过区域生态规划及国家战略咨询, 推动整个国家珍稀濒危植物回归工作”的模式, 初步实现了珍稀濒危植物的产业化, 产生了良好的生态、社会和经济效益(Ren et al, 2012)。

在自然生态系统中, 植物与其他生物之间的关系极为复杂, 一个新物种很难在一个稳定的群落中建立, 即使这个物种曾经是该群落的组成成分(Ren et al, 2014), 珍稀濒危植物又往往生存能力和适应性较差, 因此珍稀濒危植物的回归是一项高风险和高花费的工程(周翔和高江云, 2011)。回归生境的适宜性对物种生长具有重要影响, 研究植物的生理生态特征对不同野外回归生境的适应性可以为评估极小种群物种回归生境的适宜性提供科学依据。不同光照条件对梓叶槭幼树形态和生理特征的影响研究表明, 林缘适宜的光照条件更适合梓叶槭野外回归(张宇阳等, 2020)。人工管护可以帮助植物克服定居限制而实现成功回归。选择不同苗龄的东北红豆杉幼苗在不同生境开展野外回归试验, 发现长时间低温胁迫影响了1-2年生幼苗的生长状况, 而4-5年生幼苗因受动物啃食而回归效果不良, 表明在回归试验点采用幼苗保护装置的必要性(徐超等, 2020)。

回归的成功标准分为短期和长期两类, 前者包括个体的成活、种群的建立和扩散; 后者包括回归种群的自我维持和在生态系统中发挥稳定功能等, 也是回归成功的最终标准(周翔和高江云, 2011), 但这些标准对评价长寿命物种的回归成功与否可操作性不强。目前关于回归的科学监测数据非常缺乏。Liu等(2015)评估了中国154个物种的222个野外回归案例, 发现仅有不到50%的案例有个体是否存活的记录, 仅有30%的案例有关于个体是否开花或结果的记录。对建立的回归种群开展持续监测, 并与野生种群进行种群动态、繁殖能力、群落多样性等的比较, 是评价回归地点选择适宜性、物种回归实践是否成功的可靠途径。利用高通量测序技术比较野生和回归华盖木种群根际和土壤微生物, 发现二者的微生物群落组成相似, 但类群的相对多度差异显著(Shen et al, 2020; Su et al, 2021)。

3.4 人工繁育

很多珍稀濒危植物具有繁殖瓶颈, 繁殖过程表现出高度的脆弱性和敏感性(Baskin & Baskin, 2014)。成功繁殖对于维持种群数量, 尤其是濒临灭绝物种的种群数量至关重要, 因此繁殖瓶颈的突破是极小种群野生植物解濒研究的重中之重, 发展规模化扩繁技术是其保育体系的重要环节(臧润国等, 2016)。对极小种群野生植物进行高效的人工繁殖, 能够扩大种群数量并将扩繁的苗木应用于迁地保护、野外回归甚至满足商品市场的需求, 有利于其种质资源的保护和可持续利用(邓莎等, 2020)。

采用种子繁殖育苗是保持物种遗传多样性的有效方法, 扦插、嫁接和组织培养等无性繁殖技术则可用于对有性繁殖能力低下的种类进行快速扩繁。国家重点研发计划项目“典型极小种群野生植物保护与恢复技术研究”对14种典型极小种群野生植物的繁殖特性和人工繁殖方法进行了研究, 并利用播种技术繁殖了其中12个物种的230,000株种苗, 利用扦插、嫁接和组织培养等无性繁殖技术扩繁了其中10个物种的60,365株苗木(邓莎等, 2020)。打破种子的休眠, 去除其机械或化学阻碍, 探索种子储存和萌发所需的光照、温度、湿度等条件, 是开展人工繁育的必要手段。百山祖冷杉种子野外萌发困难, 实验证明20℃/25℃的温度条件、14 d的低温分层处理、接种外生菌根等种子辅助处理手段可以提高其种子萌发率(Hu et al, 2022)。丹霞梧桐(Firmiana danxiaensis)属于硬实种子, 播种前种子适当破皮处理可有效提高其萌发率(周小芬等, 2021)。还有些研究应用不同基质、不同种类和不同浓度的生长调节剂确定了物种扦插生根的最佳处理组合(刘俊等, 2019; 陈加利等, 2021)。至少36%的极度濒危植物物种、27%的濒危物种和35%的易危物种的种子是顽拗型(recalcitrant)种子(Wyse et al, 2018), 如广西青梅(Vatica guangxiensis)、狭叶坡垒(H. chinensis)等极小种群物种(孙卫邦等, 2019), 这些种子无法在种子库标准的干燥/低温环境中存活; 此外, 虽然一些正常型(orthodox)种子耐低温和干燥, 但其种子活力很难超过10年(Li & Pritchard, 2009), 这些物种采种后应及时播种育苗或者优先采用超低温技术进行保存。

3.5 保育的标准化体系

随着经济发展、资源开发规模的日益扩大, 珍稀濒危植物及其生境遭受的干扰和破坏难以遏止。尽管目前已经成功挽救了部分物种(孙卫邦等, 2019), 但目前有关极小种群野生植物濒危原因和解濒技术的研究还较为缺乏, 不能满足全国极小种群野生植物拯救保护工程有效实施的科技需求(臧润国等, 2020)。基于国内外最先进的保护理论和方法, 在开展大量技术实践示范基础上, 建设极小种群野生植物保护和恢复的标准化技术体系, 建立相应的评估管理规范, 能够填补在各保育环节存在的技术空白, 有助于开展并推广积极有效的保护和恢复措施。

因此, 除了以上4个方面, 我们还梳理了涉及极小种群野生植物的相关标准, 这些标准基本归属林业部门主管。目前已建立如下8个相关的行业标准: 《极小种群野生植物保护与扩繁技术规范(LY/T 2652-2016)》(臧润国等, 2015)、《极小种群野生植物保护原则与方法(LY/T 2938-2018)》(杨文忠等, 2018)、《极小种群野生植物保护技术标准综合体第1部分 就地保护及生境修复技术规程(LY/T 3086.1-2019)》(臧润国等, 2019)、《极小种群野生植物保护技术标准综合体(第2部分) 迁地保护技术规程(LY/T 3086.2-2019)》(臧润国等, 2019)、《极小种群野生植物野外回归技术规范(LY/T 3185-2020)》(李俊清等, 2020)、《极小种群野生植物种质资源保存技术规程(LY/T 3187-2020)》(臧润国等, 2020)、《极小种群野生植物苗木繁育技术规程(LY/T 3186-2020)》(臧润国等, 2020)、《极小种群野生植物水松保护与回归技术规程(LY/T 3259-2021)》(文亚峰等, 2021)。这些标准针对极小种群野生植物形成了一套全链条式的技术集成和示范体系, 能够为极小种群野生植物拯救保护工程提供重要的技术支撑, 同时能够带动相关生态建设和产业的规范化发展, 产生良好的生态和社会效益。

4 极小种群野生植物未来保护展望

4.1 保护名录的调整和完善

极小种群野生植物保护名录是编制保护行动的依据, 准确的物种界定是开展种群遗传学、保护生物学、生物地理学和进化生物学等保护研究的前提(Feng et al, 2021)。极小种群野生植物由于野外调查到的种群规模通常较小, 难以对其形态特征和生活史过程进行全面考察, 加上生境异质性导致不同种群存在较大的形态特征差异, 以及物种间可能存在的自然杂交现象(Tao et al, 2021), 导致名录中的部分物种在分类上存在一定困难和争议, 如桦木科的盐桦与其近缘种形态差异非常小, 其种间界定具有不确定性。针对部分物种种间界定尚未澄清的问题, 建议采用形态和分子相结合的方法, 加强分类与系统发育的研究(Feng et al, 2016)。同时利用更为精细的野生种群现状及其生境条件调查数据, 删去那些经过深入的野外调查发现了新的分布点或种群、种群数量超过预期的物种, 或已经脱离了灭绝风险的物种, 对极小种群野生植物名录定期更新和完善。

4.2 种群结构的观测和预测

极小种群野生植物概念中引入了最小存活种群(MVP)这一指标, 即特定物种以一定概率存活一定时间所需的最少个体数(Reed & McCoy, 2014)。MVP值可以根据物种的生物学特性以及设定的存活概率和时间, 通过种群生存力分析(population viability analysis, PVA)求得(Rosenfeld, 2014)。然而我国野生植物资源监测体系尚不完善, 难以及时掌握极小种群野生植物资源的动态变化。国内对特定野生植物生存力分析的研究也较少, 当前对于绝大多濒危物种只有种群分布和种群大小的粗略数据(图2), 很少有种群数量结构信息, 种群可存活力的工作更少(Volis, 2018b)。MVP对于极小种群野生植物的物种选列和保护实践具有重要意义, 因此应该基于对种群数量和繁殖物候的长期观测, 加强对极小种群野生植物种群结构的研究和预测, 根据不同物种的生物学特性和明确的保护目标(存活概率和存活时间)来确定种群可存活力。

4.3 小种群形成和恢复机制的针对性研究

鉴于极小种群物种种群数量小的特点, 基于大样本方法发展的植物种群理论并不完全适用, 例如使用生态位模型或物种分布模型预测物种对全球变化的响应, 通常需要20个或更多的观测样本(van Proosdij et al, 2016)。根据极小种群野生植物的分布、种群、群落、生境等调查、监测和实验数据, 发展具有针对性的假说和预测模型, 解释其小种群形成机制和恢复机制, 是亟待突破的瓶颈(Chen et al, 2020)。其扩繁、回归、栖息地恢复等保护方法也可能与其他物种存在巨大差异, 很少有可以效仿的成功案例。因此, 相关保护方案必须考虑极小种群野生植物的特性, 研发基于小样本的保护实践体系(臧润国等, 2016)。

4.4 特定物种的长期系统性研究

目前针对列入《全国极小种群野生植物拯救保护工程规划》的120个物种开展的研究越来越多, 但关于单个物种的系统性研究有待增强(孙卫邦等, 2021)。特定物种的系统性研究应包含以下内容: 通过极小种群野生植物的保护基因组学和生理生态适应性研究揭示其种群进化历史和濒危原因, 基于对物种生境条件、种群结构、群落组成的深入了解开展就地保护以及确定迁地地点, 在分析种群遗传结构和遗传多样性的基础上开展种质资源保护以及确定迁地保护和扩繁材料的取样数量, 通过物种繁殖生物学特性研究制定科学的有性和无性繁殖技术, 将大规模扩繁的苗木用于迁地保护和野外回归, 对迁地和回归种群开展长期监测与管护, 评估与野生种群的性状表现和适应性差异, 对保育效果进行评估并适当调整保护策略。物种的保育是一个长期的过程, 各个环节互相支撑, 离不开对特定物种的系统研究以及专项资金的长期稳定投入。

4.5 极小种群野生植物概念在国际上的推广

文献统计发现, 发表在影响因子高于5.0的期刊(以2021年影响因子为标准)上的英文论文数量仅9篇, 其中仅1篇论文发表于影响因子高于10.0的期刊Trends in Plant Science。此外, 引用这些英文文章的文献中, 提到极小种群野生植物概念的文章基本是国内的研究论文, 从侧面反映了目前极小种群野生植物概念在国际上的影响力仍有待提高。

英文文献中, 有4篇文章第一单位为国外科研机构。其中, Wade等(2016)利用英国邱园种子信息数据库(http://data.kew.org/sid/)收集了中国120种极小种群野生植物的繁殖生物学信息, Solórzano等(2016)研究了墨西哥极小种群野生仙人掌白露 (Mammillaria albiflora)的种内遗传变异及优先保护种群, Cogoni等(2021)监测了意大利撒丁岛极小种群蕨类瓶尔小草(Ophioglossum vulgatum)的分布、种群大小、生境和就地保护效果。著名植物学家Peter Crane对中国极小种群野生植物保护计划的实施给予了高度评价, 认为该保护计划打破了理论和实践的壁垒, 能长远保护灭绝风险极高的植物(Crane, 2020)。

尽管我们认为极小种群野生植物概念在国际上的认可度正在逐渐提高, 但不可否认, IUCN红色名录的等级和标准是被全世界广泛接受的受威胁物种的分级标准体系, 为最广泛的物种等级划分提供了明晰的框架, 可能会影响极小种群概念的推广和使用。开展国际合作交流是推广极小种群野生植物概念, 提升我国生物多样性保护国际影响力的重要措施。国内学者可以利用濒危物种保护方面的新理论和新方法, 开展极小种群野生植物濒危机制和保育措施等的国际合作研究, 加强同世界各国以及包括国际植物园保护联盟、世界自然保护联盟、英国皇家植物园邱园和爱丁堡植物园等相关国际性组织和非政府组织的交流合作, 进一步推动中国在极小种群野生植物保护方面的进展。此外, 作为全球生物多样性保护工作的关键区域以及《生物多样性公约》等国际公约的缔约国, 在缔约方大会等备受关注的时期介绍我国极小种群野生植物拯救保护的经验与模式, 也将极大提高这一概念的接受度。

5 总结

极小种群野生植物概念的提出及相关保护规划的实施, 给濒危物种保护工作带来了全新的保护思路。这一崭新的保护理念在中国得到了各级政府部门和公众的广泛认可, 国家及各省(市、区)均颁布了极小种群野生植物的保护规划和行动措施, 各行政部门还制定了新的政策和法律法规来保护这些亟需拯救的物种(孙卫邦和徐永福, 2022)。极小种群野生植物保护项目将高质量的理论研究与实际的保护行动相结合, 取得了较为成功的保护成果(Crane, 2020)。

生物多样性的消失是一个不可逆转的过程, 极小种群物种的丧失将影响其生态功能的发挥, 甚至破坏整个自然生态系统。极小种群野生植物拯救保护工程的实施以及相关的研究与实践, 帮助我们确保这些物种的零灭绝, 使我们有机会能够欣赏、研究、了解和利用它们。自2017年以来, 生物多样性保护已逐渐在中国社会主流化。2021年在中国昆明召开了联合国《生物多样性公约》第十五次缔约方大会第一阶段会议, 中国启动了国家公园和国家植物园的建设, 这些举措揭开了中国植物多样性保护的新篇章。中国具有独特的环境价值观和相关政策, 以西方模式为基础、由国际非政府组织支持的保护项目并不完全适合中国, 实施“中国特色的环境保护”更有利于保护我们国家的物种、生态系统、景观和文化多样性(Grumbine & Xu, 2011)。在政府主导下, 通过完善法律法规和体制机制, 加强保育研究和实践体系建设, 推动公众参与, 深化国际合作, 为实施保护创造更有力的社会支持, 极小种群野生植物也许能够拥有一个光明的未来(Yang et al, 2020)。

参考文献

Abeli T, Dalrymple S, Godefroid S, Mondoni A, Müller JV, Rossi G, Orsenigo S (2020)

Ex-situ collections and their potential for the restoration of extinct plants

Conservation Biology, 34, 303-313.

DOI:10.1111/cobi.13391      URL     [本文引用: 1]

Alexander HM, Foster BL, Ballantyne F, Collins CD, Antonovics J, Holt RD (2012)

Metapopulations and metacommunities: Combining spatial and temporal perspectives in plant ecology

Journal of Ecology, 100, 88-103.

DOI:10.1111/j.1365-2745.2011.01917.x      URL     [本文引用: 1]

Baskin CC, Baskin JM (2014) Seeds: Ecology, Biogeography, and Evolution of Dormancy and Germination, 2nd edn. Academic Press, London.

[本文引用: 1]

Bellard C, Marino C, Courchamp F (2022)

Ranking threats to biodiversity and why it doesn’t matter

Nature Communications, 13, 2616.

DOI:10.1038/s41467-022-30339-y      PMID:35577784      [本文引用: 1]

Breiner FT, Guisan A, Bergamini A, Nobis MP (2015)

Overcoming limitations of modelling rare species by using ensembles of small models

Methods in Ecology and Evolution, 6, 1210-1218.

DOI:10.1111/2041-210X.12403      URL     [本文引用: 1]

Brundrett MC, Tedersoo L (2018)

Evolutionary history of mycorrhizal symbioses and global host plant diversity

New Phytologist, 220, 1108-1115.

DOI:10.1111/nph.14976      PMID:29355963      [本文引用: 1]

Contents Summary 1108 I. Introduction 1108 II. Mycorrhizal plant diversity at global and local scales 1108 III. Mycorrhizal evolution in plants: a brief update 1111 IV. Conclusions and perspectives 1114 References 1114 SUMMARY: The majority of vascular plants are mycorrhizal: 72% are arbuscular mycorrhizal (AM), 2.0% are ectomycorrhizal (EcM), 1.5% are ericoid mycorrhizal and 10% are orchid mycorrhizal. Just 8% are completely nonmycorrhizal (NM), whereas 7% have inconsistent NM-AM associations. Most NM and NM-AM plants are nutritional specialists (e.g. carnivores and parasites) or habitat specialists (e.g. hydrophytes and epiphytes). Mycorrhizal associations are consistent in most families, but there are exceptions with complex roots (e.g. both EcM and AM). We recognize three waves of mycorrhizal evolution, starting with AM in early land plants, continuing in the Cretaceous with multiple new NM or EcM linages, ericoid and orchid mycorrhizas. The third wave, which is recent and ongoing, has resulted in root complexity linked to rapid plant diversification in biodiversity hotspots.© 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

Cai KL, Mai ZT, Zeng DH, Chen WY, Liu J, Hong WJ (2018)

Study on soil characteristics and differences in the distribution area of extremely small population of Paranephelium hainanensis community

Journal of Central South University of Forestry & Technology, 38(6), 102-108. (in Chinese with English abstract)

[本文引用: 1]

[蔡开朗, 麦志通, 曾德华, 陈伟玉, 刘俊, 洪文君 (2018)

极小种群野生植物海南假韶子群落土壤特性研究

中南林业科技大学学报, 38(6), 102-108.]

[本文引用: 1]

Cai CN, Zhang XY, Zha JJ, Li J, Li JM (2022)

Predicting climate change impacts on the rare and endangered Horsfieldia tetratepala in China

Forests, 13, 1051.

[本文引用: 1]

Caughley G (1994)

Directions in conservation biology

Journal of Animal Ecology, 63, 215-244.

DOI:10.2307/5542      URL     [本文引用: 1]

Chen DD, Li ZQ (2020)

Population viability analysis of Wild Plant with Extremely Small Populations (WPESP): Methods, problems and prospects

Biodiversity Science, 28, 358-366. (in Chinese with English abstract)

DOI:10.17520/biods.2019179      [本文引用: 1]

Environmental change and anthropogenic disturbance have a significant impact on population persistence. Therefore, it is essential to predict population dynamics under multiple stresses. Population viability analysis (PVA) is an effective method for assessing threats, extinction risk and bottlenecks, and the likelihood of recovery. By combining data and models, PVA accommodates different types of variables and can offer appropriate advice for conservation. However, demographic parameters of Wild Plant with Extremely Small Populations are difficult to estimate, which makes the statistical power of these models quite low. Here, we offer some underlying PVA methods for Wild Plant with Extremely Small Populations using non-statistical theory with small sample sizes and population adaptive potential analysis. Methods based on the non-statistical theory can enhance the accuracy of parameter estimation in small populations, while the eco-evolutionary elements help to uncover mechanisms of population adaptation and predict population dynamics. These methods provide more appropriate guidance for the conservation of Wild Plant with Extremely Small Populations.

[陈冬东, 李镇清 (2020)

极小种群野生植物生存力分析: 方法、问题与展望

生物多样性, 28, 358-366.]

DOI:10.17520/biods.2019179      [本文引用: 1]

日益加剧的环境变化与人类活动严重威胁种群的生存, 因此预测多种胁迫下种群的命运至关重要。种群生存力分析(population viability analysis, PVA)是评估种群所受威胁、灭绝或衰退风险以及恢复可能性的有效方法。基于物种及环境数据和建模, 种群生存力分析能够整合不同类型变量, 为目标物种的保护提供建议。然而, 极小种群野生植物的个体数据难以获取, 种群参数估计困难, 这导致传统种群生存力分析方法在此类种群中的应用存在局限性。在此, 本文提出了极小种群野生植物生存力分析的潜在方法: 小样本非统计分析法及环境变化下的种群适应力分析。小样本非统计分析法有益于提高种群统计学参数的估计精度, 而立足于生态进化生物学的种群生存力研究有助于从生物学机理方面了解和预测种群动态, 为极小种群野生植物的保护提供更适宜的理论指导。

Chen DD, Liao JB, Bearup D, Li ZQ (2020)

Habitat heterogeneity mediates effects of individual variation on spatial species coexistence

Proceedings of the Royal Society B: Biological Sciences, 287, 20192436.

[本文引用: 2]

Chen JL, Xia TF, Sun XX, Qi HS, Wang CM, Ma GY, Zheng DJ (2021)

Effects of exogenous hormones on the rooting function to Castanopsis wenchagensis, a very small population economic plants in Hainan Province

Molecular Plant Breeding, https://kns.cnki.net/kcms/detail/46.1068.S.20211108.1602.006.html. (in Chinese with English abstract)

URL     [本文引用: 1]

[陈加利, 夏腾飞, 孙秀秀, 戚华沙, 王春梅, 马光耀, 郑道君 (2021)

外源激素对海南特有极小种群经济植物文昌锥生根的影响

分子植物育种, https://kns.cnki.net/kcms/detail/46.1068.S.20211108.1602.006.html.]

URL     [本文引用: 1]

Chen J, Yao L, Ai XR, Zhu J, Wu ML, Huang X, Chen SY, Wang J, Zhu Q (2020)

Adaptive strategies of functional traits of Metasequoia glyptostroboides parent trees to changing habitats

Biodiversity Science, 28, 296-302. (in Chinese with English abstract)

DOI:10.17520/biods.2019099      [本文引用: 1]

Functional trait variability and phenotypic plasticity are the main mechanisms plants use to respond to heterogeneous habitats. These can determine how well a plant grows and where it is distributed. In the Xingdoushan National Nature Reserve, we assessed the response of the functional traits of a population of Metasequoia glyptostroboides parent trees to tree morphology, terrain factors and human disturbance. We found that the leaf area (LA), leaf dry weight (LDW) and specific leaf area (SLA) had large variation and great plasticity, while leaf dry matter content (LDMC) and twig dry matter content (TDMC) were more stable. Human disturbance and the four terrain factors together explained 5%-20% of variance for each functional trait, and crown size explained 38% and 76% of the variation in TDMC and LDMC, respectively. The five functional traits were mainly affected by altitude, slope aspect and human disturbance. The SLA responded slightly to environmental factors and disturbance pattern, while LA and LDW generally increased with strong disturbance. LDMC and TDMC were most sensitive to change in slope aspect. Taken together, the population of M. glyptostroboides parent trees demonstrated significant plasticity in response to the environment through its variability in functional traits. Because human disturbance had a great influence on the growth of these trees, artificial regeneration is recommended, and the impact of agriculture and human construction needs to be reduced.

[陈俊, 姚兰, 艾训儒, 朱江, 吴漫玲, 黄小, 陈思艺, 王进, 朱强 (2020)

基于功能性状的水杉原生母树种群生境适应策略

生物多样性, 28, 296-302.]

DOI:10.17520/biods.2019099      [本文引用: 1]

植物的功能性状变异和表型可塑性是其应对异质生境的主要机制, 对植物的生长和分布有重要贡献。本文以湖北星斗山国家级自然保护区的水杉(Metasequoia glyptostroboides)原生母树为研究对象, 分析了母树种群功能性状对树木形态、地形因子及人为干扰的响应机制。结果表明: 水杉原生母树叶面积、叶干重和比叶面积的变异幅度大, 可塑性较强, 而枝和叶的干物质含量稳定性最高。人为干扰和4个地形因子均对每个功能性状变异方差有5%-20%的解释度, 冠幅对枝、叶干物质含量的变异方差有高达38%和76%的解释度。5个功能性状主要受海拔、坡位和人为干扰影响, 其中, 比叶面积对环境因子和干扰的响应规律不明显, 叶面积和叶干重在强烈人为干扰的环境中普遍增大, 枝和叶的干物质含量对坡向的变化最敏感。总之, 水杉原生母树种群通过功能性状变异对环境能产生一定的可塑性响应, 但人为干扰对母树生长影响较大, 建议人工辅助更新, 并适度减少农业和建筑对现存母树的影响。

Chen SH, Cheng GY (2022)

Prediction of potential suitable areas of Taxus cuspidata based on MaxEnt model

Journal of Beihua University (Natural Science), 23, 302-310. (in Chinese with English abstract)

[本文引用: 1]

[陈舒豪, 程广有 (2022)

基于MaxEnt模型的东北红豆杉潜在适生区预测

北华大学学报(自然科学版), 23, 302-310.]

[本文引用: 1]

Chen Y, Yang X, Yang Q, Li D, Long W, Luo WQ (2014)

Factors affecting the distribution pattern of Wild Plants with Extremely Small Populations in Hainan Island, China

PLoS ONE, 9, e97751.

DOI:10.1371/journal.pone.0097751      URL     [本文引用: 2]

Cogoni D, Fenu G, Dessì C, Deidda A, Giotta C, Piccitto M, Bacchetta G (2021)

Importance of Plants with Extremely Small Populations (PSESPs) in endemic-rich areas, elements often forgotten in conservation strategies

Plants, 10, 1504.

DOI:10.3390/plants10081504      URL     [本文引用: 1]

Crane P (2020)

Conserving our global botanical heritage: The PSESP plant conservation program

Plant Diversity, 42, 319-322.

DOI:10.1016/j.pld.2020.06.007      [本文引用: 4]

Cui GF (2013) Dictionary of Nature Conservology. China Forestry Publishing House, Beijing. (in Chinese)

[本文引用: 1]

[崔国发 (2013) 自然保护区学词典. 中国林业出版社, 北京.]

[本文引用: 1]

Dalrymple SE, Banks E, Stewart GB, Pullin AS (2012) A meta-analysis of threatened plant reintroductions from across the globe. In: Plant Reintroduction in a Changing Climate: Promises and Perils (eds Maschinski J, Haskins KE), pp.31-50. Island Press, Washington, DC.

[本文引用: 1]

De Vos JM, Joppa LN, Gittleman JL, Stephens PR, Pimm SL (2015)

Estimating the normal background rate of species extinction

Conservation Biology, 29, 452-462.

DOI:10.1111/cobi.12380      PMID:25159086      [本文引用: 1]

A key measure of humanity's global impact is by how much it has increased species extinction rates. Familiar statements are that these are 100-1000 times pre-human or background extinction levels. Estimating recent rates is straightforward, but establishing a background rate for comparison is not. Previous researchers chose an approximate benchmark of 1 extinction per million species per year (E/MSY). We explored disparate lines of evidence that suggest a substantially lower estimate. Fossil data yield direct estimates of extinction rates, but they are temporally coarse, mostly limited to marine hard-bodied taxa, and generally involve genera not species. Based on these data, typical background loss is 0.01 genera per million genera per year. Molecular phylogenies are available for more taxa and ecosystems, but it is debated whether they can be used to estimate separately speciation and extinction rates. We selected data to address known concerns and used them to determine median extinction estimates from statistical distributions of probable values for terrestrial plants and animals. We then created simulations to explore effects of violating model assumptions. Finally, we compiled estimates of diversification-the difference between speciation and extinction rates for different taxa. Median estimates of extinction rates ranged from 0.023 to 0.135 E/MSY. Simulation results suggested over- and under-estimation of extinction from individual phylogenies partially canceled each other out when large sets of phylogenies were analyzed. There was no evidence for recent and widespread pre-human overall declines in diversity. This implies that average extinction rates are less than average diversification rates. Median diversification rates were 0.05-0.2 new species per million species per year. On the basis of these results, we concluded that typical rates of background extinction may be closer to 0.1 E/MSY. Thus, current extinction rates are 1,000 times higher than natural background rates of extinction and future rates are likely to be 10,000 times higher.© 2014 Society for Conservation Biology.

