生物多样性 ›› 2022, Vol. 30 ›› Issue (5): 22100. DOI: 10.17520/biods.2022100
所属专题: 青藏高原生物多样性与生态安全
收稿日期:
2022-03-04
接受日期:
2022-04-09
出版日期:
2022-05-20
发布日期:
2022-04-12
通讯作者:
刘建全
作者简介:
* E-mail: liujq@nwipb.cas.cn; liujq@lzu.edu.cn基金资助:
Xiang Liu, Peng Zhang, Jianquan Liu()
Received:
2022-03-04
Accepted:
2022-04-09
Online:
2022-05-20
Published:
2022-04-12
Contact:
Jianquan Liu
摘要:
青藏高原因其独特的地理单元、广袤的荒漠及丰富的太阳能资源(太阳辐射强且多、日照时间长), 在光伏电站建设及“碳中和”实现中具有重要的区位优势。光伏电站建设能够改变局域环境进而影响植被生长, 但光伏电站植被恢复的关键限制性因子尚不清楚。本研究以青藏高原东缘塔拉滩荒漠草原光伏电站为研究对象, 探究益生微生物、无机肥料(氮肥和磷肥)和微量元素3种限制性因子及其交互效应对光伏电站光伏电板下植被特征(群落盖度、地上生物量和物种丰富度)的短期影响。研究结果表明: (1)添加无机肥料显著增加群落盖度(F1,5 = 40.598; P < 0.001), 降低物种丰富度(F1,5 = 5.133; P = 0.026), 但对地上生物量无显著影响(F1,5 = 0.279; P = 0.599); 而微生物菌剂和微量元素复合剂则对群落盖度、地上生物量和物种丰富度均无显著影响; (2)多重比较证实无机肥料、微生物菌剂和微量元素复合剂的混合添加使得光伏电板外和光伏电板下群落盖度均达到各实验处理组合中的最大值, 最利于植被恢复。本研究表明无机肥料是青海塔拉滩光伏电站建设后限制植被生长的重要因子, 但微生物菌剂和微量元素在促进植被生长方面仍然发挥着不可替代的作用。因此, 它们一起添加更能有效加速荒漠生态系统光伏电板下的植被恢复。
刘向, 张鹏, 刘建全 (2022) 无机肥料是青海塔拉滩光伏电站植被恢复过程中的限制性因子. 生物多样性, 30, 22100. DOI: 10.17520/biods.2022100.
Xiang Liu, Peng Zhang, Jianquan Liu (2022) Inorganic fertilizers are limiting factors of vegetation restoration of Qinghai Tala Shoal Photovoltaic Power Station. Biodiversity Science, 30, 22100. DOI: 10.17520/biods.2022100.
图1 青海塔拉滩光伏电站鸟瞰(a)和实验设计图(b)。CK: 对照; IF: 无机肥料; MI: 微生物菌剂; TE: 微量元素复合剂; IF + MI: 无机肥料+微生物菌剂; IF + TE: 无机肥料+微量元素复合剂; MI + TE: 微生物菌剂+微量元素复合剂; IF + MI + TE: 无机肥料+微生物菌剂+微量元素复合剂。图中样方内大写英文字母代表不同区块, 蓝色代表光伏电板下, 黄色代表光伏电板外。照片由张鹏拍摄(使用大疆御Mavic Air 2)。
Fig. 1 Experimental design diagram of Qinghai Tala Shoal photovoltaic power station. CK, Control; IF, Inorganic fertilizer; MI, Microbial inoculum; TE, Trace element; IF+MI, Inorganic fertilizer + microbial inoculum; IF+TE, Inorganic fertilizer + trace element; MI+TE, Microbial inoculum + trace elements; IF+MI+TE, Inorganic fertilizer + microbial inoculum + trace elements. The capital letters in the plots represent different blocks. The blue blocks represent under the photovoltaic panel, and the yellow represent outside the photovoltaic panel. Photographed by Peng Zhang (DJI Mavic Air 2).
