Biodiversity Science ›› 2020, Vol. 28 ›› Issue (3): 323-332.doi: 10.17520/biods.2019190

• Original Papers • Previous Article     Next Article

Physiological and morphological effects of different canopy densities on reintroduced Acer catalpifolium

Yuyang Zhang1, Tao Yu1, Wenbao Ma2, Fei Wang3, Cheng Tian1, Junqing Li1, *()   

  1. 1. Beijing Key Laboratory for Forest Resources and Ecosystem Processes, Beijing Forestry University, Beijing 100083
    2. Key Laboratory of National Forestry and Grassland Administration on Sichuan Forest Ecology, Resources and Environment, Sichuan Academy of Forestry Sciences, Chengdu 610081
    3. West China Subalpine Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Dujiangyan, Sichuan 611843
  • Received:2019-06-06 Accepted:2019-07-10 Online:2019-12-24
  • Junqing Li

The reintroduction of an endangered plant is an effective way to increase its wild plant populations. Suitable habitat is a necessary condition for reintroduced species to survive. Studying the adaptability of a plant’s physiology to different habitats prior to reintroduction is key for evaluating how successful the endangered species would be in each habitat. In this study, Acer catalpifolium, a Wild Plant with Extremely Small Populations (WPESP), was studied to explore the effects of habitat conditions on the morphological traits, photosynthetic characteristics, flavonoid index and chlorophyll contents of A. catalpifolium seedlings. The habitat conditions, no shading, forest edge, gap and understory, are ordered in a gradient from low to high canopy density. The results show that: (1) The change in canopy density correlated with the differences in base diameter, crown width and number of new branches. (2) The maximum single leaf area and single leaf mass were found in the forest edge habitat, and the specific leaf area increased as canopy density increased. (3) With increasing canopy density, intercellular CO2 concentration, transpiration rate and stomatal conductance of A. catalpifolium showed an initial decrease before increasing. In contrast, the flavonoid index showed an initial increase before decreasing. Chlorophyll content showed a consistent upward trend. In summary, the light conditions of forest edge habitat make it more suitable than the other habitats in this study for the reintroduction of A. catalpifolium. This study establishes a theoretical and practical basis for field reintroductions of A. catalpifolium, and provides significant guidance for exploring suitable habitat for the reintroduction of other Wild Plant with Extremely Small Populations.

Key words: Acer catalpifolium, reintroduction in the wild, canopy density, morphological indicators, physiological indicators

Fig. 1

Effects of different light conditions on plant height of Acer catalpifolium"

Fig. 2

Effects of different light conditions on the basis of diameter of Acer catalpifolium."

Fig. 3

Effects of different light conditions on crown of Acer catalpifolium. Different letters indicate significant differences (P < 0.05)."

Fig. 4

Effects of different light conditions on number of newly stretched branches of Acer catalpifolium. Different letters indicate significant differences (P < 0.05)."

Table 1

Effects of different light conditions on leaf characteristics of Acer catalpifolium"

无遮荫 No shading 林缘 Forest edge 林隙 Gap 林下 Understory
叶面积 Leaf area (mm2) 4,602.43 ± 891.16a 9,634.17 ± 2,409.41b 6,443.71 ± 2,652.62ab 5,012.54 ± 1,391.37a
单叶质量 Single blade mass (g) 0.30 ± 0.049a 0.67 ± 0.38b 0.26 ± 0.14a 0.19 ± 0.05a
比叶面积 Specific leaf area (cm2/g) 150.71 ± 11.10a 212.58 ± 80.39b 266.50 ± 52.15c 263.01 ± 12.47bc

Fig. 5

Effects of different light conditions on photosynthetic characteristics of Acer catalpifolium. Different letters indicate significant differences (P < 0.05)."

Fig. 6

Effects of different light conditions on chlorophyll content of Acer catalpifolium. Different letters indicate significant differences (P < 0.05)."

Table 2

Effects of different light conditions on polyphenols of Acer catalpifolium"

Flavonoids index
Anthocyanin index
无遮荫 No shading 2.26 ± 0.023a 0.19 ± 0.00098a
林缘 Forest edge 2.63 ± 0.045b 0.17 ± 0.0031b
林隙 Gap 2.46 ± 0.045c 0.20 ± 0.0024c
林下 Understory 2.57 ± 0.075b 0.13 ± 0.0031d
1 Agrell J, Oleszek W, Stochmal A, Olsen M, Anderson P ( 2003) Herbivore-induced responses in alfalfa (Medicago sativa). Journal of Chemical Ecology, 29, 303-320.
doi: 10.1023/A:1022625810395
2 Aleric KM, Kirkman LK ( 2005) Growth and photosynthetic responses of the federally endangered shrub, Lindera melissifolia (Lauraceae), to varied light environments. American Journal of Botany, 92, 682-689.
3 Bruckova K, Sytar O, Marek ivák, Marián Bresti, Lebeda A ( 2016) The effect of growth conditions on flavonols and anthocyanins accumulation in green and red lettuce. Journal of Central European Agriculture, 17, 986-997.
doi: 10.5513/JCEA01/17.4.1802
4 Cartelat A, Cerovic ZG, Goulas Y, Meyer S, Lelarge C, Prioul JL, Barbottin A, Jeuffroy MH, Gate P, Agati G, Moya I ( 2005) Optically assessed contents of leaf polyphenolics and chlorophyll as indicators of nitrogen deficiency in wheat (Triticum aestivum L.). Field Crops Research, 91, 35-49.
doi: 10.1016/j.fcr.2004.05.002
5 Chen CD (1999) Biodiversity Research and Protection in Dujiangyan, pp.1-18. Sichuan Science and Technology Press, Chengdu.(in Chinese)
[ 陈昌笃 ( 1999) 都江堰生物多样性研究与保护, 1-18页. 四川科学技术出版社, 成都.]
6 Dutilleul P, Han L, Valladares F, Messier C ( 2015) Crown traits of coniferous trees and their relation to shade tolerance can differ with leaf type: A biophysical demonstration using computed tomography scanning data. Frontiers in Plant Science, 6, 172-184.
7 Golawska S, Leszczynski B, Oleszek W ( 2006) Effect of low and high-saponin lines of alfalfa on pea aphid. Journal of Insect Physiology, 52, 737-743.
8 Guo X, Wang RQ, Wang CD, Xu F, Zhao S, Guo WH ( 2016) Acer truncatum seedlings are more plastic than Quercus variabilis seedlings in response to different light regimes. Dendrobiology, 76, 35-49.
doi: 10.12657/denbio.076.004
9 Hu HL ( 2012) Water Consumption Characteristic and Response to Drought Stress of Eucalyptus grandis. PhD dissertation, Sichuan Agricultural University, Chengdu. (in Chinese with English abstract)
[ 胡红玲 ( 2012) 巨桉耗水特性及其对干旱胁迫的响应. 博士学位论文, 四川农业大学, 成都.]
10 Ji WD, Shi GX, Yang HY, Xu QS, Xu Y, Zhang H ( 2007) Effects of Cu 2+stress on leaf physiological indice and ultrastructure of Potamogeton malaianus . Chinese Journal of Applied Ecology, 18, 2727-2732. (in Chinese with English abstract)
[ 计汪栋, 施国新, 杨海燕, 徐勤松, 许晔, 张慧 ( 2007) 铜胁迫对竹叶眼子菜叶片生理指标和超微结构的影响. 应用生态学报, 18, 2727-2732.]
11 Jiang ZG, Ma KP ( 2014) The Principles of Conservation Biology. Science Press, Beijing.(in Chinese)
[ 蒋志刚, 马克平 ( 2014) 保护生物学原理. 科学出版社, 北京.]
12 Joesting HM, Mccarthy BC, Brown KJ ( 2009) Determining the shade tolerance of American chestnut using morphological and physiological leaf parameters. Forest Ecology and Management, 257, 280-286.
doi: 10.1016/j.foreco.2008.09.009
13 Jones C, Hartley S ( 1999) A protein competition model of phenolic allocation. Oikos, 86, 27-44.
doi: 10.2307/3546567
14 Kandil FE, Grace MH, Seigler DS, Cheeseman JM ( 2004) Polyphenolics in Rhizophora mangle L. leaves and their changes during leaf development and senescence. Trees, 18, 518-528.