Deng S, Wu YN, Wu KL, Fang L, Li L, Zeng SJ (2020)

Breeding characteristics and artificial propagation of 14 species of Wild Plant with Extremely Small Populations (WPESP) in China

Biodiversity Science, 28, 385-400. (in Chinese with English abstract)

DOI:10.17520/biods.2020045      [本文引用: 3]

Reproduction is an important part of plant population renewal and maintenance. Threatened species including the Wild Plant with Extremely Small Populations (WPESP), are the result of a combination of internal factors, such as declines in reproductive ability and evolutionary longevity, and external factors, such as artificial over-harvesting and habitat destruction. Efficient artificial reproduction of WPESP can be used for ex situ conservation, reintroduction, and, in some cases, meet the demands of the commodities market, which underscores the need for protection and sustainable use of their germplasm. Seed propagation is the most effective method for maintaining genetic diversity in these speices. However, cutting, grafting and tissue culture are effective supplements for these species that are especially difficult to propagate from seed. Here, we report on the breeding characteristics and propagation methods of 14 typical speices of WPESP selected by our National Key Research Projects of China, and the progress of seedling propagation. A total of 230,000 seedlings from 12 species were produced via sowing, 33,100 seedlings from 5 species via cutting, 2,415 seedlings from 3 species including Manglietiastrum sinicum, Pyrus hopeiensis and Sinojackia huangmeiensis via grafting, 24,850 plantlets from 9 species via tissue culture. The results of this study provide a basis for the protection and use of these 14 species, providing a reference for other WPESP in China.

[邓莎, 吴艳妮, 吴坤林, 房林, 李琳, 曾宋君 (2020)

14种中国典型极小种群野生植物繁育特性和人工繁殖研究进展

生物多样性, 28, 385-400.]

DOI:10.17520/biods.2020045      [本文引用: 3]

繁殖是植物种群更新与维持的重要环节。包括极小种群野生植物在内的受威胁物种, 其濒危原因是在长期演化过程中自身繁育力的衰退、生活力的下降等内在因素和人类的过度采挖和生境的破坏等外在因素共同作用的结果。对极小种群野生植物进行高效的人工繁殖, 能扩大种群数量并应用于迁地保护、自然回归和满足商品市场的需求, 有利于其种质资源的保护和可持续利用。为了保持物种的遗传多样性, 采用种子繁殖育苗是有效的方法, 扦插、嫁接和组织培养技术等无性繁殖方法则可用于对难以用种子繁殖的种类进行快速繁殖。本文对14种中国典型极小种群野生植物的繁殖特性和已有的人工繁殖方法进行了综述, 并简要介绍在其种苗繁殖研究方面取得的进展。其中利用播种繁殖成功的物种有12种, 共繁殖230,000株种苗; 利用扦插繁殖成功的物种有5种, 共繁殖33,100株种苗; 华盖木(Manglietiastrum sinicum)、河北梨(Pyrus hopeiensis)和黄梅秤锤树(Sinojackia huangmeiensis)采用嫁接繁殖出了2,415株种苗; 9个物种的组织培养技术获得成功, 共繁殖了24,850株种苗。这些种苗有些已应用于迁地保护和自然回归。上述研究结果为这14种极小种群野生植物的保护和利用提供了理论和技术基础, 也能为其他极小种群野生植物的保护和利用提供参考。

Dong M, Zang RG (2022) Studies on Populations and Conservation Biology of Rare and Endangered Plants. Science Press, Beijing. (in Chinese)

[本文引用: 1]

[董鸣, 臧润国 (2022) 珍稀濒危植物种群与保护生物学研究. 科学出版社, 北京.]

[本文引用: 1]

Dullinger S, Gattringer A, Thuiller W, Moser D, Zimmermann NE, Guisan A, Willner W, Plutzar C, Leitner M, Mang T, Caccianiga M, Dirnböck T, Ertl S, Fischer A, Lenoir J, Svenning J-C, Psomas A, Schmatz DR, Silc U, Vittoz P, Hülber K (2012)

Extinction debt of high-mountain plants under twenty-first-century climate change

Nature Climate Change, 2, 619-622.

DOI:10.1038/nclimate1514      URL     [本文引用: 1]

Enßlin A, Sandner TM, Matthies D (2011)

Consequences of ex situ cultivation of plants: Genetic diversity, fitness and adaptation of the monocarpic Cynoglossum officinale L. in botanic gardens

Biological Conservation, 144, 272-278.

DOI:10.1016/j.biocon.2010.09.001      URL     [本文引用: 1]

Enquist BJ, Feng X, Boyle B, Maitner BS, McGill BJ (2019)

The commonness of rarity: Global and future distribution of rarity across land plants

Science Advances, 5, eaaz0414.

DOI:10.1126/sciadv.aaz0414      URL     [本文引用: 1]

Feng XY, Liu J, Gong X (2016)

Species delimitation of the Cycas segmentifida complex (Cycadaceae) resolved by phylogenetic and distance analyses of molecular data

Frontiers in Plant Science, 7, 134.

[本文引用: 1]

Feng XY, Wang XH, Chiang YC, Jian SG, Gong X (2021)

Species delimitation with distinct methods based on molecular data to elucidate species boundaries in the Cycas taiwaniana complex (Cycadaceae)

Taxon, 70, 477-491.

DOI:10.1002/tax.12457      URL     [本文引用: 2]

Fu GL, Li TT, Zhang YH, Wen XY, Ma XC, Wu CP (2021)

Phenological observation of the extremely small population plant Styrax zhejiangensis

Bulletin of Botanical Research, 41, 168-173. (in Chinese with English abstract)

[本文引用: 1]

[傅国林, 李婷婷, 张晔华, 文香英, 马学初, 吴初平 (2021)

极小种群浙江安息香的物候观测

植物研究, 41, 168-173.]

DOI:10.7525/j.issn.1673-5102.2021.02.003      [本文引用: 1]

浙江安息香(Styrax zhejiangensis)分布于浙江建德林场泷江林区桃花坞,是浙江省特有的极小种群野生植物。为了更好地解析该物种的濒危原因,对浙江安息香进行物候观测,了解其开花、结实和种子生物学特征等。结果表明:浙江安息香花叶同期。花器官和花粉特征与同属植物较为类似,结实率为21%~32%。种子存在形态变异,饱满度不足等现象,以及外种皮致密坚硬导致其透水性差有可能影响其萌发。温差及连续降雨虽然会加重其落花落果。因此,保护该物种需要更多了解其花果实的特性,并加以人工辅助。

Gao JX, Liu XM, Zhou DQ, Ma KP, Wu Q, Li GY (2021)

Some opinions on the integration and optimization of natural protected areas in China

Biodiversity Science, 29, 290-294. (in Chinese with English abstract)

DOI:10.17520/biods.2021051      [本文引用: 1]

[高吉喜, 刘晓曼, 周大庆, 马克平, 吴琼, 李广宇 (2021)

中国自然保护地整合优化关键问题

生物多样性, 29, 290-294.]

DOI:10.17520/biods.2021051      [本文引用: 1]

Garner BA, Hand BK, Amish SJ, Bernatchez L, Foster JT, Miller KM, Morin PA, Narum SR, O’Brien SJ, Roffler G, Templin WD, Sunnucks P, Strait J, Warheit KI, Seamons TR, Wenburg J, Olsen J, Luikart G (2016)

Genomics in conservation: case studies and bridging the gap between data and application

Trends in Ecology & Evolution, 31, 81-83.

DOI:10.1016/j.tree.2015.10.009      URL     [本文引用: 1]

Grumbine RE, Xu J (2011)

Creating a conservation with Chinese characteristics

Biological Conservation, 144, 1347-1355.

DOI:10.1016/j.biocon.2011.03.006      URL     [本文引用: 3]

Guisan A, Tingley R, Baumgartner JB, Naujokaitis-Lewis I, Sutcliffe PR, Tulloch AIT, Regan TJ, Brotons L, McDonald-Madden E, Mantyka-Pringle C, Martin TG, Rhodes JR, Maggini R, Setterfield SA, Elith J, Schwartz MW, Wintle BA, Broennimann O, Austin M, Ferrier S, Kearney MR, Possingham HP, Buckley YM (2013)

Predicting species distributions for conservation decisions

Ecology Letters, 16, 1424-1435.

DOI:10.1111/ele.12189      PMID:24134332      [本文引用: 1]

Species distribution models (SDMs) are increasingly proposed to support conservation decision making. However, evidence of SDMs supporting solutions for on-ground conservation problems is still scarce in the scientific literature. Here, we show that successful examples exist but are still largely hidden in the grey literature, and thus less accessible for analysis and learning. Furthermore, the decision framework within which SDMs are used is rarely made explicit. Using case studies from biological invasions, identification of critical habitats, reserve selection and translocation of endangered species, we propose that SDMs may be tailored to suit a range of decision-making contexts when used within a structured and transparent decision-making process. To construct appropriate SDMs to more effectively guide conservation actions, modellers need to better understand the decision process, and decision makers need to provide feedback to modellers regarding the actual use of SDMs to support conservation decisions. This could be facilitated by individuals or institutions playing the role of 'translators' between modellers and decision makers. We encourage species distribution modellers to get involved in real decision-making processes that will benefit from their technical input; this strategy has the potential to better bridge theory and practice, and contribute to improve both scientific knowledge and conservation outcomes. © 2013 The Authors. Ecology Letters published by John Wiley & Sons Ltd and CNRS.

Han JY, Xiao HF, Gao JY (2016)

Seasonal dynamics of mycorrhizal fungi in Paphiopedilum spicerianum (Rchb. F) Pfitzer—A critically endangered orchid from China

Global Ecology and Conservation, 6, 327-338.

DOI:10.1016/j.gecco.2016.03.011      URL     [本文引用: 1]

Hart SP, Schreiber SJ, Levine JM (2016)

How variation between individuals affects species coexistence

Ecology Letters, 19, 825-838.

DOI:10.1111/ele.12618      PMID:27250037      [本文引用: 1]

Although the effects of variation between individuals within species are traditionally ignored in studies of species coexistence, the magnitude of intraspecific variation in nature is forcing ecologists to reconsider. Compelling intuitive arguments suggest that individual variation may provide a previously unrecognised route to diversity maintenance by blurring species-level competitive differences or substituting for species-level niche differences. These arguments, which are motivating a large body of empirical work, have rarely been evaluated with quantitative theory. Here we incorporate intraspecific variation into a common model of competition and identify three pathways by which this variation affects coexistence: (1) changes in competitive dynamics because of nonlinear averaging, (2) changes in species' mean interaction strengths because of variation in underlying traits (also via nonlinear averaging) and (3) effects on stochastic demography. As a consequence of the first two mechanisms, we find that intraspecific variation in competitive ability increases the dominance of superior competitors, and intraspecific niche variation reduces species-level niche differentiation, both of which make coexistence more difficult. In addition, individual variation can exacerbate the effects of demographic stochasticity, and this further destabilises coexistence. Our work provides a theoretical foundation for emerging empirical interests in the effects of intraspecific variation on species diversity.© 2016 John Wiley & Sons Ltd/CNRS.

He SA (2002)

Fifty years of botanical gardens in China

Acta Botanica Sinica, 44,1123-1133.

[本文引用: 1]

He SL, Yang Y, Du J, Meng J, Wu HZ (2016)

Status of rescue and conservation on minimum population of wild plants in Yunnan Province—Based on genetic diversity analysis

Journal of Anhui Agriculture Science, 44(6), 31-34, 38. (in Chinese with English abstract)

[本文引用: 1]

[贺水莲, 杨扬, 杜娟, 孟静, 吴红芝 (2016)

云南省极小种群野生植物保护研究现状——基于遗传多样性分析

安徽农业科学, 44(6), 31-34, 38.]

[本文引用: 1]

Heywood VH (2017)

Plant conservation in the Anthropocene— Challenges and future prospects

Plant Diversity, 39, 314-330.

DOI:10.1016/j.pld.2017.10.004      [本文引用: 1]

Despite the massive efforts that have been made to conserve plant diversity across the world during the past few decades, it is becoming increasingly evident that our current strategies are not sufficiently effective to prevent the continuing decline in biodiversity. As a recent report by the CBD indicates, current progress and commitments are insufficient to achieve the Aichi Biodiversity Targets by 2020. Threatened species lists continue to grow while the world's governments fail to meet biodiversity conservation goals. Clearly, we are failing in our attempts to conserve biodiversity on a sufficient scale. The reasons for this situation are complex, including scientific, technical, sociological, economic and political factors. The conservation community is divided about how to respond. Some believe that saving all existing biodiversity is still an achievable goal. On the other hand, there are those who believe that we need to accept that biodiversity will inevitably continue to be lost, despite all our conservation actions and that we must focus on what to save, why and where. It has also been suggested that we need a new approach to conservation in the face of the challenges posed by the Anthropocene biosphere which we now inhabit. Whatever view one holds on the above issues, it is clear that we need to review the effectiveness of our current conservation strategies, identify the limiting factors that are preventing the Aichi goals being met and at the same time take whatever steps are necessary to make our conservation protocols more explicit, operational and efficient so as to achieve the maximum conservation effect. This paper addresses the key issues that underlie our failure to meet agreed targets and discusses the necessary changes to our conservation approaches. While we can justifiably be proud of our many achievements and successes in plant conservation in the past 30 years, which have helped slow the rate of loss, unless we devise a more coherent, consistent and integrated global strategy in which both the effectiveness and limitations of our current policies, action plans and procedures are recognized, and reflect this in national strategies, and then embark on a much bolder and ambitious set of actions, progress will be limited and plant diversity will continue to decline.

Hu R, Liu YJ, Zhang JX, Xing H, Jiang S, Liu Y (2022)

Auxiliary seed treatment is necessary to increase recruitment of a critically endangered species

Abies beshanzuensis (Pinaceae). Forests, 13, 961.

[本文引用: 1]

Huang JH, Ma KP, Chen B (2014) Diversity and Geographic Distribution of Endemic Species of Seed Plants in China. Higher Education Press, Beijing. (in Chinese)

[本文引用: 1]

[黄继红, 马克平, 陈彬 (2014) 中国特有种子植物的多样性及其地理分布. 高等教育出版社, 北京.]

[本文引用: 1]

Huang RZ, Li MG, Wei JS, Tan CQ, Li JQ (2020)

Study on ex-situ protection of endangered species of Betula halophila Ching ex P. C. Li

Plant Science Journal, 38, 786-794. (in Chinese with English abstract)

[本文引用: 1]

[黄睿智, 李明国, 魏景松, 谭成权, 李俊清 (2020)

极小种群濒危植物盐桦迁地保护研究

植物科学学报, 38, 786-794.]

[本文引用: 1]

IUCN International Union for Conservation of Nature (2022) The IUCN Red List of Threatened Species. https://www.iucnredlist.org. (accessed on 2022-07-18)

URL     [本文引用: 1]

Jiang YH (2020)

Ecological Characteristics and Endangered Reason Analysis ofHorsfieldia hainanensis Merr. as an Extremely Small Population

PhD dissertation, Central South University of Forestry and Technology, Changsha. (in Chinese with English abstract)

[本文引用: 1]

[蒋迎红 (2018)

极小种群海南风吹楠生态学特性及濒危成因分析

博士学位论文,中南林业科技大学, 长沙.]

[本文引用: 1]

Jin JQ, Ren FM, Xia Y, Liu ZY, Chen YH, Zhang J (2020)

Research on reproductive phenology, pollination, and embryonic development of Thuja sutchuenensis Franch., a plant species with extremely small populations

Plant Science Journal, 38, 696-706. (in Chinese with English abstract)

[本文引用: 1]

[金江群, 任风鸣, 夏鹰, 刘正宇, 陈玉菡, 张军 (2020)

极小种群野生植物崖柏的生殖物候、传粉及胚胎发育研究

植物科学学报, 38, 696-706.]

[本文引用: 1]

Kang HM, Zhang SS, Luo T, Chen J, Yang WZ (2019)

Development mechanism of anther on hermaphrodite flower in Nyssa yunnanensis

Journal of West China Forestry Science, 48(5), 63-69, 75. (in Chinese with English abstract)

[本文引用: 1]

[康洪梅, 张珊珊, 罗婷, 陈剑, 杨文忠 (2019)

云南蓝果树两性花的花药发育机制

西部林业科学, 48(5), 63-69, 75.]

[本文引用: 1]

Keller LF, Waller DM (2002)

Inbreeding effects in wild populations

Trends in Ecology & Evolution, 17, 230-241.

DOI:10.1016/S0169-5347(02)02489-8      URL     [本文引用: 1]

Li CJ, Chen YL, Yang FM, Wang DS, Song K, Yu ZX, Sun WB, Yang J (2020)

Population structure and regeneration dynamics of Firmiana major, a dominant but endangered tree species

Forest Ecology and Management, 462, 117993.

DOI:10.1016/j.foreco.2020.117993      URL     [本文引用: 1]

Li DZ, Pritchard HW (2009)

The science and economics of ex situ plant conservation

Trends in Plant Science, 14, 614-621.

DOI:10.1016/j.tplants.2009.09.005      URL     [本文引用: 1]

Li JQ, Liu YH, Zhang YY, Zang RG, Zeng SJ, Yu T, Ma WB, Tan CQ, Li MG (2020) Technical Regulation for Reintroduction of Wild Plants with Extremely Small Populations. Standards Press of China, Beijing. (in Chinese)

[本文引用: 1]

[李俊清, 刘艳红, 张宇阳, 臧润国, 曾宋君, 于涛, 马文宝, 谭成权, 李明国 (2020) 极小种群野生植物野外回归技术规范(LY/T 3185-2020). 中国标准出版社, 北京.]

[本文引用: 1]

Li SH, Sun WB, Ma YP (2018)

Current conservation status and reproductive biology of the giant tree Rhododendron in China

Nordic Journal of Botany, 36, 10.1111/njb.01999.

[本文引用: 1]

Lin L, Cai L, Fan L, Ma JC, Yang XY, Hu XJ (2022)

Seed dormancy, germination and storage behavior of Magnolia sinica, a plant species with extremely small populations of Magnoliaceae

Plant Diversity, 44, 94e100.

[本文引用: 1]

Liu FL, Zhang Y, Wu FQ, Yang L, Long B, Shen SK (2017)

Effect of autotoxicity and litter allelopathy on seed germination of Rhododendron protistum var. giganteum, a Plant Species with Extremely Small Populations in China

Acta Botanica Boreali-Occidentalia Sinica, 37, 1189-1195. (in Chinese with English abstract)

[本文引用: 1]

[刘芳黎, 张越, 吴富勤, 杨柳, 龙波, 申仕康 (2017)

自毒和森林凋落物化感作用对极小种群野生植物大树杜鹃种子萌发的影响

西北植物学报, 37, 1189-1195.]

[本文引用: 1]

Liu H, Ren H, Liu Q, Wen X, Maunder M, Gao J (2015)

Translocation of threatened plants as a conservation measure in China

Conservation Biology, 29, 1537-1551.

DOI:10.1111/cobi.12585      PMID:26372611      [本文引用: 2]

We assessed the current status of plant conservation translocation efforts in China, a topic poorly reported in recent scientific literature. We identified 222 conservation translocation cases involving 154 species, of these 87 were Chinese endemic species and 101 (78%) were listed as threatened on the Chinese Species Red List. We categorized the life form of each species and, when possible, determined for each case the translocation type, propagule source, propagule type, and survival and reproductive parameters. A surprisingly large proportion (26%) of the conservation translocations in China were conservation introductions, largely implemented in response to large-scale habitat destruction caused by the Three-Gorge Dam and another hydropower project. Documentation and management of the translocations varied greatly. Less than half the cases had plant survival records. Statistical analyses showed that survival percentages were significantly correlated with plant life form and the type of planting materials. Thirty percent of the cases had records on whether or not individuals flowered or fruited. Results of information theoretic model selection indicated that plant life form, translocation type, propagule type, propagule source, and time since planting significantly influenced the likelihood of flowering and fruiting on the project level. We suggest that the scientific-based application of species conservation translocations should be promoted as part of a commitment to species recovery management. In addition, we recommend that the common practice of within and out of range introductions in nature reserves to be regulated more carefully due to its potential ecological risks. We recommend the establishment of a national office and database to coordinate conservation translocations in China. Our review effort is timely considering the need for a comprehensive national guideline for the newly announced nation-wide conservation program on species with extremely small populations, which is expected to stimulate conservation translocations for many species in the near future. © 2015 Society for Conservation Biology.

Liu H, Zhu YF, Liu X, Jiang Y, Deng SM, Ai XR, Deng ZJ (2020)

Effect of artificially accelerated aging on the vigor of Metasequoia glyptostroboides seeds

Journal of Forestry Research, 31, 769-779.

DOI:10.1007/s11676-018-0840-1      URL     [本文引用: 1]

Liu J, Mai ZT, He SF, Chen WY, Luo JH (2019)

Preliminary study on the breeding techniques of extremely small population of Paranephelium hainanensis

Tropical Forestry, 47(3), 17-20. (in Chinese with English abstract)

[本文引用: 1]

[刘俊, 麦志通, 何书奋, 陈伟玉, 罗金环 (2019)

极小种群野生植物海南假韶子繁育技术初步研究

热带林业, 47(3), 17-20.]

[本文引用: 1]

Liu MT, Wei XZ, Jiang MX (2018)

Comparison of fruit traits between wild and ex situ populations of Sinojackia huangmeiensis

Plant Science Journal, 36, 354-361. (in Chinese with English abstract)

[本文引用: 1]

[刘梦婷, 魏新增, 江明喜 (2018)

濒危植物黄梅秤锤树野生与迁地保护种群的果实性状比较

植物科学学报, 36, 354-361.]

[本文引用: 1]

Long T, Wu XL, Wang Y, Chen J, Xu C, Li JW, Li JQ, Zang RG (2021)

The population status and threats of Taxus cuspidata, a plant species with extremely small populations in China

Global Ecology and Conservation, 26, e01495.

DOI:10.1016/j.gecco.2021.e01495      URL     [本文引用: 1]

Lu LM, Mao LF, Yang T, Ye JF, Liu B, Li HL, Sun M, Miller JT, Mathews S, Hu HH, Niu YT, Peng DX, Chen YH, Smith SA, Chen M, Xiang KL, Le CT, Dang VC, Lu AM, Soltis PS, Soltis DE, Li JH, Chen ZD (2018)

Evolutionary history of the angiosperm flora of China

Nature, 554, 234-238.

DOI:10.1038/nature25485      URL     [本文引用: 1]

Lu SJ, Deng LL (1994)

Ecological factors and potential distributioal areas of Pinus squamata

Journal of Southwest Forestry College, 14(3), 144-148. (in Chinese with English abstract)

[本文引用: 1]

[陆素娟, 邓莉兰 (1994)

五针白皮松的生态条件及其潜在分布区的分析

西南林学院学报, 14(3), 144-148.]

[本文引用: 1]

Lu XH, Zang RG, Ding Y, Huang JH, Xu Y (2020)

Habitat characteristics and its effects on seedling abundance of Hopea hainanensis, a Wild Plant with Extremely Small Populations

Biodiversity Science, 28, 289-295. (in Chinese with English abstract)

DOI:10.17520/biods.2019143      URL     [本文引用: 1]

[路兴慧, 臧润国, 丁易, 黄继红, 许玥 (2020)

极小种群野生植物坡垒的生境特征及其对幼苗多度的影响

生物多样性, 28, 289-295.]

DOI:10.17520/biods.2019143      [本文引用: 1]

极小种群野生植物坡垒(Hopea hainanensis)曾经是热带低地雨林的优势种, 但由于商业采伐和刀耕火种等严重人类干扰及自然更新困难, 致使其种群数量急剧下降到最小可存活的界限, 急需开展种群的拯救恢复工作。而对于坡垒生境适宜性及更新限制的了解, 是进行种群保护及恢复的基础。本文在对野生坡垒种群及其生境因子调查测定的基础上, 分析了生物与非生物生境特征及其对坡垒种群更新幼苗多度的影响。结果表明: 坡垒种群从幼苗至幼树阶段存在着严重的增补限制。坡度小、土壤含水量和有效磷含量高、母株胸径和冠幅较大、伴生种胸高断面积中等的环境是坡垒幼苗较为适宜的生境, 且坡垒幼苗多度与坡度及土壤pH值显著负相关, 与土壤含水量及土壤全磷含量显著正相关。这些研究结果为极小种群野生植物坡垒的就地保护与种群复壮提供了科学依据。

Ma YP, Chen G, Grumbine RE, Dao ZL, Sun WB, Guo HJ (2013)

Conserving plant species with extremely small populations (PSESP) in China

Biodiversity and Conservation, 22, 803-809.

DOI:10.1007/s10531-013-0434-3      URL     [本文引用: 1]

Ma YP, Liu DT, Wariss HM, Zhang RG, Tao LD, Milne RI, Sun WB (2022)

Demographic history and identification of threats revealed by population genomic analysis provide insights into conservation for an endangered maple

Molecular Ecology, 31, 767-779.

DOI:10.1111/mec.16289      URL     [本文引用: 1]

Ma YP, Sun WB (2015)

Rescuing conservation of plant species with extremely small populations (PSESP): Opportunities and challenges

Biodiversity Science, 23, 430-432. (in Chinese)

DOI:10.17520/biods.2015016      [本文引用: 1]

[马永鹏, 孙卫邦 (2015)

极小种群野生植物抢救性保护面临的机遇与挑战

生物多样性, 23, 430-432.]

DOI:10.17520/biods.2015016      [本文引用: 1]

Miraldo A, Li S, Borregaard MK, Flórez-Rodríguez A, Gopalakrishnan S, Rizvanovic M, Wang ZH, Rahbek C, Marske KA, Nogués-Bravo D (2016)

An Anthropocene map of genetic diversity

Science, 353, 1532-1535.

PMID:27708102      [本文引用: 1]

The Anthropocene is witnessing a loss of biodiversity, with well-documented declines in the diversity of ecosystems and species. For intraspecific genetic diversity, however, we lack even basic knowledge on its global distribution. We georeferenced 92,801 mitochondrial sequences for >4500 species of terrestrial mammals and amphibians, and found that genetic diversity is 27% higher in the tropics than in nontropical regions. Overall, habitats that are more affected by humans hold less genetic diversity than wilder regions, although results for mammals are sensitive to choice of genetic locus. Our study associates geographic coordinates with publicly available genetic sequences at a massive scale, yielding an opportunity to investigate both the drivers of this component of biodiversity and the genetic consequences of the anthropogenic modification of nature.Copyright © 2016, American Association for the Advancement of Science.

Mouillot D, Bellwood DR, Baraloto C, Chave J, Galzin R, Harmelin-Vivien M, Kulbicki M, Lavergne S, Lavorel S, Mouquet N (2013)

Rare species support vulnerable functions in high-diversity ecosystems

PloS Biology, 11, e1001569.

DOI:10.1371/journal.pbio.1001569      URL     [本文引用: 1]

Peng SL, Shao H (2001)

Research significance and foreground of allelopathy

Chinese Journal of Applied Ecology, 12, 780-786. (in Chinese with English abstract)

[本文引用: 1]

The research significance and foreground of allelopathy concerning ecology,fores try and agriculture were reviewed and analyzed.Allelopathy helps to elucidate th e phenomena such as the composition and distribution of plants,the succession of community,coevolution and invasions of exotic plants in the ecosystem.Sometimes it is crucial to regeneration failure and the establishment of mixed forests.In agriculture,it influences the monoculture, crop rotation,crop cover and so on.S ome allelochemicals can be used as pesticides and herbicides which consequently reduce the environment pollution.Allelopathy exists in aquatic plants,too.Futur e work mainly focus on the cultivation of new allelopathic plants which can avoi d pests and suppress weeds,the isolation and identification of new allelochemica ls as well as intensive study of the mechanism of allelopathy.

[彭少麟, 邵华 (2001)

化感作用的研究意义及发展前景

应用生态学报, 12, 780-786.]

[本文引用: 1]

Qiao Q, Chen H, Xing F, Wang F, Zhong W, Wen X, Hou X (2012)

Pollination ecology of Bretschneidera sinensis (Hemsley), a rare and endangered tree in China

Pakistan Journal of Botany, 44, 1897-1903.

[本文引用: 1]

Qin HN, Yang Y, Dong SY, He Q, Jia Y, Zhao LN, Yu SX, Liu HY, Liu B, Yan YH, Xiang JY, Xia NH, Peng H, Li ZY, Zhang ZX, He XJ, Yin LK, Lin YL, Liu QR, Hou YT, Liu Y, Liu QX, Cao W, Li JQ, Chen SL, Jin XH, Gao TG, Chen WL, Ma HY, Geng YY, Jin XF, Chang CY, Jiang H, Cai L, Zang CX, Wu JY, Ye JF, Lai YJ, Liu B, Lin QW, Xue NX (2017)

Threatened species list of China’s higher plants

Biodiversity Science, 25, 696-744. (in Chinese and in English)

DOI:10.17520/biods.2017144      URL     [本文引用: 1]

[覃海宁, 杨永, 董仕勇, 何强, 贾渝, 赵莉娜, 于胜祥, 刘慧圆, 刘博, 严岳鸿, 向建英, 夏念和, 彭华, 李振宇, 张志翔, 何兴金, 尹林克, 林余霖, 刘全儒, 侯元同, 刘演, 刘启新, 曹伟, 李建强, 陈世龙, 金效华, 高天刚, 陈文俐, 马海英, 耿玉英, 金孝锋, 常朝阳, 蒋宏, 蔡蕾, 臧春鑫, 武建勇, 叶建飞, 赖阳均, 刘冰, 林秦文, 薛纳新 (2017)

中国高等植物受威胁物种名录

生物多样性, 25, 696-744.]

DOI:10.17520/biods.2017144      [本文引用: 1]

Qin HN, Zhao LN (2017)

Evaluating the threat status of higher plants in China

Biodiversity Science, 25, 689-695. (in Chinese with English abstract)

DOI:10.17520/biods.2017146      [本文引用: 1]

[覃海宁, 赵莉娜 (2017)

中国高等植物濒危状况评估

生物多样性, 25, 689-695.]

DOI:10.17520/biods.2017146      [本文引用: 1]

Qu H, Wang CJ, Zhang ZX (2018)

Planning priority conservation areas under climate change for six plant species with extremely small populations in China

Nature Conservation, 25, 89-106.

DOI:10.3897/natureconservation.25.20063      URL     [本文引用: 1]

Reed JM, McCoy ED (2014)

Relation of minimum viable population size to biology, time frame, and objective

Conservation Biology, 28, 867-870.

DOI:10.1111/cobi.12274      PMID:24617297      [本文引用: 2]

Ren H, Lu HF, Liu HX, Xu ZH (2020) Reintroduction of rare and endangered plants in China. In: Conservation and Reintroduction of Rare and Endangered Plants in China (ed. Ren H), pp.49-107. Springer, Singapore.

[本文引用: 1]

Ren H, Jian SG, Liu HX, Zhang QM, Lu HF (2014)

Advances in the reintroduction of rare and endangered wild plant species

Science China: Life Sciences, 57, 603-609.

DOI:10.1007/s11427-014-4658-6      URL     [本文引用: 1]

Ren H, Zhang QM, Lu HF, Liu HX, Guo QF, Wang J, Jian SG, Bao HO (2012)

Wild plant species with extremely small populations require conservation and reintroduction in China

Ambio, 41, 913-917.

DOI:10.1007/s13280-012-0284-3      URL     [本文引用: 2]

Zang RG, Huang JH (2020)

Field survey data of typical Wild Plants with Extremely Small Populations

National Forestry and Grassland Data Center, CSTR: 17575.11.0220221101232.070001.V1. (in Chinese)

[臧润国, 黄继红 (2020)

典型极小种群野生植物野外调查数据

国家林业和草原科学数据中心, CSTR: 17575.11.0220221101232.070001.V1.]

Rosenfeld JS (2014)

50/500 or 100/1000? Reconciling short- and long-term recovery targets and MVPs

Biological Conservation, 176, 287-288.

DOI:10.1016/j.biocon.2014.05.005      URL     [本文引用: 1]

D, Scariot A, Ferreira JB (2020)

Effects of ecological and anthropogenic factors on population demography of the harvested Butia capitata Palm in the Brazilian Cerrado

Biodiversity and Conservation, 29, 7545.

[本文引用: 1]

Shen QQ, Yang JY, Su DF, Li ZY, Xiao W, Wang YX, Cui XL (2020)

Comparative analysis of fungal diversity in rhizospheric soil from wild and reintroduced Magnolia sinica estimated via high-throughput sequencing

Plants, 9, 600.

DOI:10.3390/plants9050600      URL     [本文引用: 1]

Solórzano S, Arias S, Dávila P (2016)

Genetics and conservation of plant species of extremely narrow geographic range

Diversity, 8, 31.

DOI:10.3390/d8040031      URL     [本文引用: 1]

Song YB, Xu L, Duan JP, Zhang WJ, Shentu XL, Li TX, Zang RG, Dong M (2020)

Sex ratio and spatial pattern of Taxus fuana, a Wild Plant with Extremely Small Populations in Tibet

Biodiversity Science, 28, 269-276. (in Chinese with English abstract)

DOI:10.17520/biods.2019102      URL     [本文引用: 1]

[宋垚彬, 徐力, 段俊鹏, 张卫军, 申屠晓露, 李天翔, 臧润国, 董鸣 (2020)

西藏极小种群野生植物密叶红豆杉种群的性比及雌雄空间格局

生物多样性, 28, 269-276.]

DOI:10.17520/biods.2019102      [本文引用: 1]

雌雄异株植物种群具有性比和雌雄个体空间分布格局, 这对个体成功繁殖、种群生存潜力、天然更新能力和遗传多样性的维持都是重要的, 对于珍稀濒危雌雄异株植物种群尤其如此。密叶红豆杉(Taxus fuana)为国家I级重点保护植物, 是首批列入《全国极小种群野生植物拯救保护工程规划》的120种极小种群野生植物之一, 具有重要的生态和经济价值。但目前关于密叶红豆杉种群生态学方面的研究, 尤其是性比结构与空间分布格局在国内外鲜有报道。本文对西藏吉隆地区的6个天然密叶红豆杉种群(吉普、多甫、朗久、吉隆、开热和唐蕃)进行了实地调查, 研究其性比结构及其空间分布格局。结果表明, 调查的6个种群中总计雄株1,651株, 雌株1,231株, 仅吉普(雄/雌 = 1.89)与吉隆(雄/雌 = 1.39)两个种群有显著的性别偏倚现象且显著偏雄性(P < 0.001)。6个种群雌雄植株间的空间相关性不强, 整体趋于相互独立。不同径级间, 吉隆和开热种群的性比格局相似, 均在小径级上性比显著偏雄性, 而吉普种群则在中等径级上显著偏雄性。综上, 不同密叶红豆杉种群的大小、性比、雌雄个体的大小级结构以及空间分布格局等均表现出不同。因此, 需要结合各个种群本身的发展动态、受干扰的类型以及各区域环境因子的差异进行有针对性的保护。

Su DF, Shen QQ, Yang JY, Li ZY, XiaoW, Wang YX, Ding ZG, Cui XL (2021)

Comparison of the bulk and rhizosphere soil prokaryotic communities between wild and reintroduced Manglietiastrum sinicum plants, a threatened species with extremely small populations

Current Microbiology, 78, 3877-3890.

DOI:10.1007/s00284-021-02653-z      URL     [本文引用: 1]

Su JY, Yan Y, Li C, Li D, Du FK (2020)

Informing conservation strategies with genetic diversity in Wild Plant with Extremely Small Populations: A review on gymnosperms

Biodiversity Science, 28, 376-384. (in Chinese with English abstract)

DOI:10.17520/biods.2019116      [本文引用: 1]

Genetic diversity is an important component of biodiversity. However, the overexploitation of natural resources and habitat fragmentation have severely degraded the genetic diversity of many affected species. Wild Plant with Extremely Small Populations (WPESP) are in urgent need of rescue, their genetic diversity are of great significance for studying the endangerment mechanism and providing conservation strategies. Habitat fragmentation might reduce genetic diversity, increase genetic differentiation among populations or limit gene flow. However, biological and ecological factors of threatened species, such as the reproductive characteristic and the demographic history, may also impact the genetic effects of recent habitat fragmentation. For gymnosperms, genetic composition can be quite stable when facing habitat fragmentation because of their lengthy generation time. However, in the long term, the loss of genetic diversity will be unrecoverable. In this review paper, we survey genetic studies of threatened gymnosperms, summarize endangerment mechanisms under habitat fragmentation, and finally recommend conservation strategies for gymnosperms. The findings of this paper indicate that a comprehensive understanding of the endangerment mechanisms through genetic diversity studies is important for effective and efficient conservation of Wild Plant with Extremely Small Populations.

[苏金源, 燕语, 李冲, 李丹, 杜芳 (2020)

通过遗传多样性探讨极小种群野生植物的致濒机理及保护策略: 以裸子植物为例

生物多样性, 28, 376-384.]

DOI:10.17520/biods.2019116      [本文引用: 1]

遗传多样性是生物多样性的重要组成部分, 然而由于资源的过度开发利用和生境的破碎化影响了物种的遗传多样性, 甚至威胁到物种的生存适应性和生物多样性。极小种群野生植物是亟待保护的国家重点保护濒危植物,遗传多样性研究对揭示极小种群致濒机理及保护策略具有重要意义。生境破碎化会造成物种遗传多样性降低、种群间分化增加、基因流减少等, 使种群濒危。但在某些物种中, 繁殖特征、进化历史等生物和生态因素的不同也可能造成近期生境破碎化后遗传效应的延迟。裸子植物进化历史悠久, 包含许多孑遗物种, 由于生活史周期长, 遭受生境破碎化后可能短期内显示不出遗传效应的改变, 但长期很难恢复。本文以裸子植物为例综述了濒危植物的遗传多样性研究的案例, 探讨了濒危裸子植物应对环境恶化的维持机制、致濒因素和保护方案, 旨在说明通过遗传多样性研究充分认识极小种群致濒机理对高效保护极小种群野生植物的重要性。

Sun WB (2013) Conservation of Plant Species with Extremely Small Populations in Yunnan:Practice and exploration. Yunnan Science and Technology Press, Kunming. (in Chinese)

[本文引用: 1]

[孙卫邦 (2013) 云南省极小种群野生植物保护实践与探索. 云南科技出版社, 昆明.]

[本文引用: 1]

Sun WB (2016)

Special issue for plant species with extremely small populations

Plant Diversity, 38, 207-258.

DOI:10.1016/j.pld.2016.10.004      URL     [本文引用: 1]

Sun WB, Han CY (2015)

Researches and conservation for plant species with extremely small populations (PSESP)

Biodiversity Science, 23, 426-429. (in Chinese)

DOI:10.17520/biods.2015026      [本文引用: 2]

[孙卫邦, 韩春艳 (2015)

论极小种群野生植物的研究及科学保护

生物多样性, 23, 426-429.]

DOI:10.17520/biods.2015026      [本文引用: 2]

Sun WB, Liu DT, Zhang P (2021)

Conservation research of plant species with extremely small populations (PSESP): Progress and future direction

Guihaia, 41, 1605-1617. (in Chinese with English abstract)

[本文引用: 3]

[孙卫邦, 刘德团, 张品 (2021)

极小种群野生植物保护研究进展与未来工作的思考

广西植物, 41, 1605-1617.]

[本文引用: 3]

Sun WB, Xu YF (2022)

Conservation actions of plant species with extremely small populations in China

Forest and Mankind, (5), 22-45. (in Chinese)

[本文引用: 2]

[孙卫邦, 徐永福 (2022)

极小种群野生植物中国的保护行动

森林与人类, (5), 22-45.]

[本文引用: 2]

Sun WB, Yang J, Dao ZL (2019) Study and Conservation of Plant Species with Extremely Small Populations (PSESP) in Yunnan Province, China. Science Press, Beijing. (in Chinese)

[本文引用: 7]

[孙卫邦, 杨静, 刀志灵 (2019) 云南省极小种群野生植物研究与保护. 科学出版社, 北京.]

[本文引用: 7]

Sun ZM, Liu YH, Peng QT, Xu ZY, Yang YJ, Ou WH, Li ZQ (2022)

Competition status and conservation suggestions for Wild Plant with Extremely Small Populations in primary communities in Hubei Province

Biodiversity Science, 30, 21517. (in Chinese with English abstract)

DOI:10.17520/biods.2021517      [本文引用: 1]

<p id="p00010"><strong>Aims:</strong> Wild Plant with Extremely Small Populations (WPESP) are plant species that are primarily at the risk of extinction and require urgent protection. It is of great practical significance to protect and recover WPESP through researching species importance value (IV) and competition patterns. <br> <strong>Methods:</strong> Based on the extensive field survey, we analyzed the species importance value and improved Hegyi competition index of the seven WPESP in Hubei Province, including: <i>Pinus fenzeliana </i>var.<i> dabeshanensis</i>, <i>Metasequoia glyptostroboides</i>, <i>Michelia wilsonii</i>, <i>Berchemiella wilsonii</i>, <i>Sinojackia dolichocarpa</i>, <i>S. huangmeiensis </i>and <i>Acer miaotaiense</i>. <br> <strong>Results:</strong> The results of the importance value indicated that <i>M. glyptostroboides</i> and <i>S</i>.<i> dolichocarpa </i>were the dominant species in the natural communities with a high importance value and a low variable coefficient in their respective communities, <i>S</i>. <i>huangmeiensis </i>and <i>A</i>. <i>miaotaiense</i> were the sub-dominant species with a relatively higher importance value, and <i>P. fenzeliana </i>var. <i>dabeshanensis</i>, <i>M</i>.<i> wilsonii</i> and <i>B</i>.<i> wilsonii</i> were the accessory species in the community with a relatively low importance value. According to the improved Hegyi competition index, there are big differences in competition density and source of competition among seven WPESP in Hubei Province. <i>Pinus fenzeliana </i>var. <i>dabeshanensis</i>, <i>M</i>. <i>wilsonii</i>, <i>B</i>.<i> wilsonii </i>and <i>S</i>. <i>huangmeiensis </i>are primarily subject to interspecific competition while <i>M</i>.<i> glyptostroboide</i>, <i>S</i>.<i> dolichocarpa</i> and <i>A</i>. <i>miaotaiense</i> are primarily subjected to intraspecific competition. <br> <strong>Conclusion:</strong> The interspecific and intraspecific competitions of WPESP should be fully considered before implementing conservation measures so that more precise conservation measures can be taken.</p>

[孙哲明, 刘亚恒, 彭秋桐, 徐芷妍, 杨予静, 欧文慧, 李中强 (2022)

湖北省极小种群野生植物在原生群落中的竞争地位及保护建议

生物多样性, 30, 21517.]

[本文引用: 1]

Tan SB, Hu KR, Zhao YJ, Fu XY (2014)

Application of the internet of things in the conservation of Wild Plant with Extremely Small Populations in Yunnan

Journal of Chifeng University (Natural Science Edition), 30(6), 35-36. (in Chinese)

[本文引用: 1]

[谭绍斌, 胡坤融, 赵友杰, 付小勇 (2014)

物联网在云南极小种群野生植物保护中的应用研究

赤峰学院学报(自然科学版), 30(6), 35-36.]

[本文引用: 1]

Tang FL, Pan B, Zhao J, Yang YS, Wei X (2022)

Investigation on the geographical distribution and habitat of wild plant species with extremely small populations

Paphiopedilum helenae. Journal of Guangxi Academy of Sciences, 38(1), 40-44. (in Chinese with English abstract)

[本文引用: 1]

[唐凤鸾, 盘波, 赵健, 杨一山, 韦霄 (2022)

极小种群野生植物海伦兜兰的地理分布及生境调查

广西科学院学报, 38(1), 40-44.]

[本文引用: 1]

Tang R, Li Y, Xu YL, Schinnerl J, Sun WB, Chen G (2020)

In‑situ and ex situ pollination biology of the four threatened plant species and the significance for conservation

Biodiversity and Conservation, 29, 381-391.

DOI:10.1007/s10531-019-01887-5      URL     [本文引用: 1]

Tao LD, Han CY, Song K, Sun WB (2020)

A tree species with an extremely small population: Recategorizing the critically endangered Acer yangbiense

Oryx, 54, 474-477.

DOI:10.1017/S0030605319000073      URL     [本文引用: 1]

Tao YQ, Chen B, Kang M, Liu YB, Wang J (2021)

Genome-wide evidence for complex hybridization and demographic history in a group of Cycas from China

Frontiers in Genetics, 12, 717200.

DOI:10.3389/fgene.2021.717200      URL     [本文引用: 1]

Tilman D, May RM, Lehman CL, Nowak MA (1994)

Habitat destruction and the extinction debt

Nature, 371, 65-66.

DOI:10.1038/371065a0      URL     [本文引用: 1]

Sosef MSM, Wieringa JJ, Raes N (2016)

Minimum required number of specimen records to develop accurate species distribution models

Ecography, 39, 542-552.

DOI:10.1111/ecog.01509      URL     [本文引用: 1]

Volis S (2016)

How to conserve threatened Chinese plant species with extremely small populations?

Plant diversity, 38, 45-52.

DOI:10.1016/j.pld.2016.05.003      PMID:30159448      [本文引用: 2]

The Chinese flora occupies a unique position in global plant diversity, but is severely threatened. Although biodiversity conservation in China has made significant progress over the past decades, many wild plant species have extremely small population sizes and therefore are in extreme danger of extinction. The concept of plant species with extremely small populations (PSESPs), recently adopted and widely accepted in China, lacks a detailed description of the methodology appropriate for conserving PSESPs. Strategies for seed sampling, reintroduction, protecting PSESP locations, managing interactions with the local human population, and other conservation aspects can substantially differ from those commonly applied to non-PSESPs. The present review is an attempt to provide a detailed conservation methodology with realistic and easy-to-follow guidelines for PSESPs in China.

Volis S (2018a)

Plant conservation in the Anthropocene: Definitely not win-win but maybe not lose-lose?

Encyclopedia of the Anthropocene, 3, 389-397.

[本文引用: 1]

Volis S (2018b)

Securing a future for China’s plant biodiversity through an integrated conservation approach

Plant Diversity, 40, 91-105.

DOI:10.1016/j.pld.2018.04.002      URL     [本文引用: 2]

Volis S, Deng T (2020)

Importance of a single population demographic census as a first step of threatened species conservation planning

Biodiversity and Conservation, 29, 527-543.

DOI:10.1007/s10531-019-01897-3      URL     [本文引用: 2]

Wade EM, Nadarajan J, Yang XY, Ballesteros D, Sun WB, Pritchard HW (2016)

Plant species with extremely small populations (PSESP) in China: A seed and spore biology perspective

Plant Diversity, 38, 209-220.

DOI:10.1016/j.pld.2016.09.002      [本文引用: 2]

Approximately one fifth of the world's plants are at risk of extinction. Of these, a significant number exist as populations of few individuals, with limited distribution ranges and under enormous pressure due to habitat destruction. In China, these most-at-risk species are described as ‘plant species with extremely small populations’ (PSESP). Implementing conservation action for such listed species is urgent. Storing seeds is one of the main means of <i>ex situ</i> conservation for flowering plants. Spore storage could provide a simple and economical method for fern <i>ex situ</i> conservation. Seed and spore germination in nature is a critical step in species regeneration and thus <i>in situ</i> conservation. But what is known about the seed and spore biology (storage and germination) of at-risk species? We have used China's PSESP (the first group listing) as a case study to understand the gaps in knowledge on propagule biology of threatened plant species. We found that whilst germination information is available for 28 species (23% of PSESP), storage characteristics are only known for 8% of PSESP (10 species). Moreover, we estimate that 60% of the listed species may require cryopreservation for long-term storage. We conclude that comparative biology studies are urgently needed on the world's most threatened taxa so that conservation action can progress beyond species listing.

Wang B, Chen G, Li CR, Sun WB (2017)

Floral characteristics and pollination ecology of Manglietia ventii (Magnoliaceae), a plant species with extremely small populations (PSESP) endemic to South Yunnan of China

Plant Diversity, 39, 52-59.

DOI:10.1016/j.pld.2017.01.001      [本文引用: 3]

<i>Manglietia ventii</i> is a highly endangered plant species endemic to Yunnan province in China, where there are only five known small populations. Despite abundant flowering there is very low fruit and seed set, and very few seedlings in natural populations, indicating problems with reproduction. The causes of low fecundity in <i>M. ventii</i> are not known, largely because of insufficient knowledge of the species pollination ecology and breeding system. We conducted observations and pollination experiments, and analyzed floral scents to understand the pollinator–plant interactions and the role of floral scent in this relationship, as well as the species breeding system. Like the majority of Magnoliaceae, <i>M. ventii</i> has protogynous and nocturnal flowers that emit a strong fragrance over two consecutive evenings. There is a closing period (the pre-staminate stage) during the process of anthesis of a flower, and we characterize the key flowering process as an “open-close-reopen” flowering rhythm with five distinct floral stages observed throughout the floral period of this species: pre-pistillate, pistillate, pre-staminate, staminate, and post-staminate. Flowers are in the pistillate stage during the first night of anthesis and enter the staminate stage the next night. During anthesis, floral scent emission occurs in the pistillate and staminate stages. The effective pollinators were weevils (<i>Sitophilus</i> sp.) and beetles (<i>Anomala</i> sp.), while the role of Rove beetles (<i>Aleochara</i> sp.) and thrips (<i>Thrips</i> sp.) in pollination of <i>M. ventii</i> appears to be minor or absent. The major chemical compounds of the floral scents were Limonene, β-Pinene, α-Pinene, 1,8-Cineole, Methyl-2-methylbutyrate, p-Cymene, Methyl-3-methyl-2-butenoate and 2-Methoxy-2-methyl-3-buten, and the relative proportions of these compounds varied between the pistillate and staminate stages. Production of these chemicals coincided with flower visitation by weevils and beetles. The results of pollination experiments suggest that <i>M. ventii</i> is pollinator-dependent, and low seed set in natural populations is a result of insufficient pollen deposition. Thus, conservation of the species should focus on improving pollination service through the introduction of genetically variable individuals and increase in density of reproducing trees.

Wang CJ, Zhang J, Wan JZ, Qu H, Mu XY, Zhang ZX (2017)

The spatial distribution of threats to plant species with extremely small populations

Frontiers of Earth Science, 11, 127-136.

DOI:10.1007/s11707-016-0550-y     

Many biological conservationists take actions to conserve plant species with extremely small populations (PSESP) in China; however, there have been few studies on the spatial distribution of threats to PSESP. Hence, we selected distribution data of PSESP and made a map of the spatial distribution of threats to PSESP in China. First, we used the weight assignment method to evaluate the threat risk to PSESP at both country and county scales. Second, we used a geographic information system to map the spatial distribution of threats to PSESP, and explored the threat factors based on linear regression analysis. Finally, we suggested some effective conservation options. We found that the PSESP with high values of protection, such as the plants with high scientific research values and ornamental plants, were threatened by over-exploitation and utilization, habitat fragmentation, and a small sized wild population in broad-leaved forests and bush fallows. We also identified some risk hotspots for PSESP in China. Regions with low elevation should be given priority for ex- and in-situ conservation. Moreover, climate change should be considered for conservation of PSESP. To avoid intensive over-exploitation or utilization and habitat fragmentation, in-situ conservation should be practiced in regions with high temperatures and low temperature seasonality, particularly in the high risk hotspots for PSESP that we proposed. Ex-situ conservation should be applied in these same regions, and over-exploitation and utilization of natural resources should be prevented. It is our goal to apply the concept of PSESP to the global scale in the future.

Wang SL, Tan WF, Peng DR, Li DQ, Wang HJ, Qin YH (2011)

Analysis on in situ conservation of important species in Guangxi

Journal of Beijing Forestry University, 33(Suppl. 2), 72-78. (in Chinese with English abstract)

[本文引用: 1]

[王双玲, 谭伟福, 彭定人, 黎德丘, 王海京, 覃永华 (2011)

广西重点物种就地保护现状分析

北京林业大学学报, 33(Suppl. 2), 72-78.]

[本文引用: 1]

Wang ST, Xu YZ, Yang T, Wei XZ, Jiang MX (2020)

Impacts of microhabitats on leaf functional traits of the wild population of Sinojackia huangmeiensis

Biodiversity Science, 28, 277-288. (in Chinese with English abstract)

DOI:10.17520/biods.2019118      URL     [本文引用: 1]

[王世彤, 徐耀粘, 杨腾, 魏新增, 江明喜 (2020)

微生境对黄梅秤锤树野生种群叶片功能性状的影响

生物多样性, 28, 277-288.]

DOI:10.17520/biods.2019118      [本文引用: 1]

植物功能性状可以反映植物应对环境变化的适应策略。本文以黄梅秤锤树(Sinojackia huangmeiensis)当前唯一野生种群为对象, 比较了3种微生境(湖边、种群中心、耕地边)中该物种的叶片功能性状均值、种内变异和叶片生态化学计量特征的差异, 分析了黄梅秤锤树对湖岸带微生境变化的响应及其适应策略。结果表明: (1) 3种微生境中土壤C、N、P含量没有显著性差异(P &gt; 0.05), 但土壤C:N和C:P具有显著性差异(P &lt; 0.05), 土壤类型和养分条件有所不同。(2)黄梅秤锤树叶片功能性状的比较用单因素方差分析和贝叶斯方差分析得出的结果一致, 均为叶长、叶面积和比叶面积在中心区域显著高于湖边(P &lt; 0.05), 而耕地边与湖边和中心区域均没有显著差异(P &gt; 0.05); 叶N含量在湖边显著高于中心区域和耕地边(P &lt; 0.05), 而中心区域和耕地边间没有显著差异(P &gt; 0.05); 叶宽、叶长/叶宽、叶干物质含量、叶C和叶P含量在3种微生境间都没有显著性差异(P &gt; 0.05)。(3)黄梅秤锤树叶片的N:P在湖边显著高于中心区域和耕地边(P &lt; 0.05), C:N在湖边显著小于中心区域和耕地边(P &lt; 0.05), N:P和C:N在中心区域和耕地边没有显著性差异(P &gt; 0.05), C:P在3种微生境间都没有显著性差异(P &gt; 0.05)。(4)黄梅秤锤树叶片功能性状的总体变异程度在0.02-0.28之间, 其中叶片C和N含量在湖边和中心区域的种内变异程度显著较低, 表明3种生境中湖边和中心区域黄梅秤锤树种群的稳定性相对较差。(5)湖边黄梅秤锤树主要通过增加叶N含量促进生长; 中心区域黄梅秤锤树主要通过增加叶面积和比叶面积以及提高叶N的利用效率来提高光捕获能力促进生长; 耕地边黄梅秤锤树的叶N含量和叶面积、比叶面积都处于中等水平, 通过性状之间的共同作用使植株生长达到最佳水平。以上结果表明, 由于微地形、水位波动和土壤环境条件的差异, 黄梅秤锤树对3种生境中的适应策略有所不同, 并且不是通过单一性状调整来适应环境的变化, 而是通过多种性状之间的权衡达到更好的适应效果。

Wang W, Li JS (2021)

In-situ conservation of biodiversity in China: Advances and prospects

Biodiversity Science, 29, 133-149. (in Chinese with English abstract)

DOI:10.17520/biods.2020070      URL     [本文引用: 1]

[王伟, 李俊生 (2021)

中国生物多样性就地保护成效与展望

生物多样性, 29, 133-149.]

[本文引用: 1]

Wang Y, Yu CY, Yang D, Yang GW, Zheng JX, Cai WJ (2018)

Study on conservation gap of natural reserves in Yunnan Province

Forest Inventory and Planning, 43(4), 55-62. (in Chinese with English abstract)

[本文引用: 1]

[王勇, 余昌元, 杨东, 杨国伟, 郑进烜, 蔡文婧 (2018)

云南省自然保护区保护空缺分析

林业调查规划, 43(4), 55-62.]

[本文引用: 1]

Wang YH, Gan JJ, Chen T, Gong YQ, Lu YZ, Li N (2018)

Preliminary study on reproductive features of reintroduction population of Cycas debaoensis

Subtropical Plant Science, 47, 134-139. (in Chinese with English abstract)

[本文引用: 1]

[王运华, 甘金佳, 陈庭, 龚奕青, 陆燕兆, 李楠 (2018)

德保苏铁回归种群繁殖特征的初步研究

亚热带植物科学, 47, 134-139.]

DOI:10.3969/j.issn.1009-7791.2018.02.008      [本文引用: 1]

以位于广西黄连山自然保护区的德保苏铁Cycas debaoensis回归种群为对象,从开花情况、传粉媒介、传粉昆虫数量、结实率、种子散播媒介和方式等方面,与德保苏铁模式产地的自然种群进行比较研究。结果表明,2016年回归种群与自然种群开花植株分别为149和49株,雄雌性比分别为3.96:1和4.44:1,开花植株占比分别为31.63%和19.52%,自然结实率分别为60.53%和86.53%。留存在雌株上的未脱落种子一年内的萌发率分别为53.13%和42.51%,一年内幼苗存活率分别为0和3.56%;因重力或外力(雨水、风和动物)搬运后散布的种子一年内的萌发率分别为42.51%和38.46%,一年内幼苗存活率分别为74.46%和88.26%。与自然种群一样,回归种群的有效传粉者为大蕈甲科甲虫,但传粉昆虫数量较少,每雌球花有23.5头甲虫。回归种群结实率低于自然种群,可能的原因是传粉昆虫数量相对较少。啮齿动物等外力对种子的散布能显著提高幼苗存活率并直接影响幼苗的定植与分布,对回归种群的补充与更新有重要影响。总体上,黄连山德保苏铁回归种群在自然界中已能顺利完成生长和繁殖进程,基本具备自我更新能力。

Wei XY, Ye YS, Lin XP, Cui YW, Zeng FY, Wang FG (2020)

Population status and conservation of an extremely small population species Euryodendron excelsum

Chinese Journal of Plant Ecology, 44, 1236-1246. (in Chinese with English abstract)

DOI:10.17521/cjpe.2020.0059      URL     [本文引用: 1]

[魏雪莹, 叶育石, 林喜珀, 崔煜文, 曾飞燕, 王发国 (2020)

极小种群植物猪血木的种群现状及保护对策

植物生态学报, 44, 1236-1246.]

[本文引用: 1]

Wei XZ, Jiang MX (2021)

Meta-analysis of genetic representativeness of plant populations under ex situ conservation in contrast to wild source populations

Conservation Biology, 35, 12-23.

DOI:10.1111/cobi.13617      URL     [本文引用: 1]

Wen YF, Zhou H, Wang YM, Wang LB, Han WJ, Xu GB, Zhou XF, Li XY, Lin XY, Wu XT, Wang MQ (2021) Technical Regulation for Conservation and Reintroduction of Glyptostrobus pensilis, the Wild Species with Extremely Small Population. Standards Press of China, Beijing. (in Chinese)

[本文引用: 1]

[文亚峰, 周宏, 王艳梅, 王利宝, 韩文军, 徐刚标, 周小芬, 李鑫玉, 林雪莹, 武星彤, 王敏求 (2021) 极小种群野生植物水松保护与回归技术规程(LY/T 3259-2021). 中国标准出版社, 北京.]

[本文引用: 1]

Westwood M, Cavender N, Meyer A, Smith P (2020)

Botanic garden solutions to the plant extinction crisis

Plants, People Planet, 3, 22-32.

DOI:10.1002/ppp3.10134      URL     [本文引用: 1]

Windig JJ, Engelsma KA (2010)

Perspectives of genomics for genetic conservation of livestock

Conservation Genetics, 11, 635-641.

DOI:10.1007/s10592-009-0007-x      URL     [本文引用: 1]

Willi Y, Van Buskirk J, Hoffmann AA (2006)

Limits to the adaptive potential of small populations

Annual Review of Ecology, Evolution, and Systematics, 37, 433-458.

DOI:10.1146/annurev.ecolsys.37.091305.110145      URL     [本文引用: 1]

Wyse SV, Dickie JB, Willis KJ (2018)

Seed banking not an option for many threatened plants

Nature Plants, 4, 848-850.

DOI:10.1038/s41477-018-0298-3      PMID:30390079      [本文引用: 1]

Xi HH, Wang YQ, Pan YZ, Xu T, Zhan QQ, Liu J, Feng XY, Gong X (2022)

Resources and protection of Cycas plants in China

Biodiversity Science, 30, 21495. (in Chinese with English abstract)

DOI:10.17520/biods.2021495      URL     [本文引用: 4]

[席辉辉, 王祎晴, 潘跃芝, 许恬, 湛青青, 刘健, 冯秀彦, 龚洵 (2022)

中国苏铁属植物资源和保护

生物多样性, 30, 21495.]

DOI:10.17520/biods.2021495      [本文引用: 4]

苏铁类植物含2科10属, 是现存种子植物最原始的类群之一, 具有重要的科学研究和保护价值。苏铁属(Cycas)是唯一在中国有自然分布的苏铁类植物, 约20种, 多数种类为中国特有。中国的苏铁属植物主要分布于西南地区和东南沿海, 大部分种类为狭域分布的类群, 其生存繁衍受到了严重的威胁, 均被列为国家一级重点保护野生植物。基于文献资料收集整理和野外调查, 本文对中国苏铁属植物的研究和保护进行了阶段性总结。介绍了中国苏铁属植物分类研究、地理分布; 阐述了中国苏铁植物生存面临的主要威胁及相应的保护措施, 提出了保护方案的制定应遵循遗传学特征等科学依据。文中总结了我国苏铁植物保护科研工作中存在的5个主要问题: (1)苏铁植物基础科学问题有待进一步研究, (2)苏铁植物生境破坏较为严重, (3)人为盗采贩卖依然猖獗而苏铁植物园林园艺育种事业却举步不前, (4)苏铁自身生物学特性导致繁殖困难, (5)迁地保护难以保证苏铁种质&#x0201c;纯洁性&#x0201d;等, 同时针对这些问题提出相应建议, 以期为我国苏铁属植物的研究、保护以及可持续利用工作提供参考。

Xia K, Fan L, Sun WB, Chen WY (2016)

Conservation and fruit biology of Sichou oak (Quercus sichourensis, Fagaceae)—A critically endangered species in China

Plant Diversity, 38, 233-237.

DOI:10.1016/j.pld.2016.07.001      [本文引用: 1]

Several conservation programs have been started for the critically endangered Sichou oak (<i>Quercus sichourensis</i>) since 2007. These programs include detailed field investigations, seedling cultivation and research on the fruit biology of the species. In this study, we first report on the five mature individual trees found in our 9-year field investigation. Thus far, a total of 10 mature individuals have been recorded. All <i>Q. sichourensis</i> trees are healthy and most produce healthy acorns. Acorns of <i>Q. sichourensis</i> are large with dry masses of 8.0–14.0 g. These acorns had high moisture contents at collection and died shortly after (7–28 d) when dried with silica gel. Characteristics of <i>Q. sichourensis</i> acorns varied between populations. Compared with the acorns from Funing, the acorns collected from Ceheng were bigger, more viable (germination percentage was up to 96%), less sensitive to desiccation, and germinated faster. <i>Q. sichourensis</i> occurs in regions with a distinct 5–6 month dry season. Habitat degradation is largely responsible for the rareness of <i>Quercus sichorensis</i>, but desiccation sensitivity of the acorns may also limit the regeneration of the species and potentially lead to its continued rareness. As a species with extremely small populations (PSESP), <i>Q. sichourensis</i> is facing high risk of extinction and should be defined as a Critically Endangered species in the global IUCN Red List.

Xu C, Long T, Wu XL, Chen J, Liang YJ, Li JW (2020)

Reintroducing effects and influencing factors of Taxus cuspidata population

Journal of Beijing Forestry University, 42(8), 34-42. (in Chinese with English abstract)

[本文引用: 1]

[徐超, 龙婷, 吴鑫磊, 陈杰, 梁艳君, 李景文 (2020)

东北红豆杉种群的回归成效及影响因素

北京林业大学学报, 42(8), 34-42.]

[本文引用: 1]

Xu ZF, Gao JY, Li BG, Zhou HF (2012)

Comparative study on conservative efficiency of national protected plants between “Off Site” and “Near Site” Conservation

The Botanical Gardens of China, (15), 6-15. (in Chinese with English abstract)

[本文引用: 1]

[许再富, 高江云, 李保贵, 周惠芳 (2012)

国家重点保护植物“迁地”与“近地”保护有效性的比较研究

中国植物园, (15), 6-15.]

[本文引用: 1]

Xu ZF, Guo HJ (2014)

Near situ conservation for wild plant species with extremely small populations

Plant Diversity and Resources, 36, 533-536. (in Chinese with English abstract)

[本文引用: 2]

[许再富, 郭辉军 (2014)

极小种群野生植物的近地保护

植物分类与资源学报, 36, 533-536.]

[本文引用: 2]

Xu ZF, Huang JY, Hu HB, Zhou HF, Meng LZ (2008)

A commentary on plant ex situ conservation and its researches in China nearly thirty years

Guihaia, 28, 764-774. (in Chinese with English abstract)

[本文引用: 2]

[许再富, 黄加元, 胡华斌, 周惠芳, 孟令曾 (2008)

我国近30年来植物迁地保护及其研究的综述

广西植物, 28, 764-774.]

[本文引用: 2]

Yang FM, Cai L, Dao ZL, Sun WB (2022)

Genomic data reveals population genetic and demographic history of Magnolia fistulosa (Magnoliaceae), a Plant Species With Extremely Small Populations in Yunnan Province, China

Frontiers in Plant Science, 13, 811312.

DOI:10.3389/fpls.2022.811312      URL     [本文引用: 2]

Yang J, Cai L, Liu DT, Chen G, Gratzfeld J, Sun WB (2020)

China’s conservation program on Plant Species with Extremely Small Populations (PSESP): Progress and perspectives

Biological Conservation, 244, 108535.

DOI:10.1016/j.biocon.2020.108535      URL     [本文引用: 2]

Yang WZ, Li YJ, Zhang SS, Yu CY, Kang HM, Shi FQ, Chen Y, Zhang KF (2016)

Mini-reserve of Nyssa yunnanensis: The first practice of mini-reserve construction for plant species with extremely small populations (PSESP) in China

Journal of West China Forestry Science, 45(3), 149-154. (in Chinese with English abstract)

[本文引用: 1]

[杨文忠, 李永杰, 张珊珊, 余昌元, 康洪梅, 史富强, 陈勇, 张快富 (2016)

云南蓝果树保护小区——中国首个极小种群野生植物保护小区建设实践

西部林业科学, 45(3), 149-154.]

[本文引用: 1]

Yang WZ, Zhang SS, Kang HM, Duan ZL, Yang H, He JF, Shao JP, Zhang LS, Xiang ZY, Yuan RL, Chen ZH (2018) Principles and Methods of Conserving Wild Plant Species with Extremely Small Populations. Standards Press of China, Beijing. (in Chinese)

[本文引用: 2]

[杨文忠, 张珊珊, 康洪梅, 段宗亮, 杨华, 贺佳飞, 邵金平, 张良实, 向振勇, 袁瑞玲, 陈中华 (2018) 极小种群野生植物保护原则与方法(LY/T 2938-2018). 中国标准出版社, 北京.]

[本文引用: 2]

Yang WZ, Xiang ZY, Zhang SS, Kang HM, Shi FQ (2015)

Plant species with extremely small populations (PSESP) and their significance in China’s national plant conservation strategy

Biodiversity Science, 23, 419-425. (in Chinese with English abstract)

DOI:10.17520/biods.2014183      URL     [本文引用: 5]

[杨文忠, 向振勇, 张珊珊, 康洪梅, 史富强 (2015)

极小种群野生植物的概念及其对我国野生植物保护的影响

生物多样性, 23, 419-425.]

DOI:10.17520/biods.2014183      [本文引用: 5]

近年来我国提出极小种群野生植物(plant species with extremely small populations, PSESP)的概念并启动实施了全国极小种群野生植物拯救保护工程规划, 然而PSESP概念自提出后就不断受到质疑, 认为不确切的概念及其引领的保护工程难以取得显著成效。为了更好地理解PSESP概念和相应的保护对策, 本文在回顾我国野生植物保护进程的基础上, 通过梳理珍稀濒危植物、重点保护植物和极小种群植物等概念, 提出从物种选列标准和极小种群临界值等角度理解PSESP概念的途径; 并通过比较各个时期采取的保护策略措施, 指出基于种群管理的PSESP保护能体现物种以种群形式得以维持和延续的本质, 但急需完善传统的资源调查、就地保护、迁地保护方法, 探索种群调查分析、近地保护和种群恢复重建等新方法。最后认为PSESP概念的提出及其拯救保护工程的实施在我国野生植物保护领域具有里程碑意义, 能促进保护实践和科学研究的相互融合, 实现二者共同发展。

Yang YZ, Ma T, Wang ZF, Lu ZQ, Li Y, Fu CX, Chen XY, Zhao MS, Olson MS, Liu JQ (2018)

Genomic effects of population collapse in a critically endangered ironwood tree Ostrya rehderiana

Nature Communications, 9, 5449.

DOI:10.1038/s41467-018-07913-4      URL    

Yao Z, Guo J, Jin CZ, Liu YB (2021)

Endangered mechanisms for the first-class protected Wild Plants with Extremely Small Populations in China

Biodiversity Science, 29, 394-408. (in Chinese with English abstract)

DOI:10.17520/biods.2020316      URL     [本文引用: 2]

[姚志, 郭军, 金晨钟, 刘勇波 (2021)

中国纳入一级保护的极小种群野生植物濒危机制

生物多样性, 29, 394-408.]

[本文引用: 2]

Yu DP, Li CH, Wen XY, Li XJ, Peng QX, Xie KP (2019)

Flowering biological characteristics and breeding system of Parakmeria omeiensis

Guihaia, 39, 600-607. (in Chinese with English abstract)

[本文引用: 1]

[余道平, 李策宏, 文香英, 李小杰, 彭启新, 谢孔平 (2019)

峨眉拟单性木兰的开花生物学特性与繁育系统

广西植物, 39, 600-607.]

[本文引用: 1]

Zang RG (2020)

Research progress in Wild Plant with Extremely Small Populations in China

Biodiversity Science, 28, 263-268. (in Chinese)

DOI:10.17520/biods.2020119     

[臧润国 (2020)

中国极小种群野生植物保护研究进展

生物多样性, 28, 263-268.]

DOI:10.17520/biods.2020119     

Zang RG, Ding Y, Huang JH, Lu XH (2016) Technical Regulation for Conservation and Propagation of Wild Plants with Extremely Small Populations. Standards Press of China, Beijing. (in Chinese)

[本文引用: 5]

[臧润国, 丁易, 黄继红, 路兴慧 (2016) 极小种群野生植物保护与扩繁技术规范(LY/T 2652-2016). 中国标准出版社, 北京.]

[本文引用: 5]

Zang RG, Dong M, Li JQ, Chen XY, Zeng SJ, Jiang MX, Li ZQ, Huang JH (2016)

Conservation and restoration for typical critically endangered wild plants with extremely small population

Acta Ecologica Sinica, 36, 7130-7135. (in Chinese with English abstract)

[臧润国, 董鸣, 李俊清, 陈小勇, 曾宋君, 江明喜, 李镇清, 黄继红 (2016)

典型极小种群野生植物保护与恢复技术研究

生态学报, 36, 7130-7135.]

Zang RG, Huang JH, Ding Y, Lu XH, Xu Y, Liu YH, Du F (2019) Technical Regulation for Ex Situ Conservation of Wild Plants with Extremely Small Populations. Standards Press of China, Beijing. (in Chinese)

[本文引用: 2]

[臧润国, 黄继红, 丁易, 路兴慧, 许玥, 刘艳红, 杜芳 (2019) 极小种群野生植物保护技术标准综合体第2部分迁地保护技术规程(LY/T 3086.2-2019). 中国标准出版社, 北京.]

[本文引用: 2]

Zang RG, Huang JH, Ding Y, Xu Y, Lu XH, Qiu DY, Shao FJ (2020) Technological Regulation for Preservation of Germplasm Resources of Wild Plant with Extremely Small Populations (LY/T 3187-2020). Standards Press of China, Beijing. (in Chinese)

[本文引用: 5]

[臧润国, 黄继红, 丁易, 许玥, 路兴慧, 邱德有, 邵芬娟 (2020) 极小种群野生植物种质资源保存技术规程(LY/T 3187-2020). 中国标准出版社, 北京.]

[本文引用: 5]

Zang RG, Huang JH, Lu XH, Ding Y, Xu Y, Liu YH, Du F (2019) Technical Regulation for In Situ Conservation and Habitat Rehabilitation of Wild Plants with Extremely Small Populations. Standards Press of China, Beijing. (in Chinese)

[本文引用: 1]

[臧润国, 黄继红, 路兴慧, 丁易, 许玥, 刘艳红, 杜芳 (2019) 极小种群野生植物保护技术标准综合体第1部分就地保护及生境修复技术规程(LY/T 3086.1-2019). 中国标准出版社, 北京.]

[本文引用: 1]

Zang RG, Li JR, Huang JH, Wu KL, Ding Y, Xu Y, Lu XH (2020) Technological Regulation for Seedling Breeding of Wild Plant with Extremely Small Populations (LY/T 3186-2020). Standards Press of China, Beijing. (in Chinese)

[本文引用: 1]

[臧润国, 李家儒, 黄继红, 吴坤林, 丁易, 许玥, 路兴慧 (2020) 极小种群野生植物苗木繁育技术规程(LY/T 3186-2020). 中国标准出版社, 北京.]

[本文引用: 1]

Zhang SS, Kang HM, Yang WZ (2017)

Climate change- induced water stress suppresses the regeneration of the critically endangered forest tree Nyssa yunnanensis

PLoS ONE, 12, e0182012.

DOI:10.1371/journal.pone.0182012      URL     [本文引用: 1]

Zhang SS, Shi FQ, Yang WZ, Xiang ZY, Kang HM, Duan ZL (2015)

Autotoxicity as a cause for natural regeneration failure in Nyssa yunnanensis and its implications for conservation

Israel Journal of Plant Sciences, 62, 187-197.

DOI:10.1080/07929978.2015.1064630      URL     [本文引用: 1]

Zhang SS, Yang WZ, Kang HM, Nuosu NM (2018)

Effects of light intensities and water conditions on growth and photosynthetic characteristics of Nyssa yunnanensis seedlings

Journal of Northeast Forestry University, 46(3), 16-23. (in Chinese with English abstract)

[本文引用: 1]

[张珊珊, 杨文忠, 康洪梅, 诺苏那玛 (2018)

光强和土壤含水量对云南蓝果树幼苗生长及光合特征的影响

东北林业大学学报, 46(3), 16-23.]

[本文引用: 1]

Zhang WH, Zu YG (1998a)

Investigation on the distribution area and characteristics of biology and ecology of Adenophora lobophylla (Campanulaceae), an endangered species

Bulletin of Botanical Research, 18, 209-217. (in Chinese with English abstract)

[本文引用: 1]

[张文辉, 祖元刚 (1998a)

裂叶沙参分布区域和生物学生态学习性的调查

植物研究, 18, 209-217.]

[本文引用: 1]

Zhang WH, Zu YG (1998b)

The habitat and analysis on the external endangered factors of Adenophora lobophylla (Campanulaceae), an endangered species

Bulletin of Botanical Research, 18, 218-226. (in Chinese with English abstract)

[本文引用: 1]

[张文辉, 祖元刚 (1998b)

裂叶沙参分布区域和生物学生态学习性的调查

植物研究, 18, 218-226.]

[本文引用: 1]

Zhang XJ, Liu XF, Liu DT, Cao YR, Li ZH, Ma YP, Ma H (2021)

Genetic diversity and structure of Rhododendron meddianum, a plant species with extremely small populations

Plant Diversity, 43, 472-479.

DOI:10.1016/j.pld.2021.05.005      URL     [本文引用: 1]

Zhang YY, Yu T, Ma WB, Wang F, Tian C, Li JQ (2020)

Physiological and morphological effects of different canopy densities on reintroduced Acer catalpifolium

Biodiversity Science, 28, 323-332. (in Chinese with English abstract)

DOI:10.17520/biods.2019190      URL     [本文引用: 1]

[张宇阳, 于涛, 马文宝, 王飞, 田成, 李俊清 (2020)

不同郁闭度对野外回归的梓叶槭幼树形态和生理特征的影响

生物多样性, 28, 323-332.]

DOI:10.17520/biods.2019190      [本文引用: 1]

濒危植物野外回归是扩大极小种群野生植物种群的有效途径。适宜的回归生境是物种生长的必要条件, 研究植物的生理生态特征对不同野外回归生境的适应性, 是科学评价濒危物种种群回归生境适宜性的关键指标。本文以野外回归的极小种群野生植物梓叶槭(Acer catalpifolium)为研究对象, 探讨了无遮荫、林缘、林隙以及林下(郁闭度由小到大) 4种不同光照条件对梓叶槭幼树的形态特征、光合特征、类黄酮指数及叶绿素含量等的影响。结果表明: (1)随着郁闭度的增大, 梓叶槭幼树的基径、冠幅以及新生枝条数量产生差异, 均呈现先增大后减小的趋势; (2)在林缘生境中, 梓叶槭幼树的单叶面积及单叶质量均最大, 比叶面积随着郁闭度的增大而增大; (3)随着郁闭度的增大, 梓叶槭叶片胞间CO<sub>2</sub>浓度、蒸腾速率及气孔导度均呈现先减小后增大的趋势, 叶绿素含量呈现上升趋势, 类黄酮指数则呈现先增大后减小的趋势。综上可知, 林缘适宜的光照条件更适合梓叶槭野外回归。这一结果可为梓叶槭以及其他极小种群野生植物的回归生境适宜性的探索研究提供借鉴。

Zhang ZJ, Guo YP, He JS, Tang ZY (2018)

Conservation status of Wild Plant Species with Extremely Small Populations in China

Biodiversity Science, 26, 572-577. (in Chinese with English abstract)

DOI:10.17520/biods.2017271      [本文引用: 2]

China is characterized as one of the countries with the greatest diversity worldwide, mostly because of its vast area and heterogeneous topography. Meanwhile, the long history of human activity has led to the decrease of populations for considerable species in China. To protect these species, the Chinese government proposed a list of the first batch of Wild Plant Species with Extremely Small Populations (PSESP). In this study, we developed a fine-resolution distribution database for 120 PSESPs, explored the distribution patterns, and evaluated the in situ conservation status of the PSESPs by overlapping species distribution with terrestrial national and provincial nature reserves (NNRs and PNRs) in China. We found the greatest richness of PSESPs in the southeast regions of Yunnan, the southwest regions of Guangxi, and the southwest regions of Hainan Island. On average, NNRs covered 21.5%, while PNRs covered an additional 10.9% of the distribution areas of PSESPs. However, 35 PSESPs (29% of the total) were not covered by NNRs and 17 PSESPs (14%) were not covered by either NNRs or PNRs. We proposed that nature reserves specifically designed for the PSESPs need to be constructed in the Yunnan and Hainan provinces.

[张则瑾, 郭焱培, 贺金生, 唐志尧 (2018)

中国极小种群野生植物的保护现状评估

生物多样性, 26, 572-577.]

DOI:10.17520/biods.2017271      [本文引用: 2]

广阔的地域和多样的地形造就了中国丰富的生物多样性, 同时长时间的人类活动也导致我国有不少物种的生存受到威胁, 特别是一些极度濒危、随时有灭绝危险、生境要求独特、生态幅狭窄或基因易流失的物种需要重点保护。近期国家出台了《全国野生动植物及自然保护区建设工程总体规划》, 其中包含了首批重点保护的极小种群植物名单。本研究中, 我们整理了120种极小种群野生植物的高精度分布图, 探讨其分布格局并通过国家级和省级保护区网络评估其保护现状。研究发现, 中国极小种群野生植物丰富度最高的地方是云南东南部、广西西南部和海南岛西南部。国家级自然保护区对中国极小种群野生植物分布区的平均覆盖率为21.5%, 省级自然保护区的平均覆盖率为10.9%。有35种极小种群野生植物(占总数的29%)未受国家级自然保护区覆盖, 有17种(14%)未受任何国家级或省级自然保护区覆盖。我们建议在云南和海南省针对极小种群建立自然保护区。

Zheng YL, Sun WB (2009)

Seed germination of Huagaimu, a critically endangered plant endemic to southeastern Yunnan, China

HortTechnology, 19, 427-431.

DOI:10.21273/HORTSCI.19.2.427      URL     [本文引用: 1]

Zhong XJ, Guo Y, Liu CQ, Liang JX, Cao HL (2021)

Study on diurnal variation of photosynthetic physiological characteristics of Ormosia boluoensis

Journal of Anhui Agricultural Sciences, 49(12), 126-128. (in Chinese with English abstract)

[本文引用: 1]

[钟象景, 郭韵, 刘彩琴, 梁继霞, 曹洪麟 (2021)

极小种群植物博罗红豆的光合生理特征日变化研究

安徽农业科学, 49(12), 126-128.]

[本文引用: 1]

Zhou X, Gao JY (2011)

Reintroduction of rare and endangered plants: Theories and practices

Biodiversity Science, 19, 97-105. (in Chinese with English abstract)

DOI:10.3724/SP.J.1003.2011.09101      [本文引用: 2]

Reintroduction is defined as an attempt to establish a species in an area which was once part of its historical range, but from which it has been extirpated or become extinct. As an important strategy for species conservation and population restoration, reintroduction is increasingly applied to the conservation of rare and endangered plants. However, reintroduction is often a relatively high-risk and high-cost activity, and needs to be conducted under the direction of sound theories and reasonable techniques. Plant reintroductions often face specific challenges. Orchid reintroductions, particularly, are often confronted with more specific diffi-culties. Reintroduction, when combined with research efforts into ecology, pollination biology, propagation science, mycology, and population genetic diversity is termed integrated conservation, and has been demon-strated as an effective orchid conservation strategy. Based on scientific literature, this paper provides an overview of the reintroduction of rare and endangered plants in terms of definitions, criteria for success, theories and methods, and also summarizes the possible risks and problems of plant reintroduction.

[周翔, 高江云 (2011)

珍稀濒危植物的回归: 理论和实践

生物多样性, 19, 97-105.]

DOI:10.3724/SP.J.1003.2011.09101      [本文引用: 2]

回归(reintroduction)指的是在一个物种出现濒危的现有分布区域或已经灭绝的历史分布区域内建立新种群的活动。作为物种保护及种群恢复的重要策略之一, 回归在越来越多的珍稀濒危植物保护实践中得到了应用。回归的成功标准分为短期和长期两类, 前者包括个体的成活、种群的建立和扩散;后者包括回归种群的自我维持和在生态系统中发挥功能等。珍稀濒危植物的回归是一项高风险和高花费的工程, 需要根据种群遗传学和生态学理论, 选择合适的繁殖体、扩繁方式、回归地点和生境、定植时间、定植方式等, 还要考虑传粉者和共生物种, 并开展回归后的长期监测。为保证回归的成功并把回归过程中可能对生态环境造成的不利影响降到最小, 还需要防止遗传污染、避免源种群的过度采集、加强公众教育、加强长期监测等。不同植物的回归面临着各不相同的具体困难, 兰科植物的回归面临更多的困难, 如材料扩繁难与存活率低等。基于生态学、传粉生物学、繁殖技术、真菌学和种群遗传多样性研究基础上开展兰科植物的回归, 被证明是有效的综合保护策略。

Zhou XF, Wen YF, Zhang Y, Li XY, Yan YD, Xie WY (2021)

Artificial propagation of Firmiana danxiaensis, a wild species with extremely small population

Hunan Forestry Science & Technology, 48(5), 53-57. (in Chinese with English abstract)

[本文引用: 1]

[周小芬, 文亚峰, 张原, 李鑫玉, 闫亚丹, 谢宛余 (2021)

极小种群野生植物丹霞梧桐繁育技术

湖南林业科技, 48(5), 53-57.]

[本文引用: 1]

/