生物多样性, 2022, 30(10): 22451 doi: 10.17520/biods.2022451

综述

中国野生动物红外相机监测与研究: 现状及未来

肖治术,,1,7,*, 肖文宏,1, 王天明,2, 李晟,3, 连新明,4, 宋大昭5, 邓雪琴1, 周岐海6

1.中国科学院动物研究所农业虫害鼠害综合治理研究国家重点实验室, 北京 100101

2.北京师范大学生命科学学院, 北京 100875

3.北京大学生命科学学院, 北京 100871

4.中国科学院西北高原生物研究所高原生物适应与进化重点实验室, 西宁 810008

5.中国猫科动物保护联盟, 北京 100875

6.广西师范大学生命科学学院珍稀濒危动植物生态与环境保护教育部重点实验室; 广西师范大学广西珍稀濒危动物生态学重点实验室, 广西桂林 541004

7.中国科学院大学生命科学学院, 北京 100049

Wildlife monitoring and research using camera-trapping technology across China: The current status and future issues

Zhishu Xiao,,1,7,*, Wenhong Xiao,1, Tianming Wang,2, Sheng Li,3, Xinming Lian,4, Dazhao Song5, Xueqin Deng1, Qihai Zhou6

1. State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101

2. College of Life Sciences, Beijing Normal University, Beijing 100875

3. School of Life Sciences, Peking University, Beijing 100871

4. Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008

5. Chinese Felid Conservation Alliance, Beijing 100875

6. Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education, Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, Guangxi 541004

7. College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049

通讯作者: * E-mail:xiaozs@ioz.ac.cn

编委: 蒋学龙

责任编辑: 闫文杰

收稿日期: 2022-08-7   接受日期: 2022-11-7  

基金资助: 国家自然科学基金(31971441)
中央林业改革发展资金和中国科学院生物多样性监测与研究网络运行经费

Corresponding authors: * E-mail:xiaozs@ioz.ac.cn

Received: 2022-08-7   Accepted: 2022-11-7  

摘要

智能传感器、人工智能、信息技术等现代科学技术的创新应用极大地提升了人类在全球生物多样性保护和恢复方面的潜力。结合国内外相关研究案例, 本文的主要内容包括: (1)对过去30年间(1991-2021年)中国野生动物红外相机监测研究相关文献资料进行总结分析; (2)结合国内2011年以来的典型案例, 对技术方法、物种发现与编目、形态与行为研究、生态学研究和保护管理等主题领域的进展进行总结分析; (3)结合国外近期的典型案例, 对红外相机监测与研究的重点领域进行评估分析; (4)对中国野生动物红外相机监测研究的未来发展提出相关建议。通过回顾, 本文旨在明晰国内外红外相机技术在野生动物监测研究中的创新应用和发展趋势, 为中国在该领域的未来发展提供参考依据, 以便更好地服务于中国生物多样性监测与研究网络建设和以国家公园为主体的自然保护地体系建设, 为推进国家生态文明建设、保障生态安全和生物安全提供决策支持和科学依据。

关键词: 红外相机技术; 野生动物监测; 物种编目; 动物行为; 生态学; 保护管理; 自然保护地

Abstract

Background: Innovation in the application of intelligent sensors, artificial intelligence, and information technology has greatly increased the potential for global biodiversity conservation and restoration.
Aims: Considering the significant advances in wildlife monitoring using infrared cameras at home and abroad, combined with a literature review, this paper aims to assess the current status and relevant topics from wildlife camera-trapping monitoring research in China since 2011. Combined with important research cases at home and abroad to explore the cutting-edge issues of camera-trapping monitoring research, this paper will provide suggestions for the future of camera-trapping monitoring research in China.
Main issues: The main contents of this paper are as follows: (1) We conducted and summarized a literature review of wildlife camera-trapping monitoring research in China during the past 30 years (1991-2021); (2) By reviewing major research cases in China since 2011, we assessed five primary topics such as technical methods, species discovery and inventory, morphology and behavioral research, ecological research, and conservation and management; (3) Utilizing recent research cases abroad, we evaluated cutting-edge trends in the field of infrared camera monitoring research; and (4) We provide relevant suggestions for the future development of wildlife camera-trapping monitoring research in China.
Conclusions: Through our review, this paper underscores the innovative trend of infrared camera technology application and development at home and abroad in wildlife monitoring and research during the past decade. We provide a reference basis for China’s future development in this field, so as to better serve the construction of China’s biodiversity monitoring and research network as well as the construction of protected areas systems centering on national parks. Finally, we promote the construction of a national ecological civilization by providing a scientific basis for making decisions in ensuring ecological security and biosafety.

Keywords: camera-trapping technology; wildlife monitoring; species inventory; animal behavior; ecology; conservation and management; protected areas

PDF (5192KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

肖治术, 肖文宏, 王天明, 李晟, 连新明, 宋大昭, 邓雪琴, 周岐海 (2022) 中国野生动物红外相机监测与研究: 现状及未来. 生物多样性, 30, 22451. doi:10.17520/biods.2022451.

Zhishu Xiao, Wenhong Xiao, Tianming Wang, Sheng Li, Xinming Lian, Dazhao Song, Xueqin Deng, Qihai Zhou (2022) Wildlife monitoring and research using camera-trapping technology across China: The current status and future issues. Biodiversity Science, 30, 22451. doi:10.17520/biods.2022451.

长期以来, 世界各地的野生动物面临来自人类活动的多重威胁, 如栖息地丧失、过度利用、外来物种入侵、人兽冲突和环境污染等。随着人类活动的日益影响, 以体型较大的各类动物物种为代表的全球性动物群丧失(defaunation)的危机已经超过了人类跟踪、监测和理解生物多样性及其生态系统变化的能力(Dirzo et al, 2014)。通常, 传统的野生动物监测和评估需要大量的野外作业, 持续时间长, 专业技术要求高, 耗费大量的人力、物力和财力, 导致科学数据采集的能力十分有限, 阻碍了人们对自然更深入的认识, 难以适应当前全球生物多样性保护的需要(Kays et al, 2020)。在过去十多年里, 随着智能传感器、人工智能、信息技术等现代科学技术的不断进步和广泛应用, 在降低监测成本的同时, 各类自动传感器在更大时空尺度上的数据采集能力远远超过了人类以往的能力(Tuia et al, 2022)。目前, 针对野生动物监测和研究的关键技术革新主要涉及3个方面: 小型低功耗监测设备的商业化应用, 基于无线通信的实时传输网络, 基于人工智能的自动识别算法和模型(Keitt & Abelson, 2021)。例如, 红外相机、声纹设备和公众科学在全球各地被广泛用于收集野生动物的图像和声学等数据, 构成了当前全球生物多样性(野生动物)大数据的重要来源(Kays et al, 2020; Tuia et al, 2022)。这些大数据的分辨率高、覆盖范围大, 且来源十分广泛, 不仅能提供丰富的、多维度的物种分布和多度的动态数据, 也记录了各类动物的行为和相关特性, 使研究人员能更好地预测和管理不断变化的物种和生态系统(Tuia et al, 2022)。尽管技术革新永远难以取代研究人员的专业技能, 但基于自动传感器、人工智能和信息技术等关键技术在更大时空尺度上的广泛应用, 正在不断扩大我们在保护和恢复全球生物多样性方面的潜力和机会。

红外相机技术(infrared-triggered/remote cameras或camera-trapping technology)主要指使用由热量变化(温差)所触发的自动相机来记录在其前方经过的动物的图像(照片或视频), 并通过这些图像来识别物种在特定地点和时间出现的方法。在过去十多年中, 红外相机技术的革新主要来源于相机及触发灵敏度的总体性能改进。尽管有多种传感器可用于检测运动并触发相机, 但现有多数自动相机都使用被动红外(PIR)传感器。红外相机技术的革新体现了其快速的触发速度(即动物进入PIR监测区域和相机触发之间的时间, 通常< 0.5 s)、可探测小型动物的能力(动物体重> 50 g)、伪装的外形和肉眼不可见的补光光源等优点。同时, 由于具有功耗低、造型小巧且便于携带、影像质量高以及对恶劣环境的耐受性能强等优势, 大量的相机能同时部署在广阔的区域, 并连续工作数月(待机时长可达3-6月), 从而帮助研究人员获取大量物种的有效数据。考虑到许多动物具有高度移动性、隐秘性且害怕人类等因素, 故无人值守的红外相机技术往往比传统的人工调查(如借助足迹和粪便等痕迹)更具明显优势, 而且该方法不具损伤性, 不用捕捉活体动物, 从而普遍提高了该技术在隐秘物种、稀有物种研究和保护方面的应用(Wearn & Glover-Kapfer, 2019)。

红外相机所获取的图像数据包含物种、行为、日期、时间、天气和位置等基本信息, 改变了研究人员监测生物多样性的方式。目前, 红外相机技术已成为研究陆生兽类和鸟类的主要工具之一, 能够在更大空间和时间尺度上加强野生动物的监测力度, 从而产生了大量动物物种分布和多度的新信息, 而这些信息对于明确保护现状并提出存在问题的解决方案至关重要(O’Connell et al, 2011; Howe et al, 2017)。尽管有关相机技术在野生动物记录、调查与研究中的应用已有一个世纪(O’Connell et al, 2011), 但在过去10年中, 红外相机技术已快速发展到了一个新的阶段, 使其成为地面活动兽类和鸟类的标准监测方法, 并在全球陆地各类生态系统部署了大量红外相机, 积累了以往难以想象的图像大数据(Steenweg et al, 2017; Kays et al, 2020)。目前, 通过在全球各地部署红外相机阵列(每个区域可达数十台到数千台红外相机), 每年通常会生成数以亿计的图像数据, 但这些海量图像的数据挖掘非常耗时, 并导致现有数据收集和后续共享利用之间存在明显的滞后, 非常不利于当前全球生物多样性生态危机情景下的保护工作(Kays et al, 2020)。可喜的是, 以机器学习和深度学习为代表的人工智能自动分析算法和模型不断被研发, 为提升红外相机图像数据的处理速度和能力带来了极大希望(Norouzzadeh et al, 2018; Tuia et al, 2022)。因此, 随着红外相机技术在全球各地的广泛应用及人工智能分析方法的研发, 该技术对野生动物保护的影响在日益增加, 有助于提升人们对全球生物多样性保护的认识(Steenweg et al, 2017; Delisle et al, 2021)。

自20世纪90年代以来, 红外相机技术在中国野生动物调查和研究中得到广泛应用, 大致经历了4个发展阶段。20世纪90年代(为“初试期”)分别在台湾和云南等省份有少量的探索性研究(Pei, 1995; 马世来和Harris, 1996; 裴家骐, 1998); 到21世纪前10年里(为“试用期”), 红外相机技术在华南、西南、东北、西北等区域陆续开展多种尝试, 但规模较小, 多采用胶片相机来监测野生动物(李志兴, 2003; 卢学理等, 2005; 马鸣和徐峰, 2006; Wang et al, 2006)。在此期间, 研究人员尝试了以公里网格作为基本抽样单元的标准化调查规程, 并首先在香港(Shek et al, 2007)和西南山地分布有大熊猫的部分保护区进行了局部推广(Li et al, 2010b, 2012)。直到2010年后(进入“推广期”), 随着数码式被动红外相机的出现和大量应用, 加上其成本显著下降、小型轻便以及拍摄质量和容量明显提升等优势, 这类相机陆续在中国各地全面推广。到目前为止, 几乎所有国家级陆地生态系统类型的自然保护区(国家公园)均在使用红外相机来监测野生动物, 而且越来越多的科研单位、自然保护地管理部门和民间团体都在积极参与红外相机相关调查研究, 红外相机的使用数量也快速增加(肖治术等, 2014a; 肖治术, 2016, 2019; 李佳琦等, 2018; 李晟, 2020)。在推广期间, 通过全国各地的红外相机技术培训和相关技术规范编制, 公里网格作为监测的基本抽样单元逐渐为我国各自然保护地所广泛接受和执行, 且每个保护地的相机(位点)数量也多超过了60台(有些保护地甚至达到数千、上万台), 为今后全国尺度的数据共享利用和科学评估提供了重要数据基础(图1; 李佳琦等, 2018; 肖治术, 2019; 李晟等, 2020)。同时, 红外相机技术也逐渐被用于国家林业和草原局(原国家林业局)组织的第二次全国陆生野生动物资源调查(郜二虎等, 2017)、中国科学院中国生物多样性监测与研究网络兽类监测(Sino BON-Mammals) (肖治术等, 2017)和全国生物多样性保护重大工程有关陆生大中型哺乳动物监测(China BON-Mammals, 李佳琦等, 2018)。到2018年后进入“联网期”, 以东北虎豹国家公园、广东车八岭国家级自然保护区为代表的少数区域, 组织研发了以数据自动采集、实时组网传输、智能识别和可视化、云服务(云存储)为核心技术的联网实时监测信息共享服务平台, 提升了海量图像数据采集、存储和分析处理的效率(王天明等, 2020; 肖治术等, 2020)。在党的十八大以来, 国家和相关行业部门组织开展国家生物多样性保护重大工程建设, 以国家公园为主体的自然保护地体系建设, 山水林田湖草生态保护修复工程及全国重要生态系统保护和修复重大工程建设, 从而推动国家生物多样性保护的主流化决策。因此, 在过去10来年里, 红外相机技术的广泛应用契合国家生态文明建设以及美丽中国和健康中国建设等重大战略需求, 推动了我国以国家公园、自然保护地为重点监测区域的野生动物标准化联网监测体系建设, 为掌握我国野生动物资源现状、促进生物多样性保护和恢复提供了关键科技支撑。

图1

图1   构建以公里网格抽样方案为重点的野生动物红外相机监测与评估体系示意图

Fig. 1   Schematic diagram for establishing wildlife monitoring and assessment based on kilometer-grid sampling protocol using camera trapping technology


鉴于国内外红外相机领域所取得的明显进展, 结合文献资料查阅, 本文的主要内容包括: (1)对过去30年(1991-2021年)中国野生动物红外相机监测研究相关文献资料进行总结分析; (2)结合国内2011年以来的典型案例, 对技术方法、物种发现与编目、形态与行为研究、生态学研究和保护管理等主题领域的进展进行总结分析; (3)结合国外近期的典型案例, 对红外相机监测与研究的重点领域进行评估分析; (4)对中国野生动物红外相机监测研究的未来发展提出相关建议。通过回顾, 本文旨在明晰国内外红外相机技术在野生动物监测研究中的创新应用和发展趋势, 为中国在该领域的未来发展提供参考依据, 以便更好地服务于中国生物多样性监测与研究网络建设和以国家公园为主体的自然保护地体系建设, 为推进国家生态文明建设、保障生态安全和生物安全提供决策支持和科学依据。

1 文献回顾

1.1 文献检索方案

在中国知网中文期刊数据库(http://www.cnki.net/)中系统检索并收集使用了红外相机技术的野生动物研究的中文文献, 检索关键词为“红外相机”相关术语(触发相机、红外相机、红外影像、相机陷阱、自动感应照相、自动照相)且研究类群为哺乳动物、食肉动物、鸟类、兽类、野生动物, 研究地为保护区、国家公园、自然保护地、森林公园、林场, 发表时间限定在1991年1月1日至2021年12月31日。在Web of ScienceTM期刊论文数据库(https://www.webofknowledge.com/)中系统检索并收集在中国境内开展的、使用了红外相机技术的野生动物研究的英文文献, 检索主题为(camera trap* 或 infrared triggered camera* 或 trail camera* 或 automatic camera* 或 photo trap* 或 remote camera* 或 remotely triggered camera*), 研究对象为wildlife, animal, vertebrate, mammal, bird, reptile, amphibian, 研究地点为China, 发表时间限定在1991-2021年。以上收集的文献仅限于发表在专业学术刊物上的研究性论文, 不包括学位论文、会议摘要、学术专著、科普著作和新闻报道。此外, 台湾和香港等省区的文献包括了部分专题报告。随后通过进一步精炼删除: (1)重复内容; (2)不在中国境内的; (3)与红外相机主题无关; (4)与野生动物主题无关; (5)报道杂记等文献。在两个数据库分别获得859篇和199篇已发表文章(合计1,058篇), 其中755篇符合要求。

本文从所筛选的文献中提取研究地点和研究主题等信息。根据空间范围(省域尺度、保护地类型)、研究主题等内容对上述相关文献进行分类分析, 其中综述文献不做主题分析。提取文献中的研究地点用于空间覆盖情况分析, 包括研究地点所属的省域和保护地类型(如自然保护区级别、自然公园类型及非保护地), 其中部分研究覆盖多个省份和多个样区(保护区)。每篇文献的研究主题和内容可能不止一个, 但本文中将文献的研究主题归为以下5个主要类别: (1)技术方法, 主要涉及监测技术规范、数据库构建、图像数据挖掘分析、监测网络/平台建设等内容; (2)物种发现与编目, 主要考虑新物种和新记录物种的发现以及以自然保护地为主的编目论文和数据论文; (3)形态与行为研究, 主要以形态、活动节律和其他各种行为等为主的内容; (4)生态学研究, 主要涉及种群、群落、种间关系、栖息地利用、道路生态和人类活动的影响等内容; 以及(5)保护管理, 主要涉及珍稀濒危物种保护、野生动物及栖息地的跨境保护、自然保护地野生动物管理与评估以及人类与野生动物之间的冲突等内容。

1.2 文献总结

中国境内利用红外相机开展野生动物监测与保护的研究最早发表于1995年(Pei, 1995); 在2000年以前, 所有红外相机相关论文数仅有5篇; 2000- 2010年间发表论文数量略有增加, 但每年论文数也不超过10篇; 2011年后, 中国红外相机研究的论文数呈指数增长, 其中最近3年(2019-2021年)间每年发表的论文数均超过120篇(图2a)。

图2

图2   中国范围内野生动物红外相机研究文献汇总。a, 历年文献数量(1991-2021); b, 文献主题组成(2011-2021); c, 中国各省市红外相机研究数量及研究位点分布图(1991-2021)。

Fig. 2   Literature summary about wildlife camera-trapping monitoring research in China based on a systematic search of key terms in CNKI and ISI Web of Knowledge. a, No. of papers each year (1991-2021); b, Major topics from literature (2011-2021); c, Mapping the number of wildlife camera-trapping studies per province (1991-2021).


目前, 中国红外相机相关研究论文发表在178个期刊, 其中所载的论文数量超过10篇的期刊有12个, 以《生物多样性》期刊发表的论文数最多, 达105篇, 其次是《兽类学报》和《野生动物学报》(原《野生动物》) (表1)。2011年以来, 大部分论文内容是种群和群落相关的生态学研究, 比例为39.1% (280篇), 其次是研究区域内物种发现和编目 (38.8%, 272篇), 形态和行为研究比例为13.1%, 而“保护管理”和“技术方法”等主题的研究相对较少, 分别为6.3%和2.7% (图2b)。

表1   2011-2021年中国红外相机研究发表的主要期刊(至少有10篇论文发表)和文献统计

Table 1  Summary about wildlife camera-trapping papers from the top journals with at least 10 papers published from 2011 to 2021 based on a systematic search of key terms in CNKI and ISI Web of Knowledge

期刊
Journal
论文数量
No. articles
生物多样性 Biodiversity Science105
兽类学报 Acta Theriologica Sinica64
野生动物学报 Chinese Journal of Wildlife51
四川动物 Sichuan Journal of Zoology50
动物学杂志 Chinese Journal of Zoology49
生态学报 Acta Ecologica Sinica20
四川林业科技 Journal of Sichuan Forestry Science and Technology19
陕西林业科技 Shaanxi Forest Science and Technology18
Global Ecology and Conservation17
Oryx16
生态学杂志 Chinese Journal of Ecology12
林业调查规划 Forest Inventory and Planning10

新窗口打开| 下载CSV


文献中, 在中国境内开展红外相机研究的地点共达467个(图2c), 覆盖了所有省市区(其中上海的文献发表记录见Diao et al, 2022)。发表记录中, 以四川省的研究地点数量最多(达77个), 且所发表的论文数量也最多, 达115篇(占所有论文的16.1%), 其次是云南省和陕西省, 研究地点数分别为38个和24个, 论文数量分别为63篇和65篇。此外, 大部分研究地点属于国家级或省级自然保护区, 其数量占全部地点的70%。

2 中国野生动物红外相机监测与研究主题回顾

结合国内上述文献发表情况及2011年以来的典型案例, 本文对技术方法、物种发现与编目、形态与行为研究、生态学研究和保护管理等5个主题领域的进展进行总结分析, 以促进对野生动物种群结构和功能以及群落过程和机制的了解(图3)。

图3

图3   野生动物红外相机监测与研究的主题框架

Fig. 3   Conceptual framework for wildlife monitoring and research using camera-trapping technology


2.1 技术方法进展

过去10年里, 红外相机技术在中国各地, 特别是在各类自然保护地野生动物监测中得到了快速应用。这个阶段所面临的核心任务是以适应全国尺度的同步调查和长期监测为目标来明确科学监测规范标准, 针对数据采集、管理和分析等综合监测流程和标准化技术体系进行集成优化和整合。通过建立保护区(样区)、区域和全国等多尺度的监测与研究网络和信息共享服务平台, 有效地推动中国野生动物红外相机监测研究向标准化、规范化方向发展, 为全国以红外相机技术为重点的野生动物科学监测、科学评估和科学保护奠定了可靠的数据基础(肖治术等, 2014b, 2017; 李晟, 2020)。技术方法的进展具体包括:

(1)监测规范。2010年以前, 在香港(Shek et al, 2007)、台湾(姜博仁等, 2007)、西南山地(Li et al,2010b; 刘雪华等, 2020)和东北温带针阔混交林(王天明等, 2020)相继有探索采用样线法或公里网格抽样方案和胶片相机来开展野生动物红外相机监测和调查, 而这些探索为随后的标准化监测提供了很多宝贵的经验。2011年以来, 在第二次全国陆生野生动物资源调查(于2011年启动; http://www.gov.cn/gzdt/2011-01/20/content_1788748.htm)以及中国科学院Sino BON的建设(马克平, 2015; 冯晓娟等, 2019)和国家生物多样性保护重大工程的建设(China-BON, 李佳琦等, 2018)等同步调查和联网监测的需求基础上, 在全国各地相继有更多的红外相机应用于这些全国尺度上的各类调查、监测和研究。结合国内外的相关监测研究进展, 肖治术等(2014b)提出在全国森林生态系统建立以公里网格抽样方案为主(针对自然保护地)对陆生大中型兽类和地面活动鸟类为重点调查对象的科学调查和长期监测。期间, 北京师范大学在吉林、黑龙江多个自然保护区建立了3.6 km × 3.6 km的监测网格对东北虎(Panthera tigris altaica)、东北豹(Panthera pardus orientalis)及其猎物进行监测(Wang et al, 2016), 而肖治术(2014)结合全国森林动态监测样地(面积为15-100 ha)建立了野生动物公顷网格调查方案(每1-2 ha设置1个相机位点) (也见于秦岭25 ha样地, Zhang YK et al, 2021), 北京林业大学(Alexander et al, 2016a)、北京大学和山水自然保护中心(贾丁等, 2020)、中国科学院西北高原生物研究所(王东等, 2020)等相继对祁连山和三江源等广袤区域的雪豹(Panthera uncia)及其猎物建立了1 km × 1 km或5 km × 5 km的公里网格抽样方案。目前公里网格抽样方法在全国自然保护地科研监测以及生态环境部哺乳动物观测中得到了广泛应用(李佳琦等, 2018; 肖治术, 2019; 李晟, 2020)。

2014年以来, 在中国科学院生物多样性委员会、中华人民共和国人与生物圈国家委员会秘书处和国际动物学会等团体的支持下, 中国科学院动物研究所联合全国相关科研单位和自然保护区连续组织了4次全国性的学术研讨培训会(2014, 2016, 2018, 2020)和各类红外相机技术培训班, 相继为400多个单位6,000多人次提供了监测技术和数据分析培训, 为全国以自然保护地为代表区域的公里网格抽样方案的推广应用和交流合作发挥了关键作用。同时,《生物多样性》(2014, 2019, 2020)、《兽类学报》(2016)等期刊相继组织出版了4期野生动物红外相机监测与研究专辑(专题), 而且《生物多样性》还设立了生物编目和数据论文专栏, 并增加了监测数据附录, 促进了研究人员、保护区科研人员和民间机构的数据整理分析和科研成果交流。总之, 上述红外相机抽样方案的建立和推广应用得到了行业部门、地方主管部门、科研机构和民间团体的广泛认同和积极响应, 目前在全国绝大多数保护区已经逐步建立了以红外相机技术为重点的野生动物科研监测体系, 并形成了10多个有影响的区域和全国尺度上的联网监测平台或监测研究网络(肖治术等, 2017; 李佳琦等, 2018; 李晟, 2020)。

(2)实时组网传输。考虑到无线传输高清图像的功耗、成本和带宽等限制, 数据采集大都通过人工从野外取回红外相机存储卡, 再转移到存储设备中。同时, 还有一些红外相机可通过GSM (全球移动通信系统) 4G网络的连接来实现图像数据的实时传输。由于绝大多数监测区域(保护区)的网络信息覆盖范围极为有限, 加上成本高、网络速度慢, 导致这些联网相机的使用受到了明显限制。针对保护区网络信息不通达、基础设施设备落后、新技术应用和数据管理短板等关键难题, 2018年以来, 北京师范大学在东北虎豹国家公园, 中国科学院动物研究所等单位在广东车八岭国家级自然保护区, 相继通过集成优化以广电700 MHz 4G网络实现实时传输和以人工智能技术、云存储、webGIS等核心技术来实现大数据智能化管理与可视化分析, 成功构建了以陆生大中型兽类(及地面活动鸟类)为重点对象的野生动物联网实时监测信息共享服务平台, 为全国以国家公园为主体的自然保护地体系科研监测提供了科技示范(王天明等, 2020; 肖治术等, 2020)。目前, 该类技术也逐渐在全国其他国家公园和自然保护区推广应用。

(3)数据库管理与图像智能识别。在过去10年里, 全国各地通过红外相机技术已获取了大量野生动物的图像数据, 但在物种鉴定分类和数据分析等方面对科研人员和基层技术人员均构成了极大挑战, 迫切需要为物种识别、个体识别和行为识别探索一系列可靠、高效的自动分析工具。肖治术等(2014c)组织研发了中国野生动物红外相机图像数据管理信息共享服务平台(CameraData V1.0), 为红外相机大数据规范管理和物种鉴定分析提供了有效应用工具, 目前该平台已为60多个保护区(样区)提供了共享服务和应用。在物种自动识别方面, 采用卷积神经网络(convolutional neural network, CNN)等机器学习算法来剔除空拍或无动物照片(Wei et al, 2020; Yang QM et al, 2021)和实现快速物种自动识别(平均精确率可达84.9%-96.0%) (宫一男等, 2019)。Hou等(2020)应用深度学习算法开发了基于卷积神经网络的脸谱识别模型来识别大熊猫(Ailuropoda melanoleuca)个体, 而Swarup等(2021)为大熊猫行走、坐、休息、攀爬和进食等5类行为建立了一种基于快速R-CNN的全自动行为识别方法, 为未来大熊猫的长期监测和行为研究提供了可能的分析工具。近期Shi等(2020, 2022)结合卷积神经网络和东北虎不同身体部位的斑纹特征来提高个体识别的精确度, 为大型猫科动物个体智能识别技术的发展及其种群动态的长期监测提供了技术支撑。因此, 随着机器学习和深度学习等人工智能分析技术的进步和应用, 有望为红外相机所获取的大量图像数据的智能自动识别提供高效的分析工具, 有助于减少人工识别物种带来的各种限制, 促进数据的快速挖掘分析和共享应用。

2.2 物种发现与编目

红外相机技术在野生动物调查中最重要的贡献之一, 就是简单地记录一个物种在特定时间和地点的存在, 甚至发现中国的新物种和国家新记录物种, 或重新发现一些长期未被发现的稀有物种。2015年, 在西藏墨脱首次发现了白颊猕猴(Macaca leucogenys), 该物种成为由中国人自己定名的灵长类新物种(Li et al, 2015)。最近在中国境内通过红外相机影像掌握了很多稀有或鲜为人知物种的分布记录, 包括云南高黎贡山区域发现的红鬣羚(Capricornis rubidus, 中国新记录物种) (Chen YX et al, 2019)、缅甸金丝猴(Rhinopithecus strykeri) (Chen et al, 2015)、马来熊(Helarctos malayanus) (李飞等, 2017a)和贡山麂(Muntiacus gongshanensis) (黄湘元等, 2019)等, 云南西双版纳记录到缟灵猫(Chrotogale owstoni) (Tongkok等, 2019)和大斑灵猫(Viverra megaspila) (Guo et al, 2017), 云南盈江铜壁关省级自然保护区记录到的灰腹角雉(Tragopan blythii) (崔士明, 2017), 长白山区域记录到的长尾斑羚(Naemorhedus caudatus) (刘少英等, 2020)。同时, 研究发现獐(Hydropotes inermis)在东北亚地区的分布区有所扩张(Li Y et al, 2022)。在雅鲁藏布江大峡谷区域, 科研人员首次获得了野生孟加拉虎(Panthera tigris tigris)在中国分布的影像证据(李学友等, 2020)。此外, 红外相机为中国现有雪豹(刘沿江等, 2019)、欧亚水獭(Lutra lutra) (Zhang et al, 2018)、中华穿山甲(Manis pentadactyla) (孔玥峤等, 2021)和黄腹鼬(Mustela kathiah) (苗先荣等, 2020; 张建军等, 2022)等的分布范围提供了许多新的证据。然而, 在西双版纳国家级自然保护区, 印支虎(Panthera tigris corbetti)于2007年被记录后(Feng et al, 2008), 尽管更多的红外相机被布设, 至今仍未被重新发现。目前, 红外相机图像数据也包括了以往传统调查方法中难以发现的一些物种和类群, 如许多地面活动鸟类和兽类被补充到各保护区的名录中, 提供了大量物种的新分布记录和分布范围(朱淑怡等, 2017)。

除了上述这些重要单一物种的发现, 红外相机的大量应用还在于能同时探测到更多的物种, 成为生物多样性编目和评估的重要工具。对野生动物的评估体现为我国过去10多年里完成了以国家级自然保护区和国家公园(试点)为代表性区域的大中型陆生哺乳动物和鸟类群落的编目报告, 其中全国有多达300多个保护区发表了编目论文(图2c)。目前, 通过红外相机至少已记录到兽类物种达11目32科165种, 占我国野生哺乳动物物种总数(686种, 魏辅文等, 2021)的24%, 以及鸟类物种达17目61科507种, 占我国野生鸟类物种总数(1,445种, 郑光美, 2017)的35.1% (李晟, 2020)。最近, 红外相机调查还揭示了以前被忽视区域的保护价值, 如四川新龙县发现7种猫科动物(Wang YQ et al, 2021), 西藏雅鲁藏布江大峡谷分布有完整的食肉兽群落(Wang F et al, 2021)。此外, 研究人员最近还探索了使用红外相机来调查森林冠层的动物组成和分布(房以好等, 2018)。

2.3 形态与行为研究

野生动物红外相机图像数据中, 包含有每个物种丰富的形态和行为等信息, 在物种、个体和行为识别的重要基础上, 可推断动物当时所处的情景和状态。

物种的体色和体征是红外相机图像中最容易获取的重要形态信息。有些物种可根据其体表斑纹特征的唯一性以及形态变异开展个体识别, 如虎(李治霖等, 2014)、豹(Panthera pardus) (宋大昭等, 2014)、雪豹(Zhang et al, 2020)、大熊猫(Zheng et al, 2016)和亚洲象(Elephas maximus) (杨子诚等, 2018)等。同样, 对于诸多物种的罕见体色个体和色型变异, 红外相机也提供了真实的影像记录, 如长白山区域(东北虎豹国家公园)黄喉貂(Martes flavigula)种群的复杂体色变化(Gong et al, 2021), 西藏雅鲁藏布江大峡谷多种体色的金猫(Catopuma temminckii) (王渊等, 2019), 以及四川卧龙国家级自然保护区的大熊猫(www.scol.com.cn)、美姑大风顶国家级自然保护区的中华小熊猫(Ailurus styani) (https://mp.weixin.qq.com/s/xjUW2y-NeZngLRIG3XNheA)、东北虎豹国家公园里的狍(Capreolus pygargus) (https://www.sohu.com/a/395175219_114988)和湖北神农架保护区的小麂(Muntiacus reevesi) (马国飞等, 2021)等物种的白化个体。此外, 红外相机也记录到一些雉类的自然杂交个体, 如四川鞍子河国家级自然保护区白腹锦鸡(Chrysolophus amherstiae)和红腹锦鸡(C. pictus)的自然杂交个体(史晓昀等, 2018), 以及云南高黎贡山独龙江片区黑鹇(Lophura leucomelanos)和白鹇(L. nycthemera)的自然杂交个体(https://weibo.com/ttarticle/p/show?id=2309404661078541075291&sudaref)。除了用于区分个体, 通过比较不同季节的物种形态差异也能反映动物个体的季节体征变化或健康状况等信息(Cui et al, 2020)。

红外相机图像数据为描述和研究野生动物行为提供了丰富的信息, 可用于研究多种类型的动物行为, 如行为谱(侯金等, 2020)、时空利用(王渊等, 2019; 韩雪松等, 2021; Ji et al, 2021; Zahoor et al, 2021)、繁殖行为(如求偶、交配、抚育等) (郭洪兴等, 2019)、竞争捕食(邹博研等, 2021)、巢捕食(Bu et al, 2019)等(图3)。同时, 行为研究也涵盖舔盐(Ping et al, 2011; 官天培等, 2015)、种间互助(Luo et al, 2018)、气味标记为主的通讯行为(如大熊猫, 侯金等, 2020; Zhou et al, 2020)、水源地利用(Zhang et al, 2015; Xue et al, 2018)等多个方面。Wang等(2012)利用红外相机记录了大熊猫较为罕见的食腐行为; Huang等(2014)、刁鲲鹏等(2017)和何嘉乐等(2017)在四川(老河沟、唐家河)和黑龙江帽儿山林场分别用红外相机记录了野生动物取食动物尸体的食腐行为与过程。此外, 红外相机还被证明可用于获取一些稀有繁殖事件, 如鸳鸯(Aix galericulata)在其分布最南端的广东车八岭国家级自然保护区被记录到繁殖事件(束祖飞等, 2021)。Tan等(2022)在大理洱海南部的者磨山亚热带山地森林探索了野生动物对“红黄蓝绿白”等不同颜色反光标识的响应情况, 并建议在保护区内避免或谨慎使用反光材料作为标识。

2.4 生态学研究

对野生动物种群和群落的时空动态及相关驱动因素的比较分析是生态学研究的重点内容。

红外相机可以通过各种种群指标来评估目标物种的种群密度和相对多度, 如相对多度指数(relative abundance index)、占域率(occupancy rate)、种群数量和密度(density)。动物的形态特征可用于区分物种的性别、年龄和繁殖状态, 进而分析其种群性比、社群结构、繁殖季节性等(Li et al, 2010a; 陈尔骏等, 2022)。对于可识别个体的物种, 如猫科动物(Karanth & Nichols, 1998), 通常应用标记-重捕模型(mark-recapture model)获得种群的绝对数量。与占域模型(occupancy model)针对物种“被探测到-未被探测到” (detection-non-detection data)的抽样设计相比, 标记-重捕模型通常需要更稳健的抽样设计, 即需要在不同地点拍摄足够数量的个体, 才能可靠地推断密度(Wearn & Glover-Kapfer, 2017)。识别个体的另一个优势是, 除了密度外, 还可用来估计其他种群统计学参数。一些猫科动物, 如东北虎(Xiao et al, 2016; Wang TM et al, 2018)、雪豹(Alexander et al, 2016b)、东北豹(Qi et al, 2015)、华北豹(Panthera pardus japonensis) (Yang HT et al, 2021)、家猫(肖文宏等, 2019)等通过个体识别, 结合空间标记-重捕模型来估计其种群密度, 还可获得存活率、家域、活动中心等重要参数。针对不能识别个体的物种, 早期使用随机相遇模型(random encounter model)来估计多种有蹄类种群密度(肖文宏, 2014), 该模型基于气体碰撞原理模拟相机对动物的拍摄, 在动物运动随机性和速度方面存在较大不确定性。后来基于动物的运动模式和红外相机的拍摄事件可用来估计目标物种的种群密度(李欣海等, 2016), cameratrapR软件包的开发为野生动物种群密度估计提供了一种可行的思路(Li XH et al, 2022)。此外, 相对多度指数(基于拍摄率计算)常作为表征多度的一个间接指标, 是一种简单、快速了解种群多度的方法, 在物种编目和本底调查中应用较多(陈立军等, 2019)。

动物种群的空间分布格局及其影响因素是种群生态学的重要研究内容。对于红外相机监测技术, 目前应用较多的是占域模型。基于该模型框架对调查网格开展多次重复调查获得被探测到-未被探测的数据, 在考虑探测率的条件下, 对物种的占域率或生境利用及其影响因素开展分析(MacKenzie et al, 2002)。占域模型较多应用于我国生态系统旗舰物种研究中, 如大熊猫(Wang et al, 2014)、东北虎(Wang TM et al, 2018; Xiao et al, 2018)、雪豹(Alexander et al, 2016a)、华北豹(Yang HT et al, 2021)等, 深入探究生物因素(人类干扰、猎物)和非生物因素对种群空间分布的影响, 为珍稀濒危物种的种群保护和管理提供了重要科学依据。

野生动物的时空利用是过去10年间利用红外相机技术开展生态学研究的主要内容, 涉及同营养级的竞争物种(贾晓东等, 2014; 王东等, 2022)、捕食者与猎物之间(邹博研等, 2021)以及人类活动与野生动物之间的时空生态位分化和共存机制等方面(Yang HT et al, 2021; 王东等, 2022)。随着统计模型发展并拓展用于群落内多物种评估分析, 许多研究已经能够将栖息地建模并用于整个群落的评估, 而不仅仅研究单个物种。Li XY等(2020a)采用路径分析探讨猎物、人类活动、环境变量与食肉类物种多样性及群落生物量间的关联, 发现人类活动可能同时影响食肉类的群落结构和功能。通过雅鲁藏布江大峡谷区域对孟加拉虎同域分布的15种大中型食肉动物及其潜在猎物麂类的占域分析, 发现麂类在该区域内的占域率也很高, 可为区域内大中型食肉动物提供丰富的潜在猎物资源(Li XY et al, 2020b)。Li XY等(2018)绘制了西南干热河谷生态系统区域的物种丰富度地图, 并根据栖息地类型可用于预测多种哺乳动物物种的占域率, 明确藏族神山为许多受威胁兽类提供了庇护。Li XY等(2022)基于横断山区45个调查样地红外相机数据, 采用群落占域模型分析长期累积的人类改造和实时人类活动对大中型哺乳动物物种多样性及功能组成的影响, 通过研究证实二者对哺乳动物群落结构及功能的影响存在差别, 人类活动会导致哺乳动物功能多样性急剧减少和夜行性行为显著改变。Feng JW等(2021)基于大尺度红外相机监测数据并采用群落占域模型对东北虎豹国家公园内陆生哺乳动物(> 1 kg)的物种丰富度、空间分布进行了研究, 发现林下放牧显著降低群落水平上的物种占域和物种丰富度, 尤其是显著降低了有蹄类猎物的空间分布。

占域模型通过构建两个物种以上的共现(co- occurrence)模型来帮助理解物种间相互作用, 如捕食者-猎物关系和竞争关系。Wang等(2015)运用共现模型分析发现同域本土物种对大熊猫的空间分布没有限制作用, 但散放在竹林中的家牛限制了大熊猫的分布。Bu等(2016)通过建立物种对的共现模型分析了我国西南地区5种中型食肉动物相互间的空间作用模式, 发现只有花面狸(Paguma larvata)和猪獾(Arctonyx collaris)表现出相互回避, 其他物种对彼此间相互独立或模式不明显。Li ZL等(2018)运用大规模的红外相机数据分析了存在竞争关系的东北虎和东北豹的作用关系, 研究发现东北豹在空间尺度上未表现出对同域东北虎高利用区域的回避, 而在时间生态位上避开东北虎。

物种间相互作用是生物多样性发挥生态系统功能的重要过程, 涉及竞争、捕食和寄生等拮抗作用和传粉、种子传播等互惠作用。结合红外相机技术, 国内在食果动物与植物种间互作研究方面取得了一系列的进展。Yang等(2018)揭示了森林演替梯度对啮齿动物与种子互作网络结构和功能的影响。结合集合群落和多层网络分析, Li HD等(2020)首次明确了树上、树下食果动物的觅食生态位分化及其在集合群落及集合网络中扮演的功能角色, 揭示了物种功能性状和分布范围在集合网络功能维持中的关键作用, 为区域生物多样性及其生态功能的维持和保护提供了科学依据。Zhang Y等(2021)借助红外相机为三蕊兰(Neuwiedia singapureana)的种子经由鸟类传播提供了关键证据。Gu等(2017)结合红外相机、种子标签法和鼠类个体标记等方法对单个种子、鼠类个体进行多年连续跟踪和识别, 揭示了鼠类在取食、贮藏以及贮藏后种内和种间盗食等方面的相关行为和生态机制。研究人员最近还探索了使用红外相机来调查森林冠层食果动物的组成和行为(Zhu et al, 2021, 2022)。Xiao (2021)通过红外相机技术和种子标签法首次证实在四川都江堰区域赤腹松鼠(Callosciurus erythraeus)等啮齿动物为常春油麻藤(Mucuna sempervirens)提供了传粉和种子传播等双重互惠功能。此外, 在台湾、香港等地, 也有研究利用红外相机来调查大果油麻藤(M. macrocarpa; Kobayashi et al, 2017)、白花油麻藤(M. birdwoodiana; Kobayashi et al, 2019)和港油麻藤(M. championii; Kobayashi et al, 2021)与传粉动物之间的相互关系。

近年来, 红外相机技术也被应用到以道路、铁路、高速公路等道路交通建设对野生动物及其栖息地的影响方面的研究, 如长白山公路(王云等, 2016)、秦岭高速公路建设(张洪峰等, 2016; 封托等, 2019; 苏宇晗等, 2022)和青藏铁路建设(封托等, 2013; 王云等, 2017)。这些都为道路野生动物通道建设在野生动物保护方面的应用提供了参考依据。

2.5 保护管理

红外相机数据特别适合于对动物种群进行空间和时间比较, 这对指导濒危物种的保护行动至关重要, 如目标物种在何时、何地表现良好, 在何处减少, 以及哪些因素导致了这些结果的出现。同样, 野生动物种群指标也可以在不同地区间进行比较, 以确定物种的栖息地状况, 并监测其随时间的动态趋势和评估保护行动的影响。

目前, 利用红外相机技术对我国许多重要珍稀物种和相关类群开展了深入调查研究。通过对东北虎与东北豹种群数量的估计, 为东北虎豹国家公园设立和虎豹及其栖息地的跨境保护提供了科技支撑(王天明等, 2020)。结合近期东北虎豹国家公园内监测到的成年东北虎(26-27只)和成年东北豹(49-59只)的种群数量以及该公园的空间面积、当前猎物数量和猎物环境容纳量, 研究人员按照性别均衡原则评估出东北虎豹国家公园可支持成年东北虎数量分别为55只、90只和101只, 东北豹为95只、356只和572只(Wen et al, 2022)。该研究认为需要进一步恢复和提升国家公园内的猎物数量和植被质量, 同时加强生境斑块的连通性, 形成保护地网络, 促进虎豹种群向国家公园外部扩散, 以发挥东北虎豹国家公园种群作为中国虎豹种群恢复的源种群作用。

通过对20世纪中期以来大熊猫分布区各保护地内豹、雪豹、狼(Canis lupus)和豺(Cuon alpinus)等4种大型食肉动物的调查分析, Li S等(2020)发现这4种食肉兽的分布范围均有明显下降, 建议加强大熊猫国家公园大型食肉动物的种群保护和恢复, 以确保食物链的完整性。宋大昭等(2014)对山西晋中庆城林场华北豹及其主要猎物种群进行监测与评估, 并利用个体识别技术, 从2017年至2021年累计拍摄到成年豹最小可识别数量达64只(Liu et al, 2022), 目前发现该种群呈现出增长趋势, 但也面临放牧的影响以及豹种群恢复对家畜的捕食风险。Yang HT等(2021)在陕西延安子午岭林区发现了华北豹的高密度种群, 共计拍摄到华北豹个体数至少28只。2018年, 由山水自然保护中心组织的中国雪豹保护网络汇集了多家国内雪豹相关科研机构、民间机构和保护区等红外相机调查数据和文献调查, 整体明确了中国雪豹的分布和种群现状, 为进一步开展调查与保护提供了参考依据(刘沿江等, 2019)。最近, 马子驭等(2022)整理了在中国8个云豹(Neofelis nebulosa)潜在分布区的红外相机调查数据, 并结合其他已发表的调查数据和历史资料, 对全国云豹分布现状进行评估, 认为中国云豹目前仅分布于云南和西藏的边境地带, 生存现状堪忧, 亟需加强种群监测和关键栖息地保护。

近年来, 红外相机技术的应用提供了中华穿山甲在广东、浙江、江西、云南、海南等省份的更多分布记录(孔玥峤等, 2021), 近期更是记录到马来穿山甲(Manis javanica)在云南盈江县的分布(http://www.news.cn/2022-05/06/c_1128626651.htm)。 这些种群记录为我国穿山甲物种保护和种群恢复提供了机会。鉴于数十年来中国境内对现有水獭种群的分布记录和研究的不足, Zhang等(2018)通过查阅历史文献记录以及现有红外相机调查记录, 明确了当前中国水獭物种及种群的现状及威胁格局, 同时联合全国各科研单位、民间团体等开展了全国水獭种群资源调查。目前陆续记录到了更多欧亚水獭的分布(包括吉林、广东、四川、青海、浙江等), 为其种群的长期监测和保护恢复提供了关键证据(李飞等, 2017b; Zhang et al, 2018; 唐卓等, 2019; 任锦海等, 2020; Wang QY et al, 2021; 史国强等, 2021)。此外, Li F等(2019)基于红外相机数据和其他调查数据, 对海南吊罗山小爪水獭(Aonyx cinereus)种群的分布与现状进行了评估。

了解哪些物种使用哪些类型的生态廊道是自然保护地空间规划的关键。Wang等(2014)综合评估了不同管理政策情境下秦岭大熊猫栖息地斑块之间大熊猫种群间交流的潜在连通性, 为该区域栖息地的生态廊道科学规划提供了参考依据。Wang F 等(2018)发现, 并非所有潜在的大熊猫生态廊道都对其他野生动物物种有效, 并建议保护规划者应基于多物种视角来优先考虑生态廊道建设, 而不会失去优先保护物种的栖息地连通性。在海南热带雨林国家公园, 研究人员通过建立空中索道来促进海南长臂猿(Nomascus hainanus)的扩散迁移, 也加强了该物种栖息地的连通性和种群间的信息交流(Chan et al, 2020)。通过对珍稀濒危物种黑麂(Muntiacus crinifrons)和白颈长尾雉(Syrmaticus ellioti)在功能区的分布和栖息地利用等方面的综合分析, 为钱江源国家公园的功能区规划、生态廊道建设以及重点物种的保护管理提供了科学依据(余建平等, 2019; Shen et al, 2020)。基于在我国卧龙、王朗、长青和古田山等4个保护区的红外相机调查, Shen等(2020)发现旗舰物种通常有特化的栖息地需求, 将它们作为同域分布物种的代表以指导保护区规划, 并不能有效保护其他同域分布物种, 进而建议结合详实的监测数据进一步完善自然保护区功能区规划, 以确保对保护目标的实现和科学管理。Chen C等(2019)发现, 在云南西双版纳国家级自然保护区的6个片区内2种被捕杀物种的当地多度与当地百姓对执法的看法有关, 而不是与执法的客观水平有关, 这表明社区外联作为保护区管理的一个基本组成部分具有特别的重要性。在中缅边境北部的高黎贡山的偏远森林中, 研究人员明确了中缅边境地区极度濒危的缅甸金丝猴仅存在一个跨界群体, 多年活动范围为51.50-57.02 km², 群体规模在近年来呈现增长趋势(155-160只), 为这一珍稀灵长类物种的种群恢复和跨境保护带来了新的希望(Chen YX et al, 2015, 2022)。

红外相机调查结果显示, 人兽冲突依然是我国自然保护地管理中的突出问题。保护区内的放牧活动对野生动物及其栖息地造成了诸多负面影响。在王朗保护区, 放牧活动造成了大熊猫和其他野生动物分布区的挤压(Wang et al, 2015; Zhang et al, 2017)以及对大熊猫自然栖息地的严重破坏(Li et al, 2020a); 在邛崃山系的雪豹分布区, 雪豹与家畜之间存在较高的冲突风险(史晓昀等, 2019); 在东北虎豹国家公园, 放牧、围栏和家狗等的存在严重影响虎豹及其猎物种群的分布和活动(Xiao et al, 2018; Feng et al, 2021); 在三江源国家公园, 雪豹、棕熊(Ursus arctos)、狼与家畜、藏獒、牧民之间的冲突也持续存在, 对人畜生命和财产安全构成了严重威胁(闫京艳等, 2019)。这些研究为我国自然保护地的放牧管控和人兽冲突的缓减提供了数据支持和决策依据, 建议主管部门、自然保护区和社区共同采取积极应对措施。

红外相机技术在中国的早期应用得到了WCS (Wildlife Conservation Society)、WWF (World Wildlife Fund)、CI (Conservation International)、TNC (The Nature Conservancy)等国际保护机构以及相关国际研究专家在技术和资金上的支持。自2011年以来, 随着红外相机技术应用的更加普及, 除了科研院所外, 国内一批民间保护团体、社区以及生态爱好者和摄影师等群体都开始使用红外相机作为野生动物调查和记录的工具, 也逐渐促进了公众科学在中国野生动物调查和研究中的发展。民间团体和个人对红外相机的使用从开始少量相机用于野生动物的影像记录, 发展到规模使用红外相机进行野外调查与科研活动(刘炎林等, 2020)。这一系列的调查与研究主要针对猫科动物(宋大昭等, 2014; 刘炎林等, 2020)、重要但被忽略的栖息地(Wang F et al, 2021)、城市、社区保护小区等开展综合调查和监测, 并取得了很多有价值的成绩, 包括许多新物种(Li et al, 2015)和物种新分布记录(李飞等, 2017a, b)被发现, 以及针对一些濒危物种的种群研究取得了详实的科学数据, 为物种及其栖息地保护提供了科学数据和决策依据(刘沿江等, 2019; 刘炎林等, 2020)。

