生物多样性, 2009, 17(6): 664-674 doi: 10.3724/SP.J.1003.2009.08324

论文

中国自然保护区分布现状及合理布局的探讨

陈雅涵, 唐志尧, 方精云,*

北京大学城市与环境学院生态学系, 北京大学生态学研究与教育中心,北京大学地表过程与分析模拟教育部重点实验室, 北京 100871

Distribution of nature reserves and status of biodiversity protection in China

Yahan Chen, Zhiyao Tang, Jingyun Fang,*

Department of Ecology, College of Urban & Environmental Sciences, Center for Ecological Research & Education, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing 100871

通讯作者: *E-mail:jyfang@urban.pku.edu.cn

责任编辑: 周玉荣

收稿日期: 2008-12-9   接受日期: 2009-10-30   网络出版日期: 2009-11-20

基金资助: 国家自然科学基金.  40871030
国家自然科学基金.  40701065
国家自然科学基金.  40638039
国家重点基础研究发展规划.  G2000046801

Corresponding authors: *E-mail:jyfang@urban.pku.edu.cn

Received: 2008-12-9   Accepted: 2009-10-30   Online: 2009-11-20

摘要

为了保护中国丰富的生物多样性, 我国已经建立了大量的自然保护区。评价这些保护区的布局对于生物多样性的有效保护无疑是十分重要的。本文收集了截至2007年底我国建立的2,047个保护区的有关资料, 利用地理信息系统技术, 分析了这些保护区的分布现状和生物多样性的保护状况, 包括保护的植被类型、野生保护物种以及热点地区。结果表明: 我国自然保护区的覆盖面积达到145.7万km2, 占中国陆地面积的15.2%, 超过世界平均水平(13.4%); 在我国47种自然植被类型中, 有21种植被类型的被保护面积比例低于10%, 说明这些类型可能没有得到充分的保护。应用Dobson筛除算法对216个保护区中的保护物种进行筛除分析, 发现仅西双版纳、武夷山、长白山、高黎贡山、祁连山5个保护区即包含了381个保护物种(约占总数783种的50%); 前21个保护区可包含占总数75%的保护物种(590种)。根据不同方案划分的生物多样性热点保护地区仍存在一些保护空缺地, 如新疆北部、四川与长江以南地区, 因此, 我国的保护区布局有待进一步改进。

关键词: 自然保护区 ; 生物多样性保护 ; 热点地区

Abstract

Assessing the distribution of nature reserves is an important step for conserving biodiversity. We used geographic information system (GIS) to assess the conservation status of vegetation types, endangered plant and animal species, and biodiversity hotspots in China, based on the area, endangered species list and geographic position of 2,047 nature reserves in China. The results showed that, while the proportion of total area protected as nature reserves is higher in China than the world average, of the 47 natural vegetation types in China, 21 (45% of the total) were deficiently protected, with less than 10% of their area included in nature reserves, suggesting that these vegetation types have not been perfectly protected. According to the Dobson complementary algorithm, among 216 nature reserves, the top five priority nature reserves, i.e., Xishuangbanna, Mt. Wuyi, Mt. Changbai, Mt. Gaoligong and Mt. Qilian, contained 381 protected species (~ 50% of the total), and the top 21 priority nature reserves contained 590 protected species (~75% of the total). Nature reserves covered nearly all the hotspots selected by different approaches. However, as there are several areas lacking proper protection, e.g., Northern Xinjiang, Sichuan and South of the Yangtze River, the distribution of Chinese nature reserves needs further improvement.

Keywords: nature reserves ; biodiversity conservation ; hotspots

PDF (709KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

陈雅涵, 唐志尧, 方精云. 中国自然保护区分布现状及合理布局的探讨. 生物多样性[J], 2009, 17(6): 664-674 doi:10.3724/SP.J.1003.2009.08324

Yahan Chen, Zhiyao Tang, Jingyun Fang. Distribution of nature reserves and status of biodiversity protection in China. Biodiversity Science[J], 2009, 17(6): 664-674 doi:10.3724/SP.J.1003.2009.08324

人类活动所引起的生物多样性丧失已成为当今最重大的环境问题之一(IUCN et al., 1991; Wilson, 1992; Chapin et al., 2000)。为了保护日益丧失的生物多样性, 各国都制订了相应的政策计划。通过建立自然保护区来保护物种及其生境, 是生物多样性保护中最为直接、有效的方法, 因此自然保护区的设置、规划设计及其评价在生物多样性保护中具有至关重要的作用(Soulé, 1991; WRI et al., 1992; Sanderson et al., 2002)。

目前对保护区网络进行评价的方法较多, 对保护区地点的选取也存在很大争议。Redford等(2003)选取了来自13个保护组织的21种保护方案, 从评价原则(代表性、有效性、功能性、国际公认度、收益程度)、保护目标、保护对象(物种、生态系统或生物多样性)等几个方面进行了总结: 根据不同评价原则, 优先保护地区的确立可从不可替代性(irreplaceability)与脆弱性(vulnerability)两个标准开展(Margules & Pressey, 2000)。根据不同保护目标, 保护方案分为被动保护与主动保护两种, 前者优先保护生物多样性及其生境已经受到威胁的地区, 后者则优先保护受威胁程度较低但不可替代性较高的地区(Brooks et al., 2006)。根据不同的保护对象, 保护方案大致也可分为两类: 一类是基于物种的保护, 例如确定物种数最丰富的热点地区(hotspots)(Myers et al., 2000)和濒危物种的优先保护地区(Slattersfield et al., 1998)等; 另一类是基于生态系统或生境的保护, 例如在全球尺度确定具有代表性生态区保护的“全球200”(Olson & Dinerstein, 1998), 以及GAP分析(Pressey et al., 1993; Scott et al., 1993; Jennings, 2000; Margules & Pressey, 2000; Scott et al., 2001; Tognelli et al., 2008)。

基于物种丰富度数据的分析方法在保护区网络评估中具有重要作用(Brooks et al., 2004), 应用也较多, 但由于物种丰富度不能反映生物多样性的所有方面(Noss, 1990), 且数据获取较为困难, 数据精确性也难以得到保证(Prendergast et al., 1993; Freitag et al., 1998), 因而具有局限性; 而基于生态系统或生境的综合分析方法则代表了生物多样性的各个方面(Maddock & Du Plessis, 1999), 因此在不同国家得到了广泛应用(Strittholt & Boerner, 1995; Lombard et al., 1997; Smith et al., 1997)。

中国是世界上生物多样性特别丰富的国家之一(McNeely et al., 1990); 同时由于长期高强度的人类活动, 中国又是世界上生物多样性受威胁最严重的国家之一(陈灵芝, 1993)。为了保护中国丰富的生物多样性, 截至2007年底, 中国已建立了2,395个不同保护等级的自然保护区(不包括港、澳、台地区)(中华人民共和国环境保护部, 2008), 自然保护区数量和面积均有较大的增长; 但保护区在规划建设中仍存在着一系列问题, 例如, 存在保护空缺地区、缺乏对保护区网络的科学评估、保护区的选址和管理有待优化等等(马克平, 2001; Liu et al., 2003; Tang et al., 2006)。

本文中利用中国的植被和自然保护区分布以及保护区内野生保护物种名录等数据, 从植被类型、野生保护物种以及热点地区保护等三个方面对中国自然保护区网络现状进行评估。

1 数据与方法

1.1 自然保护区分布数据库

利用我国自然保护区名录(中华人民共和国环境保护部, 2008)、中国物种信息服务(CSIS)(解焱等, 2001)和中国自然保护区数据库(国家环保总局南京环境科学研究所, 2002), 我们收集整理了截至2007年底中国已建立的2,395个保护区中的2,047个保护区的有关信息, 主要包括保护区的名称、保护区级别、面积、地理位置、建立年代、保护对象和保护类型。保护类型包括古生物遗迹、荒漠生态系统、草原与草甸生态系统、地质遗迹、内陆湿地及水域生态系统、森林生态系统、野生动物、野生植物等8种, 不包括海洋海岸类保护区。这些保护区面积差异较大, 其中面积较大、保护等级较高的保护区的分布及其确切的边界数据通过世界保护地分布数据库(WDPA, World Database on Protected Area, WDPA Consortium, 2006)获取。

WDPA数据库对于全球和区域尺度的生物多样性保护设计及评价具有重要应用价值。该数据库发布后受到了全球保护生物学家们的广泛关注, 已经被广泛用于全球和区域尺度生物多样性保护效果的评价(如Rodrigues et al., 2004; Hoekstra et al., 2005; Pawar et al., 2007; Joppa et al., 2008; Jenkins & Joppa, 2009)。该数据库共包含中国567个保护区的详细边界、保护区面积、保护区等级、建立时间以及保护状况等详细信息。由于比例尺及投影的差异, 此数据库中的个别保护区边界与实际情况并不相符; 另外, 个别保护区在近年来改变了保护边界。为此, 我们根据最新资料对这些保护区的信息进行了更新。这567个保护区的平均面积为1,853.3 km2, 总面积为105.1万 km2, 占所有保护区面积的72.1%。对于其余1,480个面积较小、保护等级较低的保护区, 我们以其中心点的经纬度代表其地理位置; 此类保护区平均面积为274.3 km2, 总面积为40.6万km2(占保护区总面积的27.9%)。中国自然保护区数据库(国家环保总局南京环境科学研究所, 2002)中还包括部分保护区的生物多样性以及保护物种的信息。上述数据库中缺失的生物多样性数据, 通过查阅相应的自然保护区考察报告集、有关技术报告以及《中国国家级自然保护区》(王恺, 2003)等文献获得。

1.2 植被分布图与保护区的植被类型

中国的生态系统类型十分丰富, 包含了地球上主要的陆地生态系统类型(森林、灌丛、草原和稀树草原、草甸、荒漠、高山冻原等)。以植被类型为依据, 中国陆地生态系统可以划分为704类, 其中625种生态系统类型已得到了保护, 占90.6%(唐小平, 2005)。由于陆地生态系统的划分是以植被类型为依据, 植被类型往往决定了该地区生活的其他物种的多样性, 因而考察植被类型的保护情况也可以反映中国生物多样性保护的现状。

为了有效保护各种生态系统, 根据国际自然保护组织的保护目标, 每种类型应有10-12%的土地处于保护之中(World Commission on Environment and Development, 1987; IUCN, 1993; Convention on Biological Diversity, 2004)。这一标准更多地是基于政治的考虑而非科学的原理而制定的(Noss, 1996; Soulé & Sanjayan, 1998; Groves, 2003), 因此, 从生态学理论的角度来看, 10%的保护比例仍无法达到保护生物多样性的目的。尽管如此, 这一标准仍得到了广泛的运用。为了便于和其他的研究结果相比较, 本研究将保护面积比例分为0-10%、10-20%、>20%三个等级, 并采用10%的面积比例作为充分保护的标准。

为获得植被分布数据, 我们对《1: 1,000,000中国植被图集》(侯学煜, 2001)进行数字化。图集中将中国的植被划分为11种植被型组(其中10种自然植被型组), 54种植被型(47种自然植被型), 以及573种群系(547种自然群系)。由于人工植被受到人类活动的影响强烈, 本文主要分析47种自然植被型的保护状况。

根据整理的中国自然保护区分布数据库中各保护区的地理位置(边界图以及中心点经纬度), 建立中国自然保护区数字化分布图。将中国自然保护区分布图和中国植被分布图叠加, 对于有边界图的567个保护区, 获得了它们所包含的各植被类型斑块的面积; 而对于面积较小的其余1,480个保护区, 以其中心点所处的植被斑块的类型来代表该保护区的植被类型。植被图、自然保护区分布图以及叠加分析在地理信息系统(GIS)软件ArcView GIS 3.2 (ESRI, 1998)中实现。

1.3 野生保护物种数据库与Dobson筛除算法

根据整理的2,047个自然保护区的基本资料数据库、《中国国家级自然保护区》(王恺, 2003)以及自然保护区的有关考察报告集, 共获取了216个自然保护区中分布的重点保护野生动物和保护植物名录。这216个保护区包括143个国家级、63个省级和10个市(县)级自然保护区。这些保护区的野生动植物名录来源于《中国珍稀濒危保护植物名录》(国家环保总局和中国科学院植物研究所, 1987)、《国家重点保护野生动物名录》(中华人民共和国林业部和中华人民共和国农业部, 1989)与《国家重点保护野生植物名录(第一批)》(国家林业局和中华人民共和国农业部, 1999)中记载的保护物种。这些名录中共记录中国珍稀濒危保护植物和重点保护野生植物393种(以下简称保护植物), 重点保护野生动物455种。本研究收集的216个保护区中共包含有783种上述野生保护物种, 其中保护植物364种, 重点保护野生动物419种。为了评价不同保护区的相对优先性, 本文中应用Dobson筛除算法(Dobson et al., 1997)确定这783种野生保护物种集中分布且相互补充的保护区。