15 Katahata SI, Naramoto M, Kakubari Y, Mukai Y ( 2007) Photosynthetic capacity and nitrogen partitioning in foliage of the evergreen shrub daphniphyllum humile along a natural light gradient. Tree Physiology, 27, 199-208.
doi: 10.1093/treephys/27.2.199
16 Krause GH ( 1988) Photoinhibition of photosynthesis: An evaluation of damaging and protective mechanisms. Physiologia Plantarum, 74, 566-574.
doi: 10.1111/ppl.1988.74.issue-3
17 Lei TT, Tabuchi R, Kitao M, Koike T ( 1996) Functional relationship between chlorophyll content, leaf reflectance, and light-capturing efficiency of Japanese forest species. Physiologia Plantarum, 96, 411-418.
doi: 10.1111/ppl.1996.96.issue-3
18 Li JW, Zhang JX, Zhao Z, Lei XD, Xu XL, Lu XX, Weng DL, Gao Y, Cao LK ( 2013) Use of fluorescence-based sensors to determine the nitrogen status of paddy rice. Journal of Agricultural Science, 151, 862-871.
doi: 10.1017/S0021859612001025
19 Liu SL, Luo YM, Yang RJ, He CX, Cheng QS, Tao JJ, Ren B, Wang MH, Ma MD ( 2015) High resource-capture and -use efficiency, and effective antioxidant protection contribute to the invasiveness of Alnus formosana plants. Plant Physiology and Biochemistry, 96, 436-447.
doi: 10.1016/j.plaphy.2015.08.022
20 Liu XJ, Zhu XL, Yao S, Tian Y, Zhu CB ( 2011) Effects of canopy openness and planting density on the growth and yield of Ixeris denticulate (Houtt.) Steb in Baotianman natural forest of Quercus acutidentata. Journal of Henan Agricultural University, 45, 292-296. (in Chinese with English abstract)
[ 刘晓静, 朱学灵, 姚松, 田野, 朱从波 ( 2011) 郁闭度和种植密度对宝天曼天然锐齿栎林下苦荬菜的生长及产量的影响. 河南农业大学学报, 45, 292-296.]
21 Ma WB, Xu G, Ji HJ, Liu XL ( 2014) Preliminary study on germination characteristics of the rare plant Acer catalpifolium. Seed, 33(12), 87-90. (in Chinese with English abstract)
[ 马文宝, 许戈, 姬慧娟, 刘兴良 ( 2014) 珍稀植物梓叶槭种子萌发特性初步研究. 种子, 33(12), 87-90.]
22 Montgomery R, Chazdon R ( 2002) Light gradient partitioning by tropical tree seedlings in the absence of canopy gaps. Oecologia, 131, 165-174.
doi: 10.1007/s00442-002-0872-1
23 Mountford EP, Savill PS, Bebber DP ( 2006) Patterns of regeneration and ground vegetation associated with canopy gaps in a managed beechwood in southern England. Forestry, 79, 389-408.
doi: 10.1093/forestry/cpl024
24 Nakano Y, Asada K ( 1987) Purification of ascorbate peroxidase in spinach chloroplasts; Its inactivation in ascorbate-depleted medium and reactivation by monodehydroascorbate radical. Plant & Cell Physiology, 28, 131-140.
25 Parelle J, Roudaut JP, Ducrey M ( 2006) Light acclimation and photosynthetic response of beech (Fagus sylvatical) saplings under artificial shading or natural Mediterranean conditions. Annals of Forest Science, 63, 257-266.
doi: 10.1051/forest:2006004
26 Poorter L, Bongers F ( 2006) Leaf traits are good predictors of plant performance across 53 rain forest species. Ecology, 87, 1733-1743.
doi: 10.1890/0012-9658(2006)87[1733:LTAGPO]2.0.CO;2
27 Quero JL, Villar R, Maranon T, Zamora R ( 2006) Interactions of drought and shade effects on seedlings of four Quercus species: Physiological and structural leaf responses. New Phytologist, 170, 819-833.
doi: 10.1111/nph.2006.170.issue-4
28 Ren H, Zhang QM, Lu HF, Liu HX, Guo QF, Wang J, Jian SG, Bao HO ( 2012) Wild plant species with extremely small populations require conservation and reintroduction in China. Ambio, 41, 913-917.
doi: 10.1007/s13280-012-0284-3
29 Sang WG, Ma KP, Axmacher JC ( 2011) Securing a future for China’s wild plant resources. BioScience, 61, 720-725.
doi: 10.1525/bio.2011.61.9.11
30 Silvia A, Marta C, Monica G ( 2004) Estimation of Mediterranean forest transpiration and photosynthesis through the use of an ecosystem simulation model driven by remotely sensed data. Global Ecology and Biogeography, 13, 371-380.
doi: 10.1111/geb.2004.13.issue-4
31 Smith M, Wu Y, Green O ( 1993) Effect of light and water- stress on photosynthesis and biomass production in Boltonia decurrens (Asteraceae), a threatened species. American Journal of Botany, 80, 859-864.
doi: 10.1002/j.1537-2197.1993.tb15305.x
32 Sparg SG, Light ME, van Staden J ( 2004) Biological activities and distribution of plant saponins. Journal of Ethnopharmacology, 94, 219-243.
doi: 10.1016/j.jep.2004.05.016
33 State Forestry Administration ( 2009) China’s Key Protected Wild Plant Resources Investigation. China Forestry Publishing House, Beijing.(in Chinese)
[ 国家林业局( 2009) 中国重点保护野生植物资源调查. 中国林业出版社, 北京.]
34 Taiz L, Zeiger E ( 1998) Plant Physiology Sinauer Associates. Sunderland, Massachusetts.
35 Taiz L, Zeiger E ( 2009) Plant Physiology, 4th edn, pp. 330-332. Science Press, Beijing.
36 Tang H, Song LL, Hu YY, Yu WW, Wu JS ( 2015) Growth, photosynthetic and physiological responses of Torreya grandis seedlings to varied light environments. Trees, 29, 1011-1022.
doi: 10.1007/s00468-015-1180-9
37 Tjus SE, Moiler BL, Scheller HV ( 1999) Photoinhibition of photosystem I damage both reaction center proteins PS I-A and PS I-B and acceptor side located small photosystem I polypeptides. Photosynthesis Research, 60, 75-86.
doi: 10.1023/A:1006283618695
38 Tremblay N, Wang Z, Bélec C ( 2007) Evaluation of the dualex for the assessment of corn nitrogen status. Journal of Plant Nutrition, 30, 1355-1369.
doi: 10.1080/01904160701555689
39 U.S. Fish and Wildlife Service ( 1993) Recovery Plan for Pondberry (Lindera rnelissifolia). Atlanta, Georgia.
40 Valladares F, Chico J, Aranda I, Balaguer L, Dizengremel P, Manrique E, Dreyer E ( 2002) The greater seedling high- light tolerance of Quercus robur over Fagus sylvatica is linked to a greater physiological plasticity. Trees, 16, 395-403.
doi: 10.1007/s00468-002-0184-4
41 Wei W, Hou YP, Peng SL, Chen PD, Liang XP, Zhang J ( 2017) Effects of light intensity on growth and biomass allocation of invasive plants Mikania micrantha and Chromolaena odorata. Acta Ecologica Sinica, 37, 6021-6028. (in Chinese with English abstract)
[ 魏巍, 侯玉平, 彭少麟, 陈鹏东, 梁希平, 张静 ( 2017) 不同光照强度对入侵植物薇甘菊(Mikani. micrantha)和飞机草(Chromolaena odorata)生长及生物量分配的影响. 生态学报, 37, 6021-6028.]
42 Wittmann C, Aschan G, Pfanz H ( 2001) Leaf and twig photosynthesis of young beech Fagus sylvatica and aspen Populus tremula trees grown under different light regime. Basic and Applied Ecology, 2, 145-154.
doi: 10.1078/1439-1791-00047
43 Wu GL, Chen M, Du GZ ( 2010) Response of biomass allocation and morphological characteristics to light and nutrient resources for seedlings of three alpine species. Acta Ecologica Sinica, 30, 60-66. (in Chinese with English abstract)
[ 武高林, 陈敏, 杜国祯 ( 2010) 三种高寒植物幼苗生物量分配及性状特征对光照和养分的响应. 生态学报, 30, 60-66.]
44 Wu J, Li J, Su Y, He Q, Wang J, Qiu Q, Ma J ( 2017) A morphophysiological analysis of the effects of drought and shade on Catalpa bungei plantlets. Acta Physiologiae Plantarum, 39, 80.
doi: 10.1007/s11738-017-2380-2
45 Xue CY, Xu F, Qu B ( 2018) Comparison of morphology, photosynthesis, and growth among Xanthium strumarium, X. sibiricum and their hybrid under different nitrogen levels. Biodiversity Science, 26, 554-563. (in Chinese with English abstract)
doi: 10.17520/biods.2018002
[ 薛晨阳, 许玉凤, 曲波 ( 2018) 不同氮水平下瘤突苍耳、苍耳及其杂交种形态、光合及生长特征比较. 生物多样性, 26, 554-563.]
doi: 10.17520/biods.2018002
46 Yamamoto HY ( 1975) Biochemistry of the violaxanthin cycle in higher plants. Pure and Applied Chemistry, 51, 639-648.
doi: 10.1351/pac197951030639
47 Yang L, Zhang DY, Qiu SZ, Gong ZQ, Shen HL ( 2017) Effects of environmental factors on seedling growth and anthocyanin content in Betula ‘Royal Frost’ leaves. Journal of Forestry Research, 28, 1147-1155.
doi: 10.1007/s11676-017-0487-3
48 Yang SF, Gu YS ( 2011) Techniques of planting Aralia mandshurica Maxim with different canopy density in forest land. Forest By-Product and Speciality in China, ( 3), 48-49. (in Chinese with English abstract)
[ 杨淑芬, 谷银森 ( 2011) 调节不同郁闭度林地栽培龙牙楤木丰产技术. 中国林副特产, (3), 48-49.]
49 Yin DS, Shen HL ( 2016) Shade tolerance and the adaptability of forest plants in morphology and physiology: A review. Chinese Journal of Applied Ecology, 27, 2687-2698. (in Chinese with English abstract)
[ 殷东生, 沈海龙 ( 2016) 森林植物耐荫性及其形态和生理适应性研究进展. 应用生态学报, 27, 2687-2698.]
50 Yu DP, Peng QX, Li CH, Xie KP, Zhang GZ, Li SL ( 2008) Research on the biological characters of the seeds of Acer catalpifolium Rehd. China Wild Plant Resource, 27(6), 30-32. (in Chinese with English abstract)
[ 余道平, 彭启新, 李策宏, 谢孔平, 张国珍, 李世丽 ( 2008) 梓叶槭种子生物学特性研究. 中国野生植物资源, 27(6), 30-32.]
51 Zhang SB, Hu H, Zhou ZK, Xu K, Yan N ( 2005) Photosynthesis in relation to reproductive success of Cypripedium flavum. Annals of Botany, 96, 43-49.
doi: 10.1093/aob/mci146
52 Zhang XR, Tan XF, Wang RQ, Xu NN, Guo WH ( 2013) Effects of soil moisture and light intensity on ecophysiological characteristics of Amorpha fruticosa seedlings. Forest Research, 24, 293-300.
53 Zhang YY, Ma WB, Yu T, Ji HJ, Gao J, Li JQ, Gao S, Ke L ( 2018) Population structure and community characteristics of Acer catalpifolium Rehd. Chinese Journal of Applied & Environmental Biology, 24, 697-703. (in Chinese with English abstract)
[ 张宇阳, 马文宝, 于涛, 姬慧娟, 高健, 李俊清, 高尚, 柯蕾 ( 2018) 梓叶槭的种群结构和群落特征. 应用与环境生物学报, 24, 697-703.]
54 Zhang YY, Yu T, Ma WB, Tian C, Sha ZP, Li JQ ( 2019) Morphological and physiological response of Acer catalpifolium Rehd. seedlings to water and light stresses. Global Ecology and Conservation, e00660.
55 Zhang ZD, Xu CY, Dong JW, Jiang ZG ( 2008) Impacts of canopy closure on undergrowth and landscape in scenic recreational forest: A case study of Platycladus orientalis- Robinia pseudoacacia forest in Beijing. Journal of Chinese Urban Forestry, ( 2), 10-13. (in Chinese with English abstract)
[ 章志都, 徐程扬, 董建文, 连志刚 ( 2008) 郁闭度对风景游憩林林下植被及林内景观的影响. 中国城市林业, ( 2), 10-13.]
No related articles found!
Full text