3 国际野生动物红外相机监测与研究的重点领域分析

虽然过去10来年里红外相机技术在中国野生动物研究领域取得了显著进步, 但整体而言, 国外有关红外相机技术用于野生动物研究中的应用历史更长, 在技术方法和理论研究方面对中国在该领域的未来发展均有许多值得借鉴的方面。因此, 结合红外相机技术应用中所面临的挑战及对国外典型研究案例的分析, 本文对国际野生动物红外相机监测与研究的重点领域进行了综合评估分析, 主要归纳为4个方面。

(1)加强合作研究, 整合更多高时空分辨率的数据, 揭示区域、国家以及全球生物多样性保护相关的重大问题。

红外相机技术在全球不同时空尺度上有广泛的应用, 但野生动物监测、评估和研究不应仅局限于局域尺度, 更应整合不同时空尺度的数据来回答区域、国家以及全球生物多样性保护相关的重大问题。

目前, 许多红外相机相关研究通常针对一个或多个物种, 但近期的研究正在考虑如何从一个区域内红外相机探测的多个动物群落来评估在更大尺度上的物种丰富度和时空格局(Chen C et al, 2022)。例如, 在东南亚婆罗洲实施的食肉动物项目收集了该岛所有20种食肉动物的数据, 并利用这些数据, 根据存在(presence-only)模型预测了每个物种的分布(Kramer-Schadt et al, 2016)。同样, 通过汇集在亚洲和非洲22个国家进行的103次调查中所有穿山甲物种的数据, 对全球穿山甲的物种保护现状及威胁进行了综合评估(Khwaja et al, 2019)。目前, 越来越多的研究使用团队共享数据在监测框架内解决各种生态和保护问题, 例如, 捕食者入侵、人类活动和栖息地质量对马达加斯加拉诺马凡纳国家公园食肉动物群落变化的影响(Farris et al, 2017)。

通过在全球或同一国家的不同地点对野生动物种群和群落进行标准化监测和同步调查, 这些调查数据的共享应用将有助于研究人员、决策部门能够迅速发现问题, 并采取相应行为和决策来解决一些重要的保护问题。典型案例是热带生态评价与监测网络(Tropical Ecology Assessment and Monitoring Network, 即TEAM Network)有关陆生脊椎动物的红外相机监测项目, 由美洲、亚洲和非洲等三大洲17个保护区(站点)组成的网络。自2007年以来, 该项目根据稳健的抽样设计收集了标准化的红外相机数据, 包括每年主要在旱季至少30天连续采样, 60个红外相机位点排列成一个规则的网格, 单元大小为2 km2 (Rovero & Ahumada, 2017)。该网络中的多个站点已经收集了10年以上的数据, 让研究人员能够研究种群和群落的时空动态。TEAM Network各站点数据收集的地理广度、标准化以及开放存取数据政策代表了团队协同网络的主要优势, 提供了一套极具价值的数据集。例如, Beaudrot等(2016)评价了511个多年被抽样的种群的占域趋势, 发现有39%的种群的占域率没有变化或增加, 而22%的种群的占域率有所下降, 但有39%的种群的占域率则缺乏足够的数据用于分析。因此, 研究人员也意识到任何一个数据集在解决大尺度问题上的局限性, 需要共同努力来扩大研究的尺度。

(2)基于人工智能技术和空间分析技术, 开发高效的图像自动识别模型和多源数据融合的统计分析模型, 提升数据共享分析和综合应用。

由于红外相机在全球野生动物研究中的普及应用, 加上图像大数据的积累和管理需求, 需要开发人工智能相关分析方法和统计分析模型来加快图像数据的自动识别效率和共享应用。

红外相机数据在中国及全球其他区域均有大量的积累, 但在野生动物监测、评估以及保护管理之间存在明显的时滞性和鸿沟, 同时也需要对这些大数据进行管理和保护(McShea等, 2020)。上述TEAM Network的另一个优势是, 其数据库包括了通过标准化协议所存档的近1,100个红外相机站点的数百万张照片(Rovero & Ahumada, 2017)。类似地, eMammal是美国史密森学会(Smithsonian Institution)基于云服务和公众科学项目来构建的一个红外相机数据库, 托管了来自全球数十个红外相机项目的数据, 以促进基础数据的共享、分析和可视化(McShea et al, 2016)。然而, 由于软件系统开发和维护成本的提升, 对这些数据管理系统的日常维护和开放利用具有挑战性(Kays et al, 2020)。目前, 这些挑战促使多个保护组织合作创建了Wildlife Insights在线平台以管理红外相机数据, 并集成人工智能(AI)来创建更加完善的自动化分析流程以提高效率(Ahumada et al, 2019)。因此, 由于这些大尺度的合作项目将逐渐增加, 对这些红外相机数据管理系统的持续维护和升级服务也将是一项长期的挑战。

在过去10年中, 人工智能分析工具用于图像物种自动识别的研究在激增(Norouzzadeh et al, 2018), 而这些分析工具现在已逐渐被集成到数据管理系统中, 包括基于云平台的解决方案(eMammal和Wildlife Insights等)和招募志愿者来识别动物的解决方案(Tuia et al, 2022)。然而, 目前研究人员可用的物种图像分类模型数量仍然不多, 而且这些模型通常只涉及一个或两个站点的图像数据。如果能集合来自更多合作伙伴的数据集来构建足够大的训练、验证和测试数据集, 这对开发高效的物种分类模型是很有潜力的, 可在物种水平上确保更高的准确性。最近, 研究人员采用深度学习等人工智能分析工具用于野生动物图像数据的物种自动识别和快速评估。例如, 在北美(Tabak et al, 2018)、中非(Whytock et al, 2021)和东非(Norouzzadeh et al, 2018)的研究中, 通过深度学习模型所验证动物图像数据集的总体准确率分别达97%、78%和94%。此外, 需要开发能够将多种数据类型整合到栖息地模型中的分析工具(Pacifici et al, 2017), 如通过红外相机数据与其他数据类型(如动物追踪、公众科学、博物馆记录)来构建统计分析模型, 从而提高人们对物种分布及影响因素的理解(Kays et al, 2020)。

(3)针对更多类群、更多维度和更多尺度, 集成优化现代各类监测技术和分析方法在全球生物多样性的动态监测、研究与评估中的应用。

除了红外相机技术, 还需要结合声纹监测技术、动物追踪技术、移动物联网、网络信息技术和公众科学等其他监测技术和分析方法从更多类群、更多维度和更多尺度来理解和评估全球生物多样性的变化及其威胁因素。

作为保护生物学的重要领域, 野生动物监测与保护涉及跨学科领域的理论知识和技术方法。红外相机技术在野生动物研究中的应用也不例外, 需要电子学、信息学、人工智能、大数据、生物学、生态学和社会学等跨学科领域的技术创新和理论应用, 同时也需要不同学科背景的研究人员进行协同研究。

除了目标类群, 仅使用一种监测方法通常会导致其他类群的数据缺失或代表性不足, 难以全面评估全球不同尺度下生物多样性的变化或生态系统的状况。红外相机技术代表了一种互补的方法, 通过监测单一位点来实现对该位点的所有大中型哺乳动物和鸟类进行采样。该方法覆盖了动物群落的一些重要类群(物种), 但没有提供动物离开视野后移动的信息, 也难以区分个体(具有独特标记的个体除外)。尽管在树干上攀爬和设置红外相机需要付出大量额外的努力, 但对难以观察的树栖性动物, 红外相机通常比传统调查更有效, 收集的数据质量也更好(Whitworth et al, 2016)。类似于红外相机, 声学传感器可用于监测鸟类、两栖动物、昆虫和陆生哺乳动物等陆生发声物种类群, 并可量化物种多样性、行为活动、种群和群落动态以及对人类活动的响应等重要生态指标, 但需要通过将动物的鸣叫特征与参考库进行比对等复杂的方法来识别物种(Sugai et al, 2019)。动物追踪技术是一种通过卫星系统(GPS)或无线电信号来记录动物位置和运动的替代方法(Nathan et al, 2022)。然而, 追踪技术通常仅限于一个或少数物种的少数个体, 而且所提供的有关动物群落的信息较少。因此, 不同监测技术方法会获取更多互补的类群和数据, 具体如何结合这些不同的监测技术方法需要权衡具体科学目标和资源可利用性。

(4)加强红外相机大数据在野生动物保护管理及科学决策中的规范应用。

通常, 红外相机调查的一个显著优势是其数据能同时满足多项研究目标的要求, 如估计重点物种种群密度和调查区域的物种丰富度。不仅如此, 红外相机图像数据中还记录有大量物种的行为学信息, 而这些行为学信息常常缺乏整理分析, 因此如何整合这些行为学数据也是野生动物保护评估中的重要指标。如果在未来的调查设计中同时考虑动物行为在野生动物评估和保护管理中的需求, 可以将行为与其他种群和群落等重要指标一起记录, 从而有助于深入了解动物行为对人类活动和气候变化的响应等过程, 更好地服务于野生动物保护管理。研究猎物对捕食者和人类的恐惧效应是红外相机应用的新兴热点。研究者能够通过红外相机获取动物的时空分布和与恐惧相关的预警、觅食等行为的时长与频率的数据, 从而分析恐惧的时空格局的影响因素(Palmer et al, 2017)。而利用红外相机与声音录放设备相结合来开展声音回放相关的景观恐惧操控实验(playback experiment), 是探索捕食者与猎物、人类与动物之间互作关系的重要手段(Durant, 2000; Zanette et al, 2011; Suraci et al, 2016), 为解决野生动物掠食庄稼等人兽冲突问题和改善保护区管理提供新的思路(Palmer et al, 2022)。一些研究正在考虑将红外相机和声学监测技术纳入操控实验, 如评估不同动物对引入新异刺激的行为反应(如捕食者的叫声; Suraci et al, 2016)。由于林冠是许多树栖动物分布的特殊空间, 研究人员也在借助红外相机来监测这些树栖物种的多样性和行为(Moore et al, 2021)。

红外相机数据如何将生态监测与保护管理有效地联系起来, 包括如何利用数据和图像让公众和决策者参与保护, 以及如何通过公众科学、标准化数据收集网络和自动化分析的网络基础设施来拓展相关工作。例如, 在不丹的有关红外相机监测项目, 通过获得的1,000万张照片数据, 评估了哺乳动物的物种丰富度和多样性在保护区、生态廊道和受干扰非保护区之间的差异(Dorji et al, 2019)。虽然保护区内有大量野生动物, 但研究人员也强调了非保护区的价值, 因为这些非保护区分布有保护区内未发现的全球受威胁物种。Green等(2018)的研究发现, 在肯尼亚的非洲象不仅利用连接相邻保护区的生态廊道来进行迁移, 同时也把这个长度达14 km的生态廊道作为其栖息地的一部分。

红外相机数据所使用的野生动物指标包括物种存在、种群多度和群落等。这些指标直接或间接用于评估野生动物保护相关问题, 如栖息地选择和分布模型、威胁评估、常规监测和保护干预评估。由于红外相机数据包含了物种分布和多度的时间和空间信息, 研究人员可利用这些分布信息来构建空间模型, 从而推断出哪些因素可能会限制一个物种的范围和数量, 并绘制地图来预测更大区域内的物种数量。此外, 研究人员还评估了野生动物图片指数(wildlife picture index, WPI) (O’Brien et al, 2010), 作为一个总的群落动态指标, 表明物种丰富度和占域率的年际变化。作为国际生物多样性公约爱知目标的参考指标之一, 专门针对红外相机数据所制定的WPI指数将通过红外相机数据为全球、区域和国家层面的保护管理和科学决策提供关键科学依据。

由于图像数据拍摄了大量珍稀或敏感物种, 特别是那些有魅力的明星物种和旗舰物种, 红外相机成为吸引利益相关方、社会公众和媒体的重要工具, 也使其成为向当地社区和其他社区传递监测价值的强大媒介。与此同时, 同公众分享照片、向社会公布和分享监测结果, 还必须兼顾保护被拍照者的隐私、获取可能被偷猎的敏感物种的数据, 以及防止相机被盗或损坏。

4 总结与展望

4.1 总结

从上述国内相关文献的总结分析来看, 中国野生动物红外相机监测与研究在监测规模、监测规范和监测网络(平台)建设以及数据积累和研究主题等方面均取得了显著成绩, 并产生了显著的生态和社会影响。主要研究成果体现在以下3个方面:

(1)作为陆生大中型兽类和地面活动鸟类的标准化监测方法, 红外相机技术在多数陆地类型的自然保护地中得到了全面的普及性应用, 并在全国尺度上形成了以公里网格为基本抽样单元的监测规范, 以适应长期监测和同步调查, 确保了监测数据的科学性、可比性和连续性, 促进了区域性和全国性野生动物联网监测与研究平台的建设和发展。

(2)通过系统集成和优化智能传感器、人工智能技术、“3S”技术和网络信息技术等关键技术, 以东北虎豹国家公园、广东车八岭自然保护区等为代表区域, 成功研制了野生动物数据的自动采集、实时传输、云存储和智能识别与可视化分析等联网监测技术体系, 突破了过去自然保护地全域无网络覆盖的历史, 为以国家公园为主体的自然保护地体系建设和自然资源科学监管提供了关键科技支撑。

(3)通过红外相机技术获得了丰富多样的野生动物大数据, 为生物多样性(野生动物)科学研究、科学评价和科学保护提供了新途径, 促进了新物种和新记录物种的发现。物种重新发现为珍稀濒危物种的研究和保护提供了可靠数据, 拓展了野生动物研究和濒危物种保护的空间和机会, 为全面反映我国重要相关类群的种群和群落状况提供了关键基线数据, 也为我国自然保护地资源监测、保护评估和空间规划提供了关键科学数据。此外, 研究成果有助于提升人们对野生动物保护的深入认知, 直观、多样的影像资料为科学传播和自然教育提供了丰富的素材和机会, 为公众科学、全社会参与保护工作提供了有效工具。

4.2 展望

结合红外相机技术在国内外野生动物研究中的应用现状及发展趋势, 我们对未来中国野生动物红外相机监测与研究提出如下建议:

(1)加强设备研制和技术方法的创新, 完善野生动物长期监测的规范化应用, 加强推广。研发新一代红外相机, 如自动行为响应红外相机(automated behavioural response camera trap)、激光测距和广角红外相机, 以及具有AI功能的红外相机等, 提升对更小物种、动物性状(如动物体尺的测量)和行为的监测和研究能力, 提高物种、个体和行为等方面的智能识别精度和大数据的快速处理效率。结合各类智能传感器、移动终端、人工智能、云计算、边缘计算和数字孪生等技术方法的创新, 完善以红外相机等为代表的野生动物长期监测的规范化应用, 降低技术应用的门槛和成本, 搭建红外相机大数据平台, 完善平台的数据存储、智能识别和共享性能、提高安全稳定性, 为未来能在更大的时空尺度上实现对多类群野生动物的动态监测、研究和评估提供关键技术支持并推广应用。

(2)结合多源大数据的逐渐积累, 加强理论创新和多学科交叉研究, 促进野生动物行为学和生态学研究, 提升野生动物的保护管理效能和科学决策。随着红外相机数据的积累, 数据处理与分析的理论算法需要不断完善, 以提高解决具体科学问题的能力。对于不可辨识个体的物种, 如何更准确地估计种群数量一直是生态学研究中的难点。未来需要不断完善有关的理论模型, 提高结果的可靠性。加强多元数据的整合也需要有理论基础, 未来的模型理论需要合理整合并模拟红外相机数据、生物声学数据、GPS项圈轨迹数据、DNA遗传数据等反映动物身份、移动、个体遗传的信息, 以回答更深层次的理论问题。随着动态模型和数据整合的应用发展, 模型结构也趋于复杂, 如何提高复杂模型的稳健性, 提升有限数据的分析能力和实用效果也是理论发展需要思考的问题。未来需要加强统计学家和生态学家之间的合作研究, 突破野生动物研究中的瓶颈, 促进动物行为学、生态学、保护生物学、动物学以及相关社会科学的交叉融合和更大发展。同时, 依托国家级野外台站和Sino BON为重点的国家基础设施平台建设, 鼓励共建共用、自由存取, 吸引更多科学家在大尺度、甚至国家层面开展联网合作研究, 加快我国的生态学和生物多样性保护的发展。

(3)加强野外台站联网长期监测, 完善全国尺度的野生动物监测技术体系和综合数据信息共享服务平台, 发展和完善野生动物管理的科学决策机制。结合国家生物多样性野外台站和长期监测站点的建设, 集成优化红外相机技术、声纹技术等新技术、新方法在野生动物监测研究中的应用, 进一步完善相关监测和评估指标体系, 形成和实施相关核心监测技术的行业和国家标准规范, 建立局域-区域-国家等不同尺度的全国野生动物监测技术体系和综合数据信息共享服务平台, 制定以监测、研究、评估、保护恢复及相关政策法规落实等为重点的野生动物科学管理机制和全链条的系统解决方案, 更好地服务国家重大战略需求和国内国际重大任务。

(4)加强野生动物监测与保护管理相关的科技支撑和技术服务, 为国家生态文明建设、保障国家生态安全和生物安全以及保护生态环境做出更大贡献。当前, 以国家公园为主体的自然保护地体系建设及生物多样性保护主流化已逐渐成为国家战略的重要建设内容, 为国际生物多样性公约2020后全球生物多样性框架的落实提供决策依据。

(5)加强组织创新和理论技术培训, 提升联网监测的专业管理水平和业务能力, 保障科学研究和自然教育相关的人才队伍建设。加强国内外的合作交流和理论方法培训, 形成野生动物监测研究的组织创新, 服务于长期联网监测与数据共享应用, 形成具有国内外影响力的创新研究团队。以公众科学发展为基础, 加强公众参与自然教育和科学传播服务, 充分挖掘公众在数据收集、数据处理中的积极作用, 让广大使用者享受到技术发展的便利, 更好地服务于科学研究、保护管理和国家生态环境政策制定。

参考文献

Ahumada JA, Fegraus E, Birch T, Flores N, Kays R, O’Brien TG, Palmer J, Schuttler S, Zhao JY, Jetz W, Kinnaird M, Kulkarni S, Lyet A, Thau D, Duong M, Oliver R, Dancer A (2019)

Wildlife Insights: A platform to maximize the potential of camera trap and other passive sensor wildlife data for the planet

Environmental Conservation, 47, 1-6.

DOI:10.1017/S0376892919000298      URL     [本文引用: 1]

Alexander JS, Shi K, Tallents LA, Riordan P (2016a)

On the high trail: Examining determinants of site use by the endangered snow leopard Panthera uncia in Qilianshan, China

Oryx, 50, 231-238.

DOI:10.1017/S0030605315001027      URL     [本文引用: 2]

Alexander JS, Zhang CC, Shi K, Riordan P (2016b)

A granular view of a snow leopard population using camera traps in Central China

Biological Conservation, 197, 27-31.

DOI:10.1016/j.biocon.2016.02.023      URL     [本文引用: 1]

Beaudrot L, Ahumada JA, O’Brien T, Alvarez-Loayza P, Boekee K, Campos-Arceiz A, Eichberg D, Espinosa S, Fegraus E, Fletcher C, Gajapersad K, Hallam C, Hurtado J, Jansen PA, Kumar A, Larney E, Moreira LMG, Mahony C, Martin EH, McWilliam A, Mugerwa B, Ndoundou- Hockemba M, Razafimahaimodison JC, Romero-Saltos H, Rovero F, Salvador J, Santos F, Sheil D, Spironello WR, Willig MR, Winarni NL, Zvoleff A, Andelman SJ (2016)

Standardized assessment of biodiversity trends in tropical forest protected areas: The end is not in sight

PLoS Biology, 14, e1002357.

DOI:10.1371/journal.pbio.1002357      URL     [本文引用: 1]

Bu HL, Shen XL, Li S (2019)

Predation patterns on artificial nests of ground nesting pheasants in the montane forest, Southwest China

Acta Ornithologica, 54, 35-43.

DOI:10.3161/00016454AO2019.54.1.003      URL     [本文引用: 1]

Bu HL, Wang F, McShea WJ, Lu Z, Wang DJ, Li S (2016)

Spatial co-occurrence and activity patterns of mesocarnivores in the temperate forests of Southwest China

PLoS ONE, 11, e0164271.

DOI:10.1371/journal.pone.0164271      URL     [本文引用: 1]

Chan BPL, Lo YFP, Hong XJ, Mak CF, Ma ZY (2020)

First use of artificial canopy bridge by the world’s most critically endangered primate the Hainan gibbon Nomascus hainanus

Scientific Reports, 10, 15176.

DOI:10.1038/s41598-020-72641-z      URL     [本文引用: 1]

Chen C, Quan RC, Cao GH, Yang HP, Burton AC, Meitner M, Brodie JF (2019)

Effects of law enforcement and community outreach on mammal diversity in a biodiversity hotspot

Conservation Biology, 33, 612-622.

DOI:10.1111/cobi.13232      PMID:30306633      [本文引用: 1]

Management activities such as law enforcement and community outreach are thought to affect conservation outcomes in protected areas, but their importance relative to intrinsic environmental characteristics of the parks and extrinsic human pressures surrounding the parks have not been explored. Furthermore, it is not clear which is more related to conservation outcomes-the management itself or local people's perceptions of the management. We measured objective (reports by park staff) and subjective (reports by local people) levels of community outreach and law enforcement based on responses to 374 questionnaires. We estimated mammal abundance and diversity of 6 protected areas based on data from 115 camera traps in Xishuangbanna, southwest China, a biodiversity hotspot with high hunting and land-conversion pressures. We then examined correlations among them and found that local people's perception of law enforcement was positively related to the local abundance of 2 large, hunted species, wild boar (Sus scrofa) (β = 15.22) and muntjac (Muntiacus vaginalis) (β = 14.82), but not related to the abundance of smaller mammals or to objective levels of enforcement. The subjective frequency of outreach by park staff to local communities (β = 3.42) and park size (β = 3.28) were significantly and positively related to mammal species richness, whereas elevation, human population density, and subjective frequency of law enforcement were not. We could not conclude that community outreach and law enforcement were directly causing increased mammal abundance and diversity. Nevertheless, the patterns we detected are some of the first empirical evidence consistent with the idea that biodiversity in protected areas may be more positively and strongly related to local perceptions of the intensity of park management than to either intrinsic (e.g., elevation, park size) or extrinsic (e.g., human population density) environmental factors.© 2018 Society for Conservation Biology.

Chen C, Brodie JF, Kays R, Davies TJ, Liu R, Fisher JT, Ahumada J, McShea W, Sheil D, Agwanda B, Andrianarisoa MH, Appleton RD, Appleton RD, Bitariho R, Espinosa S, Grigione MM, Helgen KM, Hubbard A, Hurtado CM, Jansen PA, Jiang X, Jones A, Kalies EL, Kiebou-Opepa C, Li X, Lima MGM, Meyer E, Miller AB, Murphy T, Piana R, Quan RC, Rota CT, Rovero F, Santos F, Schuttler S, Uduman A, Bommel JK, Young H, Burton AC (2022)

Global camera trap synthesis highlights the importance of protected areas in maintaining mammal diversity

Conservation Letters, 15, e12865.

[本文引用: 1]

Chen EJ, Guan TP, Li S (2022)

The sex ratio, social structure and activity pattern of Reeves’ muntjac (Muntiacus reevesi) in Minshan Mountains, Sichuan Province

Acta Theriologica Sinica, 42, 1-11. (in Chinese with English abstract)

[本文引用: 1]

[陈尔骏, 官天培, 李晟 (2022)

四川岷山小麂的种群性比、社会结构和活动节律

兽类学报, 42, 1-11.]

DOI:10.16829/j.slxb.150576      [本文引用: 1]

小麂(Muntiacus reevesi)主要分布在东亚长江以南的地区,是我国分布范围最广的麂属物种。本研究基于四川省岷山山脉6个自然保护区2011—2020年的红外相机调查数据,共布设有效调查位点726个,完成75 320个相机日的有效调查工作量;在其中133个相机位点上拍摄到小麂照片和视频20 236份,独立探测1 903次。分析结果显示,岷山地区野生小麂种群中成年个体雌雄性比为1.13:1。小麂的集群类型多样,以单只活动为主,占总探测次数的91.97%;其次为雌雄对,占总探测次数的6.15%;其余较为少见的集群模式有母幼群、父幼群、家庭群、双雌、双雄与单雄双雌,合计占总探测次数的2.88%。岷山地区小麂的日活动节律呈双峰型,分别在日出前后的06:00—09:00和日落前后的17:00—19:00各存在1个活动高峰,为典型的晨昏活动型;小麂不同季节的日活动节律之间存在差异,以冬季与夏季间的差异尤为明显。本研究基于大数据量的野外实地调查记录,探明了岷山地区小麂种群的性比、社会结构和日活动节律,为该小型鹿科物种野外种群的后续研究提供了可靠的基础信息。

Chen LJ, Xiao WH, Xiao ZS (2019)

Limitations of relative abundance indices calculated from camera-trapping data

Biodiversity Science, 27, 243-248. (in Chinese with English abstract)

DOI:10.17520/biods.2018327      [本文引用: 1]

Abundance is an important parameter used to estimate the population size of various wildlife species. With the growing application of camera-traps (movement or heat activated) to monitoring wildlife, the relative abundance index (RAI) has become one of the most popular indicators of population abundance for inventories and assessment. Despite a simple and convenient indicator of population size, RAI obtained from camera-trapping data can be greatly affected by many factors such as species traits, detection rates and environmental factors. Therefore, we need verify the correlation between RAI and population density prior to its general application. So far, several types of RAIs have been developed based on camera-trapping data, and it is critical to compare these RAI indices and their applications. In this paper, we summarized the methods calculating RAI with camera-trapping data and reviewed their applications in wildlife monitoring and inventories in China. Four main types of RAIs were identified including (1) the number of days when one animal is photographed, (2) the number of photographs of focal species per 100 trap days, (3) the number of photographs of focal species per trap day, and (4) the proportion of photos from the focal species compared to all photos of all animals. Among them, the second RAI type is the most widely used (72.5%) in wildlife monitoring and inventories in China, and the fourth RAI type is used to compare species components in communities. Consequently, we recommend the second RAI type for estimating population abundance in particular when camera-trapping data are used for broad-scale comparisons over different spatial and temporal scales.

[陈立军, 肖文宏, 肖治术 (2019)

物种相对多度指数在红外相机数据分析中的应用及局限

生物多样性, 27, 243-248.]

DOI:10.17520/biods.2018327      [本文引用: 1]

多度是衡量物种种群数量的参数之一, 多度的动态及其影响因素是种群生态学研究的经典问题。物种相对多度指数(relative abundance index, RAI)作为一种简单、便利的指标, 广泛应用于动物本底清查中。但RAI易受物种自身特征、探测率和环境因素的影响, 需要结合其他物种数量分析方法, 以验证其与种群大小的相关性。随着红外相机技术在野生动物调查中的广泛应用, 用红外相机数据估计动物种群数量的研究越来越多。目前, 基于红外相机数据计算RAI的方法有多种, 不同计算方法和应用范围存在差异, 亟需对现有方法和应用进行梳理。本文综述了根据红外相机数据计算物种相对多度的4种主要方法: (1)拍摄一张有效照片所需要的天数; (2)基于单位调查强度的物种拍摄率; (3)每个位点每天的物种拍摄率; (4)某一物种的照片数占所有物种的比例。总结了我国野生动物监测调查中采用红外相机方法计算RAI的应用现状。国内的研究主要采用第2种和第4种计算方法, 其中约72.5%的研究论文应用第2种计算方法, 而第4种方法一般适用于群落中的物种组成比较。我们建议根据红外相机数据计算RAI时尽量使用第2种计算方法, 这有助于研究或管理人员对不同研究中的物种RAI进行比较分析。

Chen YX, Xiang ZF, Wang XW, Xiao W, Xiao ZS, Ren BP, He CX, Sang C, Li HS, Li M (2015)

Preliminary study of the newly discovered primate species Rhinopithecus strykeri at Pianma, Yunnan, China using infrared camera traps

International Journal of Primatology, 36, 679-690.

DOI:10.1007/s10764-015-9848-y      URL     [本文引用: 2]

Chen YX, Xiao ZS, Zhang L, Wang XW, Li M, Xiang ZF (2019)

Activity rhythms of coexisting red serow and Chinese serow at Mt. Gaoligong as identified by camera traps

Animals, 9, 1071.

DOI:10.3390/ani9121071      URL     [本文引用: 1]

Chen YX, Yu Y, Li C, Xiao ZS, Zhou GW, Zhang ZJ, Wang XW, Xiang ZF, Chang J, Li M (2022)

Population and conservation status of a transboundary group of black snub-nosed monkeys (Rhinopithecus strykeri) between China and Myanmar

Zoological Research, 43, 523-527.

[本文引用: 1]

Cui SP, Chen D, Sun J, Chu H, Li C, Jiang ZG (2020)

A simple use of camera traps for photogrammetric estimation of wild animal traits

Journal of Zoology, 312, 12-20.

DOI:10.1111/jzo.12788      URL     [本文引用: 1]

Cui SM (2017)

The first live image taken in the wild of Tragopan blythii in China

Forest & Humankind, (3), 72-73. (in Chinese)

[本文引用: 1]

[崔士明 (2017)

灰腹角雉: 中国首次野外拍摄到活体影像

森林与人类, (3), 72-73.]

[本文引用: 1]

Delisle ZJ, Flaherty EA, Nobbe MR, Wzientek CM, Swihart RK (2021)

Next-generation camera trapping: Systematic review of historic trends suggests keys to expanded research applications in ecology and conservation

Frontiers in Ecology and Evolution, 9, 617996.

DOI:10.3389/fevo.2021.617996      URL     [本文引用: 1]

Diao KP, Li MF, Pan SY, Gu WL, Zhang XO, Wen C (2017)

Role of vertebrates in wild animal corpses degradation process by camera trap in Tangjiahe National Nature Reserve

Sichuan Journal of Zoology, 36, 616-623. (in Chinese with English abstract)

[本文引用: 1]

[刁鲲鹏, 李明富, 潘世玥, 顾伟龙, 张晓鸥, 闻丞 (2017)

基于红外相机研究脊椎动物在唐家河国家级自然保护区动物尸体分解过程中的作用

四川动物, 36, 616-623.]

[本文引用: 1]

Diao YX, Zhao QQ, Weng Y, Huang ZX, Wu YQ, Gu BJ, Zhao Q, Wang F (2022)

Predicting current and future species distribution of the raccoon dog (Nyctereutes procyonoides) in Shanghai, China

Landscape and Urban Planning, 228, 104581.

DOI:10.1016/j.landurbplan.2022.104581      URL     [本文引用: 1]

Dirzo R, Young HS, Galetti M, Ceballos G, Isaac NJB, Collen B (2014)

Defaunation in the anthropocene

Science, 345, 401-406.

DOI:10.1126/science.1251817      PMID:25061202      [本文引用: 1]

We live amid a global wave of anthropogenically driven biodiversity loss: species and population extirpations and, critically, declines in local species abundance. Particularly, human impacts on animal biodiversity are an under-recognized form of global environmental change. Among terrestrial vertebrates, 322 species have become extinct since 1500, and populations of the remaining species show 25% average decline in abundance. Invertebrate patterns are equally dire: 67% of monitored populations show 45% mean abundance decline. Such animal declines will cascade onto ecosystem functioning and human well-being. Much remains unknown about this "Anthropocene defaunation"; these knowledge gaps hinder our capacity to predict and limit defaunation impacts. Clearly, however, defaunation is both a pervasive component of the planet's sixth mass extinction and also a major driver of global ecological change. Copyright © 2014, American Association for the Advancement of Science.

Dorji S, Rajaratnam R, Vernes K (2019)

Mammal richness and diversity in a Himalayan hotspot: The role of protected areas in conserving Bhutan’s mammals

Biodiversity and Conservation, 28, 3277-3297.

DOI:10.1007/s10531-019-01821-9      URL     [本文引用: 1]

Durant SM (2000)

Living with the enemy: Avoidance of hyenas and lions by cheetahs in the Serengeti

Behavioral Ecology, 11, 624-632.

DOI:10.1093/beheco/11.6.624      URL     [本文引用: 1]

Fang YH, Ren GP, Gao Y, Zhang SX, Wang HH, Li YP, Huang ZP, Cui LW, Xiao W (2018)

Impact of ground and canopy camera-trapping installation on wildlife monitoring

Biodiversity Science, 26, 717-726. (in Chinese with English abstract)

DOI:10.17520/biods.2018035      [本文引用: 1]

Camera trap technology is increasingly used in wildlife research, and has become an important tool to assess biodiversity. Traditionally, biodiversity is monitored from the ground with limited visual access to the wildlife present in the canopy layers. The impact of this limitation on the results of biodiversity assessments is unclear. In this study, a region characterized by rich biodiversity - the southern section of Biluo Snow Mountain - was monitored using 20 camera-trappings from January 2016 to July 2017. We installed cameras in groups of two working synchronously: one in the understory (0.5-1.5 m) and one in the overstory (5-10 m). For 2,319 trapping days, the cumulative monitoring period averaged to 112.5 days. We photographed 44 species of wild animals (not including rodents such as rats), 20 of which were mammals and 24 were birds. The similarity index of canopy and ground species was 29.54%. Fifteen species appeared only in the canopy, 16 species appeared only on the ground, and 13 species were photographed in both forest strata. Obvious differences in the species composition present in different forest strata were observed, suggesting that monitoring two strata is necessary. Results show that the detection rate of species by camera traps can be improved by installing cameras in forest strata corresponding to the habitat of target species. Our method of camera trap monitoring in different forest strata can also be used to study the spatial selection and niche differentiation of wild animals. To fully assess the diversity of wild animals in forest ecosystems monitoring at different forest strata is essential; new monitoring standards must incorporate multi-strata monitoring.

[房以好, 任国鹏, 高颖, 张淑霞, 王浩瀚, 李延鹏, 黄志旁, 崔亮伟, 肖文 (2018)

红外相机安放于地面和林冠层对野生动物监测结果的影响

生物多样性, 26, 717-726.]

DOI:10.17520/biods.2018035      [本文引用: 1]

红外相机技术在野生动物研究中日趋普及, 逐渐成为重要的生物多样性监测手段。过去的监测常局限于地面, 而针对林冠层的监测较少, 这对野生动物的多样性评估影响尚未可知。为此, 本研究在生物多样性丰富的碧罗雪山南段, 将20台红外相机分别拍摄地面层(0.5-1.5 m)和林冠层(5-10 m)配对比较, 累计拍摄2,319个有效相机日, 平均每对相机同步进行112.5 d的监测。监测期间共拍摄到44种野生动物(不包括鼠形啮齿类), 其中兽类20种, 鸟类24种; 冠层和地面红外相机监测的物种相似度为29.54%; 15种动物仅拍摄于林冠层, 16种动物仅拍摄于地面, 13种动物拍摄于两个林层。研究结果表明不同林层监测的物种组成存在显著差异, 林冠层与地面层监测都具有不可替代性; 不同林层红外相机的监测手段也能用于研究野生动物的空间选择和生态位分化。红外相机监测中根据目标物种的习性在相应的林层设置相机能提高物种发现率; 为全面掌握区域森林生态系统野生动物的多样性, 红外相机监测需要兼顾不同林层这一点需要在监测规范中明细。

Farris ZJ, Marcella JK, Karpanty S, Murphy A, Ratelolahy F, Andrianjakarivelo V, Holmes C (2017)

The times they are a changin': Multi-year surveys reveal exotics replace native carnivores at a Madagascar rainforest site

Biological Conservation, 206, 320-328.

DOI:10.1016/j.biocon.2016.10.025      URL     [本文引用: 1]

Feng JW, Sun YF, Li HL, Xiao YQ, Zhang DD, Smith JLD, Ge JP, Wang TM (2021)

Assessing mammal species richness and occupancy in a Northeast Asian temperate forest shared by cattle

Diversity and Distributions, 27, 857-872.

DOI:10.1111/ddi.13237      URL     [本文引用: 2]

Feng LM, Lin L, Zhang LT, Wang LF, Wang B, Yang SH, Smith J, Luo SJ, Zhang L (2008)

Evidence of wild tigers in Southwest China—A preliminary survey of the Xishuangbanna National Nature Reserve

Cat News, 48, 4-6.

[本文引用: 1]

Feng RN, XY, Xiao WH, Feng JW, Sun YF, Guan Y, Feng LM, Smith JLD, Ge JP, Wang TM (2021)

Effects of free-ranging livestock on sympatric herbivores at fine spatiotemporal scales

Landscape Ecology, 36, 1441-1457.

DOI:10.1007/s10980-021-01226-6      URL    

Feng T, Wu XM, Zhang HF (2019)

Distribution of ungulate in different grades of highway and influential factors concerned in Qinling Mountains

Shaanxi Forest Science and Technology, 47(5), 1-6. (in Chinese with English abstract)

[本文引用: 1]

[封托, 吴晓民, 张洪峰 (2019)

秦岭不同等级公路周边有蹄类动物分布规律及影响因素研究

陕西林业科技, 47(5), 1-6.]

[本文引用: 1]

Feng T, Zhang HF, Wu XM (2013)

Utilization of wildlife underpasses on Qinghai-Tibetan Railway during the operation

Shaanxi Forest Science and Technology, (6), 42-45. (in Chinese with English abstract)

[本文引用: 1]

[封托, 张洪峰, 吴晓民 (2013)

青藏铁路运营期野生动物通道利用状况初探

陕西林业科技, (6), 42-45.]

[本文引用: 1]

Feng XJ, Mi XC, Xiao ZS, Cao L, Wu H, Ma KP (2019)

Overview of Chinese Biodiversity Observation Network (Sino BON)

Bulletin of Chinese Academy of Sciences, 34, 1389-1398. (in Chinese with English abstract)

[本文引用: 1]

[冯晓娟, 米湘成, 肖治术, 曹垒, 吴慧, 马克平 (2019)

中国生物多样性监测与研究网络建设及进展

中国科学院院刊, 34, 1389-1398.]

[本文引用: 1]

Gao EH, He JK, Wang ZC, Xu Y, Tang XP, Jiang HS (2017)

China’s zoogeographical regionalization based on terrestrial vertebrates

Biodiversity Science, 25, 1321-1330. (in Chinese with English abstract)

DOI:10.17520/biods.2017135      URL     [本文引用: 1]

[郜二虎, 何杰坤, 王志臣, 徐扬, 唐小平, 江海声 (2017)

全国陆生野生动物调查单元区划方案

生物多样性, 25, 1321-1330.]

DOI:10.17520/biods.2017135      [本文引用: 1]

我国早期的动物地理区划主要依靠专家知识和经验, 缺乏系统的定量分析, 而且部分基本区划单元内的动物生态成分差异仍然较大, 使其在野生动物保护管理应用中受到一定限制。为满足野生动物保护管理的需要, 尤其为满足全国第二次陆生野生动物资源调查的需要, 我们在张荣祖&#x0201c;中国动物地理区划&#x0201d;的基础上, 进行了全国野生动物调查单元区划。将全国陆地区域划分为5 km &#x000D7; 5 km的网格, 基于1,784种陆栖脊椎动物(262种两栖动物、358种爬行动物、814种鸟类、350种兽类)的分布数据, 对各网格内的动物分布型比例及自然环境因子进行聚类分析。根据聚类结果, 并结合指示物种的分布情况以及省级行政区划界线, 将全国划分为2界7区19亚区54个动物地理省239个生态地理单元310个调查单元。与张荣祖&#x0201c;中国动物地理区划&#x0201d;方案相比, 界、区、亚区、动物地理省的数量一致, 边界走向基本一致, 但也有一些界线不同, 而且增加了&#x0201c;生态地理单元&#x0201d;和&#x0201c;调查单元&#x0201d; 2级区划单元。

Gong YN, Tan MY, Wang Z, Zhao GJ, Jiang PL, Jiang SM, Zhang DJ, Ge JP, Feng LM (2019)

AI recognition of infrared camera image of wild animals based on deep learning: Northeast Tiger and Leopard National Park for example

Acta Theriologica Sinica, 39, 458-465. (in Chinese with English abstract)

DOI:10.16829/j.slxb.150333      [本文引用: 1]

Video data of wild animals from infrared cameras always has a large quantity, which takes a lot of work to select and identify. In order to meet the demand of fast automatic identification, this study, using Northeast Tiger and Leopard National Park as an example, is to explore the practicability of using deep learning, convolutional neural networks to automatically identify different animal species, using videos taken by infrared cameras in the wild, under natural conditions. Pictures of each 8 species, captured from the videos from different seasons and of different conditions, consist of the data set. 2074 pictures for train set and 519 for test set. Region of Interest is selected and labeled, the model is YOLO v3 under darknet framework. All pictures are in one data set in the first group of experiment. In the second group, pictures are divided into day(RGB) and night(Grey), and in the third group, divided into day(RGB) and night(Grey) while fine-tuning is used. The mean average precision of our models is from 84.9% to 96.0%, and the models converge. Results show that althoug it is still needed to use better train set to improve the models, using YOLO v3 to identify wild animals automatically is practicable to save manpower and fine-tuning could be an assistance when the train set is small.

[宫一男, 谭孟雨, 王震, 赵国静, 蒋沛林, 蒋仕铭, 张鼎基, 葛剑平, 冯利民 (2019)

基于深度学习的红外相机动物影像人工智能识别: 以东北虎豹国家公园为例

兽类学报, 39, 458-465.]

[本文引用: 1]

Gong YN, Zhao GJ, Yang HX, Li Y, Tan MY, Wang N, Ge JP, Yang HT, Feng LM (2021)

Prevalence of varied coat coloration in a yellow-throated marten (Martes flavigula) population

Animals, 11, 2838.

DOI:10.3390/ani11102838      URL     [本文引用: 1]

Green S, Davidson Z, Kaaria T, Doncaster C (2018)

Do wildlife corridors link or extend habitat? Insights from elephant use of a Kenyan wildlife corridor

African Journal of Ecology, 56, 860-871.

DOI:10.1111/aje.12541      URL     [本文引用: 1]

Gu HF, Zhao QJ, Zhang ZB (2017)

Does scatter-hoarding of seeds benefit cache owners or pilferers?

Integrative Zoology, 12, 477-488.

DOI:10.1111/1749-4877.12274      PMID:28688134      [本文引用: 1]

The scatter-hoarding behavior of granivorous rodents plays an important role in seed dispersal and seedling regeneration of trees, as well as the evolution of several well-known mutualisms between trees and rodents in forest ecosystems. Because it is difficult to identify seed hoarders and pilferers under field conditions by traditional methods, the full costs incurred and benefits accrued by scatter-hoarding have not been fully evaluated in most systems. By using infrared radiation camera tracking and seed tagging, we investigated the benefits and losses of scatter-hoarded seeds (Camellia oleifera) for 3 sympatric rodent species (Apodemus draco, Niviventer confucianus and Leopoldamys edwardsi) in a subtropical forest of Southwest China during 2013 to 2015. We established the relationships between the rodents and the seeds at the individual level. For each rodent species, we calculated the cache recovery rate of cache owners, as well as conspecific and interspecific pilferage rates. We found that all 3 sympatric rodent species had a cache recovery advantage with rates that far exceeded average pilferage rates over a 30-day tracking period. The smallest species (A. draco) showed the highest rate of scatter-hoarding and the highest recovery advantage compared with the other 2 larger species (N. confucianus and L. edwardsi). Our results suggest that scatter-hoarding benefits cache owners in food competition, supporting the pilferage avoidance hypothesis. Therefore, scatter-hoarding behavior should be favored by natural selection, and plays a significant role in species coexistence of rodent community and in the formation of mutualism between seeds and rodents in forest ecosystems.© 2017 The Authors. Integrative Zoology published by International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

Guan TP, Gong MH, Hu J, Qiu J, Chen LM, Chen WL, Zheng WC, Song YL (2015)

The rhythm of Chinese muntjac (Muntiacus reevesi) visiting artificial mineral licks during autumn

Chinese Journal of Zoology, 50, 169-175. (in Chinese with English abstract)

[本文引用: 1]

[官天培, 龚明昊, 胡婧, 仇剑, 谌利民, 陈万里, 郑维超, 宋延龄 (2015)

小麂秋季利用人工盐场的节律

动物学杂志, 50, 169-175.]

[本文引用: 1]

Guo HX, Cheng L, Cheng SL, Yuan RB, Mao YX (2019)

Using auto-trigger camera to observe mating behavior of hog-badger (Arctonyx collaris)

Acta Theriologica Sinica, 39, 344-346. (in Chinese with English abstract)

[本文引用: 1]

[郭洪兴, 程林, 程松林, 袁荣斌, 毛夷仙 (2019)

基于红外相机视频的猪獾交配行为观察

兽类学报, 39, 344-346.]

[本文引用: 1]

Guo W, Zhang MX, Zhou LP, Quan RC (2017)

The rediscovery of large-spotted civet Viverra megaspila in China

Small Carnivore Conservation, 55, 88-90.

[本文引用: 1]

Han XS, Dong ZY, Zhao G, Zhao X, Shi XY, Z, Li HQ (2021)

Using surveillance cameras to analyze the activity pattern of the Eurasian otters (Lutra lutra) and the efficiency of camera trap monitoring

Biodiversity Science, 29, 770-779. (in Chinese with English abstract)

DOI:10.17520/biods.2020388      URL     [本文引用: 1]

[韩雪松, 董正一, 赵格, 赵翔, 史湘莹, 吕植, 李宏奇 (2021)

基于视频监控系统的欧亚水獭活动节律初报及红外相机监测效果评估

生物多样性, 29, 770-779.]

[本文引用: 1]

He JL, Liu ZM, Xu Q (2017)

Analysis of decomposition and utilization of small birds body in Northeast China

Chinese Journal of Wildlife, 38, 414-421. (in Chinese with English abstract)

[本文引用: 1]

[何嘉乐, 刘哲铭, 许青 (2017)

中国东北地区小型鸟类尸体分解利用的分析

野生动物学报, 38, 414-421.]

[本文引用: 1]

Hou J, He YX, Yang HB, Connor T, Gao J, Wang YJ, Zeng YC, Zhang JD, Huang JY, Zheng BC, Zhou SQ (2020)

Identification of animal individuals using deep learning: A case study of giant panda

Biological Conservation, 242, 108414.

DOI:10.1016/j.biocon.2020.108414      URL     [本文引用: 1]

Hou J, Yan LL, Li L, Li YJ, Liao YS, Zhang JD (2020)

Behavior coding and ethogram of the free-ranging giant pandas (Ailuropoda melanoleuca)

Acta Theriologica Sinica, 40, 446-457. (in Chinese with English abstract)

[本文引用: 2]

[侯金, 严淋露, 黎亮, 李玉杰, 廖玉杉, 张晋东 (2020)

野生大熊猫行为谱及PAE编码系统

兽类学报, 40, 446-457.]

[本文引用: 2]

Howe EJ, Buckland ST, Despres-Einspenner ML, Kuhl HS (2017)

Distance sampling with camera traps

Methods in Ecology and Evolution, 8, 1558-1565.

DOI:10.1111/2041-210X.12790      URL     [本文引用: 1]

Huang XY, Zhang XC, Chan BPL, Li F (2019)

Discovery of Gongshan muntjac (Muntiacus gongshanensis) in Tengchong, Yunnan Province

Acta Theriologica Sinica, 39, 595-598. (in Chinese with English abstract)

[本文引用: 1]

[黄湘元, 张兴超, 陈辈乐, 李飞 (2019)

云南省腾冲发现贡山麂

兽类学报, 39, 595-598.]

[本文引用: 1]

Huang ZP, Qi XG, Garber PA, Jin T, Guo ST, Li S, Li BG (2014)

The use of camera traps to identify the set of scavengers preying on the carcass of a golden snub-nosed monkey (Rhinopithecus roxellana)

PLoS ONE, 9, e87318.

DOI:10.1371/journal.pone.0087318      URL     [本文引用: 1]

Ji Y, Yuan S, Fu HP, Yang SW, Bu F, Li X, Wu XD (2021)

Activity strategy and pattern of the Siberian jerboa (Orientallactaga sibirica) in the Alxa desert region, China

PeerJ, 9, e10996.

DOI:10.7717/peerj.10996      URL     [本文引用: 1]

Jia D, Li PY, Zhao X, Cheng C, Xiao LY, Z (2020)

Overview of Sanjiangyuan Community-based Camera- trapping Monitoring Platform

Biodiversity Science, 28, 1104-1109. (in Chinese with English abstract)

DOI:10.17520/biods.2019322      URL     [本文引用: 1]

[贾丁, 李沛芸, 赵翔, 程琛, 肖凌云, 吕植 (2020)

三江源红外相机社区监测平台概述

生物多样性, 28, 1104-1109.]

[本文引用: 1]

Jia XD, Liu XH, Yang XZ, Wu PF, Songer M, Cai Q, He XB, Zhu Y (2014)

Seasonal activity patterns of ungulates in Qinling Mountains based on camera-trap data

Biodiversity Science, 22, 737-745. (in Chinese with English abstract)

DOI:10.3724/SP.J.1003.2014.140073      [本文引用: 1]

Between August 2009 and April 2013, in the Guanyingshan Nature Reserve, Shaanxi Province, we collected photo data on six ungulates (Budorcas taxicolor, Naemorhedus griseus, Elaphodus cephalophus, Capricornis milneedwardsii, Muntiacus reevesi and Moschus berezovskii) with 18 infrared cameras. Using the relative abundance index (RAI), we analyzed activity patterns and seasonal differences of these six species. The results show that: (1) their total RAI in the study area reaches 58.71%, the RAI of B. taxicolor was 28.02%, and it was 13.24% for N. griseus, 10.08% for E. cephalophus, 4.21% for C. milneedwardsii, 2.26% for M. reevesi, and 0.90% for M. berezovskii. (2) Monthly RAIs (MRAI) of six ungulates reflected seasonal activity patterns; B. taxicolor, N. griseus, E. cephalophus, C. milneedwardsii, M. reevesi exhibited similar activity patterns. These species were most active in summer, became inactive in autumn and winter, and then gradually increased activity in spring. M. berezovskii, on the other hand, was most active in winter and least active in summer. (3) The time-period relative abundance indices (TRAI) of the six ungulates reflect their daily activity patterns. B. taxicolor and N. griseus have similar daily activity patterns with an active peak at 06:00-20:00.The daily activity pattern of E. cephalophus, M. reevesi and M. berezovskii showed obvious crepuscular habits. C. milneedwardsii also has two peaks but at 02:00-06:00 and 20:00-22:00 implying nocturnal activities. (4) Comparative analyses of daily activity patterns among the four seasons showed that B. taxicolor displayed a different pattern in spring with an activity peak at 16:00-20:00. Compared with other seasons, N. gresius, E. cephalophus and C. milneedwardsii have different patterns in winter with either a delayed or advanced activity peak. In the case of M. reevesi, spring daily activity patterns showed two peaks at 00:00-10:00 and 18:00-20:00. Due to a paucity of captures, M. berezovskii showed different activity patterns in all four seasons. (5) Analysis of the nocturnality showed that C. milneedwardsii was obviously nocturnal with a nighttime relative abundance index (NRAI) of 65.81%. Our results help us to understand the activity patterns of these ungulates in Qinling, to monitor their population dynamics, and provide a theoretical basis and data support for the nature reserves to protect the ungulate animals more efficiently.

[贾晓东, 刘雪华, 杨兴中, 武鹏峰, Songer M, 蔡琼, 何祥博, 朱云 (2014)

利用红外相机技术分析秦岭有蹄类动物活动节律的季节性差异

生物多样性, 22, 737-745.]

DOI:10.3724/SP.J.1003.2014.140073      [本文引用: 1]

2009年8月至2013年4月期间, 在陕西观音山自然保护区, 利用18台红外相机收集到羚牛(Budorcas taxicolor)、川西斑羚(Naemorhedus griseus)、中华鬣羚(Capricornis milneedwardsii)、毛冠鹿(Elaphodus cephalophus)、小麂(Muntiacus reevesi)、林麝(Moschus berezovskii) 6种有蹄类动物的照片数据, 通过相对丰富度指数分析了它们的活动规律及季节性差异。结果表明: (1)6种有蹄类动物在研究区域总丰富度达到了58.71%, 其中羚牛的相对丰富度是28.02%, 川西斑羚13.24%, 毛冠鹿10.08%, 中华鬣羚4.21%, 小麂2.26%, 林麝0.90%。(2)6种有蹄类动物的月相对丰富度反映了其年活动格局, 其中羚牛、川西斑羚、毛冠鹿、中华鬣羚、小麂表现出一致性, 即夏季活动最为频繁, 秋季减弱, 冬季达到活动低谷, 春季逐渐回升; 而林麝则在冬季活动最为频繁, 夏季最弱。(3)日时间段相对丰富度反映了动物全年的日活动规律, 其中川西斑羚和羚牛相似, 主要以白天活动为主; 毛冠鹿、小麂、林麝具有明显的晨昏活动习性; 中华鬣羚活动高峰出现在02:00-06:00和20:00-22:00, 以夜间活动为主。(4)分析不同季节6种有蹄类动物日活动规律, 羚牛在春季出现一定的差异, 活动高峰出现在16:00-20:00; 川西斑羚、毛冠鹿、中华鬣羚在冬季表现出一定的差异, 活动高峰相对延迟或者提前; 小麂春季表现出差异, 活动主要集中在00:00-10:00和18:00-20:00; 林麝由于数据相对较少, 在4个季节表现出不同的活动规律。(5)夜行性分析得到中华鬣羚具有较强的夜间活动能力, 夜间相对丰富度达到了65.81%。这些研究结果有助于监测有蹄类动物种群的变化, 为保护区有效保护管理提供了数据支持。

Jiang BR, Pei K, Pan YR (2007)

A brief view on the standardization of automatic camera research in Taiwan

Notes and Newsletter of Wildlifers, 11, 2-12. (in Chinese)

[本文引用: 1]

[姜博仁, 裴家骐, 潘怡如 (2007)

自动照相机研究在台湾标准化之浅见

野生动物保育专报及通讯, 11, 2-12.]

[本文引用: 1]

Karanth KU, Nichols JD (1998)

Estimation of tiger densities in India using photographic captures and recaptures

Ecology, 79, 2852-2862.

DOI:10.1890/0012-9658(1998)079[2852:EOTDII]2.0.CO;2      URL     [本文引用: 1]

Kays R, McShea WJ, Wikelski M, Zurell D (2020)

Born-digital biodiversity data: Millions and billions

Diversity and Distributions, 26, 644-648.

DOI:10.1111/ddi.12993      URL     [本文引用: 6]

Keitt TH, Abelson ES (2021)

Ecology in the age of automation

Science, 373, 858-859.

DOI:10.1126/science.abi4692      PMID:34413227      [本文引用: 1]

Khwaja H, Buchan C, Wearn OR, Bahaa-El-Din L, Bantlin D, Bernard H, Bitariho R, Bohm T, Borah J, Brodie J, Chutipong W, Preez BDU, Ebang-Mbele A, Edwards S, Fairet E, Frechette JL, Garside A, Gibson L, Giordano A, Veeraswami GG, Granados A, Gubbi S, Harich F, Haurez B, Havmøller RW, Helmy O, Isbell LA, Jenks K, Kalle R, Kamjing A, Khamcha D, Kiebou-Opepa C, Kinnaird M, Kruger C, Laudisoit A, Lynam A, MacDonald SE, Mathai J, Sienne JM, Meier A, David MILLS, Mohd-Azlan J, Nakashima Y, Nash HC, Ngoprasert D, Nguyen A, O’Brien T, Olson D, Orbell C, Poulsen J, Ramesh T, Reeder DA, Reyna R, Rich LN, Rode-Margono J, Rovero F, Sheil D, Shirley MH, Stratford K, Sukumal N, Suwanrat S, Tantipisanuh N, Tilker A, Berkel TV, Weyde LV, Varney M, Weise F, Wiesel I, Wilting A, Wong ST, Waterman C, Challender DWS (2019)

Pangolins in global camera trap data: Implications for ecological monitoring

Global Ecology and Conservation, 20, e00769.

DOI:10.1016/j.gecco.2019.e00769      URL     [本文引用: 1]

Kobayashi S, Denda T, Liao CC, Wu SH, Lin YH, Izawa M (2017)

Squirrel pollination of Mucuna macrocarpa (Fabaceae) in Taiwan

Journal of Mammalogy, 98, 533-541.

[本文引用: 1]

Kobayashi S, Gale SW, Denda T, Izawa M (2019)

Civet pollination in Mucuna birdwoodiana (Fabaceae: Papilionoideae)

Plant Ecology, 220, 457-466.

DOI:10.1007/s11258-019-00927-y      [本文引用: 1]

Inferring pollinators from floral traits is problematic because many flowers do not conform to a prescribed phenotype by which they may be assigned to any one particular pollination syndrome.' This necessitates empirical investigation to confirm pollinator relationships. Mucuna birdwoodiana is thought to be fruit bat-pollinated on account of its malodorous, pale green, gullet-type flowers, but we sought to clarify its pollination system through direct examination. This study was conducted in Hong Kong. Flowers of this species undergo explosive opening during pollination. Bagging experiments were conducted to check the necessity of this mechanism to achieve fruit set. Floral visitors were recorded by video camera traps and nectar secretion patterns were surveyed. Flowers do not open automatically and unopened flowers do not fructify. Masked palm civets, Paguma larvata, and introduced Pallas's squirrels, Callosciurus erythraeus styani, were observed opening flowers, and fruits were found to form on flowers opened by both species. Paguma larvata opened flowers more frequently and less destructively than C. e. styani. The nectar is sucrose-dominant with no variation in nectar volume nor sugar concentration throughout the day. Pollination success in M. birdwoodiana is dependent on flower-opening animals. The primary pollinator of M. birdwoodiana is P. larvata, not fruit bats as had been suggested by a suite of supposedly adaptive floral traits.

Kobayashi S, Gale SW, Denda T, Izawa M (2021)

Rat- and bat-pollination of Mucuna championii (Fabaceae) in Hong Kong

Plant Species Biology, 36, 84-93.

DOI:10.1111/1442-1984.12298      URL     [本文引用: 1]

Kong YQ, Li S, Liu BQ, Zhou JJ, Li C, Yu JP (2021)

Distribution records and conservation status of Chinese pangolin (Manis pentadactyla) in China during 2010-2020

Biodiversity Science, 29, 910-917. (in Chinese with English abstract)

DOI:10.17520/biods.2020446      URL     [本文引用: 2]

[孔玥峤, 李晟, 刘宝权, 周佳俊, 李成, 余建平 (2021)

2010-2020年中华穿山甲在中国的发现记录及保护现状

生物多样性, 29, 910-917.]

[本文引用: 2]

Kramer-Schadt S, Reinfelder V, Niedballa J, Lindenborn J, Stillfried M, Heckmann I, Wilting A (2016)

The Borneo carnivore database and the application of predictive distribution modelling

The Raffles Bulletin of Zoology, 33, 18-41.

[本文引用: 1]

Li C, Zhao C, Fan PF (2015)

White-cheeked macaque (Macaca leucogenys): A new macaque species from Medog, southeastern Tibet

American Journal of Primatology, 77, 753-766.

DOI:10.1002/ajp.22394      PMID:25809642      [本文引用: 2]

We describe a newly discovered Macaca species from the Medog, in southeastern Tibet, China, Macaca leucogenys sp. nov or the "white-cheeked macaque". Based on 738 photos taken during direct observations and captured by camera traps this new species appears to be distinct from the Macaca sinica species group. Moreover, the species is distinguished from all potential sympatric macaque species (M. mulatta, M. thibetana, M. assamensis, and M. munzala) in exhibiting a suite of pelage characteristics including relatively uniform dorsal hair pattern, hairy ventral pelage, relative hairless short tail, prominent pale to white side- and chin-whiskers creating a white cheek and round facial appearance, dark facial skin on the muzzle, long and thick hairs on its neck, and a round rather than arrow-shaped male genitalia. This new macaque species was found to exploit a diverse set of habitat types from tropical forest at 1395 m, to primary and secondary evergreen broad-leaved forest at 2000 m, as well as mixed broadleaf-conifer forest at 2700 m. Its range may extend to neighboring counties in Tibet and the part of southeastern Tibet controlled by India. The white-cheeked macaque is threatened by illegal hunting and the construction of hydropower stations. Discovery of this new primate species further highlights the high value for biodiversity conservation of southeastern Tibet and calls for more intensive surveys, studies, and environmental protection in this area.© 2015 Wiley Periodicals, Inc.

Li F, Luo L, Chan BPL (2019)

Notes on distribution, status and ecology of Asian small-clawed otter (Aonyx cinereus) in Diaoluoshan National Nature Reserve, Hainan Island, China

In: Proceedings of the 14th International Otter Congress, pp. 39-46. IUCN Specialist Group Bulletin, 36.

[本文引用: 1]

Li F, Zheng X, Jiang XL, Chan BPL (2017a)

Rediscovery of the sun bear (Helarctos malayanus) in Yingjiang County, Yunnan Province, China

Zoological Research, 38, 206-207. (in Chinese with English abstract)

[本文引用: 2]

[李飞, 郑玺, 蒋学龙, 陈辈乐 (2017a)

云南盈江发现野生马来熊(Helarctos malayanus)

动物学研究, 38, 206-207.]

[本文引用: 2]

Li F, Zheng X, Zhang HR, Yang JH, Chan BPL (2017b)

The current status and conservation of otters on the coastal islands of Zhuhai, Guangdong Province, China

Biodiversity Science, 25, 840-846. (in Chinese with English abstract)

DOI:10.17520/biods.2017130      URL     [本文引用: 2]

[李飞, 郑玺, 张华荣, 杨剑焕, 陈辈乐 (2017b)

广东省珠海市近海诸岛水獭现状与保护建议

生物多样性, 25, 840-846.]

[本文引用: 2]

Li HD, Tang LF, Jia CX, Holyoak M, Frund J, Huang XQ, Xiao ZS (2020)

The functional roles of species in metacommunities, as revealed by metanetwork analyses of bird-plant frugivory networks

Ecology Letters, 23, 1252-1262.

DOI:10.1111/ele.13529      URL     [本文引用: 1]

Li JQ, Xu HG, Wan YQ, Sun JX, Li S, Cai L (2018)

Progress in construction of China Mammal Diversity Observation Network (China BON-Mammals)

Journal of Ecology and Rural Environment, 34(1), 12-19. (in Chinese with English abstract)

[本文引用: 6]

[李佳琦, 徐海根, 万雅琼, 孙佳欣, 李晟, 蔡蕾 (2018)

全国哺乳动物多样性观测网络(China BON- Mammals)建设进展

生态与农村环境学报, 34(1), 12-19.]

[本文引用: 6]

Li S (2020)

Development progress and outlook of the wildlife camera-trapping networks in China

Biodiversity Science, 28, 1045-1048. (in Chinese)

DOI:10.17520/biods.2020425      [本文引用: 6]

[李晟 (2020)

中国野生动物红外相机监测网络建设进展与展望

生物多样性, 28, 1045-1048.]

DOI:10.17520/biods.2020425      [本文引用: 6]

Li S, McShea WJ, Wang DJ, Gu XD, Zhang XF, Zhang L, Shen XL (2020)

Retreat of large carnivores across the giant panda distribution range

Nature Ecology & Evolution, 4, 1327-1331.

Li S, McShea WJ, Wang DJ, Huang JZ, Shao LK (2012)

A direct comparison of camera-trapping and sign transects for monitoring wildlife in the Wanglang National Nature Reserve, China

Wildlife Society Bulletin, 36, 538-545.

DOI:10.1002/wsb.161      URL     [本文引用: 1]

Li S, McShea WJ, Wang DJ, Shao LK, Shi XG (2010a)

The use of infrared-triggered cameras for surveying phasianids in Sichuan Province, China

Ibis, 152, 299-309.

DOI:10.1111/j.1474-919X.2009.00989.x      URL     [本文引用: 1]

Li S, McShea WJ, Wang DJ, Shen XL, Bu HL, Guan TP, Wang F, Gu XD, Zhang XF, Liao HH (2020)

Construction progress of the Camera-trapping Network for the Mountains of Southwest China

Biodiversity Science, 28, 1049-1058. (in Chinese with English abstract)

DOI:10.17520/biods.2020038      URL     [本文引用: 1]

[李晟, McShea WJ, 王大军, 申小莉, 卜红亮, 官天培, 王放, 古晓东, 张晓峰, 廖灏泓 (2020)

西南山地红外相机监测网络建设进展

生物多样性, 28, 1049-1058.]

[本文引用: 1]

Li S, Wang DJ, Gu XD, McShea WJ (2010b)

Beyond pandas, the need for a standardized monitoring protocol for large mammals in Chinese nature reserves

Biodiversity and Conservation, 19, 3195-3206.

DOI:10.1007/s10531-010-9886-x      URL     [本文引用: 2]

Li XH, Tian HD, Piao ZJ, Wang GM, Xiao ZS, Sun YH, Gao EH, Holyoak M (2022)

cameratrapR: An R package for estimating animal density using camera trapping data

Ecological Informatics, 69, 101597.

DOI:10.1016/j.ecoinf.2022.101597      URL     [本文引用: 1]

Li XH, Yu JJ, Zhang P, Piao ZJ, Xiao ZS (2016)

Estimating population density of small rodents using camera traps

Acta Ecologica Sinica, 36, 2311-2318. (in Chinese with English abstract)

[本文引用: 1]

[李欣海, 于家捷, 张鹏, 朴正吉, 肖治术 (2016)

应用红外相机监测结果估计小型啮齿类物种的种群密度

生态学报, 36, 2311-2318.]

[本文引用: 1]

Li XY, Bleisch WV, Jiang XL (2018)

Using large spatial scale camera trap data and hierarchical occupancy models to evaluate species richness and occupancy of rare and elusive wildlife communities in Southwest China

Diversity and Distributions, 24, 1560-1572.

DOI:10.1111/ddi.12792      URL     [本文引用: 1]

Li XY, Bleisch WV, Liu XW, Hu WQ, Jiang XL (2020a)

Human disturbance and prey occupancy as predictors of carnivore richness and biomass in a Himalayan hotspot: Drivers affecting carnivores richness and biomass

Animal Conservation, 24, 64-72.

DOI:10.1111/acv.12600      URL     [本文引用: 2]

Li XY, Bleisch WV, Liu XW, Jiang XL (2020b)

Camera-trap surveys reveal high diversity of mammals and pheasants in Medog, Tibet

Oryx, 55, 177-180.

DOI:10.1017/S0030605319001467      URL     [本文引用: 1]

Li XY, Hu WQ, Bleisch WV, Li Q, Wang HJ, Lu W, Sun J, Zhang FY, Ti B, Jiang XL (2022)

Functional diversity loss and change in nocturnal behavior of mammals under anthropogenic disturbance

Conservation Biology, 36, e13839.

[本文引用: 1]

Li XY, Hu WQ, Pu CZ, Li Q, Yu QP, Hu ZC, Bleisch WV, Jiang XL (2020)

Camera-trapping monitoring platform for mammals and pheasants in the Longitudinal Range and Gorge Region of Southwest China: Protocol, progress and future outlook

Biodiversity Science, 28, 1090-1096. (in Chinese with English abstract)

DOI:10.17520/biods.2020105      URL     [本文引用: 1]

[李学友, 胡文强, 普昌哲, 李权, 于秋鹏, 胡哲畅, Bleisch WV, 蒋学龙 (2020)

西南纵向岭谷区兽类及雉类红外相机监测平台: 方案、进展与前景

生物多样性, 28, 1090-1096.]

[本文引用: 1]

Li Y, Kim J, Li HL, Peng YX, Chen M, Zhu WH, Pandey P, Sedash G, Wang TM, Darman Y, Lee H (2022)

Northward range expansion of water deer in Northeast Asia: Direct evidence and management implications

Animals, 12, 1392.

DOI:10.3390/ani12111392      URL     [本文引用: 1]

Li ZL, Kang AL, Lang JM, Xue YG, Ren Y, Zhu ZW, Ma JZ, Liu PQ, Jiang GS (2014)

On the assessment of big cats and their prey populations based on camera trap data

Biodiversity Science, 22, 725-732. (in Chinese with English abstract)

DOI:10.3724/SP.J.1003.2014.14079      [本文引用: 1]

The development of camera traps has improved our ability to study Amur tigers (Panthera tigris altaica), Amur leopards (Panthera pardus orientalis) and their prey populations. This research introduces camera trap monitoring methods of Amur tigers, Amur leopards and their prey populations in Chunhua and Madida areas of the Hunchun Nature Reserve, Changbai Mountains, China. A selection of monitoring positions, methods of erecting, parameter settings, and data filtering techniques are presented. Additionally, unique identifiers of Amur tigers and Amur leopards based on body patterns, calculations of relative abundance indexes (RAI), and the establishment of RAI models between the predators and prey are presented. We discuss the applicability of unique identifiers with ipsilateral patterns, the differences between camera trap monitoring and traditional survey methods, and the error of camera trap monitoring. We conclude that predicting densities of Amur tigers and Amur leopards with camera traps and automatic-individual-identifiers still needs improvement. Camera trap densities of one pair per 25 km2 can meet the needs for Amur tigers and leopards within Chunhua and Madida of the Hunchun Nature Reserve, but a separate monitoring project is needed for ungulates prey.

[李治霖, 康霭黎, 郎建民, 薛延刚, 任毅, 朱志文, 马建章, 刘培琦, 姜广顺 (2014)

探讨基于红外相机技术对大型猫科动物及其猎物的种群评估方法

生物多样性, 22, 725-732.]

DOI:10.3724/SP.J.1003.2014.14079      [本文引用: 1]

红外相机技术的发展促进了对东北虎(Panthera tigris altaica)、东北豹(Panthera pardus orientalis)及其猎物种群的研究。本研究以珲春保护区春化和马滴达两个区域的监测结果为例, 介绍利用该技术对我国长白山区东北虎、东北豹及其猎物的种群评估方法, 包括监测位点的选择、相机的架设方式及参数设置、数据筛选、东北虎和东北豹体侧花纹个体识别方法、物种相对丰富度的计算以及捕食者与猎物丰富度关系模型的构建。最后就东北虎、东北豹体侧花纹个体识别技术的适用性、红外相机监测与传统调查方法的差异, 相机监测的误差进行了讨论。研究表明, 利用红外相机技术进行密度预测以及东北虎、东北豹个体自动识别技术还需继续完善。1对/25 km<sup>2</sup>的相机架设密度基本上满足对于珲春保护区春化至马滴达区域虎豹的监测强度要求, 但对于有蹄类则需要另外的监测方案。

Li ZL, Wang TM, Smith JLD, Feng RN, Feng LM, Mou P, Ge JP (2018)

Coexistence of two sympatric flagship carnivores in the human-dominated forest landscapes of Northeast Asia

Landscape Ecology, 34, 291-305.

DOI:10.1007/s10980-018-0759-0      URL     [本文引用: 1]

Li ZX (2003)

First image of an Amur tiger taken by infrared triggered camera system in China

Chinese Wildlife, 24(2), 12. (in Chinese)

[本文引用: 1]

[李志兴 (2003)

我国第一张利用远红外线拍摄的野生东北虎照片

野生动物学报, 24(2), 12.]

[本文引用: 1]

Liu MZ, Wang YQ, Xia F, Bu HL, Liu YL, Shen XL, Li S (2022)

Free-ranging livestock altered the spatiotemporal behavior of the endangered North Chinese leopard (Panthera pardus japonensis) and its prey and intensified human-leopard conflicts

Integrative Zoology, doi: 10.1111/1749-4877.12635.

[本文引用: 1]

Liu SY, Wu Y, Li S (2020) Handbook of the Mammals of China, 2nd edn. The Straits Publishing and Distributing Group, Fuzhou. (in Chinese)

[本文引用: 1]

[刘少英, 吴毅, 李晟 (2020) 中国兽类图鉴(第二版). 海峡出版发行集团, 福州.]

[本文引用: 1]

Liu XH, Zhang YK, Zhao XY, He XB, Cai Q, Zhu Y, He BS, Jiu Q (2020)

Introduction to the wildlife camera-trapping database of the middle Qinling Mountains

Biodiversity Science, 28, 1075-1080. (in Chinese with English abstract)

[本文引用: 1]

[刘雪华, 张语克, 赵翔宇, 何祥博, 蔡琼, 朱云, 何百锁, 酒强 (2020)

秦岭中段野生动物多样性的红外相机监测数据库平台介绍

生物多样性, 28, 1075-1080.]

[本文引用: 1]

Liu YJ, Li XY, Liang XC, Liu YL, Cheng C, Li J, Tang PP, Qi HY, Bian XX, He B, Xing R, Li S, Shi XG, Yang CM, Xue YD, Lian XM, Awangjiumei, Xierannima, Song DZ, Xiao LY, Z (2019)

Where and how many? The status of snow leopard (Panthera uncia) density surveys and knowledge gaps in China

Biodiversity Science, 27, 919-931. (in Chinese with English abstract)

DOI:10.17520/biods.2019027      URL     [本文引用: 3]

[刘沿江, 李雪阳, 梁旭昶, 刘炎林, 程琛, 李娟, 汤飘飘, 齐惠元, 卞晓星, 何兵, 邢睿, 李晟, 施小刚, 杨创明, 薛亚东, 连新明, 阿旺久美, 谢然尼玛, 宋大昭, 肖凌云, 吕植 (2019)

“在哪里”和“有多少”? 中国雪豹调查与空缺

生物多样性, 27, 919-931.]

DOI:10.17520/biods.2019027      [本文引用: 3]

雪豹(Panthera uncia)分布广泛且调查难度较大, 全世界的雪豹研究面临的首要问题是雪豹基础数据的缺乏。本文通过检索1980至2018年已发表的含有中国境内雪豹分布和密度信息的中英文文章共35篇, 从中提取出雪豹的分布与密度信息, 其中含有密度估计的文献18篇。同时, 来自雪豹调查的15位一线成员通过填写表格和问卷的形式提供了28个地块上未发表的雪豹密度调查信息。基于此, 我们逐一分析了各省份已有的雪豹调查现状和存在的调查空缺, 发现雪豹分布调查的两大空白区域主要存在于与吉尔吉斯斯坦接壤的西天山地区和西藏南部的冈底斯-念青唐古拉山山脉和喜马拉雅山脉。相对我国雪豹栖息地总面积, 有过密度估算的面积仅占1.7%, 仍然处于刚刚起步的阶段, 并且已有的密度调查几乎都是在质量较好的雪豹栖息地内进行的。今后除了需要继续努力收集汇总已有的调查结果, 仍然需要在雪豹分布区(特别是空缺区域)内增加调查。

Liu YL, Song DZ, Liu BB, Xia F, Chen YL, Wang YQ, Huang QW (2020)

Overview of the Camera-trapping Platform for Felid Species in China: Data integration by a conservation NGO

Biodiversity Science, 28, 1067-1074. (in Chinese with English abstract)

DOI:10.17520/biods.2020049      URL     [本文引用: 3]

[刘炎林, 宋大昭, 刘蓓蓓, 夏凡, 陈月龙, 王一晴, 黄巧雯 (2020)

中国猫科动物红外相机监测平台介绍: 民间环保机构的数据整合

生物多样性, 28, 1067-1074.]

[本文引用: 3]

Lu XL, Jiang ZG, Tang JR, Wang XJ, Xiang DQ, Zhang JP (2005)

Auto-trigger camera traps for studying giant panda and its sympatric wildlife species

Acta Zoologica Sinica, 51, 495-500. (in Chinese with English abstract)

[本文引用: 1]

[卢学理, 蒋志刚, 唐继荣, 王学杰, 向定乾, 张建平 (2005)

自动感应照相系统在大熊猫以及同域分布的野生动物研究中的应用

动物学报, 51, 495-500.]

[本文引用: 1]

Luo K, Hu YB, Lu ZY, Li DL (2018)

Interspecific feeding at a bird nest: Snowy-browed flycatcher (Ficedula hyperythra) as a helper at the rufous-bellied niltava (Niltava sundara) nest, Yunnan, Southwest China

Wilson Journal of Ornithology, 130, 1003-1008.

DOI:10.1676/1559-4491.130.4.1003      URL     [本文引用: 1]

Ma GF, Yang WJ, Wang XJ, Mo JY, Xiong HH, Jin JJ, Zhao CN, Yang JY, Yu HL (2021)

Camera-trapping survey on mammal and bird diversity in the Shennongjia National Park

Sichuan Journal of Zoology, 40, 581-590. (in Chinese with English abstract)

[本文引用: 1]

[马国飞, 杨万吉, 王晓菊, 莫家勇, 熊欢欢, 金胶胶, 赵宠南, 杨敬元, 余辉亮 (2021)

神农架国家公园鸟兽多样性的红外相机调查

四川动物, 40, 581-590.]

[本文引用: 1]

Ma KP (2015)

Biodiversity monitoring in China: From CForBio to Sino BON

Biodiversity Science, 23, 1-2. (in Chinese)

DOI:10.17520/biods.2015025      [本文引用: 1]

[马克平 (2015)

中国生物多样性监测网络建设: 从CForBio到Sino BON

生物多样性, 23, 1-2.]

DOI:10.17520/biods.2015025      [本文引用: 1]

Ma M, Xu F (2006)

Successful camera trapping on snow leopard in the Muzat Valley, Tomur Feng Nature Reserve, Xinjiang, P. R. China (October-December 2005)

Arid Land Geography, 29, 307-308. (in Chinese)

[本文引用: 1]

[马鸣, 徐峰 (2006)

利用红外自动照相技术首次拍摄到清晰雪豹照片——新疆木扎特谷雪豹冬季考察简报

干旱区地理, 29, 307-308.]

[本文引用: 1]

Ma SL, Harris RB (1996)

Use of remote camera systems to document wildlife species presence in forested areas of Yunnan

Zoological Research, 17, 360-370. (in Chinese)

[本文引用: 1]

[马世来,Harris RB (1996)

自动感应照像系统在野生动物调查中的应用

动物学研究, 17, 360-370.]

[本文引用: 1]

Ma ZY, He ZX, Wang YQ, Song DZ, Xia F, Cui SM, Su HX, Deng JL, Li P, Li S (2022)

An update on the current distribution and key habitats of the clouded leopard (Neofelis nebulosa) populations in China

Biodiversity Science, 30, 22349. (in Chinese with English abstract)

DOI:10.17520/biods.2022349      URL     [本文引用: 1]

[马子驭, 何再新, 王一晴, 宋大昭, 夏凡, 崔士明, 苏红信, 邓建林, 李平, 李晟 (2022)

中国云豹种群分布现状与关键栖息地信息更新

生物多样性, 30, 22349.]

DOI:10.17520/biods.2022349      [本文引用: 1]

云豹(Neofelis nebulosa)是中国大型猫科动物中对森林生态系统依赖性最高的物种。中国作为云豹的主要分布区, 由于长期以来缺乏深入研究和有效保护, 在盗猎、森林采伐、土地利用变化等威胁因素的共同作用下, 云豹在中国的分布范围和种群数量近数十年来均大幅缩减, 其分布现状亟需全面评估。本研究系统检索和查阅了国内1950年以来的云豹标本、野外调查记录、地方志、新闻报道等直接证据, 整理了中国各省级行政区内云豹记录存在的年代; 基于2010-2020年国内55个地区的红外相机监测数据, 结合同期研究文献中记录的中国云豹确认分布位点, 校准了已发表的云豹栖息地适合度模型, 并在此基础上叠加保护地和行政区划图层, 根据2010-2020年间森林覆盖率的减量评估云豹栖息地适合度的变化, 以识别我国的云豹关键栖息地和保护优先区。结果显示, 1950-2009年, 我国的云南、西藏、四川、陕西、甘肃、重庆、贵州、广西、广东、海南、湖北、湖南、安徽、江西、浙江、福建以及台湾共17个省级行政区有云豹分布, 但其中12个迄今已超过20年无确凿记录, 且目前仅在云南省和西藏自治区仍有云豹记录延续。当前我国大陆地区云豹潜在栖息地总面积64,093 km<sup>2</sup>, 分别位于9个连续的栖息地斑块中, 其中3个为跨境斑块。2010-2020年间, 我国境内共在5个自然保护区的10个样区记录到云豹, 全部位于西藏东南部以及云南西部和南部的2个跨境栖息地斑块(即&#x0201c;喜马拉雅-横断山脉西侧-若开山脉&#x0201d;和&#x0201c;无量山南麓-安南山脉&#x0201d;)的边缘。2010-2020年间, 这两个斑块在中国境内区域的年均森林覆盖率减量(0.84%)小于境外(1.57%)。从本研究的结果推断, 中国目前确认分布的云豹种群极有可能维持在跨境分布的生境中, 面临内部和跨境的双重挑战。相关保护地应有针对性地加强反盗猎执法, 并开展栖息地恢复工作以提升云豹栖息地质量与斑块连通性, 同时与周边分布区国家开展跨境保护合作, 为现有云豹种群的长期生存和发展提供必要基础。

MacKenzie DI, Nichols JD, Lachman GB, Droege S, Andrew RJ, Langtimm CA (2002)

Estimating site occupancy rates when detection probabilities are less than one

Ecology, 83, 2248-2255.

[本文引用: 1]

McShea WJ, Forrester T, Costello R, He ZH, Kays R (2016)

Volunteer-run cameras as distributed sensors for macrosystem mammal research

Landscape Ecology, 31, 55-66.

DOI:10.1007/s10980-015-0262-9      URL     [本文引用: 1]

McShea WJ, Shen XL, Liu F, Wang TM, Xiao ZS, Li S (2020)

China’s wildlife camera-trap monitoring need a unified standard

Biodiversity Science, 28, 1125-1131. (in Chinese and in English)

DOI:10.17520/biods.2020188      URL     [本文引用: 1]

[McShea WJ, 申小莉, 刘芳, 王天明, 肖治术, 李晟 (2020)

中国的野生动物红外相机监测需要统一的标准

生物多样性, 28, 1125-1131.]

[本文引用: 1]

Miao XR, Ren YF, Li LX, Xue MS, Wang PC, Wang YL, Fan ML, Huang XQ, Xiao ZS (2020)

First record for northern boundary of yellow-bellied weasel (Mustela kathiah) in the Southern Taihangshan Mountains of Northern China

Chinese Journal of Wildlife, 41, 1056-1059. (in Chinese with English abstract)

[本文引用: 1]

[苗先荣, 任迎丰, 李立新, 薛茂盛, 王朋程, 王云龙, 范明亮, 黄小群, 肖治术 (2020)

黄腹鼬(Mustela kathiah)在华北南太行山区——分布北界的首次记录

野生动物学报, 41, 1056-1059.]

[本文引用: 1]

Moore JF, Soanes K, Balbuena D, Beirne C, Bowler M, Carrasco-Rueda F, Cheyne SM, Coutant O, Forget P, Haysom JK, Houlihan PR, Olson ER, Lindshield S, Martin J, Tobler M, Whitworth A, Gregory T (2021)

The potential and practice of arboreal camera trapping

Methods in Ecology and Evolution, 12, 1768-1779.

DOI:10.1111/2041-210X.13666      URL     [本文引用: 1]

Nathan R, Monk CT, Arlinghaus R, Adam T, Alos J, Assaf M, Baktoft H, Beardsworth CE, Bertram MG, Bijleveld AI, Brodin T, Brooks JL, Campos-Candela A, Cooke SJ, Gjelland KO, Gupte PR, Harel R, Hellstrom G, Jeltsch F, Killen SS, Klefoth T, Langrock R, Lennox RJ, Lourie E, Madden JR, Orchan Y, Pauwels IS, Riha M, Roeleke M, Schlagel UE, Shohami D, Signer J, Toledo S, Vilk O, Westrelin S, Whiteside MA, Jaric I (2022)

Big-data approaches lead to an increased understanding of the ecology of animal movement

Science, 375, eabg1780.

DOI:10.1126/science.abg1780      URL     [本文引用: 1]

Norouzzadeh MS, Anh N, Kosmala M, Swanson A, Palmer MS, Packer C, Clune J (2018)

Automatically identifying, counting, and describing wild animals in camera-trap images with deep learning

Proceedings of the National Academy of Sciences, USA, 115, E5716-E5725.

[本文引用: 3]

O’Brien TG, Baillie JEM, Krueger L, Cuke M (2010)

The Wildlife Picture Index: Monitoring top trophic levels

Animal Conservation, 13, 335-343.

DOI:10.1111/j.1469-1795.2010.00357.x      URL     [本文引用: 1]

O’Connell Allan F, Nichols James D, Karanth KU (2011) Camera Traps in Animal Ecology. Springer, Tokyo.

[本文引用: 2]

Pacifici K, Reich BJ, Miller DAW, Gardner B, Stauffer G, Singh S, McKerrow A, Collazo J (2017)

Integrating multiple data sources in species distribution modeling: A framework for data fusion

Ecology, 98, 840-850.

DOI:10.1002/ecy.1710      PMID:28027588      [本文引用: 1]

The last decade has seen a dramatic increase in the use of species distribution models (SDMs) to characterize patterns of species' occurrence and abundance. Efforts to parameterize SDMs often create a tension between the quality and quantity of data available to fit models. Estimation methods that integrate both standardized and non-standardized data types offer a potential solution to the tradeoff between data quality and quantity. Recently several authors have developed approaches for jointly modeling two sources of data (one of high quality and one of lesser quality). We extend their work by allowing for explicit spatial autocorrelation in occurrence and detection error using a Multivariate Conditional Autoregressive (MVCAR) model and develop three models that share information in a less direct manner resulting in more robust performance when the auxiliary data is of lesser quality. We describe these three new approaches ("Shared," "Correlation," "Covariates") for combining data sources and show their use in a case study of the Brown-headed Nuthatch in the Southeastern U.S. and through simulations. All three of the approaches which used the second data source improved out-of-sample predictions relative to a single data source ("Single"). When information in the second data source is of high quality, the Shared model performs the best, but the Correlation and Covariates model also perform well. When the information quality in the second data source is of lesser quality, the Correlation and Covariates model performed better suggesting they are robust alternatives when little is known about auxiliary data collected opportunistically or through citizen scientists. Methods that allow for both data types to be used will maximize the useful information available for estimating species distributions.© 2016 The Authors. Ecology, published by Wiley Periodicals, Inc., on behalf of the Ecological Society of America.

Palmer MS, Fieberg J, Swanson A, Kosmala M, Packer C (2017)

A ‘dynamic’ landscape of fear: Prey responses to spatiotemporal variations in predation risk across the lunar cycle

Ecology Letters, 20, 1364-1373.

DOI:10.1111/ele.12832      PMID:28901034      [本文引用: 1]

Ambiguous empirical support for 'landscapes of fear' in natural systems may stem from failure to consider dynamic temporal changes in predation risk. The lunar cycle dramatically alters night-time visibility, with low luminosity increasing hunting success of African lions. We used camera-trap data from Serengeti National Park to examine nocturnal anti-predator behaviours of four herbivore species. Interactions between predictable fluctuations in night-time luminosity and the underlying risk-resource landscape shaped herbivore distribution, herding propensity and the incidence of 'relaxed' behaviours. Buffalo responded least to temporal risk cues and minimised risk primarily through spatial redistribution. Gazelle and zebra made decisions based on current light levels and lunar phase, and wildebeest responded to lunar phase alone. These three species avoided areas where likelihood of encountering lions was high and changed their behaviours in risky areas to minimise predation threat. These patterns support the hypothesis that fear landscapes vary heterogeneously in both space and time.© 2017 John Wiley & Sons Ltd/CNRS.

Palmer MS, Wang C, Plucinski J, Pringle RM (2022)

BoomBox: An Automated Behavioural Response (ABR) camera trap module for wildlife playback experiments

Methods in Ecology and Evolution, 13, 611-618.

DOI:10.1111/2041-210X.13789      URL     [本文引用: 1]

Pei K (1995)

Activity rhythm of the spinous country rat (Niviventer coxingi) in Taiwan

Zoological Studies, 34, 55-58.

[本文引用: 2]

Pei K (1998)

An evaluation of using auto-trigger cameras to record activity patterns of wild animals

Taiwan Journal of Forest Science, 13, 317-324. (in Chinese with English abstract)

[本文引用: 1]

[裴家骐 (1998)

利用自动照像设备记录野生动物活动模式之评估

台湾林业科学, 13, 317-324.]

[本文引用: 1]

Ping XG, Li CW, Jiang ZG, Liu WH, Zhu HB (2011)

Interference competition and group size effect in sika deer (Cervus nippon) at salt licks

Acta Ethologica, 14, 43-49.

DOI:10.1007/s10211-011-0092-y      URL     [本文引用: 1]

Qi JZ, Shi QH, Wang GM, Li ZL, Sun Q, Hua Y, Jiang GS (2015)

Spatial distribution drivers of Amur leopard density in Northeast China

Biological Conservation, 191, 258-265.

DOI:10.1016/j.biocon.2015.06.034      URL     [本文引用: 1]

Ren JH, Zhang Y, Chu T, Xiao WY (2020)

A preliminary study on summer and autumn activities of otters in Jiuzhaigou Wetland Reserve based on infrared trigger camera

Wetland Science & Management, 16(2), 57-60. (in Chinese with English abstract)

[本文引用: 1]

[任锦海, 张跃, 出塔, 肖维阳 (2020)

基于红外相机技术对九寨沟湿地保护区水獭夏秋季活动的初步研究

湿地科学与管理, 16(2), 57-60.]

[本文引用: 1]

Rovero F, Ahumada J (2017)

The Tropical Ecology, Assessment and Monitoring (TEAM) Network: An early warning system for tropical rain forests

Science of the Total Environment, 574, 914-923.

DOI:10.1016/j.scitotenv.2016.09.146      URL     [本文引用: 2]

Shek C, Chan CSM, Wan Y (2007)

Camera trap survey of Hong Kong terrestrial mammals in 2002-06

Hong Kong Biodiversity, 15, 1-11.

[本文引用: 2]

Shen XL, Li S, McShea WJ, Wang DJ, Yu JP, Shi XG, Dong W, Mi XC, Ma KP (2020)

Effectiveness of management zoning designed for flagship species in protecting sympatric species

Conservation Biology, 34, 158-167.

DOI:10.1111/cobi.13345      PMID:31069848      [本文引用: 2]

Flagship species have been used widely as umbrella species (i.e., species with large home range whose protection often provides protection for sympatric species) in the management of China's nature reserves. This conflation of flagship and umbrella species is best represented by the giant panda (Ailuropoda melanoleuca) and other large, endangered mammals designated as conservation targets in site selection and planning of reserves. Few empirical studies have tested the effectiveness of flagship species as surrogates for a broader range of sympatric species. Using extensive camera-trap data, we examined the effectiveness of management zones designated to protect flagship (target) species in conserving sympatric species in 4 wildlife reserves (Gutianshan, Changqing, Laohegou, and Wolong). We tested whether the progression from peripheral to core zones was associated with an increasing habitat association for both target and sympatric species. The distribution patterns of the study species across the zones in each reserve indicated a disparity between management zones and the species' habitat requirements. Management zone was included in the final model for all target species, and most of them had higher occurrence in core zones relative to less-protected zones, but zone was not a predictor for most of the sympatric species. When management zone was associated with the occurrence of sympatric species, threatened species generally had higher detections in core zones, whereas common species had higher detections outside of the core zone. Our results suggested that reserve planning based on flagship species does not adequately protect sympatric species due to their specialized habitat requirements. We recommend re-examining the effectiveness of management zoning and urge a multispecies and reserve-wide monitoring plan to improve protection of China's wildlife.© 2019 Society for Conservation Biology.

Shi CM, Liu D, Cui YL, Xie JJ, Roberts NJ, Jiang GS (2020)

Amur tiger stripes: Individual identification based on deep convolutional neural network

Integrative Zoology, 15, 461-470.

DOI:10.1111/1749-4877.12453      URL     [本文引用: 1]

Shi CM, Xu J, Roberts NJ, Liu D, Jiang GS (2022)

Individual automatic detection and identification of big cats with the combination of different body parts

Integrative Zoology, doi: 10.1111/1749-4877.12641.

[本文引用: 1]

Shi GQ, Guo YS, Luo YM, Gong ZC, Zhang GL, Piao ZJ, Wang ZC (2021)

Spring ashore activity rhythm of Eurasian otters (Lutra lutra) in Changbai Mountain, Jilin Province

Chinese Journal of Wildlife, 42, 693-699. (in Chinese with English abstract)

[本文引用: 1]

[史国强, 郭艳双, 罗玉梅, 巩振财, 张国利, 朴正吉, 王卓聪 (2021)

吉林长白山地区水獭春季岸上活动节律

野生动物学报, 42, 693-699.]

[本文引用: 1]

Shi XY, Fu Q, Wang L, Jiang ZY, Shi XG, Li S (2018)

Notes on the natural hybridization of golden pheasant Chrysolophus pictus and lady Amherst’s pheasant C. amherstiae in Anzihe Nature Reserve, Sichuan Province

Chinese Journal of Zoology, 53, 660-663. (in Chinese with English abstract)

[本文引用: 1]

[史晓昀, 付强, 王磊, 蒋泽银, 施小刚, 李晟 (2018)

四川鞍子河保护区发现红腹锦鸡与白腹锦鸡的自然杂交

动物学杂志, 53, 660-663.]

[本文引用: 1]

Shi XY, Shi XG, Hu Q, Guan TP, Fu Q, Zhang J, Yao M, Li S (2019)

Evaluating the potential habitat overlap and predation risk between snow leopards and free-range yaks in the Qionglai Mountains, Sichuan

Biodiversity Science, 27, 951-959. (in Chinese with English abstract)

DOI:10.17520/biods.2019062      [本文引用: 1]

Human-wildlife conflict (HWC) related to livestock predation is one of the main challenges for snow leopard conservation in China. The Qionglai Mountains are located on the southeastern edge of the snow leopard’s range, and we used the nature reserve network which transects the central Qionglai Mountains as our study area. We collected occurrence data for snow leopards and free-range yaks from camera-trapping surveys and animal fecal DNA analysis from 2014 to 2018 and then predicted the distribution of each species using species distribution models (MaxEnt). We mapped the overlapping patches of suitable habitats between snow leopards and yaks and used the extent of habitat overlapping as the indicator of potential predation risk. The results showed that, across the seven nature reserves, the predicted suitable habitat for snow leopards and yaks is 871.14 km 2 and 988.41 km 2, respectively. The overlapping habitat between the two species is 534.47 km 2, primarily distributed in the alpine meadow area in the western part of the study area, accounting for 61.35% of snow leopard’s suitable habitat. We suggest that, when developing the management plans of these nature reserves and the newly established Giant Panda National Park, managers should consider alpine grazing a key threat to wild snow leopards and give high priority to the management of high-risk areas identified in this study. Immediate actions are needed to reduce the risk of potential HWC through interdisciplinary approaches such as grazing control and alternative livelihoods in local communities.

[史晓昀, 施小刚, 胡强, 官天培, 付强, 张剑, 姚蒙, 李晟 (2019)

四川邛崃山脉雪豹与散放牦牛潜在分布重叠与捕食风险评估

生物多样性, 27, 951-959.]

DOI:10.17520/biods.2019062      [本文引用: 1]

由雪豹(Panthera uncia)捕食散放家畜引起的人兽冲突是目前中国雪豹保护面临的主要挑战之一。四川邛崃山脉地处雪豹分布范围的东南缘, 本研究以邛崃山中部的自然保护区群为研究区, 收集了2014-2018年红外相机调查和动物粪便DNA分析中采集到的雪豹与散放牦牛的分布位点, 使用MaxEnt物种分布模型预测两物种在研究区内的潜在分布范围, 以两物种分布重叠的程度作为评估雪豹捕食家畜潜在风险的指标, 从而识别雪豹-家畜冲突的高危区域。结果表明, 在邛崃山中部的保护区群中, 模型预测的雪豹适宜栖息地面积为871.14 km <sup>2</sup>, 牦牛适宜栖息地面积为988.41 km <sup>2</sup>, 二者重叠面积达534.47 km <sup>2</sup>, 主要分布在研究区西部的高山草甸地区, 占域内雪豹适宜栖息地总面积的61.35%。研究区域内总体上可能存在较高的雪豹-家畜冲突风险。在这些自然保护区以及新建的大熊猫国家公园的管理规划中, 应把高山放牧作为对区内野生雪豹种群的关键威胁之一, 重点关注模型预测的人兽冲突高危区域, 通过改变社区牧业管理方式、发展社区替代生计等方式, 降低潜在冲突的风险。

Shu ZF, Lu LR, Xiao ZS, Wang HY, Zhang Q (2021)

Breeding notes of wild mandarin duck, Aix galericulata, in Shaoguan, Guangdong Province

Chinese Journal of Zoology, 56, 960-961. (in Chinese)

[本文引用: 1]

[束祖飞, 卢李荣, 肖治术, 王海婴, 张强 (2021)

广东韶关野生鸳鸯繁殖记录

动物学杂志, 56, 960-961.]

[本文引用: 1]

Song DZ, Wang BP, Jiang JY, Wan SP, Cui SM, Wang TM, Feng LM (2014)

Using camera trap to monitor a north Chinese leopard (Panthera pardus japonesis) population and their main ungulate prey

Biodiversity Science, 22, 733-736. (in Chinese with English abstract)

DOI:10.3724/SP.J.1003.2014.14198      URL     [本文引用: 3]

[宋大昭, 王卜平, 蒋进原, 万绍平, 崔士明, 王天明, 冯利民 (2014)

山西晋中庆城林场华北豹及其主要猎物种群的红外相机监测

生物多样性, 22, 733-736.]

DOI:10.3724/SP.J.1003.2014.14198      [本文引用: 3]

华北豹(Panthera pardus japonesis)是中国特有的豹亚种。由于长期缺乏有效的科学调查, 目前对其分布、种群及动态、行为、猎物现状等基础信息不清。在2007-2014年期间, 本研究应用红外相机技术(camera trap)对山西晋中庆城林场的华北豹种群开展了长达7年的连续监测。先后监测到14只华北豹, 其中成年个体11只(3♀, 8♂), 幼体3只, 成年雌雄比例为0.375; 在其间出现了2次繁殖。该区域主要的有蹄类猎物为野猪(Sus scrofa)和西伯利亚狍(Capreolus pygargus), 其相对密度分别为4.16和3.48, 绝对密度分别为1.35只/km<sup>2</sup>和3.61只/km<sup>2</sup>。

Steenweg R, Hebblewhite M, Kays R, Ahumada J, Fisher JT, Burton C, Townsend SE, Carbone C, Rowcliffe JM, Whittington J, Brodie J, Royle JA, Switalski A, Clevenger AP, Heim N, Rich LN (2017)

Scaling-up camera traps: Monitoring the planet’s biodiversity with networks of remote sensors

Frontiers in Ecology and the Environment, 15, 26-34.

DOI:10.1002/fee.1448      URL     [本文引用: 2]

Su YH, Cai Q, Zhu ZY, He XB, Liu XH, Songer M (2022)

Impacts of a road on abundance of wild animals through infrared camera monitoring: A case study of road inside Guanyinshan National Nature Reserve

Acta Theriologica Sinica, 42, 49-57. (in Chinese with English abstract)

DOI:10.16829/j.slxb.150504      [本文引用: 1]

From July 2014 to October 2018, 20 infrared cameras were used to monitor the impacts of an internal road on the activities of wild mammals and birds in Guanyinshan National Nature Reserve in Shaanxi. A total of 16 168 pieces of photographs were obtained with 13 species of wild mammals and 14 species of wild birds. Among the detected species, 4 are listed as Class Ⅰ state key protected wild animals in China and 7 as Class Ⅱ. The result showed that the further away from the road, the more animal species appeared. 2 species of mammals only appeared in the area that is 100 m away from the road, which indicated that certain mammals showed an obvious avoidance effect on the road. As 8 species of birds only appeared in an area 50 m away from the road, birds showed a stronger avoidance effect than mammals. However, roads with fewer vehicles at night can provide easier night mobility for certain mammals, so the intensity of activity at night of takin (<i>Budorcas taxicolor</i>) near the road increased. Only the wild boar (<i>Sus scrofa</i>) in the area 5 m away from the road showed a peak in night activity to avoid human disturbance during the day. Only golden pheasant (<i>Chrysolophus pictus</i>) in an area 100 m away from the road have similar activity time as other studies in Qinling. This showed that golden pheasants near the road changed their activity time to adapt to road disturbance. Our study preliminarily proved that roads have a certain impact on wild animals. We suggest studies on road ecology in the whole Guanyinshan National Nature Reserve area.

[苏宇晗, 蔡琼, 朱自煜, 何祥博, 刘雪华,Songer M (2022)

利用红外相机技术监测道路对野生动物丰富度的影响——以观音山自然保护区一条内部道路为例

兽类学报, 42, 49-57.]

DOI:10.16829/j.slxb.150504      [本文引用: 1]

2014年7月至2018年10月,利用20台红外相机监测陕西观音山国家级自然保护区一条内部道路对兽类和鸟类活动的影响。监测期间获得照片16 168张,共鉴定到13种兽类和14种鸟类,包括4种国家Ⅰ级重点保护野生动物和7种国家Ⅱ级重点保护野生动物。结果显示,距道路的距离越远,出现的物种种类越多。有2种兽类只活动于距离道路100 m以外的范围,表明特定兽类对道路表现出明显的回避效应;鸟类对道路的回避效应更加明显,有8种鸟类只能在距离道路50 m外被观测到。但夜间车辆减少的道路可为大中型兽类如扭角羚(Budorcas taxicolor)提供夜间移动的便利,使得近道路的扭角羚夜间活动强度增加。与其他距离相比,只有5 m朝向道路的野猪(Sus scrofa)的夜间活动强度有小高峰,以回避该距离上昼间的人为干扰。仅距离道路100 m的红腹锦鸡(Chrysolophus pictus)的活动时间与其他研究相似,表明靠近道路的红腹锦鸡改变了活动时间以适应道路带来的干扰。研究结果初步证明道路对鸟兽活动有一定的影响,建议观音山国家级自然保护区开展全区的道路生态学研究。

Sugai LSM, Silva TSF, Ribeiro JW Jr, Llusia D (2019)

Terrestrial passive acoustic monitoring: Review and perspectives

BioScience, 69, 15-25.

DOI:10.1093/biosci/biy147      [本文引用: 1]

Passive acoustic monitoring (PAM) is quickly gaining ground in ecological research, following global trends toward automated data collection and big data. Using unattended sound recording, PAM provides tools for long-term and cost-effective biodiversity monitoring. Still, the extent of the potential of this emerging method in terrestrial ecology is unknown. To quantify its application and guide future studies, we conducted a systematic review of terrestrial PAM, covering 460 articles published in 122 journals (1992-2018). During this period, PAM-related studies showed above a fifteenfold rise in publication and covered three developing phases: establishment, expansion, and consolidation. Overall, the research was mostly focused on bats (50%), occurred in northern temperate regions (65%), addressed activity patterns (25%), recorded at night (37%), used nonprogrammable recorders (61%), and performed manual acoustic analysis (58%), although their applications continue to diversify. The future agenda should include addressing the development of standardized procedures, automated analysis, and global initiatives to expand PAM to multiple taxa and regions.

Suraci JP, Clinchy M, Dill LM, Roberts D, Zanette LY (2016)

Fear of large carnivores causes a trophic cascade

Nature Communications, 7, 10698.

DOI:10.1038/ncomms10698      PMID:26906881      [本文引用: 2]

The fear large carnivores inspire, independent of their direct killing of prey, may itself cause cascading effects down food webs potentially critical for conserving ecosystem function, particularly by affecting large herbivores and mesocarnivores. However, the evidence of this has been repeatedly challenged because it remains experimentally untested. Here we show that experimentally manipulating fear itself in free-living mesocarnivore (raccoon) populations using month-long playbacks of large carnivore vocalizations caused just such cascading effects, reducing mesocarnivore foraging to the benefit of the mesocarnivore's prey, which in turn affected a competitor and prey of the mesocarnivore's prey. We further report that by experimentally restoring the fear of large carnivores in our study system, where most large carnivores have been extirpated, we succeeded in reversing this mesocarnivore's impacts. We suggest that our results reinforce the need to conserve large carnivores given the significant "ecosystem service'' the fear of them provides.

Swarup P, Chen P, Hou R, Que P, Kong AWK (2021)

Giant panda behaviour recognition using images

Global Ecology and Conservation, 26, e01510.

DOI:10.1016/j.gecco.2021.e01510      URL     [本文引用: 1]

Tabak MA, Norouzzadeh MS, Wolfson DW, Sweeney SJ, Vercauteren KC, Snow NP, Halseth JM, Di Salvo PA, Lewis JS, White MD, Teton B, Beasley JC, Schlichting PE, Boughton RK, Wight B, Newkirk ES, Ivan JS, Odell EA, Brook RK, Lukacs PM, Moeller AK, Mandeville EG, Clune J, Miller RS, Photopoulou T (2018)

Machine learning to classify animal species in camera trap images: Applications in ecology

Methods in Ecology and Evolution, 10, 585-590.

DOI:10.1111/2041-210X.13120      URL     [本文引用: 1]

Tan K, Li JJ, Fang YH, Sun HL, Niu X, Yang SJ, Huang ZP, Xiao W (2022)

How the color of reflective materials influences the occurrence of mammals and birds

Global Ecology and Conservation, 38, e02187.

DOI:10.1016/j.gecco.2022.e02187      URL     [本文引用: 1]

Tang Z, Zhang F, Ming J, Yu XY, Yang F, Zhang DL, Long TT, Guan X, Wang PY (2019)

Rapid survey report on otters in Sichuan Wolong National Nature Reserve

Sichuan Forestry Exploration and Design, 25, 840-846. (in Chinese with English abstract)

[本文引用: 1]

[唐卓, 张凤, 明杰, 余小英, 杨帆, 张大磊, 龙婷婷, 管晓, 王鹏彦 (2019)

四川卧龙国家级自然保护区水獭快速调查报告

四川林勘设计, 25, 840-846.]

[本文引用: 1]

Tongkok S, Yuan SD, Alcantara MJM, Deng XB, Guo XM, He XL, Lin LX (2019)

Owston’s civet (Chrotogale owstoni) found in Xishuangbanna, Yunnan Province

Chinese Journal of Zoology, 54, 603-604. (in Chinese with English abstract)

[本文引用: 1]

[Tongkok S, 袁盛东, Alcantara MJM,邓晓保, 郭贤明, 和雪莲, 林露湘 (2019)

云南西双版纳发现缟灵猫

动物学杂志, 54, 603-604.]

[本文引用: 1]

Tuia D, Kellenberger B, Beery S, Costelloe BR, Zuffi S, Risse B, Mathis A, Mathis MW, van Langevelde F, Burghardt T, Kays R, Klinck H, Wikelski M, Couzin ID, van Horn G, Crofoot MC, Stewart CV, Berger-Wolf T (2022)

Perspectives in machine learning for wildlife conservation

Nature Communications, 13, 792.

DOI:10.1038/s41467-022-27980-y      PMID:35140206      [本文引用: 5]

Inexpensive and accessible sensors are accelerating data acquisition in animal ecology. These technologies hold great potential for large-scale ecological understanding, but are limited by current processing approaches which inefficiently distill data into relevant information. We argue that animal ecologists can capitalize on large datasets generated by modern sensors by combining machine learning approaches with domain knowledge. Incorporating machine learning into ecological workflows could improve inputs for ecological models and lead to integrated hybrid modeling tools. This approach will require close interdisciplinary collaboration to ensure the quality of novel approaches and train a new generation of data scientists in ecology and conservation.© 2022. The Author(s).

Wang D, Sai QGW, Wang ZH, Zhao HX, Lian XM (2022)

Spatiotemporal overlap among sympatric Pallas’s cat (Otocolobus manul), Tibetan fox (Vulpes ferrilata) and red fox (V. vulpes) in the source region of the Yangtze River

Biodiversity Science, 30, 21365. (in Chinese with English abstract)

DOI:10.17520/biods.2021365      URL     [本文引用: 2]

[王东, 赛青高娃, 王子涵, 赵宏秀, 连新明 (2022)

长江源区同域分布兔狲、藏狐和赤狐的时空重叠度

生物多样性, 30, 21365.]

DOI:10.17520/biods.2021365      [本文引用: 2]

兔狲(Otocolobus manul)、藏狐(Vulpes ferrilata)和赤狐(V. vulpes)是青藏高原三江源区域分布的重要小型食肉兽。本研究于2014年6月至2019年9月在青海省长江源区沱沱河和通天河沿岸选取208个位点布设红外相机, 通过所获取的时空分布数据比较了上述3种同域分布小型食肉兽的时空利用情况。通过空间重叠度系数的比较分析, 兔狲和藏狐、兔狲和赤狐以及藏狐和赤狐之间的空间重叠度系数分别为0.25、0.48和0.17, 这表明兔狲、藏狐和赤狐三者在空间利用上存在一定的差异。通过核密度估计方法分析, 兔狲和藏狐属典型的昼行性动物, 而赤狐以夜行性活动为主。兔狲、藏狐和赤狐每个物种在冷暖两季的日活动节律重叠指数分别为0.83、0.78和0.88。两两比较分析表明, 兔狲和藏狐二者的日活动节律重叠指数最高(0.84), 兔狲和赤狐在夜间活动时段存在一定重叠(0.63), 而藏狐和赤狐的时间生态位分化最明显, 重叠指数最低(0.48)。此外, 在暖季, 两两物种之间的日活动节律重叠指数均小于其冷季的重叠指数。综上所述, 长江源区兔狲、藏狐和赤狐3种小型食肉兽可通过空间和时间资源的利用差异来降低物种间的干扰和竞争, 从而达到同域物种共存的目的。

Wang D, Wan YQ, Wang SZ, Chen JP, Wu T, Li JQ, Lian XM (2020)

Camera-trapping survey of the diversity of mammals and birds in the Tuotuo River basin of the source region of the Yangtze River

Biodiversity Science, 28, 1132-1140. (in Chinese with English abstract)

DOI:10.17520/biods.2020086      URL     [本文引用: 1]

[王东, 万雅琼, 汪世钊, 陈佳萍, 吴彤, 李佳琦, 连新明 (2020)

基于红外相机技术调查长江正源沱沱河流域鸟兽多样性

生物多样性, 28, 1132-1140.]

[本文引用: 1]

Wang DJ, Li S, Jin T, Shao LK (2012)

How important is meat in the diet of giant pandas, the most herbivorous bear?

International Bear News, 21, 7-9.

[本文引用: 1]

Wang DJ, Li S, McShea WJ, Li MF (2006)

Use of remote-trip cameras for wildlife surveys and evaluating the effectiveness of conservation activities at a nature reserve in Sichuan Province, China

Environmental Management, 38, 942-951.

PMID:17001506      [本文引用: 1]

Monitoring the effectiveness of management activities within reserves is always a complicated task. When the focus of management activities is mammals, it is difficult to monitor their populations in a way that is rapid, effective, and inexpensive. We report on a mammal survey of a reserve in southwest China using remote-trip cameras. We surveyed 329 locations over 2 field seasons in 2002 and 2003. Sixteen species of mammals were detected with these cameras, with four species documented for the first time. After accounting for variation due to slope, aspect, elevation, and habitat type, the distribution of six species was positively associated with the location of conservation stations and/or patrolling routes. Species of medium-sized mammals are excellent candidates for monitoring programs based on these cameras, due to their relative abundance, sufficient size to be detected by the camera units, and sensitivity to human activity. The distribution of mammals relative to management efforts is a relatively rapid means to assess reserve effectiveness. The repeat use of the cameras as part of a monitoring plan should provide a quantifiable measure of reserve effectiveness.

Wang F, McShea WJ, Li S, Wang DJ (2018)

Does one size fit all? A multispecies approach to regional landscape corridor planning

Diversity and Distributions, 24, 415-425.

DOI:10.1111/ddi.12692      URL     [本文引用: 1]

Wang F, McShea WJ, Wang DJ, Li S (2015)

Shared resources between giant panda and sympatric wild and domestic mammals

Biological Conservation, 186, 319-325.

DOI:10.1016/j.biocon.2015.03.032      URL     [本文引用: 2]

Wang F, McShea WJ, Wang DJ, Li S, Zhao Q, Wang H, Lu Z (2014)

Evaluating landscape options for corridor restoration between giant panda reserves

PLoS ONE, 9, e105086.

DOI:10.1371/journal.pone.0105086      URL     [本文引用: 2]

Wang F, Zhang ZX, Li C, Sun G, Zhao X, Lu Z (2021)

Add Himalaya’s Grand Canyon to China’s first national parks

Nature, 592, 353.

[本文引用: 2]

Wang QY, Zheng KD, Han XS, He F, Zhao X, Fan PF, Zhang L (2021)

Site-specific and seasonal variation in habitat use of Eurasian otters (Lutra lutra) in western China: Implications for conservation

Zoological Research, 42, 825-833.

[本文引用: 1]

Wang TM, Feng LM, Mou P, Wu JG, Smith JLD, Xiao WH, Yang HT, Dou HL, Zhao XD, Cheng YC, Zhou B, Wu HY, Zhang L, Tian Y, Guo QX, Kou XJ, Han XM, Miquelle DG, Oliver CD, Xu RM, Ge JP (2016)

Amur tigers and leopards returning to China: Direct evidence and a landscape conservation plan

Landscape Ecology, 31, 491-503.

DOI:10.1007/s10980-015-0278-1      URL     [本文引用: 1]

Wang TM, Feng LM, Yang HT, Bao L, Wang HF, Ge JP (2020)

An introduction to Long-term Tiger-Leopard Observation Network based on camera traps in Northeast China

Biodiversity Science, 28, 1059-1066. (in Chinese with English abstract)

DOI:10.17520/biods.2020139      URL     [本文引用: 4]

[王天明, 冯利民, 杨海涛, 鲍蕾, 王红芳, 葛剑平 (2020)

东北虎豹生物多样性红外相机监测平台概述

生物多样性, 28, 1059-1066.]

[本文引用: 4]

Wang TM, Royle JA, Smith JLD, Zou L, Lu XY, Li T, Yang HT, Li ZL, Feng RN, Bian YJ, Feng LM, Ge JP (2018)

Living on the edge: Opportunities for Amur tiger recovery in China

Biological Conservation, 217, 269-279.

DOI:10.1016/j.biocon.2017.11.008      URL     [本文引用: 2]

Wang Y, Guan L Piao ZJ, Kong YP (2016)

Impacts of highways on the occurrence rate of middle-to-large mammals in Changbai Mountain based on camera-trapping

Sichuan Journal of Zoology, 35, 593-600. (in Chinese with English abstract)

[本文引用: 1]

[王云, 关磊, 朴正吉, 孔亚平 (2016)

应用红外相机技术监测长白山区公路对大中型兽类出现率的影响

四川动物, 35, 593-600.]

[本文引用: 1]

Wang Y, Guan L, Chen JD, Kong YP, Zhang W (2017)

Study on design parameters of wildlife passage in Golmud-Lhasa section of Qinghai-Tibet expressway

Journal of Highway and Transportation Research and Development, 34(9), 146-152. (in Chinese with English abstract)

[本文引用: 1]

[王云, 关磊, 陈济丁, 孔亚平, 张伟 (2017)

青藏高速公路格拉段野生动物通道设计参数研究

公路交通科技, 34(9), 146-152.]

[本文引用: 1]

Wang Y, Li S, Liu WL, Zhu XL, Li BZ (2019)

Coat pattern variation and activity rhythm of Asiatic golden cat (Catopuma temminckii) in Yarlung Zangbo Grand Canyon National Nature Reserve of Tibet, China

Biodiversity Science, 27, 638-647. (in Chinese with English abstract)

DOI:10.17520/biods.2019070      [本文引用: 2]

From 2013 to 2018 we conducted camera-trapping surveys on the elusive Asiatic golden cat (Catopuma temminckii) in Yarlung Zangbo Grand Canyon National Nature Reserve, Tibet. With an extensive survey effort of 14,071 camera-days at 70 camera stations, we obtained 101 independent detections of Asiatic golden cat, of which 60 (59.4%) were captured during day time and used to identify the coat markings of each captured individual. Four types of coat variations were detected and defined. The capture rates were: 46 common form, 7 red form, 4 melanistic form, and 3 gray form. The gray form was the first ever record in China. Results indicate that individuals of different forms could be co-existing and southeast Tibet has the most diverse coat variations of Asiatic golden cat in China. We described the morphological characteristics shared among and between the different forms, which will provide a sound foundation for further research on this species. The Asiatic golden cats in the study area showed a diurnal activity rhythm with the highest activity peak between 10:00 and 12:00. There were significant differences in daily-discrepancy index α and diurnal-nocturnal index β in different months and the activity intensity and peak patterns had obvious seasonal changes. This study has accumulated basic data for wildlife inventory of the East Himalayan biodiversity hotspot, and also provided basic information and reference for subsequent research on the mechanisms determining coat variations of felid species.

[王渊, 李晟, 刘务林, 朱雪林, 李炳章 (2019)

西藏雅鲁藏布大峡谷国家级自然保护区金猫的色型类别与活动节律

生物多样性, 27, 638-647.]

DOI:10.17520/biods.2019070      [本文引用: 2]

2013-2018年间采用红外相机技术对西藏雅鲁藏布大峡谷国家级自然保护区的金猫(Catopuma temminckii)进行长期监测, 累计布设70个点位, 14,071个相机工作日。共收集金猫独立照片101张, 其中60张可识别色型, 占金猫独立照片总数的59.40%。共记录到4种不同色型的金猫个体, 拍摄频次比例为麻褐色型:红棕色型:黑色型:灰色型 = 46:7:4:3; 其中灰色型为我国野生金猫实体首次记录。不同色型的个体可同域分布, 而以雅鲁藏布大峡谷自然保护区为代表的藏东南地区是我国金猫色型变异最丰富的地区。基于红外相机照片对金猫的共性形态特征和不同色型的独特形态特征进行了详细的图文描述, 以期为该物种的深入研究提供详实的基础资料。活动节律的分析结果显示, 研究区内金猫以昼行性活动为主, 10:00-12:00为其最强的活动高峰。不同月份的日活动差异指数(daily-discrepancy index) α和昼行性指数(diurnal-nocturnal index) β均存在显著差异, 且活动强度具有明显的季节性变化, 不同季节的活动峰型存在显著差异。本研究为东喜马拉雅生物多样性热点区动物多样性本底的完善积累了基础资料, 也为后续的猫科动物色型多样性的形成机制研究提供了基础信息与参考。

Wang YQ, Liu YL, Gu XD, Luo SJ, Song DZ (2021)

Xinlong County of Ganzi, Sichuan, a newly discovered felid hotspot in South-west China

Cat News, 73, 32-36.

[本文引用: 1]

Wearn OR, Glover-Kapfer P (2017)

Camera-trapping for Conservation: A Guide to Best-practices

WWF-UK, Woking, UK.

[本文引用: 1]

Wearn OR, Glover-Kapfer P (2019)

Snap happy: Camera traps are an effective sampling tool when compared with alternative methods

Royal Society Open Science, 6, 181748.

DOI:10.1098/rsos.181748      URL     [本文引用: 1]

Wei FW, Yang QS, Wu Y, Jiang XL, Liu SY, Li BG, Yang G, Li M, Zhou J, Li S, Hu YB, Ge DY, Li S, Yu WH, Chen BY, Zhang ZJ, Zhou CQ, Wu SB, Zhang L, Chen ZZ, Chen SD, Deng HQ, Jiang TL, Zhang LB, Shi HY, Lu XL, Li Q, Liu Z, Cui YQ, Li YC (2021)

Catalogue of mammals in China (2021)

Acta Theriologica Sinica, 41, 487-501. (in Chinese with English abstract)

[本文引用: 1]

[魏辅文, 杨奇森, 吴毅, 蒋学龙, 刘少英, 李保国, 杨光, 李明, 周江, 李松, 胡义波, 葛德燕, 李晟, 余文华, 陈炳耀, 张泽钧, 周材权, 吴诗宝, 张立, 陈中正, 陈顺德, 邓怀庆, 江廷磊, 张礼标, 石红艳, 卢学理, 李权, 刘铸, 崔雅倩, 李玉春 (2021)

中国兽类名录(2021版)

兽类学报, 41, 487-501.]

DOI:10.16829/j.slxb.150595      [本文引用: 1]

中国是全球兽类物种多样性最高的国家之一,掌握我国兽类物种多样性和分类地位是兽类学研究的基础前提,也是科学保护野生种群的前提。为厘清中国兽类的物种数量及分类地位等关键分类学信息,中国动物学会兽类学分会组织国内长期致力于兽类各类群分类的科学研究人员,在总结前人研究的基础上,根据最新的形态学和分子遗传学证据,综合现代兽类分类学家意见,经编委会充分讨论,形成了最新的中国兽类名录,包括我国现阶段兽类12目59科254属686种。该中国兽类名录使用基于系统发生关系的分类系统,并对物种有效性进行了充分慎重的确认和讨论。

Wei WD, Luo G, Ran JH, Li J (2020)

Zilong: A tool to identify empty images in camera-trap data

Ecological Informatics, 55, 7.

[本文引用: 1]

Wen DS, Qi JZ, Long ZX, Gu JY, Tian YM, Roberts NJ, Yang EY, Kong WY, Zhao Y, Sun Q, Jiang GS (2022)

Conservation potentials and limitations of large carnivores in protected areas: A case study in Northeast China

Conservation Science and Practice, 4, e12693.

[本文引用: 1]

Whitworth A, Braunholtz LD, Huarcaya RP, MacLeod R, Beirne C (2016)

Out on a limb: Arboreal camera traps as an emerging methodology for inventorying elusive rainforest mammals

Tropical Conservation Science, 9, 675-698.

DOI:10.1177/194008291600900208      URL     [本文引用: 1]

Whytock RC, Swiezewski J, Zwerts JA, Bara-Słupski T, Koumba Pambo AF, Rogala M, Bahaa-el-din L, Boekee K, Brittain S, Cardoso AW, Henschel P, Lehmann D, Momboua B, Opepa CK, Orbell C, Pitman RT, Robinson HS, Abernethy KA (2021)

Robust ecological analysis of camera trap data labelled by a machine learning model

Methods in Ecology and Evolution, 12, 1080-1092.

DOI:10.1111/2041-210X.13576      URL     [本文引用: 1]

Xiao WH (2014)

Amur Tiger (Panthera tigris altaica) and Its Prey in Hunchun Nature Reserve, Jilin, China: Their Population Size, Distribution and Occupancy

PhD dissertation, Beijing Normal University, Beijing. (in Chinese with English abstract)

[本文引用: 1]

[肖文宏 (2014)

东北虎(Panthera tigris altaica)与猎物的种群分布、数量和占据研究

博士学位论文, 北京师范大学, 北京.]

[本文引用: 1]

Xiao WH, Feng LM, Mou P, Miquelle DG, Hebblewhite M, Goldberg J, Robinson H, Zhao XD, Zhou B, Wang TM, Ge JP (2016)

Estimating abundance and density of Amur tigers along the Sino-Russian border

Integrative Zoology, 11, 322-332.

DOI:10.1111/1749-4877.12210      PMID:27136188      [本文引用: 1]

As an apex predator the Amur tiger (Panthera tigris altaica) could play a pivotal role in maintaining the integrity of forest ecosystems in Northeast Asia. Due to habitat loss and harvest over the past century, tigers rapidly declined in China and are now restricted to the Russian Far East and bordering habitat in nearby China. To facilitate restoration of the tiger in its historical range, reliable estimates of population size are essential to assess effectiveness of conservation interventions. Here we used camera trap data collected in Hunchun National Nature Reserve from April to June 2013 and 2014 to estimate tiger density and abundance using both maximum likelihood and Bayesian spatially explicit capture-recapture (SECR) methods. A minimum of 8 individuals were detected in both sample periods and the documentation of marking behavior and reproduction suggests the presence of a resident population. Using Bayesian SECR modeling within the 11 400 km(2) state space, density estimates were 0.33 and 0.40 individuals/100 km(2) in 2013 and 2014, respectively, corresponding to an estimated abundance of 38 and 45 animals for this transboundary Sino-Russian population. In a maximum likelihood framework, we estimated densities of 0.30 and 0.24 individuals/100 km(2) corresponding to abundances of 34 and 27, in 2013 and 2014, respectively. These density estimates are comparable to other published estimates for resident Amur tiger populations in the Russian Far East. This study reveals promising signs of tiger recovery in Northeast China, and demonstrates the importance of connectivity between the Russian and Chinese populations for recovering tigers in Northeast China. © 2016 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

Xiao WH, Hebblewhite M, Robinson H, Feng LM, Zhou B, Mou P, Wang TM, Ge JP (2018)

Relationships between humans and ungulate prey shape Amur tiger occurrence in a core protected area along the Sino-Russian border

Ecology and Evolution, 8, 11677-11693.

DOI:10.1002/ece3.4620      PMID:30598766      [本文引用: 2]

Large carnivore populations are globally threatened by human impacts. Better protection could benefit carnivores, co-occurring species, and the ecosystems they inhabit. The relationship between carnivores and humans, however, is not always consistent in areas of high human activities and is often mediated through the effects of humans on their ungulate prey. To test assumptions regarding how prey abundance and humans affect carnivore occurrence, density, and daily activity patterns, we assessed tiger-prey-human spatiotemporal patterns based on camera-trapping data in Hunchun Nature Reserve, a promising core area for tiger restoration in China. Our study area contained seasonally varying levels of human disturbance in summer and winter. We used N-mixture models to predict the relative abundance of ungulate prey considering human and environmental covariates. We estimated tiger spatial distribution using occupancy models and models of prey relative abundance from N-mixture models. Finally, we estimated temporal activity patterns of tigers and prey using kernel density estimates to test for temporal avoidance between tigers, prey, and humans. Our results show that human-related activities depressed the relative abundance of prey at different scales and in different ways, but across species, the relative abundance of prey directly increased tiger occupancy. Tiger occupancy was strongly positively associated with the relative abundance of sika deer in summer and winter. The crepuscular and nocturnal tigers also apparently synchronized their activity with that of wild boar and roe deer. However, tigers temporally avoided human activity without direct spatial avoidance. Our study supports the effects of humans on tigers through human impacts on prey populations. Conservation efforts may not only target human disturbance on predators, but also on prey to alleviate human-carnivore conflict.

Xiao WH, Hu L, Huang XQ, Xiao ZS (2019)

Using capture- recapture models in wildlife camera-trapping monitoring and the study case

Biodiversity Science, 27, 257-265. (in Chinese with English abstract)

DOI:10.17520/biods.2018194      URL     [本文引用: 1]

[肖文宏, 胡力, 黄小群, 肖治术 (2019)

基于标记-重捕模型开展野生动物红外相机种群监测的方法及案例

生物多样性, 27, 257-265.]

DOI:10.17520/biods.2018194      [本文引用: 1]

红外相机技术的广泛应用推动了动物种群生态学研究方法的发展和革新, 特别是基于标记-重捕模型框架通过非损伤取样方式对物种数量和密度等种群参数的可靠估计, 为保护濒危物种和评估保护成效提供了有力的科学依据。对于身体上具有独特天然标记的动物(如多数猫科动物), 可依据红外相机拍摄身体上的独特斑点或条纹鉴别个体, 再运用标记-重捕模型, 估计动物种群数量、密度等参数。本文概述了标记-重捕模型的基本原理、特点以及国内外的应用, 特别是近年来发展出的空间标记-重捕模型。总结了从相机布设到数据分析的具体流程、操作原则, 并以青城山家猫为实例, 展示了应用红外相机数据通过空间标记-重捕模型估计种群密度和数量的基本步骤。最后展望了该模型在种群动态、景观廊道设计、资源选择等方面的应用和发展趋势。

Xiao ZS (2014)

An introduction to wildlife camera trapping monitoring from Chinese Forest Biodiversity Monitoring Network (CForBio)

Biodiversity Science, 22, 808-809. (in Chinese)

DOI:10.3724/SP.J.1003.2014.14108      [本文引用: 1]

Abstract:

[肖治术 (2014)

我国森林动态监测样地的野生动物红外相机监测

生物多样性, 22, 808-809.]

DOI:10.3724/SP.J.1003.2014.14108      [本文引用: 1]

Xiao ZS (2016)

Wildlife resource inventory using camera- trapping in natural reserves in China

Acta Theriologica Sinica, 36, 270-271. (in Chinese)

[本文引用: 1]

[肖治术 (2016)

红外相机技术促进我国自然保护区野生动物资源编目调查

兽类学报, 36, 270-271.]

DOI:10.16829/j.slxb.201603002      [本文引用: 1]

Xiao ZS (2019)

Application of camera trapping to species inventory and assessment of wild animals across China’s protected areas

Biodiversity Science, 27, 235-236. (in Chinese)

DOI:10.17520/biods.2018329      [本文引用: 3]

[肖治术 (2019)

红外相机技术在我国自然保护地野生动物清查与评估中的应用

生物多样性, 27, 235-236.]

DOI:10.17520/biods.2018329      [本文引用: 3]

Xiao ZS (2021)

Dual ecological functions of scatter-hoarding rodents: Pollinators and seed dispersers of Mucuna sempervirens (Fabaceae)

Integrative Zoology, 17, 918-929.

DOI:10.1111/1749-4877.12603      URL     [本文引用: 1]

Xiao ZS, Li XH, Jiang GS (2014a)

Applications of camera trapping to wildlife surveys in China

Biodiversity Science, 22, 683-684. (in Chinese)

DOI:10.3724/SP.J.1003.2014.14244      URL     [本文引用: 1]

[肖治术, 李欣海, 姜广顺 (2014a)

红外相机技术在我国野生动物监测研究中的应用

生物多样性, 22, 683-684.]

[本文引用: 1]

Xiao ZS, Li XH, Wang XZ, Zhou QH, Quan RC, Shen XL, Li S (2014b)

Developing camera-trapping protocols for wildlife monitoring in Chinese forests

Biodiversity Science, 22, 704-711. (in Chinese with English abstract)

DOI:10.3724/SP.J.1003.2014.14075      URL     [本文引用: 2]

[肖治术, 李欣海, 王学志, 周岐海, 权锐昌, 申小莉, 李晟 (2014b)

探讨我国森林野生动物红外相机监测规范

生物多样性, 22, 704-711.]

[本文引用: 2]

Xiao ZS, Li XY, Xiang ZF, Li M, Jiang XL, Zhang LB (2017)

Overview of the Mammal Diversity Observation Network of Sino BON

Biodiversity Science, 25, 237-245. (in Chinese with English abstract)

DOI:10.17520/biods.2016159      [本文引用: 3]

Mammals are key indicators for biodiversity conservation and management due to their high diversity, wide distribution range, and sensitivity to habitat changes. Recently launched by the Chinese Academy of Sciences, the Mammal Diversity Monitoring Network of Sino BON (Sino BON-Mammal) is a key member of the Biodiversity Monitoring Networks of Sino BON for the monitoring and inventory of terrestrial mammal resources in China. Firstly, this paper reviews several major advances in terrestrial mammal diversity observations in both China and other parts of the world. We then provide an overview of Sino BON-Mammal, including the major scientific goals, monitoring framework, methods, and data products. In addition, we also summarize some working advances of the Mammal Diversity Observation Network of Sino BON since 2011. This overview will be helpful for the development of national observation programs of mammal diversity in China.

[肖治术, 李学友, 向左甫, 李明, 蒋学龙, 张礼标 (2017)

中国兽类多样性监测网的建设规划与进展

生物多样性, 25, 237-245.]

DOI:10.17520/biods.2016159      [本文引用: 3]

兽类类群和物种多样, 分布范围广, 适应于多种生境类型, 对栖息地变化特别敏感, 是生物多样性保护管理与评价的关键指示类群。中国兽类多样性监测网是由中国科学院近年来推动建立的中国生物多样性监测与研究网络的专项网之一, 重点对分布于我国境内的陆生兽类物种多样性及资源进行监测与研究。针对当前我国兽类监测研究面临的三大根本任务(兽类物种有什么? 在哪里? 有多少?), 当务之急是应尽快建立和完善我国兽类各类群的监测技术规范, 制定常态监测计划, 全面建设全国性的兽类多样性监测网络技术体系和监测数据公共信息平台。本文在总结国内外兽类监测研究的基础上, 提出了我国陆生兽类多样性监测网的建设规划, 重点介绍该监测网的科学目标、布局、监测技术和监测数据产品等。本文也总结了近年来我国陆生兽类多样性监测网建设所取得的重要进展及存在的问题, 为全面推动我国兽类多样性联网监测明确发展方向。

Xiao ZS, Shu ZF, Luo Z, Ma Y (2020)

Keep the decision makers know fairly well

Man and the Biosphere, (4), 62-66. (in Chinese)

[本文引用: 2]

[肖治术, 束祖飞, 罗泽, 马勇 (2020)

让决策层心中有“数”

人与生物圈, (4), 62-66.]

[本文引用: 2]

Xiao ZS, Wang XZ, Li XH (2014c)

An introduction to CameraData: An online database of wildlife camera trap data

Biodiversity Science, 22, 712-716. (in Chinese with English abstract)

[本文引用: 1]

[肖治术, 王学志, 李欣海 (2014c)

野生动物多样性监测图像数据管理系统CameraData介绍

生物多样性, 22, 712-716.]

[本文引用: 1]

Xue YD, Li J, Sagen GL, Zhang Y, Dai YC, Li DQ (2018)

Activity patterns and resource partitioning: Seven species at watering sites in the Altun Mountains, China

Journal of Arid Land, 10, 959-967.

DOI:10.1007/s40333-018-0028-8      [本文引用: 1]

As part of a larger project to examine the richness and distribution of wildlife in Kumtag Desert area, we conducted camera trapping surveys during the period 2010-2012 at seven watering sites in an arid region of the Altun Mountains in western China. Information on activity patterns of the wild bactrian camel (Camelus ferus), kiang (Equus kiang), goitered gazelle (Gazella subgutturosa), argali (Ovis ammon), blue sheep (Pseudois nayaur), red fox (Vulpes vulpes), and wolf (Canis lupus) was obtained. We found that the wild camel, kiang, goitered gazelle, argali, and blue sheep were predominantly diurnal at watering sites, whereas red fox and wolf were nocturnal. Five herbivores partitioned the use of watering sites in a temporal manner to minimize the risk of predation by carnivores. The wild camel was the dominant herbivorous species at the watering sites. The kiang, goitered gazelle, argali, and blue sheep displayed adaptive water use by altering spatial or temporal patterns based on the presence or absence of wild camel, to minimize the risk of interspeci?c strife. These results are suggestive of the differences in activity patterns that might modulate water partitioning by different species, and provide insights for the development of conservation strategies for integrated species and decisions regarding water development in the Altun Mountains.

Yan JY, Zhang Y, Cai ZY, Chen JR, Qin W, Zhang JJ, Lian XM, Zhang TZ (2019)

Analysis on the human-wildlife conflict in the Sanjiangyuan Region

Acta Theriologica Sinica, 39, 476-484. (in Chinese with English abstract)

DOI:10.16829/j.slxb.150216      [本文引用: 1]

Records on human-wildlife conflicts in Sanjiangyuan,Qumalai、Zhiduo and Nangqian Counties from 2015 to 2016 were analyzed to find the main causing species and to trace the rules in the time distribution、the geographic distribution and the damage patterns. As our results showed:(1)the main causing animals were Canis lupus(978 cases,64.13%), Ursus arctos(117 cases,7.67%), Uncia uncia(5 cases,0.33%)and Bos mutus(3 cases,0.20%)in order,leaving 422 cases(27.67%)without causing species information;(2)the time distribution of the conflicts was not very stable and the peak period differed in different years and regions;but totally,conflicts in January,February and December were fewer,and the peak period typically occurred during June to September;(3)as to the geographic distribution,the situation in Qumalai and Zhiduo was heavier,especially Qiuzhi and Maduo towns in Qumalai and Zhiqu,Duocai,Lixin and Zhahe in Zhiduo;the conflict hotspot was located in the juncture of Qumalai and Zhiduo Counties;the situation in Nangqian was relatively slighter;(4)the attack and injury to cattle(749 cases,79.94%)was the most common damage type,and conflicts with this damage type were much more than those causing damages to sheep(56 cases,5.98%)or horses(24 cases,2.56%),or house and furniture(108 cases,11.53%). This study will provide reliable information for more effective actions to prevent and alleviate the human-wildlife conflicts in Sanjiangyuan.

[闫京艳, 张毓, 蔡振媛, 陈家瑞, 覃雯, 张婧捷, 连新明, 张同作 (2019)

三江源区人兽冲突现状分析

兽类学报, 39, 476-484.]

[本文引用: 1]

Yang CM, Zhang P, Wu YJ, Dai Q, Luo G, Zhou HM, Zhao D, Ran JH (2021)

Livestock limits snow leopard’s space use by suppressing its prey, blue sheep, at Gongga Mountain, China

Global Ecology and Conservation, 29, e01728.

DOI:10.1016/j.gecco.2021.e01728      URL    

Yang HT, Xie B, Zhao GJ, Gong YN, Mou P, Ge JP, Feng LM (2021)

Elusive cats in our backyards: Persistence of the North Chinese leopard (Panthera pardus japonensis) in a human-dominated landscape in central China

Integrative Zoology, 16, 67-83.

DOI:10.1111/1749-4877.12482      URL     [本文引用: 4]

Yang QM, Xiao DQ, Cai JH (2021)

Pig mounting behaviour recognition based on video spatial-temporal features

Biosystems Engineering, 206, 55-66.

DOI:10.1016/j.biosystemseng.2021.03.011      URL     [本文引用: 1]

Yang XF, Yan C, Zhao QJ, Holyoak M, Fortuna MA, Bascompted J, Jansene PA, Zhang ZB (2018)

Ecological succession drives the structural change of seed-rodent interaction networks in fragmented forests

Forest Ecology and Management, 419/420, 42-50.

DOI:10.1016/j.foreco.2018.03.023      URL     [本文引用: 1]

Yang ZC, Chen Y, Li JS, Wang LF, Piao Y, Song ZY, Shi K (2018)

Individual identification and population size assessment for Asian elephant based on camera-trapping techniques

Acta Theriologica Sinica, 38, 18-27. (in Chinese with English abstract)

DOI:10.16829/j.slxb.150109      [本文引用: 1]

We studied and assessed the minimum population number of Asian elephants (<em>Elephas maximus</em>) in Shangyong Sub-Reserve (SYSR), Xishuangbanna National Nature Reserve in Yunnan Province, China using camera-traps. We set up 27 camera-traps in SYSR from January to April 2016, which ran for a total of 621 camera-trap days and obtained 1944 sample photographs. Within this period individual camera units were active for between 9-52 full days (mean=24). We identified a minimum number of 69 unique individual elephants from photographs (38 adults, 16 sub-adults, 15 calfs) in SYSR. We detected 7 Asian elephants that moved actively across the China-Laos border. The advantages and disadvantages of our camera-trap methodology compared with those of other techniques for individual identification is discussed, and we explore the potential for robust methods for fast, real-time and effective population evaluation in the future. This study strengthened our understanding of Asian elephant status in SYSR and provides scientific evidence to support conservation planning and actions.

[杨子诚, 陈颖, 李俊松, 王利繁, 飘优, 宋志勇, 时坤 (2018)

基于红外相机技术对亚洲象个体识别和种群数量的评估

兽类学报, 38, 18-27.]

[本文引用: 1]

Yu JP, Shen YY, Song XY, Chen XN, Li S, Shen XL (2019)

Evaluating the effectiveness of functional zones for black muntjac (Muntiacus crinifrons) protection in Qianjiangyuan National Park pilot site

Biodiversity Science, 27, 5-12. (in Chinese with English abstract)

DOI:10.17520/biods.2018246      URL     [本文引用: 1]

[余建平, 申云逸, 宋小友, 陈小南, 李晟, 申小莉 (2019)

钱江源国家公园体制试点区功能分区对黑麂保护的有效性评估

生物多样性, 27, 5-12.]

DOI:10.17520/biods.2018246      [本文引用: 1]

功能分区是统一协调国家公园不同保护管理目标的主要措施, 对于国家公园的有效管理有重要意义。钱江源国家公园是我国首批国家公园体制试点区之一, 被分为核心保护区、生态保育区、游憩展示区和传统利用区4个部分, 对应不同的保护管理措施。本研究分析了钱江源国家公园体制试点区现有功能分区与其首要保护对象黑麂(Muntiacus crinifrons)的适宜栖息地之间的空间关系。在红外相机调查获取的94个黑麂分布点的基础上, 结合海拔、地形、植被特征、人为活动干扰等15个环境特征变量, 采用MaxEnt模型预测国家公园内黑麂适宜栖息地的空间分布。结果表明, 黑麂倾向于出现在森林较为原始和道路密度较低的区域, 其适宜栖息地面积42.5 km <sup>2</sup>, 占国家公园总面积的16.9%。其中, 69.3%的黑麂适宜栖息地位于核心保护区, 30.4%位于生态保育区, 表明国家公园现有功能分区能很好地满足黑麂栖息地保护的需求。此结果也证明黑麂可以作为其分布范围内保存较好的亚热带森林生态系统的指示性物种。通过生境恢复、廊道建设和跨省共建促进黑麂栖息地的完整性保护, 是加强该区域黑麂栖息地保护的关键措施。

Zahoor B, Liu XH, Wu PF, Sun WL, Jia XD, Lv ZX, Zhao XY, He XB, He BS, Cai Q (2021)

Activity pattern study of Asiatic black bear (Ursus thibetanus) in the Qinling Mountains, China, by using infrared camera traps

Environmental Science and Pollution Research, 28, 25179-25186.

DOI:10.1007/s11356-020-12325-3      URL     [本文引用: 1]

Zanette LY, White AF, Allen MC, Clinchy M (2011)

Perceived predation risk reduces the number of offspring songbirds produce per year

Science, 334, 1398-1401.

DOI:10.1126/science.1210908      PMID:22158817      [本文引用: 1]

Predator effects on prey demography have traditionally been ascribed solely to direct killing in studies of population ecology and wildlife management. Predators also affect the prey's perception of predation risk, but this has not been thought to meaningfully affect prey demography. We isolated the effects of perceived predation risk in a free-living population of song sparrows by actively eliminating direct predation and used playbacks of predator calls and sounds to manipulate perceived risk. We found that the perception of predation risk alone reduced the number of offspring produced per year by 40%. Our results suggest that the perception of predation risk is itself powerful enough to affect wildlife population dynamics, and should thus be given greater consideration in vertebrate conservation and management.

Zhang HF, Che LF, Feng T, Zhu Y, Cai Q, Su LN, Hu H, Liu Y, Wu XM (2016)

Design and monitoring of highway wildlife passage in Qinling forest region

Highway, 61, 200-204. (in Chinese with English abstract)

[本文引用: 1]

[张洪峰, 车利锋, 封托, 朱云, 蔡琼, 苏丽娜, 胡罕, 刘艳, 吴晓民 (2016)

秦岭林区公路野生动物通道设计与监测

公路, 61, 200-204.]

[本文引用: 1]

Zhang JD, Hull V, Ouyang ZY, Li RG, Connor T, Yang HB, Zhang ZJ, Silet B, Zhang HM, Liu JG (2017)

Divergent responses of sympatric species to livestock encroachment at fine spatiotemporal scales

Biological Conservation, 209, 119-129.

DOI:10.1016/j.biocon.2017.02.014      URL     [本文引用: 1]

Zhang JJ, Jiao HF, Ji CP, Xiao ZS (2022)

New record of Mustela kathiah in the Shanxi Province

Chinese Journal of Wildlife, 43, 231-233. (in Chinese)

[本文引用: 1]

[张建军, 焦慧芳, 姬程鹏, 肖治术 (2022)

山西省的物种新纪录——黄腹鼬

野生动物学报, 43, 231-233.]

[本文引用: 1]

Zhang L, Wang QY, Yang L, Li F, Chan BPL, Xiao ZS, Li S, Song DZ, Piao ZJ, Fan PF (2018)

The neglected otters in China: Distribution change in the past 400 years and current conservation status

Biological Conservation, 228, 259-267.

DOI:10.1016/j.biocon.2018.10.028      URL     [本文引用: 3]

Zhang LY, Lian XM, Yang X (2020)

Population density of snow leopards (Panthera uncia) in the Yage Valley Region of the Sanjiangyuan National Park: Conservation implications and future directions

Arctic, Antarctic, and Alpine Research, 52, 541-550.

DOI:10.1080/15230430.2020.1816341      URL     [本文引用: 1]

Zhang Y, Cao QS, Rubenstein DI, Zang S, Songer M, Leimgruber P, Chu HJ, Cao J, Li K, Hu DF (2015)

Water use patterns of sympatric Przewalski’s horse and khulan: Interspecific comparison reveals niche differences

PLoS ONE, 10, e0132094.

DOI:10.1371/journal.pone.0132094      URL     [本文引用: 1]

Zhang Y, Li YY, Wang MM, Liu J, Luo FQ, Lee YI (2021)

Seed dispersal in Neuwiedia singapureana: Novel evidence for avian endozoochory in the earliest diverging clade in Orchidaceae

Botanical Studies, 62, 3.

DOI:10.1186/s40529-020-00308-z      PMID:33433706      [本文引用: 1]

Seed dispersal allows plants to colonize new habitats that has an significant influence on plant distribution and population dynamics. Orchids produce numerous tiny seeds without endosperm, which are considered to be mainly wind-dispersed. Here, we report avian seed dispersal for an early diverging orchid species, Neuwiedia singapureana, which produces fleshy fruits with hard seed coats in the understory of tropical forests.Neuwiedia singapureana produced fleshy fruits that turned red in autumn, and birds were confirmed to be the primary seed dispersers. As compared to its sister species, N. veratrifolia with dehiscent capsular fruits, embryos of N. singapureana were larger and enclosed by thickened and lignified seed coats. After passing through the digestive tracts of birds, the seeds still stayed alive, and the walls of seed coat contained several cracks. The germination percentage increased significantly for digested seeds as compared with seeds from intact fruits.The thickened and lignified seed coat may protect seeds as they passed through the digestive tracts of birds. Taken together with a recent report of insect-mediated seed dispersal system in the subfamily Apostasioideae, the animal-mediated seed dispersal may be an adaptive mechanism promoting the success of colonization in dark understory habitats.

Zhang YK, He XB, Liu XH, Songer M, Dang HS, Zhang QF (2021)

Fine-scale activity patterns of large- and medium-sized mammals in a deciduous broadleaf forest in the Qinling Mountains, China

Journal of Forestry Research, 32, 2709-2717.

DOI:10.1007/s11676-021-01291-2      URL     [本文引用: 1]

Zheng GM (2017) A Checklist on the Classification and Distribution of the Birds of China, 3rd edn. Science Press, Beijing. (in Chinese)

[本文引用: 1]

[郑光美 (2017) 中国鸟类分类与分布名录(第三版). 科学出版社, 北京.]

[本文引用: 1]

Zheng X, Owen MA, Nie Y, Hu Y, Swaisgood RR, Yan L, Wei F (2016)

Individual identification of wild giant pandas from camera trap photos—A systematic and hierarchical approach

Journal of Zoology, 300, 247-256.

DOI:10.1111/jzo.12377      URL     [本文引用: 1]

Zhou WL, Yang SL, Li BW, Nie YG, Luo AN, Huang GP, Liu XF, Lai R, Wei FW (2020)

Why wild giant pandas frequently roll in horse manure

Proceedings of the National Academy of Sciences, USA, 117, 32493-32498.

[本文引用: 1]

Zhu C, Li WD, Gregory T, Wang DR, Ren P, Zeng D, Kang Y, Ding P, Si XF (2022)

Arboreal camera trapping: A reliable tool to monitor plant-frugivore interactions in the trees on large scales

Remote Sensing in Ecology and Conservation, 8, 92-104.

DOI:10.1002/rse2.232      URL     [本文引用: 1]

Zhu C, Li WD, Wang DR, Ding P, Si XF (2021)

Plant-frugivore interactions revealed by arboreal camera trapping

Frontiers in Ecology and the Environment, 19, 149-151.

DOI:10.1002/fee.2321      URL     [本文引用: 1]

Zhu SY, Duan F, Li S (2017)

Promoting diversity inventory and monitoring of birds through the camera-trapping network in China: Status, challenges and future outlook

Biodiversity Science, 25, 1114-1122. (in Chinese with English abstract)

DOI:10.17520/biods.2017057      [本文引用: 1]

During the past two decades, camera-trapping has been widely used in biodiversity monitoring and wildlife research across China. Most of the existing camera-trapping projects focus on mammals, and birds are frequently considered in by-catch records. We analyzed 230 wildlife camera-trapping research projects in China since 1992, on the basis of an exhaustive review of Chinese and English literature, including published articles, conference reports, public news, and additional unpublished datasets. Results showed that at least 393 wild bird species, belonging to 17 orders and 56 families and accounting for 28.67% of the total number of bird species in China, have been documented using camera-trapping since 1992. The order with the most recorded species was Passeriformes (268). On the family level, Turdidae had the highest number of recorded species (58), followed by Timaliidae (50) and Phasianidae (42). There were 23 families that each only had one recorded species. Ground- and understory-dwelling forest birds accounted for the majority of all birds recorded, in terms of either species richness or camera detections. Published bird records were characterized by regional imbalances. Sichuan and Yunnan provinces were the most surveyed provinces, with 16 and 14 sites, respectively. The highest species richness was recorded in Sichuan (160), followed by Yunnan (91) and Zhejiang (66). A total of 104 new regionally recorded species were reported. Given the fact that there is still an abundance of camera-trapping data that has not been published, we speculated that the actual recorded bird species should be higher. These results indicated that camera-trapping can produce considerable bird distribution data of high accuracy, high quality and large amounts, which may provide a significant contribution to biodiversity monitoring and regional inventories of birds in China. Terrestrial birds, including Galliformes, Turdidae and Timaliidae, should be included as one of the target groups in current and future monitoring networks using standardized camera-trapping techniques, and such networks could also complement data and support the inventory and diversity monitoring of other taxa.

[朱淑怡, 段菲, 李晟 (2017)

基于红外相机网络促进我国鸟类多样性监测: 现状, 问题与前景

生物多样性, 25, 1114-1122.]

DOI:10.17520/biods.2017057      [本文引用: 1]

近20年来, 红外相机调查技术在我国生物多样性监测与野生动物研究中得到了广泛应用。已有的红外相机调查不仅关注哺乳动物类群, 而且也记录到了大量鸟类物种, 但大多被作为兽类监测中的兼捕(by-catch)记录。我们系统检索并收集了1992年以来, 在我国使用红外相机技术的野生动物监测与研究所发表的学术文献、会议报告、新闻报道和部分未发表数据集共230篇(份), 从中提取并汇总鸟类物种与分布记录。结果显示, 全国通过红外相机技术共记录到至少393个鸟种, 分属17目56科, 占全国鸟类物种总数的28.67%, 其中雀形目物种数最多(268种)。在科的水平上, 记录到物种数最多的分别是鸫科(58种)、画眉科(50种)与雉科(42种); 另有23科各仅记录到1个物种。在物种数及探测数方面, 地面及林下层活动的森林鸟类均是红外相机记录到的绝对优势类群。已发表的红外相机鸟类记录具有区域性不均衡的特征, 四川(16个)和云南(14个)是红外相机调查点最多的省区, 而四川(160种)、云南(91种)和浙江(66种)则是记录到鸟类物种数最多的省区。据不完全统计, 红外相机共记录到区域性鸟类物种新记录104种(次)。考虑到仍有大量红外相机调查中的鸟类记录被忽视或未及发表报道, 我国红外相机所记录到的实际鸟类物种多样性应该更高。这些结果表明, 红外相机技术在我国鸟类多样性监测和区域性编目工作中具有重要的作用, 可以提供高精度、高质量和大数据量的鸟类物种分布数据。对于以鸡形目为代表的地栖鸟类, 可以作为目标类群之一纳入现有的基于红外相机技术的标准化长期监测体系, 而这样的监测体系也可以为其他鸟类类群的多样性编目和监测提供数据补充和支持。

Zou BY, Luo G, Zhu BW, Ran JH, Fang C (2021)

The spatial distribution relationship between three pheasant species and mutual predator, the red fox (Vulpes vulpes), on the Western Sichuan Plateau

Biodiversity Science, 29, 918-926. (in Chinese with English abstract)

DOI:10.17520/biods.2020438      URL     [本文引用: 2]

[邹博研, 罗概, 朱博伟, 冉江洪, 房超 (2021)

川西高原三种雉类与其捕食者赤狐的空间关系研究

生物多样性, 29, 918-926.]

[本文引用: 2]

/