Dobson筛除算法是找出为保护特定物种类群所需要的最小保护面积的方法(Csuti et al., 1997; Dobson et al., 1997; Rutledge et al., 2001)。 该方法遵循“互补性”原则, 即找出除已有保护地区之外能够补充最多物种的地区, 使得有效的保护区网络不仅包括物种数目最丰富的地区, 同时也包括能够对其他地区的生物群系起到补充作用的地区(complementary areas)(Pressey et al., 1993)。Dobson筛除算法的具体步骤是: 首先选取含保护物种数最多的保护区, 将其中包含的保护物种从剩下的保护区中剔除, 然后从剩下的保护区中再选取物种丰富度最高的保护区。重复以上步骤, 直到选取的保护区中分布的保护物种数达到总数的75% (Dobson et al., 1997)。

1.4 热点地区的保护现状

针对中国生物多样性的保护, 已经提出多种优先保护方案。如“全球200”(Olson & Dinerstein, 1998)确定的233个具有全球意义的生态区, 这是根据生境类型、生境丧失和破碎化程度与受保护状态来确定的, 其中涉及中国的陆地生态系统生态区有11个(赵淑清等, 2000)。又如, Tang等(2006)根据特有物种、濒危物种以及总的物种丰富度, 确定了10个热点地区。将以上热点地区的区域图数字化, 并与中国自然保护区分布图进行叠加, 分析各个热点地区中分布的自然保护区数量与面积, 获得各热点地区被保护的面积比例。

2 结果

2.1 保护区分布现状

截至2007年底, 我国2,047个自然保护区的总面积为145.7万km2(不包括海洋海岸类保护区), 占国土总面积的15.2%, 超过世界平均水平的13.4% (WDPA Consortium, 2006)(图1), 其中以生境类型为保护对象的自然保护区(包括森林生态系统、草原与草甸生态系统、荒漠生态系统、内陆湿地及水域生态系统)共1,314个, 占保护区总数的64.2%; 以物种为保护对象的自然保护区(包括野生动物、野生植物)共613个, 占保护区总数的29.9%。从保护区的面积分布来看, 面积小于100 km2的为1,234个(60.3%), 面积为100-1,000 km2的为672个(32.8%), 面积大于10,000 km2的为17个(0.8%)(表1)。

图1

图1   中国自然保护区分布图

Fig. 1   Distribution of China’s nature reserves


表1   中国自然保护区数量和面积(×103km2)分类汇总

Table 1  The number and area of nature reserves in China

类别
Class
总计
Total
年份 Year
1956-19751976-19851986-19951996-2007
面积
Area
数量
Number
面积Area数量
Number
面积
Area
数量
Number
面积
Area
数量
Number
面积
Area
数量
Number
保护类型 Categories
古生物遗迹Trace fossil5.2290.000.010.165.122
荒漠生态系统Desert ecosystem449.8210.00100.55328.8420.612
草原与草甸生态系统
Grasslands and alpine meadow
28.8330.006.722.01120.120
地质遗迹Geological relic10.8910.000.9141.0299.048
内陆湿地及水域生态系统
Wetlands ecosystem
206.92000.013.31114.946188.7142
森林生态系统Forest ecosystem278.71,0605.6671.219567.4182134.5677
野生动物Wild animal447.647611.2797.780218.6135120.0254
野生植物Wild plant28.91370.723.82411.14513.366
面积大小等级 Magnitude of area
0-100 km234.91,2340.155.21707.828921.7770
100-1,000 km2210.26723.2745.512941.3135120.1401
1,000-10,000 km2332.512414.1485.92981.927150.764
>10,000 km2879.2170.00147.54512.97218.76
保护级别 Protection grade
国家级National949.024816.110208.098550.085174.855
省级Provincial373.76731.2372.116572.4127228.0378
市级Civic38.53470.021.5268.27028.8249
县级County95.67790.012.64313.317679.7559
总计 Total1,456.82,04717.416284.2332644.0458511.31,241

新窗口打开| 下载CSV


我国于1956年建立了第一个自然保护区(鼎湖山自然保护区)。从1976年始, 我国保护区数量和面积开始大幅度增加, 其中以1980-1985、1993-1995、1999-2001年3个时期保护区面积增加尤为显著(图2)。在1976-2007年期间建立的保护区以面积小于100 km2为主; 前期(1976-1985年)以国家级与省级保护区为主(数量占同期建立的保护区的79%), 后期(1996-2007年)以省级与县级保护区为主(数量占同期建立的保护区的76%)(表1)。

图2

图2   近50年来中国自然保护区数量与面积变化趋势

Fig. 2   Changes in number and area of nature reserves in China in the last five decades


2.2 不同植被类型的保护现状

尽管中国自然保护区的总面积比例已经达到15.2%, 但不同植被类型的保护程度不均衡。在47类陆地自然植被类型中, 有21类的保护比例低于10%; 而下列植被类型的被保护比例较高, 达到20%以上: 亚热带和热带山地针叶林、亚高山落叶阔叶灌丛、垫状矮半灌木高寒荒漠、蒿草杂类草高寒草甸、高寒沼泽、高山苔原、高山垫状植被及高山稀疏植被(附录I)。在空间分布上, 青藏高原西部、内蒙古高原的东部以及大兴安岭北部地区的植被保护比例达到10%, 受到了充分的保护, 而长江以南地区的植被, 大部分的类型保护比例小于10% (图3)。

附录I   中国各自然植被类型被保护面积及比例

Supplement I  Coverage of protected areas for different natural vegetation in China

植被类型
Vegetation type
保护区面积
Nature reserve area
(km2)
植被总面积
Vegetation area
(km2)
保护面积 比例
% of protected area
寒温带和温带山地针叶林 Cold-temperate and temperate mountains needleleaf forest18,526.0160,041.611.6
温带针叶林 Temperate needleleaf forest4,224.938,898.010.9
亚热带针叶林 Subtropical needleleaf forest23,176.9470,652.94.9
热带针叶林 Tropical needleleaf forest0.0120.50.0
亚热带和热带山地针叶林 Subtropical and tropical mountains needleleaf forest50,499.8142,997.735.3
温带针叶、落叶阔叶混交林 Temperate mixed needleleaf and broadleaf deciduous forest1,480.816,901.08.8
亚热带山地针叶、常绿阔叶、落叶阔叶混交林 Subtropical mountains mixed needleleaf, broadleaf evergreen and deciduous forest566.74,833.811.7
温带落叶阔叶林 Temperate broadleaf deciduous forest38,691.9401,327.99.6
温带落叶小叶疏林 Temperate microphyllous deciduous woodland17,74.532,790.55.4
亚热带落叶阔叶林 Subtropical broadleaf deciduous forest4,602.736,269.112.7
亚热带常绿、落叶阔叶混交林 Subtropical mixed broadleaf evergreen and deciduous forest2,569.617,087.015.0
亚热带常绿阔叶林 Subtropical broadleaf evergreen forest15,841.4128,365.812.3
亚热带硬叶常绿阔叶林 Subtropical broadleaf evergreen sclerphyllous forest2,197.315,729.214.0
热带季雨林 Tropical monsoon rain forest1,027.36,202.116.6
热带雨林 Tropical rain forest2,437.61,8682.013.1
亚热带和热带竹林及竹丛 Subtropical, tropical bamboo forest and scrub2,748.234,532.78.0
温带落叶灌丛 Temperate broadleaf deciduous scrub10,196.1163,297.66.2
亚热带、热带常绿阔叶、落叶阔叶灌丛
Subtropical and tropical broadleaf evergreen and deciduous scrub
24,970.7462,646.95.4
热带珊瑚岛肉质常绿阔叶灌丛和矮林
Tropical broadleaf evergreen succulent scrub and dwarf forest on coral islands
0.00.20.0
亚热带、热带旱生常绿肉质多刺灌丛
Subtropical and tropical evergreen xeromorphic succulent thorny scrub
117.52,167.85.4
亚高山落叶阔叶灌丛 Subalpine broadleaf deciduous scrub17,997.388,594.620.3
亚高山革质常绿阔叶灌丛 Subalpine sclerophylla broadleaf evergreen scrub24,345.0166,638.314.6
亚高山常绿针叶灌丛 Subalpine needleleaf evergreen scrub1,375.219,739.47.0
温带矮半乔木荒漠 Temperate dwarf semi-arboreous desert12,750.3114,624.711.1
温带灌木荒漠 Temperate shrubby desert31,972.4305,877.910.5
温带草原化灌木荒漠 Temperate shrubby steppe desert723.823,364.03.1
温带半灌木、矮半灌木荒漠 Temperate semi-shrubby and dwarf semi-shrubby desert55,815.1584,189.09.6
温带多汁盐生矮半灌木荒漠 Temperate succulent holophytic dwarf semi-shrubby desert1,888.843,412.64.4
温带一年生草本荒漠 Temperate annual graminoid desert241.118,683.61.3
垫状矮半灌木高寒荒漠 Alpine cushion dwarf semi-shrubby desert69,177.4112,411.361.5
温带禾草、杂类草草甸草原 Temperate grass-forb meadow steppe6,499.192,422.37.0
温带丛生禾草草原 Temperate needlegrass arid steppe54,094.2454,183.311.9
温带丛生矮禾草、矮半灌木荒漠草原
Temperate dwarf needle grass, dwarf semi-shrubby steppe
21,677.2226,121.79.6
禾草、苔草高寒草原 Alpine grass, Carex steppe345,005.9641,100.753.8
温带草丛 Temperate grass-forb community2,937.657,849.95.1
亚热带、热带草丛 Subtropical and tropical grass-forb community16,231.8243,168.66.7
温带禾草、杂类草草甸 Temperate grass and forb meadow12,407.5122,931.410.1
温带禾草、苔草及杂类草沼泽化草甸 Temperate grass, Carex and forb swamp meadow6,607.365,686.110.1
温带禾草、杂类草盐生草甸 Temperate grass and forb holophytic meadow17,004.2157,047.010.8
蒿草、杂类草高寒草甸 Alpine Kobresia spp., forb meadow180,979.5681,057.026.57
寒温带、温带沼泽 Cold temperate and temperate swamp7,182.857,921.012.4
亚热带、热带沼泽 Subtropical and tropical swamp139.91,572.28.9
热带红树林 Tropical mangrove0.0326.40.0
高寒沼泽 Alpine swamp2,109.94,224.449.9
高山苔原 Alpine tundra1,044.71,331.278.5
高山垫状植被 Alpine cushion vegetation12,426.926,402.247.1
高山稀疏植被 Alpine sparse vegetation106,226.8316,934.533.5

新窗口打开| 下载CSV


图3

图3   中国不同植被类型保护面积比例及其分布

Fig. 3   Proportion of protected area for different vegetation types in China


2.3 野生保护物种的保护

应用Dobson筛除算法, 确定了野生保护物种集中分布且相互补充的保护区。在包含了783种保护物种的216个自然保护区中, 前5个保护区即可保护约50%的保护物种(381种), 前21个保护区可保护约75%的保护物种(590种)(图4)。这21个自然保护区仅占具有详细保护物种名录的保护区数目(216个)的9.7%。按照筛除顺序, 216个保护区中含有保护物种最多的保护区是西双版纳国家级自然保护区, 能够补充最多保护物种的保护区依次是武夷山国家级自然保护区、长白山国家级自然保护区、高黎贡山国家级自然保护区、祁连山国家级自然保护区等(图5)。

图4

图4   基于Dobson筛除算法得到的保护区数量与累计保护物种数的关系

Fig. 4   The relationship between accumulated number of endangered species and number of nature reserves based on Dobson complementary algorithm


图5

图5   基于Dobson筛除算法确立的优先保护的21个自然保护区(图中点表示所采用的216个保护区)。编号表示各保护区的保护优先性顺序: 1, 西双版纳; 2, 武夷山; 3, 长白山; 4, 高黎贡山; 5, 祁连山; 6, 南岭; 7, 珠穆朗玛峰; 8, 伏牛山; 9, 东洞庭湖; 10, 八大公山; 11, 白马雪山; 12, 梵净山; 13, 哀牢山; 14, 汗玛; 15, 牡丹峰; 16, 清凉峰; 17, 苍山洱海; 18, 大瑶山; 19, 贡嘎山; 20, 太白山; 21, 西天山。

Fig. 5   Nature reserves selected as conservation priorities by using Dobson complementary algorithm; 216 nature reserves are shown as dots, and the figures indicate the order of conservation priority. 1, Xishuangbanna; 2, Mt. Wuyi; 3, Mt. Changbai; 4, Mt. Gaoligong; 5, Mt. Qilian; 6, Nanling; 7, Mt. Qomolangma; 8, Mt. Funiu; 9, Eastern Dongting Lake; 10, Mt. Badagong; 11, Mt. Baimaxueshan; 12, Mt. Fanjing; 13, Mt. Ailao; 14, Hanma; 15, Mudanfeng; 16, Qingliangfeng; 17, Cangshan’erhai; 18, Mt. Dayao; 19, Mt. Gongga; 20, Mt. Taibai; 21, Western Tianshan.


2.4 热点地区的保护现状

比较中国自然保护区分布图与两种优先保护方案, 可知两种方案所提出的生物多样性保护热点地区已建立了大量不同类型或等级的自然保护区, 但仍存在一些保护空缺或未充分保护地区(表2)。“全球200”涉及中国的11个陆地生态系统生态区中, 北印度支那亚热带湿润森林、中国东南亚热带森林、中亚山地温带森林和草原与中国西南温带森林4个生态区在中国境内的保护区覆盖面积比例低于10%。在Tang等(2006)确定的10个热点地区中, 红水河上游地区、中国东部山地、南岭山脉3个热点地区的被保护比例均低于10% (表2)。

表2   中国生物多样性热点地区的保护区覆盖状况

Table 2  Number and coverage of protected areas in biodiversity hotspots of China

热点地区
Hotspots
中国境内面积
Area in China (km2)
保护区数量
No. of nature reserves
保护区面积Area of nature reserves (km2) (%)
“全球200”热点生态区 “Global 200” ecoregions
北印度支那亚热带湿润森林 North Indochina subtropical moist forests386,55517324,667 (6.4)
中国东南亚热带森林 Southeast China-Hainan moist forests859,65060465,802 (7.7)
台湾山地森林 Taiwan montane forests35,422
阿尔泰山地森林 Altai-Sayan montane forests33,46435,408 (16.2)
中亚山地温带森林和草原 Middle Asian montane woodlands and steppe252,9391211,584 (4.6)
东喜马拉雅针阔叶林 Eastern Himalayan broad-leaved and conifer forests93,127429,462 (31.6)
东喜马拉雅高山草甸 Eastern Himalayan alpine meadows99,301915,644 (15.8)
青藏高原草甸 Tibetan Plateau steppe1,449,269109486,175 (33.5)
蒙古大草原 Daurian/Mongolian steppe580,98610365,220 (11.2)
中国西南温带森林 Southwest China temperate forests389,45215428,939 (7.4)
横断山针叶林 Hengduan Shan conifer forests257,6039533,784 (13.1)
Tang等(2006)确定的热点地区 Hotspots identified by Tang et al. (2006)
横断山脉 Hengduan Mountains408,62619057,307 (14.0)
红水河上游地区 Upper reaches of Hongshui River69,725424,468 (6.4)
中国东部山地 East China mountains217,11718712,299 (5.7)
武陵山地 Wuling Mountains89,799579,370 (10.4)
南岭山脉 Nanling Mountains44,080342,432 (5.5)
秦岭山脉 Qinling Mountains67,300327,224 (10.7)
西双版纳 Xishuangbanna19,17232,844 (49.0)
海南岛 Hainan Island33,253493,404 (10.2)
青藏高原 Alpine Qinghai -Xizang Plateau255,0112095,430 (14.8)
台湾岛 Taiwan Island36,060

新窗口打开| 下载CSV


3 讨论与结论

世界保护地分布数据库(WDPA)包含了我国大部分大型以及国家级、省级自然保护区的空间分布信息, 对于开展自然保护区的布局以及保护效果研究具有重要应用价值, 但该数据库中部分自然保护区的信息存在瑕疵。为了检验该空间数据库数据的准确性, 我们计算了其中所有的中国自然保护区的面积, 并将计算所得的面积与中国自然保护区数据库(国家环保总局南京环境科学研究所, 2002)所记录的面积进行对比, 结果表明两者的相关系数达到0.97, 斜率也接近于1(图6), 差异较大的点主要是一些面积较小的自然保护区。这表明两个数据库对自然保护区面积的描述十分一致, 数据的偏差只存在于个别的保护区。因此, 该数据可以反映中国自然保护区分布的总体状况。

图6

图6   中国自然保护区数据库所记载的保护区面积与WDPA空间分布数据库所计算的面积的关系。两者的显著相关性说明WDPA数据能够反映中国自然保护区的分布状况。

Fig. 6   Reserve areas recorded in the China Species Information Service and plotted against area calculated by the GIS database of WDPA. High correlation between these two datasets indicate that WDPA database can be used to represent the distribution of protected areas in China.


植被类型保护的分析表明, 不同植被类型被保护比例不均衡; 在所有植被类型中, 有21种(45%)未受到充分保护(保护比例低于10%)。对不同优先保护方案的对比分析也表明, 以生态系统和植被类型为依据确立的热点地区(Olson & Dinerstein, 1998)尚缺乏充分的保护。

从野生动植物保护的角度来看, 我国已建立的以保护物种为主的保护区占保护区总数的29.9%, 并相继制订了《国家重点保护野生动物名录》(中华人民共和国林业部和中华人民共和国农业部, 1989)和《国家重点保护野生植物名录(第一批)》(国家林业局和中华人民共和国农业部, 1999), 动植物物种的保护在我国已受到相当的重视。但因为人力、物力有限, 为达到最有效的保护效果, 保护策略应从以保护物种为主逐渐过渡到保护生态系统为主(Olson & Dinerstein, 1998), 且应在科学分析的基础上确定保护优先性地区。应用Dobson筛除算法, 我们得到了在野生动植物保护中应优先考虑的保护区, 得出5个保护区即可保护216个保护区中近50%的保护物种。

从“全球200”(Olson & Dinerstein, 1998)和Tang等(2006)确定的保护优先性格局情况来看, 我国的生物多样性保护热点地区和关键地区已经基本得到覆盖, 但仍然存在一些保护空缺和未充分保护地区。与植被类型的保护分析一致, 青藏高原地区的被保护比例高于20%, 而新疆北部、四川地区及长江以南的热点地区未得到充分保护。

本文对我国自然保护区的分布现状进行了分析, 并探讨了它们的合理布局, 但由于分析方法和数据获取等方面存在不足, 其结果只是初步的, 今后需要作进一步的分析和完善。

在植被类型保护的分析方面, 植被类型还有待进一步细化, 并利用保护区的详细边界图, 而不是保护区中心点的经纬度代替部分保护区的地理位置, 来确定植被类型。由于不同植被类型的经济价值和受威胁程度不尽相同, 需要保护的面积比例也不应相同(Jennings, 2000; Mendel & Kirkpatrick, 2002)。因此, 需要对某一植被类型所需要的保护面积比例进行分析, 制订出更加合理和详细的保护目标方案。

在确定以保护物种为主要目的的保护区优先性方面, 本文中只考虑了重点保护的野生动植物信息, 未能包含全部的保护物种。另外, 在现实的保护区管理中, 不仅要考虑保护物种, 也要综合考虑各地的植被、生态系统、特有物种、濒危物种以及经济社会状况等因素(Lombard et al., 1997; Ando et al., 1998)。

在确定生物多样性保护热点地区方面, 使用物种数据和生态系统数据得到的优先保护格局存在一定差异, 对于采用物种方法还是生态系统方法存在很大争议(Brooks et al., 2004; McNeely, 2006)。即使使用同样的物种方法, 不同类群的物种丰富度在空间上也并不一致(Howard et al., 1998; van Jaarsveld et al., 1998; Orme et al., 2005; Tang et al., 2006)。因此, 应综合各项保护目标与保护方法, 实现生物多样性的全面保护(Redford et al., 2003)。

另外, 在进行自然保护区布局的评价时, 应同时加强对生物多样性分布格局的理论研究, 从而为生物多样性保护提供理论指导(Zhao & Fang, 2006)。

附录I 中国各自然植被类型被保护面积及比例

Supplement I Coverage of protected areas for different natural vegetation in China

参考文献

Ando A, Camm J, Polasky S, Solow A (1998)

Species distributions, land values, and efficient conservation

Science, 279, 2126-2128.

DOI:10.1126/science.279.5359.2126      URL     PMID:9516117      [本文引用: 1]

Efforts at species conservation in the United States have tended to be opportunistic and uncoordinated. Recently, however, ecologists and economists have begun to develop more systematic approaches. Here, the problem of efficiently allocating scarce conservation resources in the selection of sites for biological reserves is addressed. With the use of county-level data on land prices and the incidence of endangered species, it is shown that accounting for heterogeneity in land prices results in a substantial increase in efficiency in terms of either the cost of achieving a fixed coverage of species or the coverage attained from a fixed budget.

Brooks TM, da Fonseca GAB, Rodrigues ASL (2004)

Protected areas and species

Conservation Biology, 18, 616-618.

[本文引用: 2]

Brooks TM, Mittermeier RA, da Fonseca GAB, Gerlach J, Hoffmann M, Lamoreux JF, Mittermeier CG, Pilgrim JD, Rodrigues ASL (2006)

Global biodiversity conservation priorities

Science, 313, 58-61.

[本文引用: 1]

Chapin FS, Zavaleta ES, Eviner VT, Naylor RL, Vitousek PM, Reynolds HL, Hooper DU, Lavorel S, Sala OE, Hobbie SE, Mack MC, Diaz S (2000)

Consequences of changing biodiversity

Nature, 405, 234-242.

DOI:10.1038/35012241      URL     PMID:10821284      [本文引用: 1]

Human alteration of the global environment has triggered the sixth major extinction event in the history of life and caused widespread changes in the global distribution of organisms. These changes in biodiversity alter ecosystem processes and change the resilience of ecosystems to environmental change. This has profound consequences for services that humans derive from ecosystems. The large ecological and societal consequences of changing biodiversity should be minimized to preserve options for future solutions to global environmental problems.

Chen LZ (陈灵芝) (1993) China’s Biodiversity: Current Status and Protective Measures (中国的生物多样性: 现状及其保护对策). Science Press, Beijing.(in Chinese)

[本文引用: 1]

Convention on Biological Diversity (CBD) (2004)

2010 Biodiversity Target

http://www.biodiv.org/doc/decisions/COP-07-dec-en.pdf (accessed July 2007).

URL     [本文引用: 1]

Csuti B, Polasky S, Williams PH, Pressey RL, Camm JD, Kershaw M, Kiester AR, Downs B, Hamilton R, Huso M, Sahr K (1997)

A comparison of reserve selection algorithms using data on terrestrial vertebrates in Oregon

Biological Conservation, 80, 83-97.

[本文引用: 1]

Dobson AP, Rodriguez JP, Roberts WM, Wilcove DS (1997)

Geographic distribution of endangered species in the United States

Science, 275, 550-553.

DOI:10.1126/science.275.5299.550      URL     PMID:8999803      [本文引用: 3]

Geographic distribution data for endangered species in the United States were used to locate

ESRI (1998)

ArcView 3.2, Software System

Environmental Systems Research Institute Inc.

[本文引用: 1]

Freitag S, Hobson C, Biggs HC, van Jaarsveld AS (1998)

Testing for potential survey bias: the effect of roads, urban areas and nature reserves on a southern African mammal data set

Animal Conservation, 1, 119-127.

[本文引用: 1]

Groves CR (2003) Drafting a Conservation Blueprint: A Practitioner’s Guide to Planning for Biodiversity. Island Press, Washington, DC.

[本文引用: 1]

Hoekstra JM, Boucher TM, Ricketts TH, Roberts C (2005)

Confronting a biome crisis: global disparities of habitat loss and protection

Ecology Letters, 8, 23-29.

[本文引用: 1]

Howard PC, Viskanic P, Davenport TRB, Kigenyi FW, Baltzer M, Dickinson CJ, Lwanga JS, Matthews RA, Balmford A (1998)

Complementarity and the use of indicator groups for reserve selection in Uganda

Nature, 394, 472-475.

[本文引用: 1]

Hou XY (侯学煜) (2001) Vegetation Atlas of China (1: 1,000,000) (1: 1,000,000中国植被图集). Science Press, Beijing.

[本文引用: 1]

IUCN (1993)

Parks for Life: Report of the IV World Congress on National Parks and Protected Areas

Gland, Switzerland.

[本文引用: 1]

IUCN, UNEP, WWF (1991)

Caring for the Earth: A Strategy for Sustainable Living

Gland, Switzerland.

[本文引用: 1]

van Jaarsveld AS, Freitag S, Chown SL, Muller C, Koch S, Hull H, Bellamy C, Kruger M, Endrody-Younga S, Mansell MW, Scholtz CH (1998)

Biodiversity assessment and conservation strategies

Science, 279, 2106-2108.

DOI:10.1126/science.279.5359.2106      URL     PMID:9516111      [本文引用: 1]

The efficient representation of all species in conservation planning is problematic. Often, species distribution is assessed by dividing the land into a grid; complementary sets of grids, in which each taxon is represented at least once, are then sought. To determine if this approach provides useful surrogate information, species and higher taxon data for South African plants and animals were analyzed. Complementary species sets did not coincide and overlapped little with higher taxon sets. Survey extent and taxonomic knowledge did not affect this overlap. Thus, the assumptions of surrogacy, on which so much conservation planning is based, are not supported.

Jenkins CN, Joppa L (2009)

Expansion of the global terrestrial protected area system

Biological Conservation, 142, 2166-2174.

[本文引用: 1]

Jennings MD (2000)

Gap analysis: concepts, methods, and recent results

Landscape Ecology, 15, 5-20.

[本文引用: 2]

Joppa LN, Loarie SR, Pimm SL (2008)

On the protection of “protected areas”

Proceedings of National Academy of Sciences, USA, 105, 6673-6678.

[本文引用: 1]

Liu JG, Ouyang ZY, Pimm SL, Raven PH, Wang XK, Miao H, Han NY (2003)

Protecting China’s biodiversity

Science, 300, 1240-1241.

DOI:10.1126/science.1078868      URL     PMID:12764180      [本文引用: 1]

Lombard AT, Cowling RM, Pressey RL, Mustart PJ (1997)

Reserve selection in a species-rich and fragmented landscape on the Agulhas Plain, South Africa

Conservation Biology, 11, 1101-1116.

[本文引用: 2]

Ma KP (马克平) (2001)

Hotspots assessment and conservation priorities identification of biodiversity in China should be emphasized

Acta Phytoecologica Sinica (植物生态学报), 25, 125. (in Chinese)

[本文引用: 1]

Maddock A, Du Plessis MA (1999)

Can species data only be appropriately used to conserve biodiversity?

Biodiversity and Conservation, 8, 603-615.

[本文引用: 1]

Margules CR, Pressey RL (2000)

Systematic conservation planning

Nature, 405, 243-253.

DOI:10.1038/35012251      URL     PMID:10821285      [本文引用: 2]

The realization of conservation goals requires strategies for managing whole landscapes including areas allocated to both production and protection. Reserves alone are not adequate for nature conservation but they are the cornerstone on which regional strategies are built. Reserves have two main roles. They should sample or represent the biodiversity of each region and they should separate this biodiversity from processes that threaten its persistence. Existing reserve systems throughout the world contain a biased sample of biodiversity, usually that of remote places and other areas that are unsuitable for commercial activities. A more systematic approach to locating and designing reserves has been evolving and this approach will need to be implemented if a large proportion of today's biodiversity is to exist in a future of increasing numbers of people and their demands on natural resources.

McNeely JA (2006)

Systems or species? Approaches to conservation for the 21st century

Integrative Zoology, 2, 86-95.

[本文引用: 1]

McNeely JA, Miller KR, Reid WV, Mittermeier RA, Werner TB (1990)

Conserving the World’s Biological Diversity

The World Bank, Washington, DC.

[本文引用: 1]

Mendel LC, Kirkpatrick JB (2002)

Historical progress of biodiversity conservation in the protected-area system of Tasmania, Australia

Conservation Biology, 16, 1520-1529.

[本文引用: 1]

Ministry of Forestry of People’s Republic of China (中华人民共和国林业部), Ministry of Agriculture of People’s Republic of China (中华人民共和国农业部) (1989)

Checklist of Wild Animals of National Priority Protection (国家重点保护野生动物名录)

[本文引用: 2]

Ministry of Environmental Protection of People’s Republic of China (中华人民共和国环境保护部) (2008)

Checklist of Nature Reserves of China (全国自然保护区名录)

http://datacenter.mep.gov.cn/main/dbCenterDataList.do?tableName=ZHB_T_NEW_RESERVES_MAIN.(accessed April 2009).

URL     [本文引用: 2]

Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000)

Biodiversity hotspots for conservation priorities

Nature, 403, 853-858.

[本文引用: 1]

Nanjing Institute of Environmental Sciences of State Environmental Protection Administration (国家环保总局南京环境科学研究所) (2002)

The Database of Chinese Nature Reserves

http://www.nies.org. (accessed June 2005)

URL     [本文引用: 3]

Noss RF (1990)

Indicators for monitoring biodiversity: a hierarchical approach

Conservation Biology, 4, 355-364.

[本文引用: 1]

Noss RF (1996) Protected areas: how much is enough? In: National Parks and Protected Areas: Their Role in Environmental Protection (ed. Wright RG), pp. 91-120. Blackwell Science, Cambridge.

[本文引用: 1]

Olson DM, Dinerstein E (1998)

The global 200: a representation approach to conserving the Earth’s most biologically valuable ecoregions

Conservation Biology, 12, 502-515.

[本文引用: 5]

Orme CDL, Davies RG, Burgess M, Eigenbrod F, Pickup N, Olson VA, Webster AJ, Ding TS, Rasmussen PC, Ridgely RS, Stattersfield AJ, Bennett PM, Blackburn TM, Gaston KJ, Owens IPF (2005)

Global hotspots of species richness are not congruent with endemism or threat

Nature, 436, 1016-1019.

URL     PMID:16107848      [本文引用: 1]

Pawar S, Koo MS, Kelley C, Ahmed MF, Chaudhuri S, Sarkar S (2007)

Conservation assessment and prioritization of areas in Northeast India: priorities for amphibians and reptiles

Biological Conservation, 136, 346-361.

[本文引用: 1]

Prendergast JR, Wood SN, Lawton JH, Eversham BC (1993)

Correcting for variation in recording effort in analyses of diversity hotspots

Biodiversity Letters, 1, 39-53.

[本文引用: 1]

Pressey RL, Humphries CJ, Margules CR, Vanewright RI, Williams PH (1993)

Beyond opportunism: key principles for systematic reserve selection

Trends in Ecology and Evolution, 8, 124-128.

DOI:10.1016/0169-5347(93)90023-I      URL     PMID:21236127      [本文引用: 2]

The intention and practice of conservation reserve selection are different. A major reason for systems of reserves is to sustain biological diversity. This involves protecting examples of as many natural features, e.g. species, communities or environments, as possible. In reality, however, new reserves have rarely been dedicated for their representation of features. Furthermore, the opportunism that has characterized the development of reserve systems can actually jeopardize the representation of all features in reserves through the inefficient allocation of limited resources. More systematic approaches are essential if reserves are to play their role in protecting biodiversity. Some basic principles for conservation planning are emerging from recent systematic procedures for reserve selection. These principles will help to link intention and practice.

Redford KH, Coppolillo P, Sanderson EW, Da Fonseca GAB, Dinerstein E, Groves C, Mace G, Maginnis S, Mittermeier RA, Noss R, Olson D, Robinson JG, Vedder A, Wright M (2003)

Mapping the conservation landscape

Conservation Biology, 17, 116-131.

[本文引用: 2]

Rodrigues ASL, Andelman SJ, Bakarr MI, Boitani L, Brooks TM, Cowling RM, Fishpool LDC, da Fonseca GAB, Gaston KJ, Hoffmann MI, Long JS, Marquet PA, Pilgrim JD, Pressey RL, Schipper J, Sechrest W, Stuart SM, Underhill LG, Waller RW, Watts MEJ, Xie Y (2004)

Effectiveness of the global protected area network in representing species diversity

Nature, 428, 640-644.

DOI:10.1038/nature02422      URL     PMID:15071592      [本文引用: 1]

The Fifth World Parks Congress in Durban, South Africa, announced in September 2003 that the global network of protected areas now covers 11.5% of the planet's land surface. This surpasses the 10% target proposed a decade earlier, at the Caracas Congress, for 9 out of 14 major terrestrial biomes. Such uniform targets based on percentage of area have become deeply embedded into national and international conservation planning. Although politically expedient, the scientific basis and conservation value of these targets have been questioned. In practice, however, little is known of how to set appropriate targets, or of the extent to which the current global protected area network fulfils its goal of protecting biodiversity. Here, we combine five global data sets on the distribution of species and protected areas to provide the first global gap analysis assessing the effectiveness of protected areas in representing species diversity. We show that the global network is far from complete, and demonstrate the inadequacy of uniform--that is, 'one size fits all'--conservation targets.

Rutledge DT, Lepczyk CA, Xie JL, Liu JG (2001)

Spatiotemporal dynamics of endangered species hotspots in the United States

Conservation Biology, 15, 475-487.

[本文引用: 1]

Sanderson EW, Jaiteh M, Levy MA, Redford KH, Wannebo AV, Woolmer G (2002)

The human footprint and the last of the wild

BioScience, 52, 891-904.

[本文引用: 1]

Scott JM, Davis F, Csuti B, Noss R, Butterfield B, Groves C, Anderson H, Caicco S, Derchia F, Edwards TC, Ulliman J, Wright RG (1993)

Gap analysis: a geographic approach to protection of biological diversity

Wildlife Monographs, 123, 1-41.

[本文引用: 1]

Scott JM, Murray M, Wright RG, Csuti B, Morgan P, Pressey RL (2001)

Representation of natural vegetation in protected areas: capturing the geographic range

Biodiversity and Conservation, 10, 1297-1301.

[本文引用: 1]

Slattersfield AJ, Crosby MJ, Long AJ, Wege DC (1998)

Endemic Bird Areas of the World: Priorities for Biodiversity Conservation

BirdLife International, Cambridge.

[本文引用: 1]

Smith AP, Horning N, Moore D (1997)

Regional biodiversity planning and lemur conservation with GIS in western Madagascar

Conservation Biology, 10, 17-24.

[本文引用: 1]

Soulé ME (1991)

Conservation: tactics for a constant crisis

Science, 253, 744-750.

URL     PMID:17835488      [本文引用: 1]

Soulé ME, Sanjayan MA (1998)

Ecology: conservation targets: do they help?

Science, 279, 2060-2061.

URL     PMID:17742319      [本文引用: 1]

State Environmental Protection Administration of China (国家环保总局), Institute of botany of the Chinese academy of sciences (中国科学院植物研究所) (1987) Checklist of the Rare and Endangered Plants in China (中国珍稀濒危保护植物名录). Science Press, Beijing. (in Chinese)

[本文引用: 1]

State Forestry Administration (国家林业局), Ministry of Agriculture of People’s Republic of China (中华人民共和国农业部) (1999)

Checklist of Wild Plants of National Priority Protection. (国家重点保护野生植物名录第一批)

(in Chinese)

[本文引用: 2]

Strittholt JR, Boerner REJ (1995)

Applying biodiversity gap analysis in a regional nature reserve design for the edge of Appalachia, Ohio (U.S.A.)

Conservation Biology, 9, 1492-1505.

[本文引用: 1]

Tang XP (唐小平) (2005)

Analysis of the current situation of China’s nature reserve network and a draft plan for its optimization

Biodiversity Science (生物多样性), 13, 81-88. (in Chinese with English abstract)

[本文引用: 1]

Tang ZY, Wang ZH, Zheng CY, Fang JY (2006)

Biodiversity in China’s mountains

Frontiers in Ecology and the Environment, 4, 347-352.

[本文引用: 7]

Tongnelli MF, de Arellano PIR, Marquet PA (2008)

How well do the existing and proposed reserve networks represent vertebrate species in Chile?

Diversity and Distributions, 14, 148-158.

[本文引用: 1]

Wang K (王恺) (2003) National Nature Reserve in China (中国国家级自然保护区). Anhui Science & Technology Press, Hefei. (in Chinese)

[本文引用: 2]

WDPA Consortium (2006)

World Database on Protected Area (2006 version)

UNEP-WCMC and IUCN World Commission on Protected Areas.

[本文引用: 2]

Wilson EO (1992)

The Diversity of Life

W. W. Norton & Company, New York.

[本文引用: 1]

World Commission on Environment and Development (1987) Our Common Future. Oxford University Press, New York.

[本文引用: 1]

WRI, IUCN, UNEP (1992)

Global Biodiversity Strategy

World Resources Institute, Washington, DC.

[本文引用: 1]

Xie Y (解焱), Wang S (汪松), He FQ (何芬奇), Zhao EM (赵尔宓) (2001)

China Species Information Service (CSIS)

http://www.chinabiodiversity.com. (accessed June 2005)

URL     [本文引用: 1]

Zhao SQ, Fang JY (2006)

Patterns of species richness for vascular plants in China’s nature reserves

Diversity and Distributions, 12, 364-372.

[本文引用: 1]

Zhao SQ (赵淑清), Fang JY (方精云), Lei GC (雷光春) (2000)

Global 200: an approach to setting large-scale biodiversity conservation priorties

Biodiversity Science (生物多样性), 8, 435-440. (in Chinese with English abstract)

[本文引用: 1]

/