
Biodiv Sci ›› 2025, Vol. 33 ›› Issue (9): 25221. DOI: 10.17520/biods.2025221 cstr: 32101.14.biods.2025221
• Original Papers: Plant Diversity • Previous Articles Next Articles
Xiangxiang Ge(
), Yujie Xu(
), Ju Tang*(
)(
)
Received:2025-06-15
Accepted:2025-09-12
Online:2025-09-20
Published:2025-11-03
Contact:
*E-mail: tangju@ahnu.edu.cn
Supported by:Xiangxiang Ge, Yujie Xu, Ju Tang. Effect of flower orientation variation on pollinator foraging behavior and pollination efficiency in Prunus mume f. purpurea[J]. Biodiv Sci, 2025, 33(9): 25221.
Fig. 1 Floral morphology, pollinator visitation, measurement methodology and flowering process in Prunus mume f. purpurea. (A) Naturally growing flowers with three orientations (indicated by white arrows) on a branch. (B-D) Apis cerana visit upward (B), horizontal (C), and downward (D) flowers. (E) Measurements of floral traits: a. Calyx length; b. Calyx width; c. Corolla diameter; d. Petal length; e. Petal width; f. Stamen length; g. Anther length; h. Pistil length. (F) The flower morphology changes at different flowering dynamic periods: I. Bud stage; II. Earlier flowering stage; III. Blooming stage; IV. Late flowering stage; V. Withering stage.
| 花部性状 Floral traits | 样本量 N | 朝上型 Upward | 水平型 Horizontal | 朝下型 Downward | Wald χ2 | df | P |
|---|---|---|---|---|---|---|---|
| 花萼长 Calyx length (mm) | 30 | 4.86 ± 0.09a | 4.49 ± 0.09b | 4.51 ± 0.09b | 10.069 | 2 | 0.007 |
| 花萼宽 Calyx width (mm) | 30 | 3.91 ± 0.07a | 3.52 ± 0.06b | 3.42 ± 0.07b | 31.355 | 2 | < 0.001 |
| 花冠直径 Corolla diameter (mm) | 30 | 24.81 ± 0.30a | 24.12 ± 0.28a | 24.89 ± 0.30a | 4.131 | 2 | 0.127 |
| 花瓣长 Petal length (mm) | 30 | 10.24 ± 0.09a | 9.91 ± 0.17ab | 9.64 ± 0.16b | 8.821 | 2 | 0.012 |
| 花瓣宽 Petal width (mm) | 30 | 10.20 ± 0.09a | 9.54 ± 0.15b | 9.30 ± 0.17b | 21.932 | 2 | < 0.001 |
| 雄蕊长 Stamen length (mm) | 30 | 8.81 ± 0.10b | 8.82 ± 0.20b | 9.51 ± 0.14a | 13.576 | 2 | 0.001 |
| 花药长 Anther length (mm) | 30 | 0.51 ± 0.10a | 0.50 ± 0.01a | 0.38 ± 0.03b | 36.420 | 2 | < 0.001 |
| 雄蕊数目 Number of stamens | 30 | 50.27 ± 0.44b | 47.47 ± 0.66c | 57.57 ± 0.57a | 166.383 | 2 | < 0.001 |
| 雌蕊长 Pistil length (mm) | 30 | 10.26 ± 0.19a | 9.79 ± 0.32a | 10.71 ± 0.21a | 5.745 | 2 | 0.057 |
| 花粉数 Number of pollen grains | 25 | 26,216.0 ± 921.3b | 29,944.0 ± 872.7a | 32,080.0 ± 903.3a | 21.524 | 2 | < 0.001 |
| 花粉体积 Pollen volume (μm3) | 40 | 12,930.03 ± 355.76a | 13,166.58 ± 476.43a | 13,819.83 ± 388.69a | 2.525 | 2 | 0.283 |
| 胚珠数 Number of ovules | 20 | 2.1 ± 0.1a | 2.0 ± 0.1a | 2.0 ± 0.1a | 1.307 | 2 | 0.520 |
| 单花寿命 Flower longevity (d) | 17 | 5.47 ± 0.40c | 6.76 ± 0.49b | 8.41 ± 0.48a | 20.689 | 2 | < 0.001 |
Table 1 Comparisons of floral traits among upward, horizontal, and downward flowers of Prunus mume f. purpurea (mean ± SE). Floral traits of downward flowers significantly larger than those of upward flowers are in bold. The sample size of floral characters is N. Different lowercase letters indicate significant differences in flower traits (P < 0.05).
| 花部性状 Floral traits | 样本量 N | 朝上型 Upward | 水平型 Horizontal | 朝下型 Downward | Wald χ2 | df | P |
|---|---|---|---|---|---|---|---|
| 花萼长 Calyx length (mm) | 30 | 4.86 ± 0.09a | 4.49 ± 0.09b | 4.51 ± 0.09b | 10.069 | 2 | 0.007 |
| 花萼宽 Calyx width (mm) | 30 | 3.91 ± 0.07a | 3.52 ± 0.06b | 3.42 ± 0.07b | 31.355 | 2 | < 0.001 |
| 花冠直径 Corolla diameter (mm) | 30 | 24.81 ± 0.30a | 24.12 ± 0.28a | 24.89 ± 0.30a | 4.131 | 2 | 0.127 |
| 花瓣长 Petal length (mm) | 30 | 10.24 ± 0.09a | 9.91 ± 0.17ab | 9.64 ± 0.16b | 8.821 | 2 | 0.012 |
| 花瓣宽 Petal width (mm) | 30 | 10.20 ± 0.09a | 9.54 ± 0.15b | 9.30 ± 0.17b | 21.932 | 2 | < 0.001 |
| 雄蕊长 Stamen length (mm) | 30 | 8.81 ± 0.10b | 8.82 ± 0.20b | 9.51 ± 0.14a | 13.576 | 2 | 0.001 |
| 花药长 Anther length (mm) | 30 | 0.51 ± 0.10a | 0.50 ± 0.01a | 0.38 ± 0.03b | 36.420 | 2 | < 0.001 |
| 雄蕊数目 Number of stamens | 30 | 50.27 ± 0.44b | 47.47 ± 0.66c | 57.57 ± 0.57a | 166.383 | 2 | < 0.001 |
| 雌蕊长 Pistil length (mm) | 30 | 10.26 ± 0.19a | 9.79 ± 0.32a | 10.71 ± 0.21a | 5.745 | 2 | 0.057 |
| 花粉数 Number of pollen grains | 25 | 26,216.0 ± 921.3b | 29,944.0 ± 872.7a | 32,080.0 ± 903.3a | 21.524 | 2 | < 0.001 |
| 花粉体积 Pollen volume (μm3) | 40 | 12,930.03 ± 355.76a | 13,166.58 ± 476.43a | 13,819.83 ± 388.69a | 2.525 | 2 | 0.283 |
| 胚珠数 Number of ovules | 20 | 2.1 ± 0.1a | 2.0 ± 0.1a | 2.0 ± 0.1a | 1.307 | 2 | 0.520 |
| 单花寿命 Flower longevity (d) | 17 | 5.47 ± 0.40c | 6.76 ± 0.49b | 8.41 ± 0.48a | 20.689 | 2 | < 0.001 |
| 时期 Flowering stages | 花形态变化 Changes in flower morphology | 开花动态(开放的天数) (d) Flowering dynamics (number of days) (d) | ||
|---|---|---|---|---|
| 朝上型 Upward | 水平型 Horizontal | 朝下型 Downward | ||
| 花苞期 Bud stage (I) | 花被片紧包, 柱头伸出不明显, 花药呈黄色。 The perianth segments are tightly wrapped, the stigma does not protrude prominently, and the anthers are yellow. | 0 | 0 | 0 |
| 始花期 Earlier flowering stage (II) | 花被片包裹, 花冠口微微张开, 花柱逐渐伸长且已明显可见, 雄蕊开始平展。 The perianth segments are wrapped, the corolla is slightly open, the style gradually elongates so that it is clearly visible, and the stamens begin to stretch flat. | 2-3 | 2-3 | 2-4 |
| 盛花期 Blooming stage (III) | 花被片松动展开, 花柱伸长至最长, 柱头具有黏性; 雄蕊逐渐平展, 花药开裂并外张, 散粉后逐渐内收。 The perianth segments loosen and unfold, the style elongates to its maximum length, and the stigma becomes sticky. The stamens gradually stretch flat, the anthers crack open outward, and they gradually adduct after pollen dispersal. | 3-4 | 3-5 | 4-6 |
| 末花期 Late flowering stage (IV) | 花瓣部分掉落, 花色变浅, 雄蕊开裂散粉后卷曲并包围花柱, 柱头开始褐化。 Part of the petals fall off, and the flower color becomes lighter. Following cracking and pollen dispersal, the stamens curl up and surround the style, and the stigma begins to brown. | 4-5 | 5-6 | 7-8 |
| 枯萎期 Withering stage (V) | 花瓣呈褐色枯萎, 雌蕊直立外伸, 柱头褐变。 The petals turn brown and wither. The pistil remains erect and elongates, while the stigma undergoes browning. | 5-6 | 6-7 | 8-9 |
Table 2 Morphological variation and timing of flowering dynamic stages in upward, horizontal, and downward flowers of Prunus mume f. purpurea
| 时期 Flowering stages | 花形态变化 Changes in flower morphology | 开花动态(开放的天数) (d) Flowering dynamics (number of days) (d) | ||
|---|---|---|---|---|
| 朝上型 Upward | 水平型 Horizontal | 朝下型 Downward | ||
| 花苞期 Bud stage (I) | 花被片紧包, 柱头伸出不明显, 花药呈黄色。 The perianth segments are tightly wrapped, the stigma does not protrude prominently, and the anthers are yellow. | 0 | 0 | 0 |
| 始花期 Earlier flowering stage (II) | 花被片包裹, 花冠口微微张开, 花柱逐渐伸长且已明显可见, 雄蕊开始平展。 The perianth segments are wrapped, the corolla is slightly open, the style gradually elongates so that it is clearly visible, and the stamens begin to stretch flat. | 2-3 | 2-3 | 2-4 |
| 盛花期 Blooming stage (III) | 花被片松动展开, 花柱伸长至最长, 柱头具有黏性; 雄蕊逐渐平展, 花药开裂并外张, 散粉后逐渐内收。 The perianth segments loosen and unfold, the style elongates to its maximum length, and the stigma becomes sticky. The stamens gradually stretch flat, the anthers crack open outward, and they gradually adduct after pollen dispersal. | 3-4 | 3-5 | 4-6 |
| 末花期 Late flowering stage (IV) | 花瓣部分掉落, 花色变浅, 雄蕊开裂散粉后卷曲并包围花柱, 柱头开始褐化。 Part of the petals fall off, and the flower color becomes lighter. Following cracking and pollen dispersal, the stamens curl up and surround the style, and the stigma begins to brown. | 4-5 | 5-6 | 7-8 |
| 枯萎期 Withering stage (V) | 花瓣呈褐色枯萎, 雌蕊直立外伸, 柱头褐变。 The petals turn brown and wither. The pistil remains erect and elongates, while the stigma undergoes browning. | 5-6 | 6-7 | 8-9 |
Fig. 2 Comparison of visit duration per flower (A) and visit frequency (B) of Apis cerana to three orientations of Prunus mume f. purpurea (mean ± SE). Different lowercase letters indicate significant differences among different flower orientations (P < 0.05).
Fig. 3 Comparison of pollen removal per visit (A) and pollen deposition on the stigmas per visit (B) by Apis cerana to three orientations of Prunus mume f. purpurea. All panels display box plots based on raw data (solid dots), indicating the mean (triangles), median (horizontal lines), interquartile range (the upper and lower edges of the box), 1.5 times the interquartile range (whiskers) and outliers. Different lowercase letters indicate significant differences among different flower orientations (P < 0.05).
| [1] |
Aguilar-García SA, Figueroa-Castro DM, Valverde PL, Vite F (2018) Effect of flower orientation on the male and female traits of Myrtillocactus geometrizans (Cactaceae). Plant Biology, 20, 531-536.
DOI PMID |
| [2] |
Armbruster WS, Muchhala N (2020) Floral reorientation: The restoration of pollination accuracy after accidents. New Phytologist, 227, 232-243.
DOI PMID |
| [3] |
Castro S, Silveira P, Navarro L (2008) Effect of pollination on floral longevity and costs of delaying fertilization in the out-crossing Polygala vayredae Costa (Polygalaceae). Annals of Botany, 102, 1043-1048.
DOI URL |
| [4] | Charnov EL (1982) The Theory of Sex Allocation. Princeton University Press, Princeton. |
| [5] | Chen JY (1962) Studies on Chinese Mei flowers (Prunus mume). II. Classification of Mei cultivars. Acta Horticulturae Sinica, 1, 337-350. (in Chinese) |
| [陈俊愉 (1962) 中国梅花的研究. II. 中国梅花的品种分类. 园艺学报, 1, 337-350.] | |
| [6] |
Cnaani J, Thomson JD, Papaj DR (2006) Flower choice and learning in foraging bumblebees: Effects of variation in nectar volume and concentration. Ethology, 112, 278-285.
DOI URL |
| [7] |
Creux NM, Brown RI, Garner AG, Saeed S, Scher CL, Holalu SV, Yang D, Maloof JN, Blackman BK, Harmer SL (2021) Flower orientation influences floral temperature, pollinator visits and plant fitness. New Phytologist, 232, 868-879.
DOI URL |
| [8] |
Fenster CB, Armbruster WS, Dudash MR (2009) Specialization of flowers: Is floral orientation an overlooked first step? New Phytologist, 183, 502-506.
DOI PMID |
| [9] |
Fenster CB, Armbruster WS, Wilson P, Dudash MR, Thomson JD (2004) Pollination syndromes and floral specialization. Annual Review of Ecology, Evolution, and Systematics, 35, 375-403.
DOI URL |
| [10] | Fulton M, Hodges SA (1999) Floral isolation between Aquilegia formosa and Aquilegia pubescens. Proceedings of the Royal Society B: Biological Sciences, 266, 2247-2252. |
| [11] |
Gao F, Segbo S, Huang X, Zhou PY, Ma CD, Ma YF, Lin XM, Bai Y, Tan W, Coulibaly D, Ouma KO, Iqbal S, Ni ZJ, Shi T, Gao ZH (2025) PmRGL2/PmFRL3-PmSVP module regulates flowering time in Japanese apricot (Prunus mume Sieb. et Zucc.). Plant, Cell and Environment, 48, 3415-3430.
DOI URL |
| [12] | Gao ZH, Luo WJ (2019) Origin and evolution of Prunus mume. In: The Prunus mume Genome (ed. Gao ZH), pp. 5-7. Springer, Cham. |
| [13] | Harder LD, Johnson SD (2023) Beyond pollen : ovule ratios: Evolutionary consequences of pollinator dependence and pollination efficiency for pollen and ovule production in angiosperms. American Journal of Botany, 110, e16177. |
| [14] |
Herrera CM (1995) Floral biology, microclimate, and pollination by ectothermic bees in an early-blooming herb. Ecology, 76, 218-228.
DOI URL |
| [15] |
Herrera CM (2017) The ecology of subindividual variability in plants: Patterns, processes, and prospects. Web Ecology, 17, 51-64.
DOI URL |
| [16] | Hodges SA, Whittall JB, Fulton M, Yang JY (2002) Genetics of floral traits influencing reproductive isolation between Aquilegia formosa and Aquilegia pubescens. The American Naturalist, 159, S51-S60. |
| [17] |
Huang SQ, Takahashi Y, Dafni A (2002) Why does the flower stalk of Pulsatilla cernua (Ranunculaceae) bend during anthesis? American Journal of Botany, 89, 1599-1603.
DOI URL |
| [18] | Jiang LB, Chen JY (2012) Distribution of wild Mei in southern Anhui Province and northern Jiangxi Province, eastern China. Journal of Beijing Forestry University, 34(S1), 56-60. (in Chinese with English abstract) |
| [姜良宝, 陈俊愉 (2012) 皖南、赣北地区梅野生资源调查. 北京林业大学学报, 34(S1), 56-60.] | |
| [19] |
Jirgal N, Ohashi K (2023) Effects of floral symmetry and orientation on the consistency of pollinator entry angle. The Science of Nature, 110, 19.
DOI |
| [20] |
Knight TM, Steets JA, Vamosi JC, Mazer SJ, Burd M, Campbell DR, Dudash MR, Johnston MO, Mitchell RJ, Ashman TL (2005) Pollen limitation of plant reproduction: Pattern and process. Annual Review of Ecology, Evolution, and Systematics, 36, 467-497.
DOI URL |
| [21] |
Li P, Zheng TC, Li LL, Liu WC, Qiu LK, Ahmad S, Wang J, Cheng TR, Zhang QX (2023) Integration of chromatin accessibility and gene expression reveals new regulators of cold hardening to enhance freezing tolerance in Prunus mume. Journal of Experimental Botany, 74, 2173-2187.
DOI URL |
| [22] |
Lin SY, Forrest JRK (2019) The function of floral orientation in bluebells: Interactions with pollinators and rain in two species of Mertensia (Boraginaceae). Journal of Plant Ecology, 12, 113-123.
DOI URL |
| [23] |
LoPresti EF, Goidell J, Mola JM, Page ML, Specht CD, Stuligross C, Weber MG, Williams NM, Karban R (2020) A lever action hypothesis for pendulous hummingbird flowers: Experimental evidence from a columbine. Annals of Botany, 125, 59-65.
DOI PMID |
| [24] |
Memmott J (1999) The structure of a plant-pollinator food web. Ecology Letters, 2, 276-280.
DOI PMID |
| [25] |
Nakata T, Rin I, Yaida YA, Ushimaru A (2022) Horizontal orientation facilitates pollen transfer and rain damage avoidance in actinomorphic flowers of Platycodon grandiflorus. Plant Biology, 24, 798-805.
DOI PMID |
| [26] |
Ne’eman G, Jürgens A, Newstrom-Lloyd L, Potts SG, Dafni A (2010) A framework for comparing pollinator performance: Effectiveness and efficiency. Biological Reviews, 85, 435-451.
DOI URL |
| [27] |
Nepal S, Trunschke J, Ren ZX, Burgess KS, Wang H (2023) Community-wide patterns in pollen and ovule production, their ratio (P/O), and other floral traits along an elevation gradient in southwestern China. BMC Plant Biology, 23, 425.
DOI PMID |
| [28] |
Nevard L, Vallejo-Marín M (2022) Floral orientation affects outcross-pollen deposition in buzz-pollinated flowers with bilateral symmetry. American Journal of Botany, 109, 1568-1578.
DOI PMID |
| [29] | Paterno GB, Silveira CL, Kollmann J, Westoby M, Fonseca CR (2020) The maleness of larger angiosperm flowers. Proceedings of the National Academy of Sciences, USA, 117, 10921-10926. |
| [30] | Prokop P, Ježová Z, Mešková M, Vanerková V, Zvaríková M, Fedor P (2023) Flower angle favors pollen export efficiency in the snowdrop Galanthus nivalis (Linnaeus, 1753) but not in the lesser celandine Ficaria verna (Huds, 1762). Plant Signaling and Behavior, 18, 2163065. |
| [31] |
Pyke GH (1984) Optimal foraging theory: A critical review. Annual Review of Ecology and Systematics, 15, 523-575.
DOI URL |
| [32] | Qin XT, Qin SH, Chen RD (2023) A new cultivar of Prunus mume ‘Zhizhang Guhong Chongcui’. Acta Horticulturae Sinica, 50(S1), 171-172. (in Chinese with English abstract) |
| [秦孝天, 秦少华, 陈瑞丹 (2023) 梅花新品种‘治章骨红重翠’. 园艺学报, 50(S1), 171-172.] | |
| [33] |
Sapir N, Dudley R (2013) Implications of floral orientation for flight kinematics and metabolic expenditure of hover- feeding hummingbirds. Functional Ecology, 27, 227-235.
DOI URL |
| [34] |
Shibata A, Yumoto G, Shimizu H, Honjo MN, Kudoh H (2025) Flower movement induced by weather-dependent tropism satisfies attraction and protection. Nature Communications, 16, 4132.
DOI |
| [35] |
Snow AA, Spira TP (1991) Pollen vigour and the potential for sexual selection in plants. Nature, 352, 796-797.
DOI |
| [36] | Sun K, Fan BQ, Hou QZ, Wang SY, Zhang SH (2018) The adaptive significances of downward orientation flowers in alpine species Clematis tangutica. Journal of Northwest Normal University (Natural Science), 54, 55-60, 76. (in Chinese with English abstract) |
| [孙坤, 范宝强, 侯勤正, 王思源, 张世虎 (2018) 高山植物甘青铁线莲花冠下垂现象适应性意义. 西北师范大学学报(自然科学版), 54, 55-60, 76.] | |
| [37] |
Tadey M, Aizen MA (2001) Why do flowers of a hummingbird-pollinated mistletoe face down? Functional Ecology, 15, 782-790.
DOI URL |
| [38] | Tong ZY, Wu LY, Feng HH, Zhang M, Armbruster WS, Renner SS, Huang SQ (2023) New calculations indicate that 90% of flowering plant species are animal-pollinated. National Science Review, 10, nwad219. |
| [39] |
Ushimaru A, Dohzono I, Takami Y, Hyodo F (2009) Flower orientation enhances pollen transfer in bilaterally symmetrical flowers. Oecologia, 160, 667-674.
DOI PMID |
| [40] | Ushimaru A, Hyodo F (2005) Why do bilaterally symmetrical flowers orient vertically? Flower orientation influences pollinator landing behaviour. Evolutionary Ecology Research, 7, 151-160. |
| [41] | Wang H, Tie S, Yu D, Guo YH, Yang CF (2014a) Change of floral orientation within an inflorescence affects pollinator behavior and pollination efficiency in a bee-pollinated plant, Corydalis sheareri. PLoS ONE, 9, e95381. |
| [42] |
Wang H, Xiao CL, Gituru RW, Xiong Z, Yu D, Guo YH, Yang CF (2014b) Change of floral orientation affects pollinator diversity and their relative importance in an alpine plant with generalized pollination system, Geranium refractum (Geraniaceae). Plant Ecology, 215, 1211-1219.
DOI URL |
| [43] |
Wang XY, Zhu XX, Yang J, Liu YJ, Tang XX (2019) Variation in style length and the effect on reproductive success in Chinese plums (Armeniaca mume). Biodiversity Science, 27, 159-167. (in Chinese with English abstract)
DOI URL |
|
[王晓月, 朱鑫鑫, 杨娟, 刘云静, 汤晓辛 (2019) 梅花个体内花柱长度的变异及其对繁殖成功的影响. 生物多样性, 27, 159-167.]
DOI |
|
| [44] |
Wang Y, Meng LH, Yang YP, Duan YW (2010) Change in floral orientation in Anisodus luridus (Solanaceae) protects pollen grains and facilitates development of fertilized ovules. American Journal of Botany, 97, 1618-1624.
DOI PMID |
| [45] |
Xiang GJ, Guo YH, Yang CF (2021) Diversification of floral orientation in Lonicera is associated with pollinator shift and flowering phenology. Journal of Systematics and Evolution, 59, 557-566.
DOI URL |
| [46] |
Zhang QX, Zhang H, Sun LD, Fan GY, Ye MX, Jiang LB, Liu X, Ma KF, Shi CC, Bao F, Guan R, Han Y, Fu YY, Pan HT, Chen ZZ, Li LW, Wang J, Lv MQ, Zheng TC, Yuan CQ, Zhou YZ, Lee SM, Yan XL, Xu X, Wu RL, Chen WB, Cheng TR (2018) The genetic architecture of floral traits in the woody plant Prunus mume. Nature Communications, 9, 1702.
DOI |
| [47] | Zhao HB, Zhou LH, Hao RM (2009) Flower development and pistil receptivity in Sinocalycanthus chinensis and Calycanthus floridus var. oblongifolius. Journal of Zhejiang Forestry College, 26, 302-307. (in Chinese with English abstract) |
| [赵宏波, 周莉花, 郝日明 (2009) 夏蜡梅和光叶红蜡梅花发育特性和柱头可授性. 浙江林学院学报, 26, 302-307.] | |
| [48] |
Zheng TC, Li P, Zhuo XK, Liu WC, Qiu LK, Li LL, Yuan CQ, Sun LD, Zhang ZY, Wang J, Cheng TR, Zhang QX (2022) The chromosome-level genome provides insight into the molecular mechanism underlying the tortuous-branch phenotype of Prunus mume. New Phytologist, 235, 141-156.
DOI URL |
| [1] | Zhenna Qian, Qianwan Meng, Mingxun Ren. Pollination ecotypes and herkogamy variation of Hiptage benghalensis (Malpighiaceae) with mirror-image flowers [J]. Biodiv Sci, 2016, 24(12): 1364-1372. |
| [2] | Hongfang Zhang, Liqiang Li, Zhongjian Liu, Yibo Luo. The butterfly Pieris rapae resulting in the reproductive success of two transplanted orchids in a botanical garden [J]. Biodiv Sci, 2010, 18(1): 11-18. |
| [3] | Yanhua Meng, Huanli Xu, Xuan Chen, Qingnian Cai. Pollination efficiency of the main bee pollinators of Hedysarum laeve, a legume in Mu Us Sandland, Inner Mongolia [J]. Biodiv Sci, 2007, 15(6): 633-638. |
| [4] | Minglin Chen. Reproductive biology of Primula merrilliana, an endangered plant endemic to Anhui Province [J]. Biodiv Sci, 2007, 15(6): 599-607. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
Copyright © 2022 Biodiversity Science
Editorial Office of Biodiversity Science, 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn