生物多样性, 2021, 29(12): 1673-1686 doi: 10.17520/biods.2021111

综述

生态系统多功能性的指标选择与驱动因子: 研究现状与展望

黄小波,1,2, 郎学东,1,2, 李帅锋,1,2, 刘万德1,2, 苏建荣,,1,2,*

1.中国林业科学研究院高原林业研究所, 昆明 650224

2.国家林业和草原局云南普洱森林生态系统国家定位观测研究站, 昆明 650224

Indicator selection and driving factors of ecosystem multifunctionality: Research status and perspectives

Xiaobo Huang,1,2, Xuedong Lang,1,2, Shuaifeng Li,1,2, Wande Liu1,2, Jianrong Su,,1,2,*

1 Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming 650224

2 Pu’er Forest Ecosytem Research Station, National Forestry and Grassland Administration, Kunming 650224

通讯作者: *E-mail:jianrongsu@vip.sina.com

编委: 贺金生

责任编辑: 黄祥忠

收稿日期: 2021-03-23   接受日期: 2021-08-15  

基金资助: 中国林业科学研究院中央级公益性科研院所基本科研业务费专项资金(CAFYBB2020SY026)
云南省基础研究计划项目(202101AT070236)

Corresponding authors: *E-mail:jianrongsu@vip.sina.com

Received: 2021-03-23   Accepted: 2021-08-15  

Fund supported: CAFYBB2021ZA002(202101AT070236)

摘要

全球变化和人类活动正以空前的速度在世界范围内改变着生物多样性, 这导致了全球生物多样性的锐减以及生产力的下降、病虫害的增加和抗入侵能力的减弱等生态问题。近30年来, 生态学家开始对于生物多样性的持续丧失是否以及如何影响生态系统功能的问题越来越感兴趣, 生物多样性与生态系统功能(biodiversity and ecosystem functioning, BEF)关系的研究应运而生, 并成为生态学研究的热点之一。但长期以来, 研究者更多地关注单一生态系统功能, 而忽略了生态系统能够同时提供多种生态系统功能的能力, 即生态系统多功能性(ecosystem multifunctionality, EMF)。本文综述了EMF研究中功能指标的选择、生物多样性的不同维度、微生物多样性对EMF的影响以及其他非生物因子对EMF的驱动等进展。因只考虑单一功能可能会低估生物多样性对整体生态系统功能的影响, 故生物多样性与生态系统多功能性(BEMF)关系的研究成为BEF关系研究的重点。近年来, BEMF关系的研究发展较快, 在不同生态系统(包括水生、草地、森林、旱地、农业等)、不同研究尺度(从区域到全球尺度)、BEMF关系的驱动机制(从单一驱动机制到多种驱动机制共同作用)、研究方法(包括新概念以及新的量化方法的提出和应用)等方面均取得了新的进展。但仍有不足之处, 如对于EMF研究中功能指标的选取没有统一的标准、对地下微生物多样性的关注度不够、涉及多营养级水平下的BEMF关系研究较少、驱动EMF的机制仍存在争论等。未来应加强对于功能指标选取的标准研究, 综合分析地上、地下生物多样性以及非生物因子对EMF的整体影响, 加强生态系统多服务性(ecosystem multiserviceability, EMS)方法的研究和应用。

关键词: 全球变化; 物种丧失; 物种丰富度; 功能多样性; 生态系统多功能性

Abstract

Background & Aims: Global change and other human activities are changing biodiversity around the world at an unprecedented rate, which has led to a sharp decline in global biodiversity and productivity, an increase in pests and diseases, and a weakening of the ability to resist invasion and other ecological problems. Ecologists became more and more interested in the question of whether and how the continuous loss of biodiversity would affect ecosystem functioning in the last 30 years. Therefore, the relationship between biodiversity and ecosystem functioning (BEF) became one of the hot topics of ecological research. For a long time, researchers have focused more on individual ecosystem functions than on the ability of an ecosystem to provide multiple ecosystem functions at the same time, known as ecosystem multifunctionality (EMF). Considering only individual functions could underestimate the impact of biodiversity on overall ecosystem functioning. Therefore, the relationship between biodiversity and ecosystem multifunctionality (BEMF) has become the focus of BEF research field. In order to enrich the understanding of BEMF relationships, this paper focuses on different dimensions of biodiversity and the impact of microbial diversity on EMF, how abiotic factors drive EMF, as well as the selection of functional indicators in the evaluation of EMF.
Progresses: In recent years, the research on BEMF relationships has developed rapidly, expanding from aquatic ecosystems to grasslands, forests, drylands and agricultural ecosystems. Spatial scale ranges from regional scale to global scale. The driving mechanisms of BEMF relationship are explored from single dominant driving mechanism to multiple driving mechanisms. There are also new innovations in research methods and new concepts put forward.
Prospects: However, there are still some shortcomings. For example, there is no unified standard for the selection of functional indicators in EMF research, insufficient attention to microbial diversity, few studies on the BEMF relationship at the multitrophic level, and debate about the mechanisms driving EMF. In the future, it is necessary to strengthen the research on the criteria for the selection of functional indicators, comprehensively analyze the overall impact of aboveground and belowground biodiversity and abiotic factors on EMF, and strengthen the research and application of ecosystem multiserviceability (EMS).

Keywords: global change; species loss; species richness; functional diversity; ecosystem multifunctionality

PDF (623KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

黄小波, 郎学东, 李帅锋, 刘万德, 苏建荣 (2021) 生态系统多功能性的指标选择与驱动因子: 研究现状与展望. 生物多样性, 29, 1673-1686. doi:10.17520/biods.2021111.

Xiaobo Huang, Xuedong Lang, Shuaifeng Li, Wande Liu, Jianrong Su (2021) Indicator selection and driving factors of ecosystem multifunctionality: Research status and perspectives. Biodiversity Science, 29, 1673-1686. doi:10.17520/biods.2021111.

生态系统功能是生态系统服务的基础。目前普遍接受的生态系统功能的定义是生态学家Odum的观点, 他认为生态系统功能是指生态系统的不同生境、生物学及其系统性质或过程(Odum, 1971; 冯剑丰等, 2009)。生态系统服务是人类从生态系统中所获得的福利, 包括供应服务(例如食物和木材生产)、调节服务(例如通过碳贮存缓冲气候变化)、文化服务(例如消遣和教育机会)和所有其他生态系统服务的生产所必要的支撑服务(MEA, 2005; Felipe-Lucia et al, 2020)。

生物多样性丧失已成为全球关注的问题, 并对人类赖以生存的生态系统服务产生了负面影响(Wagg et al, 2014)。1992年在巴西里约热内卢举行的地球峰会之后, 人们对了解物种的丧失如何影响生态系统功能的兴趣不断增加(Schulze & Mooney, 1993), 涌现出一大批关于生物多样性和生态系统功能(biodiversity and ecosystem function, BEF)关系的研究成果(Hazard et al, 2017)。这些研究促进了生态学思维的重大转变, 因为在此之前, 生物多样性仅被认为是对环境变化和生态系统功能的响应变量, 而不是生态系统功能的驱动变量(Naeem, 2002; Tilman et al, 2014)。1994年, Tilman和Downing (1994)在美国明尼苏达州雪松溪生态系统科学保护区利用超过200个草地样方的数据得出物种数量的增加提高了草地抗旱能力的结果; Naeem等(1995)利用盆栽实验发现种植更多物种会拥有更高的初级生产力。这些成果均是BEF理论的有力佐证。

BEF关系的研究大多只关注生物量的贮存和生产、凋落物的分解、营养循环、土壤有机碳贮存、生物量稳定性、病原体和草食性动物的损害以及授粉等单一的生态系统功能(van der Plas, 2019)。然而, Hector和Bagchi (2007)的草地生物多样性实验发现, 不同的物种影响不同的生态系统功能, 高的生物多样性水平可能提供多种多样的功能; 当同时考虑多种功能时, 生物多样性的影响比只考虑单一功能时更加重要(Gamfeldt et al, 2008)。这让人们意识到一个生态系统具有同时提供多种功能的能力, 这个概念被称为生态系统多功能性(ecosystem multifunctionality, EMF)。近10年来, 生物多样性与生态系统多功能性(biodiversity-ecosystem multifunctionality, BEMF)关系的研究已迅速成为生态学研究的热点(Manning et al, 2018; van der Plas, 2019; Jing et al, 2020)。

目前, 关于BEMF关系的研究主要以草地、森林、干旱地、农业生态系统为对象(Garland et al, 2021)。在控制性实验研究中, 生物多样性对EMF的显著正效应较为普遍(Lefcheck et al, 2015); 但在自然生态系统中, BEMF还存在显著负相关和不显著相关关系(van der Plas, 2019)。在国内, 徐炜等(2016a, b)详细介绍了BEMF关系研究的发展历程和测度方法, 提出了需要深入研究的领域。目前, 已有科学家意识到并试图解决功能和服务指标选择的问题。例如, Hölting等(2019)总结得出当前的研究中功能和服务指标的平均个数为8个左右; Manning等(2018)以及井新和贺金生(2021)指出将功能和服务指标区别对待已成为今后研究的趋势; Garland等(2021)对现有研究的功能和服务指标进行总结归类, 提出了可参考的建议。绝大多数BEMF关系的研究都集中在分类多样性中的物种丰富度(Hector & Bagchi, 2007; Maestre et al, 2012b; Zavaleta et al, 2010), 也有评估物种均匀度(Maestre et al, 2012a; Soliveres et al, 2014; Dooley et al, 2015)、物种优势度(Lohbeck et al, 2016; Li et al, 2017)等对EMF的影响。

功能多样性也是EMF的关键驱动因子, 因为共存种间存在差异的功能性状增加了整体的资源利用, 从而促进了生态系统功能或者优势种的性状较强地影响着生态系统功能(Le Bagousse-Pinguet et al, 2019)。目前这方面的研究开始涌现(Valencia et al, 2015; Finney & Kaye, 2017; Huang et al, 2019; Mensah et al, 2020; Liu et al, 2021)。物种亲缘关系的远近可表现为功能上的差异, 因此系统发育多样性被认为是EMF的一个重要预测者(Oka et al, 2019), 但这方面的研究还不多(Zirbel et al, 2019; Liu et al, 2021)。

土壤微生物与EMF关系的研究相对较少, 但已有证据显示, 土壤微生物在驱动EMF方面扮演着重要角色(Jing et al, 2015; Delgado-Baquerizo et al, 2020)。另外, 多营养级水平的生物多样性也是理解EMF驱动因子的关键(Lefcheck et al, 2015; Soliveres et al, 2016; Schuldt et al, 2018)。

鉴于BEMF研究中, 功能和服务指标的选择至关重要(Hölting et al, 2019), 生物多样性(分类多样性、功能多样性、系统发育多样性和微生物多样性)驱动EMF的内在机制越来越受到重视(Le Bagousse- Pinguet et al, 2019), 同时生物多样性以外的驱动因子也备受关注(Giling et al, 2019)。本文围绕以上3个热点收集文献, 总结了主要研究进展, 提出了未来的研究方向, 以增强人们对BEMF关系和生态系统功能的全面认识, 推动生态系统的可持续管理和合理利用。

1 功能指标的选择

生态系统功能和服务指标的选择是EMF研究的第一步(Hölting et al, 2019)。现有研究中, 生态系统功能和服务指标的数量差异很大, 从2个到82个不等(Minden & Kleyer, 2015; Meyer et al, 2018; Garland et al, 2020), 功能指标的数量是否影响生物多样性对EMF的效应目前还存在争议(Gamfeldt & Roger, 2017; Fanin et al, 2018; Meyer et al, 2018)。涉及的生态系统功能指标主要有土壤有机碳(Maestre et al, 2012b; Soliveres et al, 2014; Jing et al, 2015; Birkhofer et al, 2018)、氮和磷的营养循环(Jing et al, 2015; Wang et al, 2020)、凋落物分解(Mouillot et al, 2011; Lohbeck et al, 2016; Mori et al, 2016; Lucas-Borja & Delgado-Baquerizo, 2019)、土壤性质与肥力(Finney & Kaye, 2017; Chandregowda et al, 2018)等; 生态系统服务指标主要有生产力(Mouillot et al, 2011; Pasari et al, 2013; Lohbeck et al, 2016)、传粉(Soliveres et al, 2016; Birkhofer et al, 2018)、抵抗力(van der Plas et al, 2016a; Ratcliffe et al, 2017; Hautier et al, 2018)等。Garland等(2021)根据EMF研究中已发表的775个功能指标, 将其归为24个功能范畴和4个生态系统服务功能类型, 可作为指标选取的参考。

此外, 研究者也针对不同的生态系统和研究目标选择某些特别的功能指标。如Mensah等(2020)在非洲山地森林研究中, 选择栖息地质量和落石保护功能等作为评价指标; Schuldt等(2018)在针对不同营养级水平的BEMF研究中, 选择寄生状况等22个指标来评价EMF。在BEF-China实验中, Trogisch等(2017)认为需要积极发展标准的BEF方法来评估森林生态系统的EMF, 并提出了包括植物生物量生产和树木生长、树木多样性、地上多营养级关联、地下微生物交互作用、营养循环、土壤流失控制相关的17个功能指标及测定的标准方法。这些实用、便捷、可重复和低成本的方法有利于森林生态系统BEMF关系的综合评价。因此, 在开展BEMF关系研究之前, 可立足于需要解决的科学问题, 选择合适的备用指标并注意区分生态系统功能和服务指标;在代替不同功能和服务的备用指标里尽可能选择涉及面广且容易获得的指标。

在功能指标的选择过程中, 生物多样性对EMF的效应是否依赖于功能的数量还存在争议(Jing et al, 2020)。评估EMF需要对功能间的权衡和协同效应作整体分析(Hölting et al, 2019)。如果所选功能间存在正相关关系并且依赖于生物多样性, 最大化EMF则需要高的生物多样性水平, 那么研究时应考虑增加多种功能; 如果功能间呈负相关关系, 即功能间存在权衡, 最大化一种功能必然导致其他功能的下降, BEMF的关系将依赖于特定的功能以及它们与生物多样性之间的关系(Meyer et al, 2018)。在EMF研究中, 容易把生态系统属性指标(如地形因子和土壤的pH值、厚度、含水量、孔隙度等)混淆为生态系统功能指标(Sacchelli et al, 2013; Li et al, 2017; Garibotti et al, 2018; Meyer et al, 2018)。事实上, 绝大多数研究都是用生态系统功能指标来替代生态系统功能(Isbell et al, 2011; Maestre et al, 2012b; Bowker et al, 2013; Lefcheck et al, 2015), 并把随生物活性、时间和空间改变的变量称之为直接变量(Reiss et al, 2009), 其他间接变量为受生态系统功能影响的关键生态系统属性(Jax, 2010)。Manning等(2018)和Garland等(2021)建议通过直接测量过程速率(process rates)来评估生态系统功能; 如果过程速率太慢而无法直接测量, 那么对某些营养库的测量可以作为较慢过程的替代。该观点尽可能地包含了所有已公布的涉及过程速率和营养库的功能指标, 同时也跨越了多个时间尺度和研究焦点(Garland et al, 2021)。

长期以来, 研究者并没有意识到所选功能指标代表的是生态系统功能还是生态系统服务。Manning等(2018)根据研究对象是基础问题还是应用问题, 提出将EMF分为“生态系统功能多功能性” (ecosystem function multifunctionality, EFM)和“生态系统服务-多功能性” (ecosystem service multifunctionality, ESM)两个水平来定义。前者侧重于生态系统中的一系列生物、物理和地球化学过程; 后者则指生态系统提供的与人类利益需求相关的多种生态系统服务。事实上, 生态系统服务-多功能性这一概念被优化为生态系统多服务性(ecosystem multiserviceability或multiservicing ability, EMS)更为贴切(贺金生等, 2000; 井新和贺金生, 2021)。Allan等(2015)和Manning等(2018)指出, 在评估ESM时需要利益相关者对涉及的每个生态系统服务赋予不同的权重, 但问题是他们并没有利用实际调查数据来研究不同利益相关群体的权重。目前, 已有利用生态系统服务功能指标来评估ESM的研究。Peura等(2018)利用8个生态系统服务功能指标比较了芬兰近自然经营和轮伐期经营森林的ESM, 发现近自然经营森林的ESM要高于轮伐期经营的森林, 为可持续林业管理提供了很好的依据。Jönsson和Snäll (2020)利用瑞典全国范围内2,000多个样地的4类生态系统服务数据, 评估了低产林的ESM, 指出低产林的ESM随林龄的增加而增加, 针叶和落叶混交林的老龄林能支持更多的生态系统服务功能, 对当地制定森林保护和管理政策具有直接的指导意义。为了以最低成本获得最大的整体效益来满足不同利益相关者, Zeng等(2021)对7个林龄序列的杉木(Cunninghamia lanceolata)人工林的ESM进行了量化, 发现林龄对供应服务的影响大于对支持服务的影响, ESM在不同管理场景下的变异可分为两个不同的阶段, 结果可为杉木人工林乃至其他人工林的管理提供具体的建议。Linders等(2021)利用访谈的方式调查了不同生态系统服务在8个利益相关群体中的权重来评估入侵树种对不同利益相关者ESM的影响, 发现随着入侵树木的增加, 大多数利益相关群体的净ESM下降, 或总体上没有显著变化; ESM随入侵树木增加的只涉及两个利益相关群体, 即木炭生产者和涉及区域发展的非政府组织, 结果有助于制定经营决策以及土地管理方案。生态系统多服务性这一概念因其强调涉及利益相关者的生态系统服务指标, 在生态系统的可持续管理以及生物多样性保护等领域应深入研究。

2 生物多样性的多重维度与生态系统多功能性

生物多样性包含多种维度, 如传统的反映物种丰富度和多度的分类多样性, 反映各种生活型和资源利用策略的功能多样性以及反映不同进化谱系的系统发育多样性(Le Bagousse-Pinguet et al, 2019)。因功能多样性和系统发育多样性均比分类多样性更能揭示群落和生态系统的构建、维持和功能(贾鹏和杜国祯, 2014), 它们对EMF的影响日益受到重视(Zirbel et al, 2019; Huang et al, 2020; Li et al, 2020; Liu et al, 2021)。

2.1 物种多样性

物种丰富度是BEMF研究中应用最广泛的生物多样性维度(Hector & Bagchi, 2007; Maestre et al, 2012a; Soliveres et al, 2014, 2016; van der Plas et al, 2016a)。由于不同物种对生态系统功能的贡献不同(Isbell et al, 2011), 输出和维持多种生态系统功能就需要更高水平的物种多样性(Zavaleta et al, 2010)。

但是, Gamfeldt和Roger (2017)指出, 物种丰富度在大多数情况下(特别是野外调查而不是控制实验时)可能并不适用于BEMF研究; 它被广泛应用只因为是最简单的度量标准, 并可扩展到其他多样性度量标准。基于多度的Shannon-Wiener指数和Simpson指数等多样性参数因能赋予稀有种和常见种不同的权重而更能代表真实的物种多样性水平(Jing et al, 2020)。Hertzog等(2019)指出, 在树木丰富度程度较低的温带森林里, 树木的特性和优势度对生态系统功能的影响往往比物种多样性要强; 除了探究需要多少物种来维持某种程度的EMF外, 更要了解哪些树种以及树种组成的效应(Baeten et al, 2019)。

不同尺度的物种多样性(α、β以及γ多样性)在各生态系统中与EMF的关系也不尽相同。在欧洲森林中, α和β多样性均是EMF的重要驱动者, 生物同质化可能会对大尺度的EMF产生尚未被认识的负面影响(van der Plas et al, 2016b)。在北美大草原, β多样性的增加比α多样性更能够提升EMF, 群落的异质性对草原恢复期间重建EMF具有重要作用(Grman et al, 2018)。但同样是草地生态系统, Pasari等(2013)却发现, α多样性与绝大多数的单一生态系统功能和EMF均有强烈的正效应, 而β和γ多样性只与EMF呈显著正相关; 高的β多样性降低了EMF的变异, 说明群落的异质性是维持EMF的前提。

目前的BEMF研究以探究物种多样性与EMF关系居多; 功能多样性对EMF影响的研究也很多(Valencia et al, 2015; Finney & Kaye, 2017; Huang et al, 2019; Mensah et al, 2020)。近几年, 系统发育多样性与EMF关系的研究开始出现, 但并不多(Le Bagousse-Pinguet et al, 2019; Zirbel et al, 2019; Liu et al, 2021)。

2.2 功能多样性

功能多样性是基于物种功能性状来定义的, 指影响生态系统功能的物种所具有的功能性状的大小、范围及分布(Dı́az & Cabido, 2001; Petchey & Gaston, 2002)。植物功能性状是指一系列与其个体定植、存活、生长以及死亡紧密相关的属性, 且这些属性能够显著影响生态系统功能, 并能反映植被对环境影响的响应(刘晓娟和马克平, 2015)。功能性状与个体扩散、生长、养分循环、能量利用、生态策略等密切相关, 是研究功能多样性与生态系统功能关系的重要纽带(Pérez-Harguindeguy et al, 2013)。理论和实证表明, 与物种多样性相比, 功能多样性能够更好地反映生态系统功能(Steudel et al, 2016)。究其原因, 是因为物种多样性尤其是物种丰富度并不直接提供性状的信息, 物种丰富度与生态系统功能间的正相关关系可能是因为物种数量的增加导致了性状多样性的增加; 而功能性状与物种的资源利用方式(包括选择效应和互补效应)有关(Dı́az & Cabido, 2001), 可能是生态系统功能较好的预测者(Zirbel et al, 2019)。由于性状间存在差异的共存物种能够利用不同时空中的相同资源而增加整体的资源利用效率, 所以高水平的性状多样性能够提高生态系统功能(Hooper et al, 2005; Gross et al, 2007; de Bello et al, 2010)。

研究表明, 在多种不同的生态系统(草地、农业、森林)中, 功能多样性均是EMF的主要驱动者(Mouillot et al, 2011; Finney & Kaye, 2017; Huang et al, 2019)。Valencia等(2015)指出, 在地中海干旱生态系统中, 功能多样性是干旱和灌木入侵响应下的EMF的重要驱动者, 能够增进生态系统对干旱的抵抗力。Gross等(2017)根据全球124个干旱区植物群落的数据研究发现, 功能性状多样性对EMF拥有最多的解释率, 因而能够与EMF的最大化联系起来, 性状的分布可以用来预测陆地生态系统生物多样性丧失的功能后果。最新研究表明, 功能性状多样性比物种丰富度和功能优势值更能解释EMF的变异; 在多个物种组成的森林中, 拥有不同性状的不同物种比功能上相似的不同物种对EMF的贡献要大, 这在农林生态系统的管理上具有重要意义(Mensah et al, 2020)。在云南松(Pinus yunnanensis)林的经营管理中, 择伐强度主要通过增加功能多样性来间接提高EMF (Huang et al, 2020)。Yan等(2020)指出, 功能多样性的两个尺度α和β多样性在维持草原生态系统土壤EMF方面均发挥着重要作用, β多样性是减缓干旱对土壤EMF不利影响的重要调节者。

2.3 系统发育多样性

系统发育多样性指一个群落中物种谱系距离的总和, 它受平均种间亲缘关系和群落中物种数量的影响(Srivastava et al, 2012), 可以反映分类群的亲缘关系和进化信息。由于亲缘关系相近的物种具有相似的性状, 系统发育多样性往往可以作为功能多样性的替代(Wiens & Graham, 2005)。因为一般难以测量所有与功能相关的性状, 当系统发育多样性有效地包括了与生态系统功能相关的生物学性状时, 它将是影响生态系统功能的一个关键生物多样性属性, 比功能多样性更能揭示生态系统功能(Flynn et al, 2011; Venail et al, 2015)。近年来, 已有学者开始综合考虑分类学多样性、功能多样性和系统发育多样性对EMF的影响(Le Bagousse-Pinguet et al, 2019; Luo et al, 2019; Zirbel et al, 2019; Huang et al, 2020)。但很多研究表明, 相比功能多样性, 系统发育多样性并不能解释更多的EMF变异(Zirbel et al, 2019; Huang et al, 2020; Liu et al, 2021), 可能的解释是一些功能性状丧失了演化上的保守模式(Srivastava et al, 2012)。

3 微生物多样性与生态系统多功能性

土壤微生物是地球上最丰富多样的有机体(Locey & Lennon, 2016), 占整个地球生物多样性的1/4 (Wagg et al, 2019)。在不同的生态系统中, 土壤微生物通过促进凋落物分解、养分循环以及资源可利用性, 在维持EMF方面也扮演着关键角色(Delgado-Baquerizo et al, 2016b, 2020; Wagg et al, 2019)。诸多研究表明, 气候变化、土地利用变化等因素导致的土壤微生物多样性丧失将威胁土壤微生物支持EMF的能力(Jing et al, 2015; Ren et al, 2018; Delgado-Baquerizo et al, 2017, 2020)。

真菌和细菌多样性对EMF的影响并不一致, 这种差异可能也反映了不同类群微生物(比如真菌和细菌)生活史的差异(Jing et al, 2015)。在农田生态系统中, 土壤细菌和真菌多样性均与EMF呈显著正相关(Luo et al, 2018)。在青藏高原草地生态系统中, 细菌多样性对EMF的调节就比真菌重要(Jing et al, 2015)。在寒带森林中, 真菌多样性对EMF贡献最大(Li et al, 2019)。在温带森林中, 土壤微生物对多种功能的均值没有直接影响, 但其是维持高水平EMF的关键驱动者(Yuan et al, 2020)。也有研究指出, 微生物是有结构的, 相互之间会形成复杂的微生物网络, 不同生态系统类型的微生物网络的复杂性也并不相同, 因此不能绝对地将真菌和细菌割裂开来(de Vries et al, 2018; Banerjee et al, 2019)。Wagg等(2019)首次将微生物网络的复杂性与EMF联系起来, 揭示了真菌和细菌群落内部的相互作用对提高EMF的重要性, 并证明了地下微生物群落复杂生态联系的消失将会损害生态系统功能。

目前, 微生物多样性影响EMF的研究并不多(Delgado-Baquerizo et al, 2020; Wang et al, 2020), 不同微生物类群影响EMF的机制还不明了; 在全球变化背景下, 地上与地下生物多样性如何综合影响EMF, 在未来也需要加强研究。

4 生态系统多功能性的其他驱动因子

除生物多样性外, 全球变化的驱动因素也会对生态系统功能产生重要的影响(Dillon et al, 2010; de Laender et al, 2016)。在最近的EMF研究中, 生物多样性以外的驱动因子诸如土地利用变化及气候变化等因素对EMF有直接或间接影响而格外引人注目(Giling et al, 2019)。由于研究对象、选用的功能指标、方法, 以及对于功能指标标准化的处理方式有差异, 其他驱动因子对EMF影响的方向和效应大小的研究结果也不尽相同(Gamfeldt & Roger, 2017; Giling et al, 2019)。

4.1 土地利用变化

Allan等(2015)研究发现, 在草地生态系统中, 土地利用强度对EMF整体上有很强的效应, 除直接效应外, 还通过生物多样性和功能结构的变化间接改变EMF。Wen等(2020)揭示, 土地利用强度的加剧可通过降低植物多样性及其与土壤细菌多样性的交互作用降低EMF。近年来, 放牧强度如何影响EMF的研究也逐渐增多, 并发现EMF随放牧强度的增加呈下降趋势(Ren et al, 2018), 中低强度的放牧有助于提高EMF, 且能提高土壤肥力和稳定性以及土壤碳贮量(Peco et al, 2017)。Luo等(2018)发现, 长期的施肥管理措施能够增加微生物多样性, 促进农业生态系统功能。Birkhofer等(2018)分析了农业生态系统中由土地利用变化引起的景观复杂性与EMF间的关系, 并没有发现二者显著性相关。Fu等(2018)针对森林生态系统的研究表明, 土地覆盖变化通过影响群落的功能结构而影响EMF。总的来说, 关于土地利用变化影响EMF的研究开展的时间并不长, 在不同生态系统土地利用快速变化的背景下, 土地利用变化与EMF关系的研究还有待于进一步加强。

4.2 气候变化

气候变化导致的干旱正在全球范围内蔓延, 干旱生态系统已占地球表面积的41%, 承载着38%的人口(MEA, 2005)。干旱导致生物多样性降低, 严重影响生态系统结构和功能, 因此保护植物和微生物等生物多样性对减缓干旱对生态系统功能的消极影响至关重要(Maestre et al, 2012a; Valencia et al, 2015; Delgado-Baquerizo et al, 2016a; Berdugo et al, 2017, 2020)。在泥炭沼泽地中, 干旱对EMF造成了严重威胁(Robroek et al, 2017)。关于温度和降水对EMF的影响目前尚未得到一致的结论。在青藏高原草地生态系统中, 年均降水量对EMF没有显著影响, 但年均温度有显著正影响(Jing et al, 2015); Pan等(2017)的研究结果表明年均温度对EMF有直接和间接的消极影响。在全球旱地生态系统中, 年均降水量对EMF有显著正影响, 年均温度却没有影响(Delgado-Baquerizo et al, 2016a)。同样在干旱地区, Maestre等(2012b)则发现年均温度的升高会降低EMF。因此, 还需要加强对不同生态系统类型及不同尺度的研究, 积累更丰富的数据资料。

4.3 其他驱动因子

近年来, 科学家针对不同生态系统的研究发现, 地质过程、景观变化、生境多样性、土壤的化学计量比、森林破碎化以及林分复杂性等因子均是EMF重要的驱动因子。

Hu等(2020)量化了地质过程(母岩、风化等)和当代环境对植物、微生物群落和生态系统功能的相对贡献, 表明植物、微生物多样性和EMF受地质过程和当代环境共同驱动。在大空间尺度上, 样地的环境条件可能抑制或增加多样性对EMF的影响(van der Plas et al, 2016b; Hautier et al, 2018)。van der Plas等(2016b)和Hautier等(2018)都发现, 在大的空间范围内(欧洲森林和世界范围的草原), 环境变化对EMF的影响有时比生物多样性的影响更大。Zirbel等(2019)指出, 尽管BIODEPTH实验(泛欧洲生物多样性-生态系统功能实验)没有明确包括环境变量, 但样地分布在8个欧洲国家, 很可能包括相对大的环境变化。

在温带森林演替阶段EMF变化的研究中, 土壤的化学计量比(C : N)是EMF变化的主要驱动因子; 近100年来, 森林有机质含量(较低的C : N)的增加促进了EMF的提高(Lucas-Borja & Delgado-Baquerizo, 2019)。

由于人类活动, 世界范围内的生态系统正面临着生境同质化的危险, Alsterberg等(2017)通过对生境多样性如何影响EMF的研究发现, 生境多样性对EMF有直接和间接的效应, 且表现为季节间的差异。

Zirbel等(2019)对美国密歇根州西南部高草草原的研究表明, 景观破碎化对EMF变异的解释比任何多样性指数都高。景观破碎化概念综合了栖息地丧失、边缘效应和生境隔离度增加等不同的过程(Cosgrove, 2017)。Hertzog等(2019)分析了不同破碎化程度森林的BEMF关系后发现, 森林破碎化增强了EMF及其与生物多样性间的关系; 在高度破碎化的景观中, 小的森林片段可能会发挥更大的功能。该结果对生物多样性的保护和生态系统功能的优化具有指导意义。

最近的研究还表明, 林分结构复杂性(胸径或树高的多样性)也是森林生态系统EMF强有力的驱动因子(Yuan et al, 2020; Sanaei et al, 2021)。这可能是因为林分结构复杂性增加了植物对光或其他资源的捕获和利用, 通过植物对光的不对称竞争以及不同植物的绝对生长率促进的生态位互补影响了森林生态系统功能。

5 展望

5.1 功能指标的选择和量化方法

缺乏界定功能和服务指标的统一标准限制着BEMF关系的深入研究, 同时ESM研究也必然涉及功能和服务指标的选择(井新和贺金生, 2021)。未来的研究中应明确涵盖的功能指标, 如常用的涉及生产力、营养循环、凋落物分解、气候调节等方面的指标, 因为某个功能可能有很多合适的功能指标, 所以必须解释为什么要用某个特定的指标来评估某一项功能, 以便在具体解决某一科学问题的背景下恰当地解释EMF指数。ESM概念的提出为不同利益相关群体对生态系统服务的关切找到了一种平衡方式(Manning et al, 2018; 井新和贺金生, 2021)。目前, 基于基础研究的EFM和基于应用研究的ESM还仅仅是一种概念上的分化(Hölting et al, 2019), 绝大部分的研究兼顾了功能和服务价值的评估(Allan et al, 2015; van der Plas et al, 2016b)。归根到底, ESM取决于单一功能的价值, 价值的估算应结合全部利益相关者(森林管理者、自然资源保护者以及公众等)赋予的不同权重(Hertzog et al, 2019)。这种不同功能和服务交互的研究更需要注重概念和方法的发展。比如在多功能性基础上, 生态系统多服务性概念的提出就是一种概念上的发展, 新概念需要新理论和新方法的支持, 这在未来依然是一个挑战。

目前量化EMF的方法都有其优缺点(Byrnes et al, 2014; Manning et al, 2018; Hölting et al, 2019), 基于不同统计学原理的方法会得到不同的结果(Jing et al, 2020; 井新和贺金生, 2021), 这严重阻碍了BEMF关系研究的发展。鉴于生态系统功能可通过相互作用的网络关联而共享驱动因子, Manning等(2018)提出为避免个别功能类别权重过大, 可通过聚类分析将功能指标分成n类, 在分析中对每一类赋予相同的权重。例如, 如果某类功能包含了4个功能指标, 则对其每个指标赋予权重0.25, 以避免相似的功能指标比例过高。Jing等(2020)提出了一种基于变量数值范围的标准化方法(scaling standardization method), 可将平均或加和参数转变为改进的标准化多功能性指数, 以便对不同的研究结果进行比较, 并可应用到阈值法中解决真正的生态学问题, 避免数理统计上的一些假象。这些新方法在今后的研究中应得到更多的应用。

5.2 生物多样性与生态系统多功能性关系的驱动机制

阐明BEMF的驱动机制是管理生态系统及其提供的服务的前提和研究的重点, 生物多样性驱动生态系统功能的选择性和互补性机制可能也是驱动EMF的潜在机制(Gamfeldt & Roger, 2017)。除了生物多样性, 非生物因子机制也已被发现, 并越来越受到重视(Constán-Nava et al, 2015; Zhang et al, 2016; Chandregowda et al, 2018; Luo et al, 2018)。通过线性模型、结构方程模型、随机森林模型等统计方法可以区分生物因子和非生物因子与EMF之间的复杂关系(Jing et al, 2015; Delgado-Baquerizo et al, 2017; Luo et al, 2019; Zirbel et al, 2019; Hu et al, 2020)。为了促进支撑人类福祉的生态系统功能, 不仅要保护生物多样性本身, 也要促进有利于物种具有适当性状组合的非生物条件(van der Plas, 2019)。

BEMF具有多种驱动机制, 并且常常交织在一起, 给研究带来了挑战(Giling et al, 2019)。这也说明了揭示驱动BEMF关系潜在机制的重要性。例如Meyer等(2018)的研究表明, 当考虑更多的功能时, 生物多样性的效应会变得更强, 且强度取决于功能的特性; 而Gamfeldt和Roger (2017)的研究表明, BEMF的关系并不因功能数量的改变而改变。Jing等(2020)通过对统计学原理的解释揭示了量化EMF指数的方法不同会得出截然不同的结果, 提升了对BEMF关系的认识。Slade等(2019)指出, 群落内的竞争关系降低了物种的个体多度及其对生态系统功能的贡献, 充分了解环境条件、功能间的权衡和物种间的竞争这三者间的关系是了解BEMF复杂关系背后维持机制的必要条件。大量研究表明, 地上和地下生物多样性以及生物多样性的不同尺度或维度的综合影响能够解释EMF更多的变异(Yan et al, 2020; Yuan et al, 2020)。因此, 未来的研究应包括地上和地下不同尺度或维度的生物多样性指标, 尽可能全面地分析EMF的生物驱动因子。

同时, 高营养级水平的多样性效应可通过食物网传播, 对EMF的贡献也远远超出了对单个营养级功能的影响(Schuldt et al, 2018), 但关于不同营养级生物多样性与EMF关系的研究还不多(Lefcheck et al, 2015; Schuldt et al, 2018)。由于未来环境对生物的干扰基本来自多营养级水平(Schuldt et al, 2018), 因此亟需开展多营养级生物多样性与EMF关系的研究。

5.3 生物多样性与生态系统多功能性关系的研究对象

从研究对象上看, 相对于草地生态系统(Allan et al, 2013)或者水生生态系统(Lefcheck et al, 2015), 森林生态系统的EMF研究还比较薄弱。森林蕴藏着丰富的生物多样性, 为人类提供了多种多样的服务功能, 包括木材生产、水源调节、土壤侵蚀缓解和游憩服务等。从研究区域上看, 现有森林BEMF关系的研究多集中于温带和北方森林, 地处低纬度的亚热带、热带森林具有更高的生物多样性, 其关键性生态系统服务功能在全球范围都具有重要性, 但关于该区域生物多样性改变如何影响EMF的研究还相对较少(Schuldt et al, 2018)。

综上, 我们建议未来BEMF关系的研究应在区分功能和服务的基础上并行不悖地发展。对于功能或服务指标的选择应制定指南性质的标准以供参考。未来的研究可侧重于不同尺度上的典型森林BEMF关系对全球变化的响应; 加强不同生物多样性维度、微生物多样性以及非生物因子对EMF的综合影响以及多营养级水平的生物多样性对EMF影响机制的研究; 尽快在相关研究中应用提出的新概念(比如生态系统多服务性)以及开发的新方法(比如基于变量数值范围的标准化方法)。

参考文献

Allan E, Manning P, Alt F, Binkenstein J, Blaser S, Blüthgen N, Böhm S, Grassein F, Hölzel N, Klaus VH, Kleinebecker T, Morris EK, Oelmann Y, Prati D, Renner SC, Rillig MC, Schaefer M, Schloter M, Schmitt B, Schöning I, Schrumpf M, Solly E, Sorkau E, Steckel J, Steffen-Dewenter I, Stempfhuber B, Tschapka M, Weiner CN, Weisser WW, Werner M, Westphal C, Wilcke W, Fischer M (2015)

Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition

Ecology Letters, 18, 834-843.

[本文引用: 3]

Allan E, Weisser WW, Fischer M, Schulze ED, Weigelt A, Roscher C, Baade J, Barnard RL, Beßler H, Buchmann N, Ebeling A, Eisenhauer N, Engels C, Fergus AJF, Gleixner G, Gubsch M, Halle S, Klein AM, Kertscher I, Kuu A, Lange M, Le Roux X, Meyer ST, Migunova VD, Milcu A, Niklaus PA, Oelmann Y, Pašalić E, Petermann JS, Poly F, Rottstock T, Sabais ACW, Scherber C, Scherer-Lorenzen M, Scheu S, Steinbeiss S, Schwichtenberg G, Temperton V, Tscharntke T, Voigt W, Wilcke W, Wirth C, Schmid B (2013)

A comparison of the strength of biodiversity effects across multiple functions

Oecologia, 173, 223-237.

DOI:10.1007/s00442-012-2589-0      PMID:23386044      [本文引用: 1]

In order to predict which ecosystem functions are most at risk from biodiversity loss, meta-analyses have generalised results from biodiversity experiments over different sites and ecosystem types. In contrast, comparing the strength of biodiversity effects across a large number of ecosystem processes measured in a single experiment permits more direct comparisons. Here, we present an analysis of 418 separate measures of 38 ecosystem processes. Overall, 45 % of processes were significantly affected by plant species richness, suggesting that, while diversity affects a large number of processes not all respond to biodiversity. We therefore compared the strength of plant diversity effects between different categories of ecosystem processes, grouping processes according to the year of measurement, their biogeochemical cycle, trophic level and compartment (above- or belowground) and according to whether they were measures of biodiversity or other ecosystem processes, biotic or abiotic and static or dynamic. Overall, and for several individual processes, we found that biodiversity effects became stronger over time. Measures of the carbon cycle were also affected more strongly by plant species richness than were the measures associated with the nitrogen cycle. Further, we found greater plant species richness effects on measures of biodiversity than on other processes. The differential effects of plant diversity on the various types of ecosystem processes indicate that future research and political effort should shift from a general debate about whether biodiversity loss impairs ecosystem functions to focussing on the specific functions of interest and ways to preserve them individually or in combination.

Alsterberg C, Roger F, Sundbäck K, Juhanson J, Hulth S, Hallin S, Gamfeldt L (2017)

Habitat diversity and ecosystem multifunctionality-The importance of direct and indirect effects

Science Advances, 3, e1601475.

DOI:10.1126/sciadv.1601475      URL     [本文引用: 1]

Baeten L, Bruelheide H, van der Plas F, Kambach S, Ratcliffe S, Jucker T, Allan E, Ampoorter E, Barbaro L, Bastias CC, Bauhus J, Benavides R, Bonal D, Bouriaud O, Bussotti F, Carnol M, Castagneyrol B, Charbonnier Y, Chećko E, Coomes DA, Dahlgren J, Dawud SM, De Wandeler H, Domisch T, Finér L, Fischer M, Fotelli M, Gessler A, Grossiord C, Guyot V, Hättenschwiler S, Jactel H, Jaroszewicz B, Joly FX, Koricheva J, Lehtonen A, Müller S, Muys B, Nguyen D, Pollastrini M, Radoglou K, Raulund-Rasmussen K, Ruiz-Benito P, Selvi F, Stenlid J, Valladares F, Vesterdal L, Verheyen K, Wirth C, Zavala MA, Scherer-Lorenzen M (2019)

Identifying the tree species compositions that maximize ecosystem functioning in European forests

Journal of Applied Ecology, 56, 733-744.

DOI:10.1111/jpe.2019.56.issue-3      URL     [本文引用: 1]

Banerjee S, Walder F, Büchi L, Meyer M, Held AY, Gattinger A, Keller T, Charles R, van der Heijden MGA (2019)

Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in roots

The ISME Journal, 13, 1722-1736.

DOI:10.1038/s41396-019-0383-2      URL     [本文引用: 1]

Berdugo M, Delgado-Baquerizo M, Soliveres S, Hernández- Clemente R, Zhao YC, Gaitán JJ, Gross N, Saiz H, Maire V, Lehmann A, Rillig MC, Solé RV, Maestre FT (2020)

Global ecosystem thresholds driven by aridity

Science, 367, 787- 790.

DOI:10.1126/science.aay5958      PMID:32054762      [本文引用: 1]

Aridity, which is increasing worldwide because of climate change, affects the structure and functioning of dryland ecosystems. Whether aridification leads to gradual (versus abrupt) and systemic (versus specific) ecosystem changes is largely unknown. We investigated how 20 structural and functional ecosystem attributes respond to aridity in global drylands. Aridification led to systemic and abrupt changes in multiple ecosystem attributes. These changes occurred sequentially in three phases characterized by abrupt decays in plant productivity, soil fertility, and plant cover and richness at aridity values of 0.54, 0.7, and 0.8, respectively. More than 20% of the terrestrial surface will cross one or several of these thresholds by 2100, which calls for immediate actions to minimize the negative impacts of aridification on essential ecosystem services for the more than 2 billion people living in drylands.Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

Berdugo M, Kéfi S, Soliveres S, Maestre FT (2017)

Plant spatial patterns identify alternative ecosystem multifunctionality states in global drylands

Nature Ecology & Evolution, 1, 3.

[本文引用: 1]

Birkhofer K, Andersson GKS, Bengtsson J, Bommarco R, Dänhardt J, Ekbom B, Ekroos J, Hahn T, Hedlund K, Jönsson AM, Lindborg R, Olsson O, Rader R, Rusch A, Stjernman M, Williams A, Smith HG (2018)

Relationships between multiple biodiversity components and ecosystem services along a landscape complexity gradient

Biological Conservation, 218, 247-253.

DOI:10.1016/j.biocon.2017.12.027      URL     [本文引用: 3]

Bowker MA, Maestre FT, Mau RL (2013)

Diversity and patch-size distributions of biological soil crusts regulate dryland ecosystem multifunctionality

Ecosystems, 16, 923- 933.

DOI:10.1007/s10021-013-9644-5      URL     [本文引用: 1]

Byrnes JEK, Gamfeldt L, Isbell F, Lefcheck JS, Griffin JN, Hector A, Cardinale BJ, Hooper DU, Dee LE, Emmett Duffy J (2014)

Investigating the relationship between biodiversity and ecosystem multifunctionality: Challenges and solutions

Methods in Ecology and Evolution, 5, 111-124.

DOI:10.1111/2041-210X.12143      URL     [本文引用: 1]

Chandregowda MH, Murthy K, Bagchi S (2018)

Woody shrubs increase soil microbial functions and multifunctionality in a tropical semi-arid grazing ecosystem

Journal of Arid Environments, 155, 65-72.

DOI:10.1016/j.jaridenv.2018.02.006      URL     [本文引用: 2]

Constán-Nava S, Soliveres S, Torices R, Serra L, Bonet A (2015)

Direct and indirect effects of invasion by the alien tree Ailanthus altissima on riparian plant communities and ecosystem multifunctionality

Biological Invasions, 17, 1095-1108.

DOI:10.1007/s10530-014-0780-4      URL     [本文引用: 1]

Cosgrove AJ (2017)

Why Are Woodland-Dependent Avian Insectivore Populations Vulnerable to Declines in Highly- Modified Landscapes?

PhD dissertation, University of Queensland, Queensland.

[本文引用: 1]

de Bello F, Lavorel S, Díaz S, Harrington R, Cornelissen JHC, Bardgett RD, Berg MP, Cipriotti P, Feld CK, Hering D, Martins da Silva P, Potts SG, Sandin L, Sousa JP, Storkey J, Wardle DA, Harrison PA (2010)

Towards an assessment of multiple ecosystem processes and services via functional traits

Biodiversity and Conservation, 19, 2873-2893.

DOI:10.1007/s10531-010-9850-9      URL     [本文引用: 1]

de Laender F, Rohr JR, Ashauer R, Baird DJ, Berger U, Eisenhauer N, Grimm V, Hommen U, Maltby L, Meliàn CJ, Pomati F, Roessink I, Radchuk V, van den Brink PJ (2016)

Reintroducing environmental change drivers in biodiversity- ecosystem functioning research

Trends in Ecology & Evolution, 31, 905-915.

DOI:10.1016/j.tree.2016.09.007      URL     [本文引用: 1]

de Vries FT, Griffiths RI, Bailey M, Craig H, Girlanda M, Gweon HS, Hallin S, Kaisermann A, Keith AM, Kretzschmar M, Lemanceau P, Lumini E, Mason KE, Oliver A, Ostle N, Prosser JI, Thion C, Thomson B, Bardgett RD (2018)

Soil bacterial networks are less stable under drought than fungal networks

Nature Communications, 9, 3033.

DOI:10.1038/s41467-018-05516-7      URL     [本文引用: 1]

Delgado-Baquerizo M, Maestre FT, Eldridge DJ, Bowker MA, Ochoa V, Gozalo B, Berdugo M, Val J, Singh BK (2016a)

Biocrust-forming mosses mitigate the negative impacts of increasing aridity on ecosystem multifunctionality in drylands

New Phytologist, 209, 1540-1552.

DOI:10.1111/nph.2016.209.issue-4      URL     [本文引用: 2]

Delgado-Baquerizo M, Maestre FT, Reich PB, Jeffries TC, Gaitan JJ, Encinar D, Berdugo M, Campbell CD, Singh BK (2016b)

Microbial diversity drives multifunctionality in terrestrial ecosystems

Nature Communications, 7, 10541.

DOI:10.1038/ncomms10541      URL     [本文引用: 1]

Delgado-Baquerizo M, Reich PB, Trivedi C, Eldridge DJ, Abades S, Alfaro FD, Bastida F, Berhe AA, Cutler NA, Gallardo A, García-Velázquez L, Hart SC, Hayes PE, He JZ, Hseu ZY, Hu HW, Kirchmair M, Neuhauser S, Pérez CA, Reed SC, Santos F, Sullivan BW, Trivedi P, Wang JT, Weber-Grullon L, Williams MA, Singh BK (2020)

Multiple elements of soil biodiversity drive ecosystem functions across biomes

Nature Ecology & Evolution, 4, 210-220.

[本文引用: 4]

Delgado-Baquerizo M, Trivedi P, Trivedi C, Eldridge DJ, Reich PB, Jeffries TC, Singh BK (2017)

Microbial richness and composition independently drive soil multifunctionality

Functional Ecology, 31, 2330-2343.

DOI:10.1111/fec.2017.31.issue-12      URL     [本文引用: 2]

Dı́az S, Cabido M (2001)

Vive la différence: Plant functional diversity matters to ecosystem processes

Trends in Ecology & Evolution, 16, 646-655.

DOI:10.1016/S0169-5347(01)02283-2      URL     [本文引用: 2]

Dillon ME, Wang G, Huey RB (2010)

Global metabolic impacts of recent climate warming

Nature, 467, 704-706.

DOI:10.1038/nature09407      URL     [本文引用: 1]

Dooley Á, Isbell F, Kirwan L, Connolly J, Finn JA, Brophy C (2015)

Testing the effects of diversity on ecosystem multifunctionality using a multivariate model

Ecology Letters, 18, 1242-1251.

DOI:10.1111/ele.2015.18.issue-11      URL     [本文引用: 1]

Fanin N, Gundale MJ, Farrell M, Ciobanu M, Baldock JA, Nilsson MC, Kardol P, Wardle DA (2018)

Consistent effects of biodiversity loss on multifunctionality across contrasting ecosystems

Nature Ecology & Evolution, 2, 269-278.

[本文引用: 1]

Felipe-Lucia MR, Soliveres S, Penone C, Fischer M, Ammer C, Boch S, Boeddinghaus RS, Bonkowski M, Buscot F, Fiore-Donno AM, Frank K, Goldmann K, Gossner MM, Hölzel N, Jochum M, Kandeler E, Klaus VH, Kleinebecker T, Leimer S, Manning P, Oelmann Y, Saiz H, Schall P, Schloter M, Schöning I, Schrumpf M, Solly EF, Stempfhuber B, Weisser WW, Wilcke W, Wubet T, Allan E (2020)

Land-use intensity alters networks between biodiversity, ecosystem functions, and services

Proceedings of the National Academy of Sciences, USA, 117, 28140- 28149.

[本文引用: 1]

Feng JF, Li Y, Zhu L (2009)

Discrimination of concepts of ecosystem functions and ecosystem services

Ecology and Environmental Sciences, 18, 1599-1603. (in Chinese with English abstract)

[本文引用: 1]

[ 冯剑丰, 李宇, 朱琳 (2009)

生态系统功能与生态系统服务的概念辨析

生态环境学报, 18, 1599-1603.]

[本文引用: 1]

Finney DM, Kaye JP (2017)

Functional diversity in cover crop polycultures increases multifunctionality of an agricultural system

Journal of Applied Ecology, 54, 509-517.

DOI:10.1111/jpe.2017.54.issue-2      URL     [本文引用: 4]

Flynn DFB, Mirotchnick N, Jain M, Palmer MI, Naeem S (2011)

Functional and phylogenetic diversity as predictors of biodiversity-ecosystem-function relationships

Ecology, 92, 1573-1581.

PMID:21905424      [本文引用: 1]

How closely does variability in ecologically important traits reflect evolutionary divergence? The use of phylogenetic diversity (PD) to predict biodiversity effects on ecosystem functioning, and more generally the use of phylogenetic information in community ecology, depends in part on the answer to this question. However, comparisons of the predictive power of phylogenetic diversity and functional diversity (FD) have not been conducted across a range of experiments. To address how phylogenetic diversity and functional trait variation control biodiversity effects on biomass production, we summarized the results of 29 grassland plant experiments where both the phylogeny of plant species used in the experiments is well described and where extensive trait data are available. Functional trait variation was only partially related to phylogenetic distances between species, and the resulting FD values therefore correlate only partially with PD. Despite these differences, FD and PD predicted biodiversity effects across all experiments with similar strength, including in subsets that excluded plots with legumes and that focused on fertilization experiments. Two- and three-trait combinations of the five traits used here (leaf nitrogen percentage, height, specific root length, leaf mass per unit area, and nitrogen fixation) resulted in the FD values with the greatest predictive power. Both PD and FD can be valuable predictors of the effect of biodiversity on ecosystem functioning, which suggests that a focus on both community trait diversity and evolutionary history can improve understanding of the consequences of biodiversity loss.

Fu D, Wu X, Duan C, Guan Q, Huang N (2018)

Changes in functional structure characteristics mediate ecosystem functions during human-induced land-cover alteration: A case study in southwest China

Journal of Soil and Water Conservation, 73, 461-468.

DOI:10.2489/jswc.73.4.461      URL     [本文引用: 1]

Gamfeldt L, Hillebrand H, Jonsson PR (2008)

Multiple functions increase the importance of biodiversity for overall ecosystem functioning

Ecology, 89, 1223-1231.

PMID:18543617      [本文引用: 1]

Biodiversity is proposed to be important for the rate of ecosystem functions. Most biodiversity-ecosystem function studies, however, consider only one response variable at a time, and even when multiple variables are examined they are analyzed separately. This means that a very important aspect of biodiversity is overlooked: the possibility for different species to carry out different functions at any one time. We propose a conceptual model to explore the effects of species loss on overall ecosystem functioning, where overall functioning is defined as the joint effect of many ecosystem functions. We show that, due to multifunctional complementarity among species, overall functioning is more susceptible to species loss than are single functions. Modeled relationships between species richness and overall ecosystem functioning using five empirical data sets on monocultures reflected the range of effects of species loss on multiple functions predicted by the model. Furthermore, an exploration of the correlations across functions and the degree of redundancy within functions revealed that multifunctional redundancy was generally lower than single-function redundancy in these empirical data sets. We suggest that by shifting the focus to the variety of functions maintained by a diversity of species, the full importance of biodiversity for the functioning of ecosystems can be uncovered. Our results are thus important for conservation and management of biota and ecosystem services.

Gamfeldt L, Roger F (2017)

Revisiting the biodiversity- ecosystem multifunctionality relationship

Nature Ecology & Evolution, 1, 168.

[本文引用: 5]

Garibotti IA, Gonzalez Polo M, Tabeni S (2018)

Linking biological soil crust attributes to the multifunctionality of vegetated patches and interspaces in a semiarid shrubland

Functional Ecology, 32, 1065-1078.

DOI:10.1111/fec.2018.32.issue-4      URL     [本文引用: 1]

Garland G, Banerjee S, Edlinger A, Miranda Oliveira E, Herzog C, Wittwer R, Philippot L, Maestre FT, van der Heijden MGA (2021)

A closer look at the functions behind ecosystem multifunctionality: A review

Journal of Ecology, 109, 600-613.

DOI:10.1111/jec.v109.2      URL     [本文引用: 5]

Giling DP, Beaumelle L, Phillips HRP, Cesarz S, Eisenhauer N, Ferlian O, Gottschall F, Guerra C, Hines J, Sendek A, Siebert J, Thakur MP, Barnes AD (2019)

A niche for ecosystem multifunctionality in global change research

Global Change Biology, 25, 763-774.

DOI:10.1111/gcb.2019.25.issue-3      URL     [本文引用: 3]

Grman E, Zirbel CR, Bassett T, Brudvig LA (2018)

Ecosystem multifunctionality increases with beta diversity in restored prairies

Oecologia, 188, 837-848.

DOI:10.1007/s00442-018-4248-6      URL     [本文引用: 1]

Gross N, Le Bagousse-Pinguet Y, Liancourt P, Berdugo M, Gotelli NJ, Maestre FT (2017)

Functional trait diversity maximizes ecosystem multifunctionality

Nature Ecology & Evolution, 1, 132.

[本文引用: 1]

Gross N, Suding KN, Lavorel S, Roumet C (2007)

Complementarity as a mechanism of coexistence between functional groups of grasses

Journal of Ecology, 95, 1296- 1305.

DOI:10.1111/jec.2007.95.issue-6      URL     [本文引用: 1]

Hautier Y, Isbell F, Borer ET, Seabloom EW, Harpole WS, Lind EM, MacDougall AS, Stevens CJ, Adler PB, Alberti J, Bakker JD, Brudvig LA, Buckley YM, Cadotte M, Caldeira MC, Chaneton EJ, Chu CJ, Daleo P, Dickman CR, Dwyer JM, Eskelinen A, Fay PA, Firn J, Hagenah N, Hillebrand H, Iribarne O, Kirkman KP, Knops JMH, La Pierre KJ, McCulley RL, Morgan JW, Pärtel M, Pascual J, Price JN, Prober SM, Risch AC, Sankaran M, Schuetz M, Standish RJ, Virtanen R, Wardle GM, Yahdjian L, Hector A (2018)

Local loss and spatial homogenization of plant diversity reduce ecosystem multifunctionality

Nature Ecology & Evolution, 2, 50-56.

[本文引用: 3]

Hazard C, Kruitbos L, Davidson H, Taylor AFS, Johnson D (2017)

Contrasting effects of intra- and interspecific identity and richness of ectomycorrhizal fungi on host plants, nutrient retention and multifunctionality

New Phytologist, 213, 852-863.

DOI:10.1111/nph.2017.213.issue-2      URL     [本文引用: 1]

He JS, Bu HY, Hu XW, Feng YH, Li SL, Zhu JX, Liu GH, Wang YR, Nan ZB (2020)

Close-to-nature restoration of degraded alpine grasslands: Theoretical basis and technical approach

Chinese Science Bulletin, 65, 3898-3908. (in Chinese with English abstract)

[本文引用: 1]

[ 贺金生, 卜海燕, 胡小文, 冯彦皓, 李守丽, 朱剑霄, 刘国华, 王彦荣, 南志标 (2020)

退化高寒草地的近自然恢复: 理论基础与技术途径

科学通报, 65, 3898-3908.]

[本文引用: 1]

Hector A, Bagchi R (2007)

Biodiversity and ecosystem multifunctionality

Nature, 448, 188-190.

DOI:10.1038/nature05947      URL     [本文引用: 3]

Hertzog LR, Boonyarittichaikij R, Dekeukeleire D, de Groote SRE, van Schrojenstein Lantman IM, Sercu BK, Smith HK, de la Peña E, Vandegehuchte ML, Bonte D, Martel A, Verheyen K, Lens L, Baeten L (2019)

Forest fragmentation modulates effects of tree species richness and composition on ecosystem multifunctionality

Ecology, 100, e02653.

[本文引用: 3]

Hölting L, Beckmann M, Volk M, Cord AF (2019)

Multifunctionality assessments-More than assessing multiple ecosystem functions and services? A quantitative literature review

Ecological Indicators, 103, 226-235.

DOI:10.1016/j.ecolind.2019.04.009      URL     [本文引用: 6]

Hooper DU, Chapin FS III, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Setälä H, Symstad AJ, Vandermeer J, Wardle DA (2005)

Effects of biodiversity on ecosystem functioning: A consensus of current knowledge

Ecological Monographs, 75, 3-35.

DOI:10.1890/04-0922      URL     [本文引用: 1]

Hu A, Wang JJ, Sun H, Niu B, Si GC, Wang J, Yeh CF, Zhu XX, Lu XC, Zhou JZ, Yang YP, Ren ML, Hu YL, Dong HL, Zhang GX (2020)

Mountain biodiversity and ecosystem functions: Interplay between geology and contemporary environments

The ISME Journal, 14, 931-944.

DOI:10.1038/s41396-019-0574-x      URL     [本文引用: 2]

Huang XB, Li SF, Su JR (2020)

Selective logging enhances ecosystem multifunctionality via increase of functional diversity in a Pinus yunnanensis forest in Southwest China

Forest Ecosystems, 7, 55.

DOI:10.1186/s40663-020-00267-8      URL     [本文引用: 4]

Huang XB, Su JR, Li SF, Liu WD, Lang XD (2019)

Functional diversity drives ecosystem multifunctionality in a Pinus yunnanensis natural secondary forest

Scientific Reports, 9, 6979.

DOI:10.1038/s41598-019-43475-1      URL     [本文引用: 3]

Isbell F, Calcagno V, Hector A, Connolly J, Harpole WS, Reich PB, Scherer-Lorenzen M, Schmid B, Tilman D, van Ruijven J, Weigelt A, Wilsey BJ, Zavaleta ES, Loreau M (2011)

High plant diversity is needed to maintain ecosystem services

Nature, 477, 199-202.

DOI:10.1038/nature10282      URL     [本文引用: 2]

Jax K (2010) Ecosystem Functioning. Cambridge University Press, Cambridge.

[本文引用: 1]

Jia P, Du GZ (2014)

Measuring functional and phylogenetic diversity in community ecology

Chinese Bulletin of Life Sciences, 26, 153-157. (in Chinese with English abstract)

[本文引用: 1]

[ 贾鹏, 杜国祯 (2014)

生态学的多样性指数: 功能与系统发育

生命科学, 26, 153-157.]

[本文引用: 1]

Jing X, He JS (2021)

The relationship between biodiversity, ecosystem multifunctionality and multiserviceability: Literature overview and research advances

Chinese Journal of Plant Ecology, 45, doi: 10.17521/CJPE.2020.0154. (in Chinese with English abstract)

[本文引用: 5]

[ 井新, 贺金生 (2021)

生物多样性与生态系统多功能性和多服务性的关系: 回顾与展望

植物生态学报, 45, doi: 10.17521/CJPE. 2020.0154.]

[本文引用: 5]

Jing X, Prager CM, Classen AT, Maestre FT, He JS, Sanders NJ (2020)

Variation in the methods leads to variation in the interpretation of biodiversity-ecosystem multifunctionality relationships

Journal of Plant Ecology, 13, 431-441.

DOI:10.1093/jpe/rtaa031      URL     [本文引用: 6]

Jing X, Sanders NJ, Shi Y, Chu HY, Classen AT, Zhao K, Chen LT, Shi Y, Jiang YX, He JS (2015)

The links between ecosystem multifunctionality and above- and belowground biodiversity are mediated by climate

Nature Communications, 6, 8159.

DOI:10.1038/ncomms9159      PMID:26328906      [本文引用: 8]

Jing, Xin; Zhao, Ke; Shi, Yue; He, Jin-Sheng Peking Univ, Dept Ecol, Coll Urban & Environm Sci, Beijing 100871, Peoples R China. Jing, Xin; Zhao, Ke; Shi, Yue; He, Jin-Sheng Peking Univ, Key Lab Earth Surface Proc, Minist Educ, Beijing 100871, Peoples R China. Sanders, Nathan J. Univ Copenhagen, Ctr Macroecol Evolut & Climate, Nat Hist Museum Denmark, DK-2100 Copenhagen, Denmark. Shi, Yu; Chu, Haiyan Chinese Acad Sci, Inst Soil Sci, State Key Lab Soil & Sustainable Agr, Nanjing 210008, Peoples R China. Classen, Aimee T. Univ Copenhagen, Nat Hist Museum Denmark, DK-2100 Copenhagen, Denmark. Chen, Litong; He, Jin-Sheng Chinese Acad Sci, Northwest Inst Plateau Biol, Key Lab Adaptat & Evolut Plateau Biota, Xining 810008, Peoples R China. Shi, Yue Chinese Acad Sci, Inst Bot, Beijing 100093, Peoples R China. Jiang, Youxu Chinese Acad Forestry, Inst Forest Ecol, Beijing 100091, Peoples R China.

Jönsson M, Snäll T (2020)

Ecosystem service multifunctionality of low-productivity forests and implications for conservation and management

Journal of Applied Ecology, 57, 695-706.

DOI:10.1111/jpe.v57.4      URL     [本文引用: 1]

Le Bagousse-Pinguet Y, Soliveres S, Gross N, Torices R, Berdugo M, Maestre FT (2019)

Phylogenetic, functional, and taxonomic richness have both positive and negative effects on ecosystem multifunctionality

Proceedings of the National Academy of Sciences, USA, 116, 8419-8424.

[本文引用: 5]

Lefcheck JS, Byrnes JEK, Isbell F, Gamfeldt L, Griffin JN, Eisenhauer N, Hensel MJS, Hector A, Cardinale BJ, Duffy JE (2015)

Biodiversity enhances ecosystem multifunctionality across trophic levels and habitats

Nature Communications, 6, 6936.

DOI:10.1038/ncomms7936      URL     [本文引用: 5]

Li J, Delgado-Baquerizo M, Wang JT, Hu HW, Cai ZJ, Zhu YN, Singh BK (2019)

Fungal richness contributes to multifunctionality in boreal forest soil

Soil Biology and Biochemistry, 136, 107526.

DOI:10.1016/j.soilbio.2019.107526      URL     [本文引用: 1]

Li JP, Zheng ZR, Xie HT, Zhao NX, Gao YB (2017)

Heterogeneous microcommunities and ecosystem multifunctionality in seminatural grasslands under three management modes

Ecology and Evolution, 7, 14-25.

DOI:10.1002/ece3.2604      URL     [本文引用: 2]

Li SF, Huang XB, Lang XD, Shen JY, Xu FD, Su JR (2020)

Cumulative effects of multiple biodiversity attributes and abiotic factors on ecosystem multifunctionality in the Jinsha River valley of southwestern China

Forest Ecology and Management, 472, 118281.

DOI:10.1016/j.foreco.2020.118281      URL     [本文引用: 1]

Linders TEW, Schaffner U, Alamirew T, Allan E, Choge SK, Eschen R, Shiferaw H, Manning P (2021)

Stakeholder priorities determine the impact of an alien tree invasion on ecosystem multifunctionality

People and Nature, 3, 658- 672.

DOI:10.1002/pan3.v3.3      URL     [本文引用: 1]

Liu XC, Shi XM, Zhang ST (2021)

Soil abiotic properties and plant functional diversity co-regulate the impacts of nitrogen addition on ecosystem multifunctionality in an alpine meadow

Science of the Total Environment, 780, 146476.

DOI:10.1016/j.scitotenv.2021.146476      URL     [本文引用: 5]

Liu XJ, Ma KP (2015)

Plant functional traits-Concepts, applications and future directions

Scientia Sinica Vitae, 45, 325-339. (in Chinese with English abstract)

DOI:10.1360/N052014-00244      URL     [本文引用: 1]

[ 刘晓娟, 马克平 (2015)

植物功能性状研究进展

中国科学: 生命科学, 45, 325-339.]

[本文引用: 1]

Locey KJ, Lennon JT (2016)

Scaling laws predict global microbial diversity

Proceedings of the National Academy of Sciences, USA, 113, 5970-5975.

[本文引用: 1]

Lohbeck M, Bongers F, Martinez-Ramos M, Poorter L (2016)

The importance of biodiversity and dominance for multiple ecosystem functions in a human-modified tropical landscape

Ecology, 97, 2772-2779.

DOI:10.1002/ecy.2016.97.issue-10      URL     [本文引用: 3]

Lucas-Borja ME, Delgado-Baquerizo M (2019)

Plant diversity and soil stoichiometry regulates the changes in multifunctionality during pine temperate forest secondary succession

Science of the Total Environment, 697, 134204.

DOI:10.1016/j.scitotenv.2019.134204      URL     [本文引用: 2]

Luo GW, Rensing C, Chen H, Liu MQ, Wang M, Guo SW, Ling N, Shen QR (2018)

Deciphering the associations between soil microbial diversity and ecosystem multifunctionality driven by long-term fertilization management

Functional Ecology, 32, 1103-1116.

DOI:10.1111/fec.2018.32.issue-4      URL     [本文引用: 3]

Luo YH, Cadotte MW, Burgess KS, Liu J, Tan SL, Zou JY, Xu K, Li DZ, Gao LM (2019)

Greater than the sum of the parts: How the species composition in different forest strata influence ecosystem function

Ecology Letters, 22, 1449- 1461.

DOI:10.1111/ele.v22.9      URL     [本文引用: 2]

Maestre FT, Castillo-Monroy AP, Bowker MA, Ochoa-Hueso R (2012a)

Species richness effects on ecosystem multifunctionality depend on evenness, composition and spatial pattern

Journal of Ecology, 100, 317-330.

DOI:10.1111/jec.2012.100.issue-2      URL     [本文引用: 3]

Maestre FT, Quero JL, Gotelli NJ, Escudero A, Ochoa V, Delgado-Baquerizo M, García-Gómez M, Bowker MA, Soliveres S, Escolar C, García-Palacios P, Berdugo M, Valencia E, Gozalo B, Gallardo A, Aguilera L, Arredondo T, Blones J, Boeken B, Bran D, Conceição AA, Cabrera O, Chaieb M, Derak M, Eldridge DJ, Espinosa CI, Florentino A, Gaitán J, Gatica MG, Ghiloufi W, Gómez-González S, Gutiérrez JR, Hernández RM, Huang XW, Huber-Sannwald E, Jankju M, Miriti M, Monerris J, Mau RL, Morici E, Naseri K, Ospina A, Polo V, Prina A, Pucheta E, Ramírez-Collantes DA, Romão R, Tighe M, Torres-Díaz C, Val J, Veiga JP, Wang DL, Zaady E (2012b)

Plant species richness and ecosystem multifunctionality in global drylands

Science, 335, 214-218.

DOI:10.1126/science.1215442      URL     [本文引用: 4]

Manning P, van der Plas F, Soliveres S, Allan E, Maestre FT, Mace G, Whittingham MJ, Fischer M (2018)

Redefining ecosystem multifunctionality

Nature Ecology & Evolution, 2, 427-436.

[本文引用: 8]

MEA (2005) Millennium Ecosystem Assessment. Island Press, Washington, DC.

[本文引用: 2]

Mensah S, Salako KV, Assogbadjo A, Glèlè Kakaï R, Sinsin B, Seifert T (2020)

Functional trait diversity is a stronger predictor of multifunctionality than dominance: Evidence from an Afromontane forest in South Africa

Ecological Indicators, 115, 106415.

DOI:10.1016/j.ecolind.2020.106415      URL     [本文引用: 4]

Meyer ST, Ptacnik R, Hillebrand H, Bessler H, Buchmann N, Ebeling A, Eisenhauer N, Engels C, Fischer M, Halle S, Klein AM, Oelmann Y, Roscher C, Rottstock T, Scherber C, Scheu S, Schmid B, Schulze ED, Temperton VM, Tscharntke T, Voigt W, Weigelt A, Wilcke W, Weisser WW (2018)

Biodiversity-multifunctionality relationships depend on identity and number of measured functions

Nature Ecology & Evolution, 2, 44-49.

[本文引用: 5]

Minden V, Kleyer M (2015)

Ecosystem multifunctionality of coastal marshes is determined by key plant traits

Journal of Vegetation Science, 26, 651-662.

DOI:10.1111/jvs.12276      URL     [本文引用: 1]

Mori AS, Isbell F, Fujii S, Makoto K, Matsuoka S, Osono T (2016)

Low multifunctional redundancy of soil fungal diversity at multiple scales

Ecology Letters, 19, 249-259.

DOI:10.1111/ele.2016.19.issue-3      URL     [本文引用: 1]

Mouillot D, Villéger S, Scherer-Lorenzen M, Mason NWH (2011)

Functional structure of biological communities predicts ecosystem multifunctionality

PLoS ONE, 6, e17476.

DOI:10.1371/journal.pone.0017476      URL     [本文引用: 3]

Naeem S (2002)

Ecosystem consequences of biodiversity loss: The evolution of a paradigm

Ecology, 83, 1537-1552.

DOI:10.1890/0012-9658(2002)083[1537:ECOBLT]2.0.CO;2      URL     [本文引用: 1]

Naeem S, Thompson LJ, Lawler SP, Lawton JH, Woodfin RM (1995)

Empirical evidence that declining species diversity may alter the performance of terrestrial ecosystems

Philosophical Transactions of the Royal Society B: Biological Sciences, 347, 249-262.

DOI:10.1098/rstb.1995.0025      URL     [本文引用: 1]

Odum E (1971)

Fundamentals of Ecology

Saunders, Philadelphia.

[本文引用: 1]

Oka C, Aiba M, Nakashizuka T (2019)

Phylogenetic clustering in beneficial attributes of tree species directly linked to provisioning, regulating and cultural ecosystem services

Ecological Indicators, 96, 477-495.

DOI:10.1016/j.ecolind.2018.09.035      URL     [本文引用: 1]

Pan Y, Wu JX, Luo LM, Tu YL, Yu CQ, Zhang XZ, Miao YJ, Zhao Y, Yang JL (2017)

Climatic and geographic factors affect ecosystem multifunctionality through biodiversity in the Tibetan alpine grasslands

Journal of Mountain Science, 14, 1604-1614.

DOI:10.1007/s11629-016-4242-6      URL     [本文引用: 1]

Pasari JR, Levi T, Zavaleta ES, Tilman D (2013)

Several scales of biodiversity affect ecosystem multifunctionality

Proceedings of the National Academy of Sciences, USA, 110, 10219-10222.

[本文引用: 2]

Peco B, Navarro E, Carmona CP, Medina NG, Marques MJ (2017)

Effects of grazing abandonment on soil multifunctionality: The role of plant functional traits

Agriculture, Ecosystems & Environment, 249, 215-225.

DOI:10.1016/j.agee.2017.08.013      URL     [本文引用: 1]

Pérez-Harguindeguy N, Díaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, Bret-Harte MS, Cornwell WK, Craine JM, Gurvich DE, Urcelay C, Veneklaas EJ, Reich PB, Poorter L, Wright IJ, Ray P, Enrico L, Pausas JG, de Vos AC, Buchmann N, Funes G, Quétier F, Hodgson JG, Thompson K, Morgan HD, ter Steege H, van der Heijden MGA, Sack L, Blonder B, Poschlod P, Vaieretti MV, Conti G, Staver AC, Aquino S, Cornelissen JHC (2013)

New handbook for standardised measurement of plant functional traits worldwide

Australian Journal of Botany, 61, 167-234.

DOI:10.1071/BT12225      URL     [本文引用: 1]

Petchey OL, Gaston KJ (2002)

Functional diversity (FD), species richness and community composition

Ecology Letters, 5, 402-411.

DOI:10.1046/j.1461-0248.2002.00339.x      URL     [本文引用: 1]

Peura M, Burgas D, Eyvindson K, Repo AN, Mönkkönen M (2018)

Continuous cover forestry is a cost-efficient tool to increase multifunctionality of boreal production forests in Fennoscandia

Biological Conservation, 217, 104-112.

DOI:10.1016/j.biocon.2017.10.018      URL     [本文引用: 1]

Ratcliffe S, Wirth C, Jucker T, van der Plas F, Scherer-Lorenzen M, Verheyen K, Allan E, Benavides R, Bruelheide H, Ohse B, Paquette A, Ampoorter E, Bastias CC, Bauhus J, Bonal D, Bouriaud O, Bussotti F, Carnol M, Castagneyrol B, Chećko E, Dawud SM, De Wandeler H, Domisch T, Finér L, Fischer M, Fotelli M, Gessler A, Granier A, Grossiord C, Guyot V, Haase J, Hättenschwiler S, Jactel H, Jaroszewicz B, Joly FX, Kambach S, Kolb S, Koricheva J, Liebersgesell M, Milligan H, Müller S, Muys B, Nguyen D, Nock C, Pollastrini M, Purschke O, Radoglou K, Raulund-Rasmussen K, Roger F, Ruiz-Benito P, Seidl R, Selvi F, Seiferling I, Stenlid J, Valladares F, Vesterdal L, Baeten L (2017)

Biodiversity and ecosystem functioning relations in European forests depend on environmental context

Ecology Letters, 20, 1414-1426.

DOI:10.1111/ele.12849      PMID:28925074      [本文引用: 1]

The importance of biodiversity in supporting ecosystem functioning is generally well accepted. However, most evidence comes from small-scale studies, and scaling-up patterns of biodiversity-ecosystem functioning (B-EF) remains challenging, in part because the importance of environmental factors in shaping B-EF relations is poorly understood. Using a forest research platform in which 26 ecosystem functions were measured along gradients of tree species richness in six regions across Europe, we investigated the extent and the potential drivers of context dependency of B-EF relations. Despite considerable variation in species richness effects across the continent, we found a tendency for stronger B-EF relations in drier climates as well as in areas with longer growing seasons and more functionally diverse tree species. The importance of water availability in driving context dependency suggests that as water limitation increases under climate change, biodiversity may become even more important to support high levels of functioning in European forests.© 2017 John Wiley & Sons Ltd/CNRS.

Reiss J, Bridle JR, Montoya JM, Woodward G (2009)

Emerging horizons in biodiversity and ecosystem functioning research

Trends in Ecology & Evolution, 24, 505-514.

DOI:10.1016/j.tree.2009.03.018      URL     [本文引用: 1]

Ren HY, Eviner VT, Gui WY, Wilson GWT, Cobb AB, Yang GW, Zhang YJ, Hu SJ, Bai YF (2018)

Livestock grazing regulates ecosystem multifunctionality in semi-arid grassland

Functional Ecology, 32, 2790-2800.

DOI:10.1111/fec.2018.32.issue-12      URL     [本文引用: 2]

Robroek BJM, Jassey VEJ, Beltman B, Hefting MM (2017)

Diverse fen plant communities enhance carbon-related multifunctionality, but do not mitigate negative effects of drought

Royal Society Open Science, 4, 170449.

DOI:10.1098/rsos.170449      PMID:29134063      [本文引用: 1]

Global change, like droughts, can destabilize the carbon sink function of peatlands, either directly or indirectly through changes in plant community composition. While the effects of drought and plant community composition on individual carbon (C) related processes are well understood, their effect on multiple C-related processes simultaneously-multifunctionality-is poorly known. We studied the effect of drought on four C-related processes (net and gross CO exchange, methane fluxes, and dissolved organic carbon content) in a plant removal experiment. Plant functional type (PFT) removal (graminoids, herbs, spp., incl. combinations) negatively affected multifunctionality; most markedly when all PFTs were removed. Our results corroborate a negative drought effect on C-related multifunctionality. Drought reduced multifunctionality, and this reduction was again largest when all PFTs were removed. Our data further indicate that much of these negative drought effects were carried over and maintained from the initial removal treatment. These results suggest that while a high diversity in plant functional types is associated to high C-related multifunctionality, plant community assembly does not drive the ability of peatlands to withstand the negative impacts of drought on multifunctionality. Hence, to safeguard the carbon cycling function in intact peatlands, the effects of climate change on the functional composition of the peatland plant community needs to be minimized.

Sacchelli S, De Meo I, Paletto A (2013)

Bioenergy production and forest multifunctionality: A trade-off analysis using multiscale GIS model in a case study in Italy

Applied Energy, 104, 10-20.

DOI:10.1016/j.apenergy.2012.11.038      URL     [本文引用: 1]

Sanaei A, Ali A, Yuan ZQ, Liu SF, Lin F, Fang S, Ye J, Hao ZQ, Loreau M, Bai E, Wang XG (2021)

Context- dependency of tree species diversity, trait composition and stand structural attributes regulate temperate forest multifunctionality

Science of the Total Environment, 757, 143724.

DOI:10.1016/j.scitotenv.2020.143724      URL     [本文引用: 1]

Schuldt A, Assmann T, Brezzi M, Buscot F, Eichenberg D, Gutknecht J, Härdtle W, He JS, Klein AM, Kühn P, Liu XJ, Ma KP, Niklaus PA, Pietsch KA, Purahong W, Scherer-Lorenzen M, Schmid B, Scholten T, Staab M, Tang ZY, Trogisch S, von Oheimb G, Wirth C, Wubet T, Zhu CD, Bruelheide H (2018)

Biodiversity across trophic levels drives multifunctionality in highly diverse forests

Nature Communications, 9, 2989.

DOI:10.1038/s41467-018-05421-z      URL     [本文引用: 6]

Schulze ED, Mooney HA (1993)

Biodiversity and ecosystem function

In: Biodiversity and Ecosystem Function (eds Schulze ED, Mooney HA). Springer-Verlag, Berlin.

[本文引用: 1]

Slade EM, Bagchi R, Keller N, Philipson CD (2019)

When do more species maximize more ecosystem services?

Trends in Plant Science, 24, 790-793.

DOI:10.1016/j.tplants.2019.06.014      URL     [本文引用: 1]

Soliveres S, Maestre FT, Eldridge DJ, Delgado-Baquerizo M, Quero JL, Bowker MA, Gallardo A (2014)

Plant diversity and ecosystem multifunctionality peak at intermediate levels of woody cover in global drylands

Global Ecology and Biogeography, 23, 1408-1416.

PMID:25914607      [本文引用: 4]

The global spread of woody plants into grasslands is predicted to increase over the coming century. While there is general agreement regarding the anthropogenic causes of this phenomenon, its ecological consequences are less certain. We analyzed how woody vegetation of differing cover affects plant diversity (richness and evenness) and multiple ecosystem functions (multifunctionality) in global drylands, and how this changes with aridity.224 dryland sites from all continents except Antarctica widely differing in their environmental conditions (from arid to dry-subhumid sites) and woody covers (from 0 to 100%).Using a standardized field survey, we measured the cover, richness and evenness of perennial vegetation. At each site, we measured 14 ecosystem functions related to soil fertility and the build-up of nutrient pools. These functions are critical for maintaining ecosystem function in drylands.Species richness and ecosystem multifunctionality were strongly influenced by woody vegetation, with both variables peaking at relative woody covers (RWC) of 41-60%. This relationship shifted with aridity. We observed linear positive effects of RWC in dry-subhumid sites. These positive trends shifted to hump-shaped RWC-diversity and multifunctionality relationships under semiarid environments. Finally, hump-shaped (richness, evenness) or linear negative (multifunctionality) effects of RWC were found under the most arid conditions.Plant diversity and multifunctionality peaked at intermediate levels of woody cover, although this relationship became increasingly positive under wetter environments. This comprehensive study accounts for multiple ecosystem attributes across a range of woody covers and environmental conditions. Our results help us to reconcile contrasting views of woody encroachment found in current literature and can be used to improve predictions of the likely effects of encroachment on biodiversity and ecosystem services.

Soliveres S, van der Plas F, Manning P, Prati D, Gossner MM, Renner SC, Alt F, Arndt H, Baumgartner V, Binkenstein J, Birkhofer K, Blaser S, Blüthgen N, Boch S, Böhm S, Börschig C, Buscot F, Diekötter T, Heinze J, Hölzel N, Jung K, Klaus VH, Kleinebecker T, Klemmer S, Krauss J, Lange M, Morris EK, Müller J, Oelmann Y, Overmann J, Pašalić E, Rillig MC, Schaefer HM, Schloter M, Schmitt B, Schöning I, Schrumpf M, Sikorski J, Socher SA, Solly EF, Sonnemann I, Sorkau E, Steckel J, Steffan-Dewenter I, Stempfhuber B, Tschapka M, Türke M, Venter PC, Weiner CN, Weisser WW, Werner M, Westphal C, Wilcke W, Wolters V, Wubet T, Wurst S, Fischer M, Allan E (2016)

Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality

Nature, 536, 456-459.

[本文引用: 2]

Srivastava DS, Cadotte MW, MacDonald AAM, Marushia RG, Mirotchnick N (2012)

Phylogenetic diversity and the functioning of ecosystems

Ecology Letters, 15, 637-648.

DOI:10.1111/j.1461-0248.2012.01795.x      PMID:22583836      [本文引用: 2]

Phylogenetic diversity (PD) describes the total amount of phylogenetic distance among species in a community. Although there has been substantial research on the factors that determine community PD, exploration of the consequences of PD for ecosystem functioning is just beginning. We argue that PD may be useful in predicting ecosystem functions in a range of communities, from single-trophic to complex networks. Many traits show a phylogenetic signal, suggesting that PD can estimate the functional trait space of a community, and thus ecosystem functioning. Phylogeny also determines interactions among species, and so could help predict how extinctions cascade through ecological networks and thus impact ecosystem functions. Although the initial evidence available suggests patterns consistent with these predictions, we caution that the utility of PD depends critically on the strength of phylogenetic signals to both traits and interactions. We advocate for a synthetic approach that incorporates a deeper understanding of how traits and interactions are shaped by evolution, and outline key areas for future research. If these complexities can be incorporated into future studies, relationships between PD and ecosystem function bear promise in conceptually unifying evolutionary biology with ecosystem ecology.© 2012 Blackwell Publishing Ltd/CNRS.

Steudel B, Hallmann C, Lorenz M, Abrahamczyk S, Prinz K, Herrfurth C, Feussner I, Martini JWR, Kessler M (2016)

Contrasting biodiversity-ecosystem functioning relationships in phylogenetic and functional diversity

New Phytologist, 212, 409-420.

DOI:10.1111/nph.2016.212.issue-2      URL     [本文引用: 1]

Tilman D, Downing JA (1994)

Biodiversity and stability in grasslands

Nature, 367, 363-365.

DOI:10.1038/367363a0      URL     [本文引用: 1]

Tilman D, Isbell F, Cowles JM (2014)

Biodiversity and ecosystem functioning

Annual Review of Ecology, Evolution, and Systematics, 45, 471-493.

DOI:10.1146/ecolsys.2014.45.issue-1      URL     [本文引用: 1]

Trogisch S, Schuldt A, Bauhus J, Blum JA, Both S, Buscot F, Castro-Izaguirre N, Chesters D, Durka W, Eichenberg D, Erfmeier A, Fischer M, Geißler C, Germany MS, Goebes P, Gutknecht J, Hahn CZ, Haider S, Härdtle W, He JS, Hector A, Hönig L, Huang YY, Klein AM, Kühn P, Kunz M, Leppert KN, Li Y, Liu XJ, Niklaus PA, Pei ZQ, Pietsch KA, Prinz R, Proß T, Scherer-Lorenzen M, Schmidt K, Scholten T, Seitz S, Song ZS, Staab M, von Oheimb G, Weißbecker C, Welk E, Wirth C, Wubet T, Yang B, Yang XF, Zhu CD, Schmid B, Ma KP, Bruelheide H (2017)

Toward a methodical framework for comprehensively assessing forest multifunctionality

Ecology and Evolution, 7, 10652-10674.

DOI:10.1002/ece3.2017.7.issue-24      URL     [本文引用: 1]

Valencia E, Maestre FT, Le Bagousse-Pinguet Y, Quero JL, Tamme R, Börger L, García-Gómez M, Gross N (2015)

Functional diversity enhances the resistance of ecosystem multifunctionality to aridity in Mediterranean drylands

New Phytologist, 206, 660-671.

DOI:10.1111/nph.13268      PMID:25615801      [本文引用: 4]

We used a functional trait-based approach to assess the impacts of aridity and shrub encroachment on the functional structure of Mediterranean dryland communities (functional diversity (FD) and community-weighted mean trait values (CWM)), and to evaluate how these functional attributes ultimately affect multifunctionality (i.e. the provision of several ecosystem functions simultaneously). Shrub encroachment (the increase in the abundance/cover of shrubs) is a major land cover change that is taking place in grasslands worldwide. Studies conducted on drylands have reported positive or negative impacts of shrub encroachment depending on the functions and the traits of the sprouting or nonsprouting shrub species considered. FD and CWM were equally important as drivers of multifunctionality responses to both aridity and shrub encroachment. Size traits (e.g. vegetative height or lateral spread) and leaf traits (e.g. specific leaf area and leaf dry matter content) captured the effect of shrub encroachment on multifunctionality with a relative high accuracy (r(2) = 0.63). FD also improved the resistance of multifunctionality along the aridity gradient studied. Maintaining and enhancing FD in plant communities may help to buffer negative effects of ongoing global environmental change on dryland multifunctionality. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

van der Plas F (2019)

Biodiversity and ecosystem functioning in naturally assembled communities

Biological Reviews of the Cambridge Philosophical Society, 94, 1220-1245.

[本文引用: 4]

van der Plas F, Manning P, Allan E, Scherer-Lorenzen M, Verheyen K, Wirth C, Zavala MA, Hector A, Ampoorter E, Baeten L, Barbaro L, Bauhus J, Benavides R, Benneter A, Berthold F, Bonal D, Bouriaud O, Bruelheide H, Bussotti F, Carnol M, Castagneyrol B, Charbonnier Y, Coomes D, Coppi A, Bastias CC, Muhie Dawud S, De Wandeler H, Domisch T, Finér L, Gessler A, Granier A, Grossiord C, Guyot V, Hättenschwiler S, Jactel H, Jaroszewicz B, Joly FX, Jucker T, Koricheva J, Milligan H, Müller S, Muys B, Nguyen D, Pollastrini M, Raulund-Rasmussen K, Selvi F, Stenlid J, Valladares F, Vesterdal L, Zielínski D, Fischer M (2016a)

Jack-of-all-trades effects drive biodiversity-ecosystem multifunctionality relationships in European forests

Nature Communications, 7, 11109.

DOI:10.1038/ncomms11109      URL     [本文引用: 2]

van der Plas F, Manning P, Soliveres S, Allan E, Scherer-Lorenzen M, Verheyen K, Wirth C, Zavala MA, Ampoorter E, Baeten L, Barbaro L, Bauhus J, Benavides R, Benneter A, Bonal D, Bouriaud O, Bruelheide H, Bussotti F, Carnol M, Castagneyrol B, Charbonnier Y, Coomes DA, Coppi A, Bastias CC, Dawud SM, De Wandeler H, Domisch T, Finér L, Gessler A, Granier A, Grossiord C, Guyot V, Hättenschwiler S, Jactel H, Jaroszewicz B, Joly FX, Jucker T, Koricheva J, Milligan H, Mueller S, Muys B, Nguyen D, Pollastrini M, Ratcliffe S, Raulund-Rasmussen K, Selvi F, Stenlid J, Valladares F, Vesterdal L, Zielínski D, Fischer M (2016b)

Biotic homogenization can decrease landscape- scale forest multifunctionality

Proceedings of the National Academy of Sciences, USA, 113, 3557-3562.

[本文引用: 4]

Venail P, Gross K, Oakley TH, Narwani A, Allan E, Flombaum P, Isbell F, Joshi J, Reich PB, Tilman D, Ruijven J, Cardinale BJ (2015)

Species richness, but not phylogenetic diversity, influences community biomass production and temporal stability in a re-examination of 16 grassland biodiversity studies

Functional Ecology, 29, 615-626.

DOI:10.1111/fec.2015.29.issue-5      URL     [本文引用: 1]

Wagg C, Bender SF, Widmer F, van der Heijden MGA (2014)

Soil biodiversity and soil community composition determine ecosystem multifunctionality

Proceedings of the National Academy of Sciences, USA, 111, 5266-5270.

[本文引用: 1]

Wagg C, Schlaeppi K, Banerjee S, Kuramae EE, van der Heijden MGA (2019)

Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning

Nature Communications, 10, 4841.

DOI:10.1038/s41467-019-12798-y      URL     [本文引用: 3]

Wang XY, Li FY, Wang YN, Liu XM, Cheng JW, Zhang JZ, Baoyin T, Bardgett RD (2020)

High ecosystem multifunctionality under moderate grazing is associated with high plant but low bacterial diversity in a semi-arid steppe grassland

Plant and Soil, 448, 265-276.

DOI:10.1007/s11104-020-04430-6      URL     [本文引用: 2]

Wen Z, Zheng H, Zhao H, Xie SL, Liu L, Ouyang ZY (2020)

Land-use intensity indirectly affects soil multifunctionality via a cascade effect of plant diversity on soil bacterial diversity

Global Ecology and Conservation, 23, e01061.

DOI:10.1016/j.gecco.2020.e01061      URL     [本文引用: 1]

Wiens JJ, Graham CH (2005)

Niche conservatism: Integrating evolution, ecology, and conservation biology

Annual Review of Ecology, Evolution and Systematics, 36, 519- 539.

DOI:10.1146/ecolsys.2005.36.issue-1      URL     [本文引用: 1]

Xu W, Jing X, Ma ZY, He JS (2016a)

A review on the measurement of ecosystem multifunctionality

Biodiversity Science, 24, 72-84. (in Chinese with English abstract)

DOI:10.17520/biods.2015170      URL     [本文引用: 1]

[ 徐炜, 井新, 马志远, 贺金生 (2016a)

生态系统多功能性的测度方法

生物多样性, 24, 72-84.]

[本文引用: 1]

Xu W, Ma ZY, Jing X, He JS (2016b)

Biodiversity and ecosystem multifunctionality: Advances and perspectives

Biodiversity Science, 24, 55-71. (in Chinese with English abstract)

DOI:10.17520/biods.2015091      URL     [本文引用: 1]

[ 徐炜, 马志远, 井新, 贺金生 (2016b)

生物多样性与生态系统多功能性: 进展与展望

生物多样性, 24, 55-71.]

[本文引用: 1]

Yan YZ, Zhang Q, Buyantuev A, Liu QF, Niu JM (2020)

Plant functional β diversity is an important mediator of effects of aridity on soil multifunctionality

Science of the Total Environment, 726, 138529.

DOI:10.1016/j.scitotenv.2020.138529      URL     [本文引用: 2]

Yuan ZQ, Ali A, Ruiz-Benito P, Jucker T, Mori AS, Wang SP, Zhang XK, Li H, Hao ZQ, Wang XG, Loreau M (2020)

Above- and below-ground biodiversity jointly regulate temperate forest multifunctionality along a local-scale environmental gradient

Journal of Ecology, 108, 2012- 2024.

DOI:10.1111/jec.v108.5      URL     [本文引用: 3]

Zavaleta ES, Pasari JR, Hulvey KB, Tilman GD (2010)

Sustaining multiple ecosystem functions in grassland communities requires higher biodiversity

Proceedings of the National Academy of Sciences, USA, 107, 1443-1446.

[本文引用: 2]

Zeng YL, Wu HL, Ouyang S, Chen L, Fang X, Peng CH, Liu SR, Xiao WF, Xiang WH (2021)

Ecosystem service multifunctionality of Chinese fir plantations differing in stand age and implications for sustainable management

Science of the Total Environment, 788, 147791.

DOI:10.1016/j.scitotenv.2021.147791      URL     [本文引用: 1]

Zhang J, Eldridge DJ, Delgado-Baquerizo M (2016)

Biotic communities cannot mitigate the negative effects of grazing on multiple ecosystem functions and services in an arid shrubland

Plant and Soil, 401, 381-395.

DOI:10.1007/s11104-015-2754-4      URL     [本文引用: 1]

Zirbel CR, Grman E, Bassett T, Brudvig LA (2019)

Landscape context explains ecosystem multifunctionality in restored grasslands better than plant diversity

Ecology, 100, e02634.

[本文引用: 9]

/