群落盖度 Community cover (%) | 地上生物量 Aboveground biomass (g) | 物种丰富度 Plant species richness | ||||
---|---|---|---|---|---|---|
F1,5 | P | F1,5 | P | F1,5 | P | |
Habitats | 19.513 | < 0.001 | 7.285 | 0.009 | 2.887 | 0.093 |
IF | 40.598 | < 0.001 | 0.279 | 0.599 | 5.133 | 0.026 |
MI | 0.116 | 0.735 | 0.045 | 0.832 | 0.570 | 0.452 |
TE | <0.001 | 0.993 | 2.133 | 0.148 | 0.891 | 0.348 |
Habitats : IF | 1.284 | 0.261 | 0.666 | 0.417 | 0.570 | 0.452 |
Habitats : MI | 0.084 | 0.772 | 0.358 | 0.551 | 5.133 | 0.026 |
IF : MI | 0.442 | 0.508 | 3.461 | 0.067 | 1.747 | 0.190 |
Habitats : TE | 2.144 | 0.147 | 0.234 | 0.630 | 0.036 | 0.851 |
IF : TE | 2.000 | 0.161 | 0.351 | 0.555 | 0.570 | 0.452 |
MI : TE | 12.073 | 0.001 | 0.907 | 0.344 | 6.987 | 0.010 |
Habitats : IF : MI | 0.278 | 0.599 | 0.055 | 0.816 | 0.036 | 0.851 |
Habitats : IF : TE | 0.011 | 0.918 | 0.285 | 0.595 | <0.001 | 1.000 |
Habitats : MI : TE | 0.459 | 0.500 | 0.093 | 0.762 | 3.565 | 0.063 |
IF : MI : TE | 0.253 | 0.617 | 0.917 | 0.341 | 0.891 | 0.348 |
Habitats : IF : MI : TE | 1.475 | 0.228 | 0.712 | 0.401 | 0.036 | 0.851 |
表1 不同生境(光伏电板外和光伏电板下)和不同限制因子对群落盖度、地上生物量和物种丰富度影响的多因素方差分析结果
Table 1 Multivariate ANOVA results of the effect of different habitats (outside the photovoltaic panel and under the photovoltaic panel) and different limiting factors on community cover, aboveground biomass and plant species richness
群落盖度 Community cover (%) | 地上生物量 Aboveground biomass (g) | 物种丰富度 Plant species richness | ||||
---|---|---|---|---|---|---|
F1,5 | P | F1,5 | P | F1,5 | P | |
Habitats | 19.513 | < 0.001 | 7.285 | 0.009 | 2.887 | 0.093 |
IF | 40.598 | < 0.001 | 0.279 | 0.599 | 5.133 | 0.026 |
MI | 0.116 | 0.735 | 0.045 | 0.832 | 0.570 | 0.452 |
TE | <0.001 | 0.993 | 2.133 | 0.148 | 0.891 | 0.348 |
Habitats : IF | 1.284 | 0.261 | 0.666 | 0.417 | 0.570 | 0.452 |
Habitats : MI | 0.084 | 0.772 | 0.358 | 0.551 | 5.133 | 0.026 |
IF : MI | 0.442 | 0.508 | 3.461 | 0.067 | 1.747 | 0.190 |
Habitats : TE | 2.144 | 0.147 | 0.234 | 0.630 | 0.036 | 0.851 |
IF : TE | 2.000 | 0.161 | 0.351 | 0.555 | 0.570 | 0.452 |
MI : TE | 12.073 | 0.001 | 0.907 | 0.344 | 6.987 | 0.010 |
Habitats : IF : MI | 0.278 | 0.599 | 0.055 | 0.816 | 0.036 | 0.851 |
Habitats : IF : TE | 0.011 | 0.918 | 0.285 | 0.595 | <0.001 | 1.000 |
Habitats : MI : TE | 0.459 | 0.500 | 0.093 | 0.762 | 3.565 | 0.063 |
IF : MI : TE | 0.253 | 0.617 | 0.917 | 0.341 | 0.891 | 0.348 |
Habitats : IF : MI : TE | 1.475 | 0.228 | 0.712 | 0.401 | 0.036 | 0.851 |
图2 不同生境(光伏电板外和光伏电板下)下不同限制因子对群落盖度、地上生物量和物种丰富度的影响
Fig. 2 Effect of different limiting factors on community cover, aboveground biomass, and plant species richness at different habitats (outside the photovoltaic panel and under the photovoltaic panel). Abbreviations are the same as denoted in the legend of Fig. 1.
群落盖度 Community cover (%) | 地上生物量 Aboveground biomass (g) | 物种丰富度 Plant species richness | ||||
---|---|---|---|---|---|---|
F7,40 | P | F7,40 | P | F7,40 | P | |
光伏电板外 Outside the photovoltaic panel | ||||||
限制因子 Limiting factors | 2.869 | 0.016 | 1.444 | 0.215 | 0.672 | 0.694 |
光伏电板下 Under the photovoltaic panel | ||||||
限制因子 Limiting factors | 1.247 | 0.301 | 0.197 | 0.984 | 1.986 | 0.081 |
表2 不同生境(光伏电板外和光伏电板下)下限制因子对群落盖度、地上生物量和物种丰富度的影响的单因素方差分析结果
Table 2 One-way ANOVA results of the effect of limiting factors on community cover, aboveground biomass and plant species richness in different habitats (outside the photovoltaic panel and under the photovoltaic panel)
群落盖度 Community cover (%) | 地上生物量 Aboveground biomass (g) | 物种丰富度 Plant species richness | ||||
---|---|---|---|---|---|---|
F7,40 | P | F7,40 | P | F7,40 | P | |
光伏电板外 Outside the photovoltaic panel | ||||||
限制因子 Limiting factors | 2.869 | 0.016 | 1.444 | 0.215 | 0.672 | 0.694 |
光伏电板下 Under the photovoltaic panel | ||||||
限制因子 Limiting factors | 1.247 | 0.301 | 0.197 | 0.984 | 1.986 | 0.081 |
[1] |
Adeh EH, Selker JS, Higgins CW (2018) Remarkable agrivoltaic influence on soil moisture, micrometeorology and water-use efficiency. PLoS ONE, 13, e0203256.
DOI URL |
[2] |
Armstrong A, Ostle NJ, Whitaker J (2016) Solar park microclimate and vegetation management effects on grassland carbon cycling. Environmental Research Letters, 11, 074016.
DOI URL |
[3] |
Armstrong A, Waldron S, Whitaker J, Ostle NJ (2014) Wind farm and solar park effects on plant-soil carbon cycling: Uncertain impacts of changes in ground-level microclimate. Global Change Biology, 20, 1699-1706.
DOI PMID |
[4] |
Borer ET, Harpole WS, Adler PB, Arnillas CA, Bugalho MN, Cadotte MW, Caldeira MC, Campana S, Dickman CR, Dickson TL, Donohue I, Eskelinen A, Firn JL, Graff P, Gruner DS, Heckman RW, Koltz AM, Komatsu KJ, Lannes LS, MacDougall AS, Martina JP, Moore JL, Mortensen B, Ochoa-Hueso R, Olde Venterink H, Power SA, Price JN, Risch AC, Sankaran M, Schütz M, Sitters J, Stevens CJ, Virtanen R, Wilfahrt PA, Seabloom EW (2020) Nutrients cause grassland biomass to outpace herbivory. Nature Communications, 11, 6036.
DOI PMID |
[5] |
Chalcraft DR, Wilsey BJ, Bowles C, Willig MR (2009) The relationship between productivity and multiple aspects of biodiversity in six grassland communities. Biodiversity and Conservation, 18, 91-104.
DOI URL |
[6] |
Delavaux CS, Smith-Ramesh LM, Kuebbing SE (2017) Beyond nutrients: A meta-analysis of the diverse effects of arbuscular mycorrhizal fungi on plants and soils. Ecology, 98, 2111-2119.
DOI PMID |
[7] |
Eisenhauer N, Schulz W, Scheu S, Jousset A (2013) Niche dimensionality links biodiversity and invasibility of microbial communities. Functional Ecology, 27, 282-288.
DOI URL |
[8] |
Harpole WS, Tilman D (2007) Grassland species loss resulting from reduced niche dimension. Nature, 446, 791-793.
DOI URL |
[9] |
Hautier Y, Niklaus PA, Hector A (2009) Competition for light causes plant biodiversity loss after eutrophication. Science, 324, 636-638.
DOI PMID |
[10] | He J-S, Bu HY, Hu XW, Feng YH, Li SL, Zhu JX, Liu GH, Wang YR, Nan ZB (2020) Close-to-nature restoration of degraded alpine grasslands: Theoretical basis and technical approach. Chinese Science Bulletin, 65, 3898-3908. (in Chinese with English abstract) |
[贺金生, 卜海燕, 胡小文, 冯彦皓, 李守丽, 朱剑霄, 刘国华, 王彦荣, 南志标 (2020) 退化高寒草地的近自然恢复: 理论基础与技术途径. 科学通报, 65, 3898-3908.] | |
[11] | Hong J, Kim J (2008) Simulation of surface radiation balance on the Tibetan Plateau. Geophysical Research Letters, 35, L08814. |
[12] | Isbell F, Reich PB, Tilman D, Hobbie SE, Polasky S, Binder S (2013) Nutrient enrichment, biodiversity loss, and consequent declines in ecosystem productivity. Proceedings of the National Academy of Sciences, USA, 110, 11911-11916. |
[13] | Li QS (2021) Discussion on the path of China’s energy transformation under the goal of carbon neutrality. China Coal, 47(8), 1-7. (in Chinese with English abstract) |
[李全生 (2021) 碳中和目标下我国能源转型路径探讨. 中国煤炭, 47(8), 1-7.] | |
[14] |
Li Y, Kalnay E, Motesharrei S, Rivas J, Kucharski F, Kirk-Davidoff D, Bach E, Zeng N (2018) Climate model shows large-scale wind and solar farms in the Sahara increase rain and vegetation. Science, 361, 1019-1022.
DOI URL |
[15] |
Liu Y, Zhang RQ, Huang Z, Cheng Z, López-Vicente M, Ma XR, Wu GL (2019) Solar photovoltaic panels significantly promote vegetation recovery by modifying the soil surface microhabitats in an arid sandy ecosystem. Land Degradation & Development, 30, 2177-2186.
DOI URL |
[16] |
Liu Y, Zhang RQ, Ma XR, Wu GL (2020) Combined ecological and economic benefits of the solar photovoltaic industry in arid sandy ecosystems. Journal of Cleaner Production, 262, 121376.
DOI URL |
[17] | Qinghai Provincial Bureau of Statistics (2021) Statistical Communiqué of the Qinghai Province on the 2020 National Economic and Social Development. (in Chinese) |
[青海省统计局 (2021) 青海省2020年国民经济和社会发展统计公报.] http://www.gzswzys.gov.cn/Content.aspx?id=f6f3abe7-e671-4189-8133-dcf1ea0fed5b. (accessed on 2022-05-08) | |
[18] | Sun HL, Zheng D (1998) Formation, Evolution and Development of the Qinghai-Tibet Plateau. Guangdong Science and Technology Press, Guangzhou. (in Chinese) |
[孙鸿烈, [郑度 (1998) 青藏高原形成演化与发展. 广东科技出版社, 广州.] | |
[19] |
Tian QY, Liu NN, Bai WM, Li LH, Chen JQ, Reich PB, Yu Q, Guo DL, Smith MD, Knapp AK, Cheng WX, Lu P, Gao Y, Yang A, Wang TZ, Li X, Wang ZW, Ma YB, Han XG, Zhang WH (2016) A novel soil manganese mechanism drives plant species loss with increased nitrogen deposition in a temperate steppe. Ecology, 97, 65-74.
DOI URL |
[20] |
Veen GF, van der Putten WH, Bezemer TM (2018) Biodiversity-ecosystem functioning relationships in a long-term non-weeded field experiment. Ecology, 99, 1836-1846.
DOI PMID |
[21] |
Wang HH, Yue C, Mao QQ, Zhao J, Ciais P, Li W, Yu Q, Mu XM (2020) Vegetation and species impacts on soil organic carbon sequestration following ecological restoration over the Loess Plateau, China. Geoderma, 371, 114389.
DOI URL |
[22] | Wang XM (2021) Desert Ecosystem Maps in the Tibetan Plateau. Sinomap Press, Beijing. (in Chinese) |
[王训明 (2021) 青藏高原荒漠生态系统系列图. 中国地图出版社, 北京.] | |
[23] | Wang XQ, Yin SL, Yang ZW, Lu Q, Yang HH, Chen Q (2015) Community composition and soil properties of different grassland types on the Tala Shoal in Gonghe Basin. Forest Research, 28, 346-351. (in Chinese with English abstract) |
[王学全, 尹书乐, 杨占武, 卢琦, 杨恒华, 陈琦 (2015) 共和盆地塔拉滩不同类型草地群落组成与土壤特性. 林业科学研究, 28, 346-351.] | |
[24] |
Xiao Y, Liu X, Zhang L, Song ZP, Zhou SR (2021) The allometry of plant height explains species loss under nitrogen addition. Ecology Letters, 24, 553-562.
DOI PMID |
[25] |
Yang L, Wei W, Chen LD, Chen WL, Wang JL (2014) Response of temporal variation of soil moisture to vegetation restoration in semi-arid Loess Plateau, China. Catena, 115, 123-133.
DOI URL |
[26] |
Yue SJ, Guo MJ, Zou PH, Wu W, Zhou XD (2021) Effects of photovoltaic panels on soil temperature and moisture in desert areas. Environmental Science and Pollution Research, 28, 17506-17518.
DOI URL |
[1] | 连佳丽, 陈婧, 杨雪琴, 赵莹, 罗叙, 韩翠, 赵雅欣, 李建平. 荒漠草原植物多样性和微生物多样性对降水变化的响应[J]. 生物多样性, 2024, 32(6): 24044-. |
[2] | 宋乃平, 王兴, 陈林, 薛毅, 陈娟, 随金明, 王磊, 杨新国. 荒漠草原“土岛”生境群落物种共存机制[J]. 生物多样性, 2018, 26(7): 667-677. |
[3] | 林聪田, 纪力强. PSDS 2.0: 一个基于GIS和多个模型的生物潜在分布地预测系统[J]. 生物多样性, 2010, 18(5): 461-472. |
[4] | 黄永梅, 张明理. 鄂尔多斯高原植物群落多样性时空变化特点[J]. 生物多样性, 2006, 14(1): 13-20. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn