黄河兰州段鱼类多样性与保护
Fish diversity and conservation in the Lanzhou reach of the Yellow River
Corresponding authors: *E-mail:zhanglixun@lzu.edu.cn
Received: 2021-05-19 Accepted: 2021-07-10
兰州市是黄河唯一穿城而过的省会城市, 是黄河流域综合治理与高质量发展的重要区域, 了解其鱼类多样性现状及变化趋势对黄河流域水生态保护尤为重要。本文于2020年7-10月对黄河干流兰州段及其4条支流(庄浪河、大通河、湟水河和宛川河)开展了鱼类多样性、分布及影响因素调查, 以Shannon-Wiener多样性指数、Pielou均匀度指数、Simpson优势度指数、Cody和Routledge指数、Bray-Curtis相异性系数对黄河兰州段5条河流鱼类群落进行评估, 同时通过相对多度(relative abundance, RA)判定优势种, 利用非度量多维标度排序(non-metric multidimensional scaling, NMDS)展示物种空间分布格局。本次调查获得鱼类20种, 隶属于4目6科15属。其中, 国家II级重点保护野生动物1种, 受威胁鱼类4种, 中国特有鱼类7种, 黄河特有鱼类4种。区系组成属青藏高原区高原西北亚区, 其中鲤形目种类占绝对优势, 优势种为东方高原鳅(Triplophysa orientalis)、粗壮高原鳅(T. robusta)、鲫(Carassius auratus)和麦穗鱼(Pseudorasbora parva)。庄浪河和黄河干流的α多样性较高。β多样性分析结果表明, 黄河干流与庄浪河、大通河、湟水河和宛川河间的鱼类物种明显不相似; 大通河与湟水河之间以及黄河干流与宛川河之间的鱼类物种组成相似性较高。NMDS分析表明, 黄河兰州段鱼类被划分为地理空间上相近的4个地理群。水利设施建设、外来物种和水体污染可能影响了黄河兰州段鱼类多样性和分布。本研究为黄河兰州段鱼类多样性保护和科学管理以及黄河流域生态保护和高质量发展提供了基础调查数据。
关键词:
Aim: Lanzhou is the only provincial capital city that the Yellow River passes through. It has played an important role in comprehensive management and high-quality development of the Yellow River basin. It is necessary to understand the status of and changes in fish species diversity to protect this aquatic ecosystem in the future.
Methods: To comprehensively document the pattern of fish diversity in the Lanzhou reach of the Yellow River, we probed the distribution of fish species using field surveys from July to October in 2020. The indices of Shannon-Wiener, Pielou, Simpson, Cody, Routledge, and Bray-Curtis were applied to evaluate the main streams and four tributaries in Lanzhou County. Relative abundance (RA) was calculated to determine the dominant species, and non-metric multidimensional scaling (NMDS) was used to show the spatial distribution pattern of the species.
Results: A total of 20 species, including four threatened species, one national class II protected wildlife species, seven Chinese endemic fish species, and four of the Yellow River’s endemic fish species were collected. These species belonged to 15 genera, 6 families, and 4 orders. Triplophysa orientalis, T. robusta, Carassius auratus and Pseudorasbora parva are the dominant fish species in this area. The fish fauna was dominated by fishes that are widespread in the Northwest Qinghai-Tibetan subregion. Omnivorous, demersal, and settlement fish were the predominant ecological types. Also, the Zhuanglang River and the Yellow River had a higher diversity of fish species than the Datong River and the Wanchuan River. The beta diversity analysis showed that the habitats of the Yellow River were different from those of the Zhuanglang River, the Datong River, the Huangshui River and the Wanchuan River, and that the fish species differentiated somewhat in these rivers. Moreover, the fish composition dissimilarity between the Zhuanglang River, the Yellow River, the Huangshui River, and the Wanchuan River was high. The NMDS method was applied to the collected data and four separate groups with small geographic distance were identified.
Conclusion: Water conservancy facilities construction, alien fish, and water pollution may affect the diversity and distribution of fish in the Lanzhou reach of the Yellow River. This study assessed available baseline information to ensure the protection and scientific management of freshwater fish diversity in the Lanzhou reach of the Yellow River. This information will be useful for the ecological protection and high-quality development of the Yellow River basin.
Keywords:
本文引用格式
陈召松, 安蓓, 王子旺, 吴发宁, 孙章运, 张立勋 (2021)
Zhaosong Chen, Bei An, Ziwang Wang, Faning Wu, Zhangyun Sun, Lixun Zhang (2021)
鱼类是维持淡水生态系统功能的关键类群(Villéger et al, 2017)。近年来, 在人类活动和全球气候变化的影响下, 淡水鱼类多样性正面临环境退化、栖息地丧失和外来种入侵等多重威胁(Barbarossa et al, 2020; Haubrock et al, 2021; Su et al, 2021)。鱼类多样性的改变与水域生态与环境安全紧密相关, 已成为评估淡水生态系统健康的最重要的指标之一(廖静秋和黄艺, 2013)。系统开展鱼类多样性调查, 掌握鱼类的现状以及面临的威胁, 不仅是保护淡水生态系统的前提, 也是区域生物多样性评估的关键指标, 而且对于当地今后的发展具有不可估量的生态意义、历史价值和经济效益(Dudgeon et al, 2006; Albert et al, 2021)。
近年来, 随着社会经济的发展, 黄河流域生态环境受到严重影响, 鱼类多样性和群落结构发生了变化。黄河流域鱼类多样性研究始于20世纪30年代, 已知黄河流域分布的鱼类共计12目21科78属147种(赵亚辉等, 2020)。目前黄河兰州段鱼类研究主要集中于黄河干流: 王香亭等(1956)调查有18种; 贾秋红等(2015)调查有13种; 王太等(2015)调查有14种, 其他河流仅见一些零星调查, 缺乏兰州市水域鱼类系统性调查研究, 其物种组成、地理分布及影响因素尚不清楚, 制约了当地鱼类资源的开发、利用及保护工作的开展。基于以上研究基础, 本研究对黄河兰州段5条河流的鱼类多样性进行系统调查, 以期为当地鱼类多样性保护和科学管理以及黄河流域生态保护和高质量发展提供基础数据。
1 材料与方法
1.1 调查区域与时间
为方便统筹保护规划、服务于地方管理, 本研究调查范围位于兰州市辖区, 调查区域位于35°38′- 36°55′ N, 102°43′-104°20′ E之间, 海拔1,404- 2,465 m。依据境内各级河流的生境特征, 共布设23个采样断面, 其中, 一级河流黄河布设5个(S1-S5), 四级河流大通河布设4个(S6-S9), 四级河流湟水河布设3个(S10-S12), 五级河流庄浪河布设4个(S13-S16), 五级河流宛川河布设7个(S17-S23), 区域内各采样断面具体位置见表1和图1所示。采样时间为2020年7-8月(丰水期)和9-10月(平水期)。河流级别的划分依据国家基础地理信息中心(
表1 黄河兰州段鱼类采样断面位置信息
Table 1
河流 River | 河流级别 Order | 代号 Code | 断面名称 Section name | 纬度 Latitude (N) | 经度 Longitude (E) | 海拔 Altitude (m) |
---|---|---|---|---|---|---|
黄河 Yellow River | 一级 First | S1 | 榆中县园子岔乡 Yuanzicha Town, Yuzhong County | 36°22′ | 104°20′ | 1,404 |
S2 | 皋兰县什川镇1 Shichuan Town 1, Gaolan County | 36°17′ | 104°09′ | 1,501 | ||
S3 | 皋兰县什川镇2 Shichuan Town 2, Gaolan County | 36°12′ | 104°03′ | 1,513 | ||
S4 | 安宁区刘家堡街道 Liujiabao Street, Anning District | 36°06′ | 103°40′ | 1,529 | ||
S5 | 西固区河口镇 Hekou Town, Xigu District | 36°10′ | 103°26′ | 1,508 | ||
大通河 Datong River | 四级 Fourth | S6 | 永登县连城镇1 Liancheng Town 1, Yongdeng County | 36°45′ | 102°43′ | 1,966 |
S7 | 永登县连城镇2 Liancheng Town 2, Yongdeng County | 36°39′ | 102°46′ | 1,904 | ||
S8 | 永登县连城镇3 Liancheng Town 3, Yongdeng County | 36°32′ | 102°52′ | 1,867 | ||
S9 | 永登县河桥镇 Heqiao Town, Yongdeng County | 36°27′ | 102°51′ | 1,822 | ||
湟水河 Huangshui River | 四级 Fourth | S10 | 红古区海石湾镇 Haishiwan Town, Honggu District | 36°20′ | 102°50′ | 1,680 |
S11 | 红古区红古镇 Honggu Town, Honggu District | 36°13′ | 103°01′ | 1,624 | ||
S12 | 红古区达川乡 Dachuan Town, Honggu District | 36°07′ | 103°21′ | 1,547 | ||
庄浪河 Zhuanglang River | 五级 Fifth | S13 | 永登县武胜驿镇 Wushengyi Town, Yongdeng County | 36°55′ | 103°08′ | 2,280 |
S14 | 永登县柳树镇 Liushu Town, Yongdeng County | 36°44′ | 103°14′ | 2,025 | ||
S15 | 永登县龙泉寺镇 Longquansi Town, Yongdeng County | 36°36′ | 103°21′ | 1,894 | ||
S16 | 永登县苦水镇 Kushui Town, Yongdeng County | 36°22′ | 103°23′ | 1,695 | ||
宛川河 Wanchuan River | 五级 Fifth | S17 | 榆中县马坡乡 Mapo Town, Yuzhong County | 35°46′ | 104°01′ | 2,465 |
S18 | 榆中县小康营乡 Xiaokangying Town, Yuzhong County | 35°44′ | 104°08′ | 2,186 | ||
S19 | 榆中县龙泉乡 Longquan Town, Yuzhong County | 35°38′ | 104°14′ | 2,092 | ||
S20 | 榆中县甘草店镇 Gancaodian Town, Yuzhong County | 35°46′ | 104°18′ | 1,853 | ||
S21 | 榆中县夏官营镇 Xiaguanying Town, Yuzhong County | 35°57′ | 104°11′ | 1,723 | ||
S22 | 榆中县金崖镇 Jinya Town, Yuzhong County | 36°00′ | 104°06′ | 1,627 | ||
S23 | 榆中县来紫堡乡 Laizibao Town, Yuzhong County | 36°03′ | 104°00′ | 1,461 |
图1
图1
黄河兰州段鱼类采样断面分布图。符号代表含义见
Fig. 1
The map of fish sampling sections in the Lanzhou reach of the Yellow River. Sampling sections code in accordance with
1.2 样品采集与处理
在水流较缓或者较深的水域, 采用16孔伞笼(进鱼口宽高深为15 cm × 8 cm × 12 cm)和10节地笼(笼体长宽高为50 cm × 40 cm × 40 cm, 进鱼口为20 cm)捕捞小型和底层鱼类、三层刺网(网片为150 cm × 300 cm, 网目为1指、3指、5指)捕捞全水层鱼类, 在水流较湍急或较浅的水域采取手抄网和手撒网(网目为2 cm)等方法收集鱼类样本。水库的作业方式为前一天下午布设好渔具, 第二天上午收取渔获物。河流中的作业方式为当天作业当天收网, 作业时间为2-4 h。
所有渔获物现场清洗分类后统计尾数, 测量体重(g)和体长(cm), 单反相机拍照。选择新鲜且体形完整的15-20尾鱼类用99%无水乙醇固定, 带回实验室鉴定和保存, 其余个体放归原生境。记录采集地经度、纬度、海拔、采集时间和渔具等信息。
1.3 鉴定方法
采用形态学和DNA条形码相结合的方法对鱼类标本进行鉴定。鱼类物种有效学名和分类地位参考《中国内陆鱼类物种与分布》(张春光和赵亚辉, 2016)。
对形态上难以鉴定的高原鳅属(Triplophysa)鱼类进行mtDNA COI基因序列比对(王太等, 2015)。利用天根生化科技(北京)有限公司生产的基因组DNA提取试剂盒提取DNA, 扩增和测序引物序列均为Fish F1 (5′-TCAACCAACCACAAAGACATTGGCA C-3′)和Fish R1 (5′-TAGACTTCTGGGTGGCCAAA GAATCA-3′) (Ward et al, 2005)。PCR反应体系如下: 1.0 μL TransStart FastPfu DNA聚合酶, 4.0 μL 2.5 mM dNTPs, 10.0 μL 5 × TransStart FastPfu Buffer (含Mg2+), 上下游引物(10 μM)各1.0 μL, 13.0 μL模板DNA, 重蒸馏水补足至50 μL。PCR产物依托苏州金唯智生物科技有限公司测序及拼接, 采用Sanger双脱氧链终止法进行双向测序。
1.4 数据分析
1.4.1 DNA序列数据分析
用Lasergene软件包中的Seqman pro软件对测序结果中的峰图文件进行序列拼接, 再通过NCBI网站(
1.4.2 区系界定、生态类型、保护等级和濒危状况评估
1.4.3 α多样性指数
式中, Pi为群落中第i种的个体数占总个体数的比例, S为群落中的总物种数。用单因素方差分析(one-way ANOVA)解析黄河兰州段不同河流间鱼类物种多样性的差异。
1.4.4 β多样性指数
采用Cody指数(βc)衡量不同区域间的生境差异和变化(Cody & Diamond, 1975)。
式中, g表示区域A有, 区域B没有; l表示区域B有, 区域A没有。
Routledge指数(βr)表示不同区域间的鱼类分化和隔离程度(Routledge, 1977)。
式中, N为A和B两个区域总的鱼类物种数, r表示A和B两个区域共有的鱼类物种数。
1.4.5 群落结构分析
基于5条河流的鱼类种类和丰度数据, 以Bray- Curtis相异性系数为基础构建河流间的相异性矩阵, 绘制相异矩阵热图分析5条河流间鱼类物种组成的差异。
以23个采样断面的鱼类种类和丰度数据作为原始数据矩阵, 基于相异性矩阵采用非度量多维标度排序(non-metric multidimensional scaling, NMDS)方法对鱼类群落空间分布特征进行聚类与排序。采用应力函数值(stress)来度量NMDS分析结果的拟合优度: stress < 0.05拟合极好; 0.05 ≤ stress < 0.1拟合较好; 0.1 ≤ stress < 0.2拟合一般; 0.2 ≤ stress < 0.3拟合较差(王卓等, 2019)。采用单因子相似性分析(analysis of similarities, ANOSIM)对聚类结果进行差异检验。所有统计分析过程通过R软件完成。
选用相对多度(relative abundance, RA)划定群落优势种(喻国庆, 2007)。计算公式:
式中, ni为类群中第i种鱼类的个体数, N为类群中鱼类个体总数。RA > 10%的为优势种; 10% > RA > 1%
的为常见种; RA < 1%的为偶见种。
2 结果
2.1 鱼类物种组成
2.1.1 鱼类物种组成
每条河流2次采集所获鱼类物种丰富度变动范围为0-3种, 丰度变动范围为2-31尾。本次调查共采集鱼类标本2,369尾, 经形态和分子鉴定, 隶属于4目6科15属20种(表2)。
表2 黄河兰州段鱼类名录、分布、生态类型和濒危状况
Table 2
物种 Species | 黄河 Yellow River | 大通河 Datong River | 湟水河 Huang- shui River | 庄浪河 Zhuang- lang River | 宛川河 Wan- chuan River | 土著物种的特有性 Endemic species | 生态类型 Ecological types | 濒危状况 Endangered status | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
食性 Feeding habits | 栖息水层 Habit characteristics | 生活习性 Life habits | |||||||||||||||
中国特有种 Endemic species to China | 黄河特有种 Endemic species to the Yellow River | Jiang et al (2016) | IUCN (2021) | ||||||||||||||
一 鲤形目 Cypriniformes | |||||||||||||||||
(一)花鳅科 Cobitidae | |||||||||||||||||
1. 泥鳅 Misgurnus anguillicaudatus | + | + | + | O | DE | SE | LC | LC | |||||||||
2. 大鳞副泥鳅 Paramisgurnus dabryanus* | + | + | + | O | DE | SE | LC | ||||||||||
(二)条鳅科 Nemacheilidae | |||||||||||||||||
3. 东方高原鳅 Triplophysa orientalis | + | + | + | + | C | DE | MS | LC | LC | ||||||||
4. 黄河高原鳅 Triplophysa pappenheimi | + | + | + | + | + | C | DE | MS | EN | ||||||||
5. 硬刺高原鳅 Triplophysa scleroptera | + | + | + | + | C | DE | MS | LC | |||||||||
6. 似鲇高原鳅 Triplophysa siluroides | + | + | + | C | DE | MS | VU | ||||||||||
7. 斯氏高原鳅 Triplophysa stoliczkae | + | + | O | DE | MS | LC | |||||||||||
8. 粗壮高原鳅 Triplophysa robusta | + | + | + | O | DE | MS | LC | ||||||||||
(三)鲤科 Cyprinidae | |||||||||||||||||
9. 䱗 Hemiculter leucisculus* | + | O | U | DE | LC | LC | |||||||||||
10. 鳙 Hypophthalmichthys nobilis* | + | C | U | M | LC | DD | |||||||||||
11. 高体鳑鲏 Rhodeus ocellatus* | + | O | L | SE | LC | DD | |||||||||||
12. 棒花鱼 Abbottina rivularis* | + | O | DE | SE | LC | ||||||||||||
13. 黄河鮈 Gobio huanghensis | + | + | + | C | DE | M | EN | ||||||||||
14. 麦穗鱼 Pseudorasbora parva* | + | + | + | + | + | O | L | MS | LC | LC | |||||||
15. 鲫 Carassius auratus* | + | + | + | + | O | DE | SE | LC | LC | ||||||||
16. 鲤 Cyprinus rubrofuscus | + | + | O | DE | SE | LC | LC | ||||||||||
17. 黄河裸裂尻鱼 Schizopygopsis pylzovi | + | + | + | + | + | + | + | O | L | MS | VU | ||||||
二鲇形目 Siluriformes | |||||||||||||||||
(四)鲇科 Siluridae | |||||||||||||||||
18. 鲇 Silurus asotus | + | C | L | SE | LC | LC | |||||||||||
三胡瓜鱼目 Osmeriformes | |||||||||||||||||
(五)胡瓜鱼科 Osmeridae | |||||||||||||||||
19. 池沼公鱼 Hypomesus olidus* | + | C | U | M | LC | LC | |||||||||||
四鲈形目 Perciformes | |||||||||||||||||
(六)沙塘鳢科 Odontobutidae | |||||||||||||||||
20. 小黄黝鱼 Micropercops swinhonis* | + | + | C | DE | SE | LC | LC |
*外来种; 食性: C: 肉食性; O: 杂食性; 栖息水层: DE: 底层性; L: 中下层性; U: 中上层性; 生活习性: SE: 定居性; M: 洄游性; MS: 山溪性; 濒危状况: EN: 濒危; VU: 易危; LC: 无危; DD: 数据缺乏。
* Exotic species; Feeding habits: C, Carnivorous; O, Omnivorous; Habitat characteristics: DE, Demersal fish; L, Lower layer fish; U, Upper layer fish; Life habits: SE, Settlement fish; M, Migration fish; MS, Mountain streams fish; Endangered categories: EN, Endangered; VU, Vulnerable; LC, Least Concern; DD, Data Deficient.
从目的种类组成来看, 鲤形目最多, 有3科12属17种, 占总种数的85%, 其次为鲇形目、胡瓜鱼目和鲈形目, 均只有1科1属1种, 各占总种数的5%。从科的组成来看, 鲤科种类最多, 包含9种, 占总种数的45%; 条鳅科次之, 包含6种, 占30%; 花鳅科排名第三, 包含2种, 占10%; 鲇科、胡瓜鱼科和沙塘鳢科均只有1种。从属的组成来看, 高原鳅属物种数最多, 共有6种, 占总种数的30%, 其余14属均只包含1种。
从物种分布频度看, 黄河裸裂尻鱼(Schizopygopsis pylzovi)和麦穗鱼(Pseudorasbora parva)频次最多, 在5条河流中均出现。最少的是似鲇高原鳅(Triplophysa siluroides)、高体鳑鲏(Rhodeus ocellatus)、棒花鱼(Abbottina rivularis)、黄河鮈(Gobio huanghensis)、䱗(Hemiculter leucisculus)、鳙(Hypophthalmichthys nobilis)、池沼公鱼(Hypomesus olidus)和鲇(Silurus asotus) 8种鱼类, 仅出现在黄河干流中。从物种数分布看, 区域内黄河段的鱼类物种数最多, 有16种; 其次为宛川河(9种)、庄浪河(8种)、湟水河(7种); 大通河最少, 仅5种。
2.1.2 区系特征
黄河兰州段的鱼类区系属于青藏高原区高原西北亚区(Northwest Qinghai-Tibetan subregion) (He et al, 2020)。结合历史记录, 黄河兰州段共有21种土著鱼类, 从起源来看(陈宜瑜, 1998), 属于青藏高原类群的鱼类有东方高原鳅(Triplophysa orientalis)、黄河高原鳅(T. pappenheimi)、硬刺高原鳅(T. scleroptera)、似鲇高原鳅、斯氏高原鳅(T. stoliczkae)、粗壮高原鳅(T. robusta)、厚唇裸重唇鱼(Gymnodiptychus pachycheilus)和黄河裸裂尻鱼8种, 占总种数的38.10%; 东亚类群有北方铜鱼(Coreius septententrionalis)、似铜鮈(Gobio coriparoides)、大鼻吻鮈(Rhinogobio nasutus)、圆筒吻鮈(R. cylindricus)、平鳍鳅鮀(Gobiobotia homalopteroidea)、刺鮈(Acanthogobio guentheri)和赤眼鳟(Squaliobarbus curriculus) 7种, 占总种数的33.33%; 老第三纪原始类群有泥鳅(Misgurnus anguillicaudatus)、鲤(Cyprinus rubrofuscus)、兰州鲇(Silurus lanzhouensis)和鲇4种; 北方冷水性类群有东北雅罗鱼(Leuciscus waleckii)和黄河鮈2种。
2.1.3 生态类型
从食性类型来看(表2), 黄河兰州段杂食性鱼类最多, 有11种, 占总种数的55%; 肉食性鱼类有9种, 占45%; 未发现植食性鱼类。栖息水层上, 底层鱼类最多, 有13种, 占总种数的65%; 中下层鱼类次之(4种), 占20%; 中上层鱼类最少(3种), 占15%。生活习性上, 定居性鱼类最多(9种), 占总种数的45%; 山溪性鱼类次之(8种), 占40%; 洄游性鱼类最少(3种), 占15%。
2.1.4 特有种和优势种分析
本次调查共采集到11种土著鱼类(表2), 7种为中国特有种(东方高原鳅、黄河高原鳅、硬刺高原鳅、似鲇高原鳅、粗壮高原鳅、黄河鮈、黄河裸裂尻鱼), 占土著鱼类的63.64%, 其中黄河高原鳅、似鲇高原鳅、黄河鮈和黄河裸裂尻鱼4种属于黄河特有种, 占黄河兰州段中国特有种鱼类的57.14%。
区域内黄河干流优势种为高体鳑鲏、鲫(Carassius auratus)、麦穗鱼和鳙4种; 大通河优势种为东方高原鳅、硬刺高原鳅、黄河裸裂尻鱼和麦穗鱼4种; 湟水河优势种为鲫和麦穗鱼2种; 庄浪河优势种为东方高原鳅、硬刺高原鳅、斯氏高原鳅和粗壮高原鳅4种; 宛川河优势种为鲫和麦穗鱼2种。黄河兰州段优势种为东方高原鳅、粗壮高原鳅、鲫和麦穗鱼4种。
2.1.5 保护等级和濒危状况
2.2 多样性分析
2.2.1 α多样性
多样性调查结果显示: Shannon-Wiener多样性指数变化范围为0-2.343, 平均值为0.675, 以黄河采样断面S4最高, 黄河采样断面S3、大通河采样断面S9和宛川河采样断面S19、S20、S21、S22、S23最低; Pielou均匀度指数变化范围为0-1.000, 平均值为0.599, 以湟水河采样断面S11最高, 宛川河采样断面S20、S21、S22最低; Simpson优势度指数变化范围为0-1.000, 平均值为0.482, 以宛川河采样断面S20、S21、S22最高, 黄河采样断面S3、大通河采样断面S9和宛川河采样断面S19、S23最低(表3)。河流变化上, 5条河流间Shannon-Wiener指数、Pielou指数和Simpson指数差异不显著(P > 0.05), Shannon-Wiener指数最高的是黄河(1.058 ± 0.879), 其次为庄浪河(1.015 ± 0.416)和湟水河(0.743 ± 0.403), 最低的是宛川河(0.245 ± 0.430); Pielou指数最高的是庄浪河(0.772 ± 0.107), 最低的是宛川河 (0.298 ± 0.444), 大通河(0.740 ± 0.226)和湟水河(0.678 ± 0.289)较高; Simpson指数最高的是宛川河(0.576 ± 0.449), 庄浪河(0.566 ± 0.199)较高, 其次是黄河(0.448 ± 0.347)和湟水河(0.416 ± 0.251), 最低的是大通河(0.327 ± 0.282) (表3)。整体表明: 黄河是区域内鱼类多样性水平最高的河流, 庄浪河次之, 湟水河排名第三, 大通河排名第四, 宛川河的多样性最低。
表3 黄河兰州段鱼类多样性指数空间分布。断面编号同表1。
Table 3
河流 River | 采样断面 Sampling sections | Shannon-Wiener指数 Shannon-Wiener index | Pielou指数 Pielou index | Simpson指数 Simpson index |
---|---|---|---|---|
黄河 Yellow River | S1 | 1.101 | 0.459 | 0.430 |
S2 | 1.300 | 0.808 | 0.679 | |
S3 | 0 | - | 0 | |
S4 | 2.343 | 0.888 | 0.882 | |
S5 | 0.548 | 0.395 | 0.248 | |
河流 River (mean ± SD) | 1.058 ± 0.879 | 0.637 ± 0.246 | 0.448 ± 0.347 | |
大通河 Datong River | S6 | 1.048 | 0.954 | 0.631 |
S7 | 0.837 | 0.761 | 0.478 | |
S8 | 0.349 | 0.503 | 0.198 | |
S9 | 0 | - | 0 | |
河流 River (mean ± SD) | 0.559 ± 0.474 | 0.740 ± 0.226 | 0.327 ± 0.282 | |
湟水河 Huangshui River | S10 | 0.826 | 0.596 | 0.415 |
S11 | 1.099 | 1.000 | 0.667 | |
S12 | 0.305 | 0.439 | 0.165 | |
河流 River (mean ± SD) | 0.743 ± 0.403 | 0.678 ± 0.289 | 0.416 ± 0.251 | |
庄浪河 Zhuanglang River | S13 | 1.431 | 0.798 | 0.729 |
S14 | 0.994 | 0.905 | 0.605 | |
S15 | 1.183 | 0.735 | 0.652 | |
S16 | 0.451 | 0.650 | 0.278 | |
河流 River (mean ± SD) | 1.015 ± 0.416 | 0.772 ± 0.107 | 0.566 ± 0.199 | |
宛川河 Wanchuan River | S17 | 0.689 | 0.994 | 0.496 |
S18 | 1.027 | 0.494 | 0.536 | |
S19 | 0 | - | 0 | |
S20 | 0 | 0 | 1.000 | |
S21 | 0 | 0 | 1.000 | |
S22 | 0 | 0 | 1.000 | |
S23 | 0 | - | 0 | |
河流 River (mean ± SD) | 0.245 ± 0.430 | 0.298 ± 0.444 | 0.576 ± 0.449 |
2.2.2 β多样性
βc指数分析结果显示, 黄河与庄浪河、大通河、湟水河和宛川河间的βc指数较高, 表明黄河与其他4条河流间鱼类的生境差异较大。大通河与庄浪河和湟水河间的βc指数较低, 说明这些河流间鱼类的生境差异较小。βr指数分析结果显示, 黄河与庄浪河、大通河、湟水河和宛川河间的βr指数较高, 黄河与其他4条河流间鱼类物种出现一定的分化现象。大通河与庄浪河和湟水河间的βr指数较低, 说明这些河流间鱼类物种分化不明显(表4)。
表4 黄河兰州段鱼类群落β多样性分析。对角线下为Cody指数(βc), 对角线上为Routledge指数(βr)
Table 4
黄河 Yellow River | 大通河 Datong River | 湟水河 Huangshui River | 庄浪河 Zhuanglang River | 宛川河 Wanchuan River | |
---|---|---|---|---|---|
黄河 Yellow River | 12.5 | 10.6 | 13.3 | 9.1 | |
大通河 Datong River | 7.5 | 3.0 | 2.6 | 8.0 | |
湟水河 Huangshui River | 6.5 | 2.0 | 4.0 | 4.8 | |
庄浪河 Zhuanglang River | 8.0 | 0.2 | 2.5 | 5.5 | |
宛川河 Wanchuan River | 5.5 | 5.0 | 3.0 | 3.5 |
2.3 不同河流鱼类群落的Bray-Curtis相异性
鱼类物种组成的差异性分析(图2)显示, 大通河与湟水河之间以及黄河与宛川河之间的Bray- Curtis距离较小, 说明大通河与湟水河之间以及黄河与宛川河之间的鱼类物种组成相似性较高, 庄浪河与黄河、湟水河和宛川河间的Bray-Curtis距离较大, 说明庄浪河与黄河、湟水河和宛川河间的鱼类物种组成相似性较低。5条河流间Bray-Curtis距离均大于0.5, 平均值为0.85, 表明各河流间的物种组成差异性较大。
图2
图2
基于Bray-Curtis距离的黄河兰州段鱼类相异矩阵热图
Fig. 2
A heat map of fish dissimilarity matrix based on Bray-Curtis distance in the Lanzhou reach of the Yellow River
2.4 物种空间分布格局
采用非度量多维标度排序(NMDS)方法对鱼类群落空间分布特征进行了聚类与排序, 应力函数值stress = 0.14 < 0.2, 拟合程度一般。结果表明(图3), 黄河兰州段鱼类被划分为4个地理群, 即以黄河高原鳅和黄河裸裂尻鱼为优势种的地理群1 (S6、S7、S8)、以东方高原鳅、硬刺高原鳅、斯氏高原鳅、粗壮高原鳅和黄河裸裂尻鱼为优势种的地理群2 (S5、S13、S14、S15、S16)以及均以鲫和麦穗鱼为优势种的地理群3 (S2、S3、S4、S9、S10、S11、S12、S17、S20、S21、S22和S23)和地理群4 (S1、S18、S19)。ANOSIM分析结果表明, 地理群间差异大于地理群内差异, 但差异不显著(R = 0.106, P = 0.198)。鱼类群落结构呈现显著空间自相关, 除S1和S9这2个采样断面外, 其他采样断面都表现为在地理空间上相近的聚为一类。
图3
图3
黄河兰州段鱼类群落结构聚类和排序分析。断面编号同
Fig. 3
Ordination of sampling sites in a two-dimensional NMDS in the Lanzhou reach of the Yellow River. Sampling sections code in accordance with
3 讨论
3.1 物种组成及变化成因
青藏高原东北部地区是高原鳅属鱼类分布的热点地区之一(He et al, 2020)。由于高原鳅属鱼类形态变异程度大, 用于物种鉴定的形态和解剖特征信息匮乏, 大量新种描述后缺乏系统比较和分类整理(丁瑞华, 1994; Prokovfiev, 2007; 何春林等, 2011)。鉴于DNA条形码能准确、高效地识别出青藏高原及其邻近地区形态特征相似的大多数高原鳅属鱼类(Li et al, 2017; Wang et al, 2020), 本研究采用线粒体COI基因系统发育树构建结果, 结合形态学数据, 发现黄河兰州段共有高原鳅属鱼类6种, 生态类型以肉食、底栖和山溪性为主, 区系成分上均属于青藏高原区。
本研究调查到鱼类4目6科15属20种, 鱼种数目占王香亭(1991)记载的甘肃省土著鱼类总数的20.83%, 占杨友桃和唐迎秋(1995)整理的甘肃省鱼类总数的19.05%, 占王太等(2015)调查的甘肃省鱼类总数的31.25%。黄河段本次调查到鱼类16种, 略高于前期调查物种数(13种, 贾秋红等, 2015; 14种, 王太等, 2015)。与贾秋红等(2015)调查结果相比, 增加了泥鳅、大鳞副泥鳅(Paramisgurnus dabryanus)、黄河高原鳅、似鲇高原鳅和黄河裸裂尻鱼5种, 减少了甘肃高原鳅(即粗壮高原鳅)和拉氏大吻鱥(Rhynchocypris lagowskii) 2种, 泥鳅、黄河高原鳅、似鲇高原鳅、粗壮高原鳅、黄河裸裂尻鱼和拉氏大吻鱥的变化可能是高原鳅鉴定或者采样方法和周期不同导致的。大鳞副泥鳅、棒花鱼、麦穗鱼、池沼公鱼、小黄黝鱼(Micropercops swinhonis)都属于外来物种。我们访问调查到黄河上游刘家峡水库及其附近存在池沼公鱼等经济鱼类养殖场, 推测可能是水产养殖过程中个体逃逸到兰州段且形成了自然繁殖群体。同时, 在经济鱼类引进的同时, 其他一些经济价值不高的小型鱼类也不可避免地引进到黄河兰州段。据《甘肃脊椎动物志》(王香亭, 1991)等文献资料记载, 黄河兰州段历史上还分布有北方铜鱼、厚唇裸重唇鱼、似铜鮈、大鼻吻鮈、圆筒吻鮈、平鳍鳅鮀等鱼类, 但这次采集均未捕获到。鉴于本次调查周期和持续时间较长及断面布设较系统, 可以推断这些鱼类的数量稀少或已经绝迹。鱼类数量占优势的主要是一些小型鱼类如高体鳑鲏和麦穗鱼等, 与袁永锋等(2009)和沈红保等(2007)调查的黄河上游鱼类资源调查结果较一致。境内庄浪河虽然采集到8种鱼类, 高于王太等(2015)记录的4种, 但是在上游(S13和S14)仅采集到黄河裸裂尻鱼和高原鳅属鱼类, 鱼类物种较单一, 推测与周边频繁的人类活动有关(冯晨光等, 2017)。境内大通河调查到鱼类5种、湟水河调查到7种, 低于青海省境内大通河干流(10种)、湟水干流(27种)的鱼类数量(唐文家等, 2013)。本研究调查到宛川河有鱼类9种, 仅次于黄河(16种), 远高于20世纪末的调查结果(2种) (王香亭, 1996)。除在甘肃兴隆山国家级自然保护区(采样断面S17)采集到已记载的麦穗鱼和斯氏高原鳅外, 本次调查还发现了7种, 包括泥鳅、大鳞副泥鳅、粗壮高原鳅、鲫、鲤、黄河裸裂尻鱼和小黄黝鱼, 历史上均分布于甘肃省(王香亭, 1991)。较高的物种丰富度与采样断面布设在高崖水库和龛谷水库(采样断面S18)有关, 且访问调查了解到, 高崖水库附近存在鱼类宗教放生活动, 导致大量的鲫和小黄黝鱼等外来物种被采集到。
黄河兰州段鱼类生态类型多样, 以底栖、杂食和定居鱼类为主。这是因为兰州市境内河流的河道蜿蜒曲折, 水流变化复杂急缓结合, 为不同类型的鱼类提供了良好的栖息场所。
3.2 多样性现状分析
黄河兰州段不同河流间的鱼类物种组成差异性较大(图2), 且地理空间距离越近河流的鱼类物种组成越相似(图3)。黄河、庄浪河和湟水河鱼类物种多样性较高, 大通河和宛川河鱼类物种多样性较低(表3)。鱼类物种多样性程度与河流的生境有关(Babbitt & Tanner, 1998), 也与河流面积(Oberdorff et al, 2019)以及连通性(Liu et al, 2018)等因素密切相关。黄河与庄浪河、大通河、湟水河和宛川河间的生境差异较大, 鱼类物种出现一定的分化现象(表4)。黄河兰州段不同河流间的栖息地异质性高, 其中一级河流黄河作为一条自西向东的横向性河流, 河流长度最长、流量和面积最大, 生境的异质性更高, 鱼类物种更加多样化(唐志尧等, 2009)。此外, 7种中国特有种中, 4种属于黄河特有种, 且4种受威胁鱼类均捕获于黄河, 需要优先和加强保护。湟水河和庄浪河生境复杂, 河面宽阔, 两岸水草茂盛, 鱼类食源充足。庄浪河优势种为高原鳅属鱼类, 本次调查采集到大量的黄河裸裂尻鱼和高原鳅属鱼类, 导致鱼类优势度指数较高, 与王太等(2015)调查结果一致。大通河物种多样性较低, 可能与随处可见的水利设施有关, 调查过程中, 我们发现14处水电站及水坝工程(采样断面S6-S7间存在4处, S7-S8间存在5处, S8-S9间存在3处, S9-S10间存在2处)。大规模的水利设施破坏了河流的纵向连通性, 阻碍了鱼类的产卵及觅食, 加剧了河流流域的栖息地破碎化程度, 限制了鱼类的分布(Carvajal-Quintero et al, 2019; Barbarossa et al, 2020)。宛川河主河道水量急剧减少, 河道存在断流、水面缩小现象(采样断面S19、S21和S22), 河道两侧的沼泽、坑洼等适宜中小型鱼类繁衍的微生境被破坏, 对鱼类的生存繁衍产生不利影响(李雪健等, 2020)。此外, 调查发现宛川河采样断面S21和S23附近存在水泥厂和炼钢厂, 生活垃圾在河道内较为常见, 水体污染严重。人为的污染改变了水体理化环境, 同时也使得水体由原本适合贫营养型生存的高原鱼类转变为适合富营养型生存的麦穗鱼和鲫等鱼类(表2, 冯晨光等, 2017), 进而使得宛川河的鱼类多样性明显低于区域内其他河流。
3.3 保护建议
尽管中国淡水鱼类多样性较高, 但也面临着巨大的威胁(He et al, 2020)。曹亮等(2016)对内陆鱼类受威胁现状及其成因的全国性评估显示, 近20%的物种被列为受威胁物种。黄河作为中国第二长河, 其鱼类生物多样性现状和受威胁因素备受关注(茹辉军等, 2010; Xie et al, 2018; Jiang et al, 2021)。黄河上游虽然鱼类物种丰富度较其他河段低, 但受威胁物种和黄河特有种数目居于首位(赵亚辉等, 2020)。黄河兰州段位于黄河上游, 其鱼类种数约占黄河上游总种数(44种)的32%, 黄河特有种鱼类约占上游(17种)的24%, 受威胁鱼类占黄河上游(16种)的25% (赵亚辉等, 2020)。综上, 保护黄河兰州段鱼类多样性对于维护黄河流域鱼类多样性具有重要作用, 鉴于此, 本文针对性地提出以下建议:
(1)水利设施: 修复河道连通性。黄河兰州段共有水电站23座, 中、小型水库11座, 水坝25处(兰州市水务局,
(2)外来鱼类: 政府应建立外来物种入侵风险评估系统并加强实时监测、渔业管理部门应开展对池沼公鱼的定向捕捞、企业应完善水产养殖管理、民间应宣传普及预防常识。本次调查到黄河兰州段外来鱼类9种(表2), 数量较多。池沼公鱼在黄河上游各水库广泛移植增殖, 目前在刘家峡水库已形成512 t的可捕获量(任锦帅等, 2018), 调查发现已逃逸、成功定居到黄河兰州段并建立了自然种群。池沼公鱼、小黄黝鱼等肉食性鱼类以及鲫、麦穗鱼等小型鱼类耐受性强, 更容易适应多变的环境, 通过捕食土著鱼类的卵和幼体、竞争资源、占据土著种生态位等作用直接威胁到土著物种的数量。目前, 土著种似铜鮈、大鼻吻鮈、圆筒吻鮈、平鳍鳅鮀、兰州鲇在黄河兰州段的数量减少, 原因之一就是这些外来种争夺饵料、产卵场以及吞食土著鱼卵鱼苗, 破坏了原有的生态平衡(徐汝梅和叶万辉, 2004)。池沼公鱼应成为今后黄河兰州段生物入侵预防工作的重点监测对象。黄河兰州段还存在德国镜鲤(Cyprinus carpio var. specularis)和黄河土著鲤的自然杂交种(李芳等, 2008), 破坏和削弱了原有野生种群的遗传多样性和适合度。本研究建议政府部门组织建立外来物种入侵风险评估系统, 加强对池沼公鱼等外来物种的实时监测; 渔业管理部门应开展对池沼公鱼的定向捕捞, 减少其对土著鱼类的威胁性; 相关企业在水产养殖过程中需要提前做好鱼类逃逸预防工作, 且严格控制或禁止水库网箱养殖。针对宛川河鱼类放生活动, 我们建议民间应充分利用新闻媒体, 广泛宣传普及防治外来物种的紧迫性、放生与保护本地鱼类的利害关系, 引导群众合理科学放生, 降低外来鱼类入侵风险。
(3)河道环境: 加大整治力度。宛川河河道存在严重采砂现象, 特别是采样断面S20-S23段极为严重。采挖活动不仅破坏了河道原生态, 同时也改变着水体的理化条件, 直接影响水体中鱼类的组成和数量。建议增强监管和治理力度, 特别是在庄浪河上游(采样断面S13-S15)和宛川河中下游(采样断面S20-S23)等人类活动密集的区域, 减少生活垃圾对水体的污染, 加快创建生态美丽乡村。同时, 需要继续加强对黄河和湟水河的保护力度, 促使水生态持续健康发展。
附录 Supplementary Material
附录1 本研究中涉及的高原鳅属鱼类COI基因样品信息
Appendix 1 Information of Triplophysa specimen based on COI in this study
附录2 基于线粒体COI基因的高原鳅属鱼类邻接法系统发育关系
Appendix 2 Triplophysa phylogenetic relationship based on mitochondrial COI gene by neighbor-joining method
致谢
兰州大学基础医学院硕士研究生包婷瑞、生命科学学院硕士研究生张德喜、马桂英、本科生张义同学协助部分野外数据收集工作, 特此致谢!
参考文献
Scientists’ warning to humanity on the freshwater biodiversity crisis
DOI:10.1007/s13280-020-01318-8 URL [本文引用: 1]
Effects of cover and predator size on survival and development of Rana utricularia tadpoles
DOI:10.1007/s004420050444 URL [本文引用: 1]
Impacts of current and future large dams on the geographic range connectivity of freshwater fish worldwide
Evaluating the status of China’s continental fish and analyzing their causes of endangerment through the red list assessment
DOI:10.17520/biods.2015331 URL [本文引用: 1]
通过红色名录评估研究中国内陆鱼类受威胁现状及其成因
DOI:10.17520/biods.2015331
[本文引用: 1]
根据已有的基础资料, 采用IUCN评估等级和标准, 对中国目前已鉴定的1,443种内陆鱼类受威胁现状进行了评估。评估结果显示, 1,443种内陆鱼类中, 灭绝3种、区域灭绝1种、极危65种、濒危101种、易危129种、近危101种、无危454种和数据缺乏589种。同已有的IUCN评估结果相比, 本次被评估的物种数目多, 受威胁物种大幅度增加, 其数目达295种, 占已知中国内陆鱼类总数的20.44%, 低于全球平均值(29%)。属于灭绝等级的鱼类是大鳞白鱼(Anabarilius macrolepis)、异龙鲤(Cyprinus yilongensis)和茶卡高原鳅(Triplophysa cakaensis); 属于区域灭绝等级的鱼类是长颌北鲑(Stenodus nelma)。鲤科是受威胁物种数最多的科, 其中裂腹鱼亚科和鲤亚科的种类受威胁程度最高。长江上游和珠江上游受威胁物种最多, 是受威胁最严重的地区。中国内陆鱼类受威胁的主要因素为河流筑坝、生境退化或丧失、酷渔滥捕和引进外来种。列入数据缺乏等级的鱼类较多, 占中国内陆鱼类的40.82%, 表明对中国内陆鱼类物种多样性了解不充分, 需要加强野外调查以积累基础资料。
Drainage network position and historical connectivity explain global patterns in freshwater fishes’ range size
Studies on the position of the Qinghai-Xizang Plateau region in zoogeographic divisions and its eastern demarcation line
青藏高原动物地理区划的地位和东部界线问题
Towards a theory of continental species diversities:Bird distributions over Mediterranean habitat gradients
Freshwater biodiversity: Importance, threats, status and conservation challenges
Freshwater biodiversity is the over-riding conservation priority during the International Decade for Action - 'Water for Life' - 2005 to 2015. Fresh water makes up only 0.01% of the World's water and approximately 0.8% of the Earth's surface, yet this tiny fraction of global water supports at least 100000 species out of approximately 1.8 million - almost 6% of all described species. Inland waters and freshwater biodiversity constitute a valuable natural resource, in economic, cultural, aesthetic, scientific and educational terms. Their conservation and management are critical to the interests of all humans, nations and governments. Yet this precious heritage is in crisis. Fresh waters are experiencing declines in biodiversity far greater than those in the most affected terrestrial ecosystems, and if trends in human demands for water remain unaltered and species losses continue at current rates, the opportunity to conserve much of the remaining biodiversity in fresh water will vanish before the 'Water for Life' decade ends in 2015. Why is this so, and what is being done about it? This article explores the special features of freshwater habitats and the biodiversity they support that makes them especially vulnerable to human activities. We document threats to global freshwater biodiversity under five headings: overexploitation; water pollution; flow modification; destruction or degradation of habitat; and invasion by exotic species. Their combined and interacting influences have resulted in population declines and range reduction of freshwater biodiversity worldwide. Conservation of biodiversity is complicated by the landscape position of rivers and wetlands as 'receivers' of land-use effluents, and the problems posed by endemism and thus non-substitutability. In addition, in many parts of the world, fresh water is subject to severe competition among multiple human stakeholders. Protection of freshwater biodiversity is perhaps the ultimate conservation challenge because it is influenced by the upstream drainage network, the surrounding land, the riparian zone, and - in the case of migrating aquatic fauna - downstream reaches. Such prerequisites are hardly ever met. Immediate action is needed where opportunities exist to set aside intact lake and river ecosystems within large protected areas. For most of the global land surface, trade-offs between conservation of freshwater biodiversity and human use of ecosystem goods and services are necessary. We advocate continuing attempts to check species loss but, in many situations, urge adoption of a compromise position of management for biodiversity conservation, ecosystem functioning and resilience, and human livelihoods in order to provide a viable long-term basis for freshwater conservation. Recognition of this need will require adoption of a new paradigm for biodiversity protection and freshwater ecosystem management - one that has been appropriately termed 'reconciliation ecology'.
Biodiversity and distribution patterns of Triplophysa species in the northeastern margin of the Tibetan Plateau
青藏高原东北部边缘高原鳅属鱼类的多样性与分布格局
DOI:10.17520/biods.2016259
[本文引用: 2]
为了了解青藏高原东北部边缘地区高原鳅属(Triplophysa)鱼类的多样性和分布格局, 本文基于2012-2015年的野外调查数据, 对该地区高原鳅属鱼类的分布情况进行了调查。结果发现: 与历史记录相比, 部分物种的分布区已经萎缩或破碎化。物种在整个区域的分布很不均匀, 其中洮河、大通河和黑河的中上游是高原鳅分布较集中的地区; 同时这3条河也有着较高的多样性水平。海拔梯度上, 物种丰富度呈现随海拔上升先增后减的单峰分布模式, 在2,200-2,400 m海拔区间最高; 且峰值点出现在两个物种丰富的群落的过渡区, 很好地印证了Lomolino对物种密度海拔分布的预测。多样性指数的海拔回归分析获得与物种丰富度的海拔分布相一致的结果。结合已有报道, 我们认为这种中间海拔最大的单峰分布模式可能是青藏高原及其周边地区物种多样性分布的普遍规律。因而, 中海拔地区需要优先保护。
Two centuries for an almost complete community turnover from native to non-native species in a riverine ecosystem
DOI:10.1111/gcb.15442
PMID:33159701
[本文引用: 1]
Non-native species introductions affect freshwater communities by changing community compositions, functional roles, trait occurrences and ecological niche spaces. Reconstructing such changes over long periods is difficult due to limited data availability. We collected information spanning 215 years on fish and selected macroinvertebrate groups (Mollusca and Crustacea) in the inner-Florentine stretch of the Arno River (Italy) and associated water grid, to investigate temporal changes. We identified an almost complete turnover from native to non-native fish (1800: 92% native; 2015: 94% non-native species) and macroinvertebrate species (1800: 100% native; 2015: 70% non-native species). Non-native fish species were observed ~50 years earlier compared to macroinvertebrate species, indicating phased invasion processes. In contrast, α-diversity of both communities increased significantly following a linear pattern. Separate analyses of changes in α-diversities for native and non-native species of both fish and macroinvertebrates were nonlinear. Functional richness and divergence of fish and macroinvertebrate communities decreased non-significantly, as the loss of native species was compensated by non-native species. Introductions of non-native fish and macroinvertebrate species occurred outside the niche space of native species. Native and non-native fish species exhibited greater overlap in niche space over time (62%-68%) and non-native species eventually replaced native species. Native and non-native macroinvertebrate niches overlapped to a lesser extent (15%-30%), with non-natives occupying mostly unoccupied niche space. These temporal changes in niche spaces of both biotic groups are a direct response to the observed changes in α-diversity and species turnover. These changes are potentially driven by deteriorations in hydromorphology as indicated by alterations in trait modalities. Additionally, we identified that angling played a considerable role for fish introductions. Our results support previous findings that the community turnover from native to non-native species can be facilitated by, for example, deteriorating environmental conditions and that variations in communities are multifaceted requiring more indicators than single metrics.© 2020 The Authors. Global Change Biology published by John Wiley & Sons Ltd.
Triplophysa fishes in China and the status of its taxonomic studies
中国高原鳅属鱼类及其分类研究现状
Diversity, pattern and ecological drivers of freshwater fish in China and adjacent areas
DOI:10.1007/s11160-020-09600-4 URL [本文引用: 4]
Investigation of fish resources in autumn in Lanzhou urban section of the Yellow River
黄河兰州市区段秋季鱼类资源现状调查
Non-native freshwater fish species in the Yellow River Basin: Origin, distribution and potential risk
DOI:10.1007/s10641-021-01070-2 URL [本文引用: 1]
Red List of China’s Vertebrates
DOI:10.17520/biods.2016076 URL [本文引用: 2]
中国脊椎动物红色名录
DOI:10.17520/biods.2016076 [本文引用: 2]
Present situation and problems on fish introduction in Yellow River system
黄河流域鱼类引种现状及存在问题
Identification of Triplophysa species from the Qinghai-Tibetan Plateau (QTP) and its adjacent regions through DNA barcodes
DOI:10.1016/j.gene.2016.11.045 URL [本文引用: 1]
Species diversity of freshwater fish and assessment on watershed health in the Irtysh River and Ulungur River basins in Xinjiang, China
DOI:10.17520/biods.2019071 URL [本文引用: 1]
新疆阿勒泰地区额尔齐斯河和乌伦古河流域鱼类多样性演变和流域健康评价
DOI:10.17520/biods.2019071
[本文引用: 1]
为了解阿勒泰地区额尔齐斯河和乌伦古河流域的鱼类多样性现状和历史演变, 本研究于2013-2016年间在该流域的鱼类多样性进行了连续调查, 并结合历史资料和标本, 以Margalef丰富度指数、Shannon-Wiener多样性指数、Pielou均匀度指数分析评估了流域内鱼类的多样性水平和时空变化。该流域历史上分布有土著鱼类23种, 当前记录到19种, 流域内还有外来鱼类15种。阿勒泰鱼类的区系组成以鲤科种类为主, 其中特有和珍稀濒危物种占比高, 具有重要的保护价值。多样性指数计算结果显示, 2013-2016年鱼类多样性情况整体稳定, 额尔齐斯河鱼类物种数多于乌伦古河。研究还基于鱼类生物完整性指数(Fish Index of Biological Integrity, F-IBI)对34个采集点的河流健康状况进行了评价, 结果显示额尔齐斯河流域大多数调查点的健康状况处于“亚健康”或“一般”水平, 乌伦古河流域多数调查点的健康状况处于“健康”水平。水利工程、外来物种、过度捕捞是影响阿勒泰地区鱼类多样性的重要因素。未来应通过水利工程的联合调度、下泄合理生态流量、布设鱼类通道、规范养殖渔业、严控外来物种、本地土著鱼类的人工增殖放流, 以及合理的就地保护措施对阿勒泰地区的鱼类多样性加以保护, 提升水体健康程度。
Research progress on using index of biological integrity to assess aquatic ecosystem health
应用生物完整性指数评价水生态系统健康的研究进展
Community characteristics of aquatic organisms and management implications after construction of Shihutang Dam in the Gangjiang River, China
DOI:10.1080/10402381.2017.1373716 URL [本文引用: 1]
Unexpected fish diversity gradients in the Amazon basin
DOI:10.1126/sciadv.aav8681 URL [本文引用: 1]
Materials towards the revision of the genus Triplophysa rendahl, 1933 (Cobitoidea: Balitoridae: Nemacheilinae): A revision of nominal taxa of Herzenstein (1888) described within the species “Nemachilus” stoliczkae and “N.” dorsonotatus, with the description of the new species T. scapanognatha sp. nova
DOI:10.1134/S0032945207010018 URL [本文引用: 1]
Study on transplantation, multiplication and stable yield of Hypomesus olidus in canyon-type reservoir
峡谷型水库池沼公鱼移植增殖与稳产技术研究
On Whittaker’s components of diversity
DOI:10.2307/1936932 URL [本文引用: 1]
Diversity of fish species and its spatio-temporal variations in Lake Dongting, a large Yangtze-connected lake
DOI:10.18307/2008.0114 URL [本文引用: 1]
大型通江湖泊洞庭湖的鱼类物种多样性及其时空变化
Fishes in the mainstream of the Yellow River: Assemblage characteristics and historical changes
DOI:10.3724/SP.J.1003.2010.179 URL [本文引用: 1]
黄河干流鱼类群落特征及其历史变化
Investigation and analysis of fish resources in the upper reaches of the Yellow River
黄河上游鱼类资源现状调查与分析
Human impacts on global freshwater fish biodiversity
DOI:10.1126/science.abd3369 URL [本文引用: 1]
The current situation and protection of fish resources in Huangshui River in Qinghai Province
青海省湟水鱼类资源现状及保护对策
Species-area relationship in biological communities
DOI:10.3724/SP.J.1003.2009.09144 URL [本文引用: 1]
生物群落的种-面积关系
DOI:10.3724/SP.J.1003.2009.09144
[本文引用: 1]
种—面积关系主要探讨物种数量随面积扩大而变化的规律, 它联系不同尺度的生物多样性, 是生物多样性尺度转换的重要依据。利用种—面积关系可以估算群落或区域的物种数量、评价区域生物多样性的丧失。由于构建方式、尺度效应以及区域差异, 种—面积关系的具体形式及其普适性还存在争议。本文主要从构建、尺度效应、区域分异以及与种—多度分布的联系等方面综述种—面积关系的主要进展, 并探讨它在不同方面的适用性。最后给出了利用基于组合样方系列构建的种—面积关系来估算秦岭山地物种数的实例, 结果表明估算精度良好。
Functional ecology of fish: Current approaches and future challenges
DOI:10.1007/s00027-017-0546-z URL [本文引用: 1]
DNA barcoding reveals cryptic diversity in the underestimated genus Triplophysa (Cypriniformes: Cobitidae, Nemacheilinae) from the northeastern Qinghai-Tibet Plateau
DOI:10.1186/s12862-020-01718-0 URL [本文引用: 1]
Current freshwater fish resources and the application of DNA barcoding in species identification in Gansu Province
DOI:10.17520/biods.2014185
[本文引用: 6]
Between June and September in 2012, we investigated fish resources from the Yellow River, Jialing rivers and Hexi inland rivers in Gansu Province, China. Three thousand specimens were collected, belonging to 64 species, 38 genera, 10 families and 5 orders. Cyprinidae was the predominant species, accounting for 45% of the total species. Diversity analysis showed that fish diversity in the Jialing River basin was the highest (H = 2.15-3.27), followed by the inland rivers (H = 2.01-2.83). Two tributaries of the Yellow River, the Xiahe River and the Zhuanglang River had relatively lower diversity levels with the H values of 1.38 and 1.09, respectively. The Pielou index of Shule River was the highest with a value of 1.10, while that of the Heihe River was the lowest with a value of 0.68. The Simpson index of the Zhuanglang River was 0.34, the highest of the investigated rivers, while the trunk streams of Jialing River was the lowest. A total of 662 specimens of 49 species were randomly selected for DNA barcoding analysis using a partial sequence of the COI gene. The results indicated that most species formed monophyletic groups in the neighbor-joining tree. The average K2P genetic divergence was 0.88% within species and 9.99% among species. A significant barcode gap was found between intraspecific genetic distance and interspecific genetic distance. A nucleotide diagnostic method was needed for further identification because the K2P genetic distance of three species pairs (between Triplophysa stoliczkae and T. dalaica, T. robusta and T. siluroides, Schizopygopsis kialingensis and S. pylzovi) was less than 2%. Cryptic species may exist within Triplophysa stoliczkae and Phoxinus lagowskii. Triplophysa robusta and T. siluroides cannot be distinguished through COI gene sequences. The results showed that molecular methods, morphological characteristic and geographical distribution of species should be combined in order to comprehensively and accurately identify closely related species and geographic populations.
甘肃省鱼类资源现状及DNA条形码在鱼类物种鉴定中的应用
DOI:10.17520/biods.2014185
[本文引用: 6]
为了摸清甘肃省土著鱼类资源与分布现状, 探索DNA条形码在鱼类辅助物种鉴定中的适用性, 2012年6-9月对甘肃境内黄河水系、嘉陵江水系和河西内陆河水系进行了较全面的鱼类调查。共采集鱼类标本3,087尾, 隶属于5目10科38属64种, 以鲤科种类最多, 为30种, 占总种数的46.88%。物种多样性分析表明, 在黄河水系的夏河和庄浪河多样性指数是所有调查点中最低的, 分别为1.38和1.09。嘉陵江水系各河段的多样性指数较高(H = 2.15-3.27), 其次为河西内陆河水系(H = 2.01-2.83)。在河西内陆河水系中, 疏勒河的均匀度指数最高, 为1.10, 黑河最低(0.68)。庄浪河的优势度指数最高, 为0.34, 而嘉陵江干流两当段的优势度指数在所有调查点中最低, 为0.04。利用DNA条形码分析了49种662尾标本的COI基因部分序列, 大部分种类在neighbor-joining系统树中形成各自的单系, 种内平均遗传距离0.88%, 种间平均遗传距离为9.99%, 在种内和种间COI序列遗传距离之间形成明显的条形码间隙, 斯氏高原鳅(Triplophysa stoliczkae)与达里湖高原鳅(T. dalaica), 甘肃高原鳅(T. robusta)与似鲇高原鳅(T. siluroides), 嘉陵裸裂尻鱼(Schizopygopsis kialingensis)与黄河裸裂尻鱼(S. pylzovi)之间的遗传距离低于2%, 甘肃高原鳅与似鲇高原鳅不能通过COI基因片段区分开, 其他两对物种可以采用核苷酸诊断法来进一步区分。斯氏高原鳅和拉氏鱼岁(Phoxinus lagowskii)种内遗传分歧较大, 揭示种内可能存在隐存种。结果表明, 对某些近缘种和不同地理种群差异较大的物种, 要将分子、形态和地理分布特点结合起来才能准确鉴定。
Fishes in the Yellow River near Lanzhou
兰州附近黄河的鱼类
Biodiversity and spatial pattern of fish in the Pingchuan segment of the upper reaches of Hanjiang River
汉江上游平川段鱼类群落多样性及空间格局分析
DNA barcoding Australia’s fish species
DOI:10.1098/rstb.2005.1716 URL [本文引用: 1]
Comparative analysis of temperature and precipitation change trend between Lanzhou and Longnan
兰州市和陇南市温度降水变化趋势对比分析
Fish assemblage changes over half a century in the Yellow River, China
DOI:10.1002/ece3.2018.8.issue-8 URL [本文引用: 1]
Temporal and spatial variation characteristics of water quality in Lanzhou and Baiyin section of the Yellow River main stream from 2010 to 2019
2010-2019年黄河干流兰州和白银段水质时空变化特征
Resources and geographical distribution of the fishes in Gansu Province, China
甘肃鱼类资源及其地理分布
Investigation & research on hydrobios resources in the middle and upper reaches of main Yellow River
黄河干流中上游水生生物资源调查研究
Species diversity and conservation of freshwater fishes in the Yellow River Basin
DOI:10.17520/biods.2020191 URL [本文引用: 4]
黄河流域淡水鱼类多样性和保护
/
〈 |
|
〉 |
