生物多样性 ›› 2025, Vol. 33 ›› Issue (4): 24435. DOI: 10.17520/biods.2024435 cstr: 32101.14.biods.2024435
李虹茹1, 杨桦1, 陈伏生2, 孙荣喜2, 叶学敏1,*()
收稿日期:
2024-10-03
接受日期:
2025-01-28
出版日期:
2025-04-20
发布日期:
2025-05-19
通讯作者:
叶学敏
基金资助:
Li Hongru1, Yang Hua1, Chen Fusheng2, Sun Rongxi2, Ye Xuemin1,*()
Received:
2024-10-03
Accepted:
2025-01-28
Online:
2025-04-20
Published:
2025-05-19
Contact:
Ye Xuemin
Supported by:
摘要: 评估氮磷输入不平衡对亚热带森林碳汇的影响是当前的热点问题。最大羧化速率(Vcmax)和最大电子传递速率(Jmax)是C3植物光合生化模型(FvCB模型)中的重要参数, 探究氮磷养分对亚热带常绿阔叶林优势树种光合生化限制的影响机制, 有助于深化对全球变化背景下生物多样性保护和管理的认识。本研究以江西九连山常绿阔叶林中6种优势树种为研究对象, 开展为期6年的氮磷添加试验, 通过测定各个处理下叶片的Vcmax、Jmax、比叶质量及氮磷含量, 分析了氮磷添加下幼树和成树的光合参数和叶片性状的特征及其相关性。结果表明, 单独添加氮或磷显著改变了幼树的光合参数, 氮添加显著提高了幼树的Jmax, 磷添加显著提高了幼树的Vcmax。然而, 氮磷同添对幼树光合参数无显著影响, 表现为拮抗效应。所有氮磷处理对成树叶片光合参数均无显著影响。树木在由幼树到成树的生长过程中, Vcmax和Jmax增加了3倍以上。此外, 不同物种幼树Vcmax对氮添加以及Jmax/Vcmax对氮磷同添响应不同, 木荷(Schima superba)和丝栗栲(Castanopsis fargesii)对氮添加更敏感, 米槠(Castanopsis carlesii)对磷添加更敏感, 而短序润楠(Machilus breviflorai)对氮磷同添更敏感。氮磷同添显著降低了幼树的比叶质量, 提高了叶片氮含量, 磷添加显著提高了成树的叶片氮含量, 然而叶片性状并不能解释光合参数的变化。这些结果证实了理论预测, 即幼树比成树更敏感, 成树可能会通过将更多的营养资源分配给自身繁殖和防御系统, 而不是通过改变光合生化限制来调节对氮磷的利用。氮磷同添对幼树光合参数的拮抗效应表明, 养分的额外供给可能导致养分分配到非光合功能组分, 从而无法被植物光合系统高效利用。综上所述, 在常绿阔叶林中, 氮磷养分的供应显著改变了植物FvCB模型参数, 对于优势树种的光合生化限制存在个体大小依赖性和物种特异性。
李虹茹, 杨桦, 陈伏生, 孙荣喜, 叶学敏 (2025) 氮磷添加对常绿阔叶林幼树与成树光合参数的分异影响. 生物多样性, 33, 24435. DOI: 10.17520/biods.2024435.
Li Hongru, Yang Hua, Chen Fusheng, Sun Rongxi, Ye Xuemin (2025) Differential responses of photosynthetic parameters in saplings and adult trees to nitrogen and phosphorus addition in an evergreen broad-leaved forest. Biodiversity Science, 33, 24435. DOI: 10.17520/biods.2024435.
物种 Species | 合计 Total | CO2响应曲线数量 Number of CO2 response curves | |||
---|---|---|---|---|---|
对照 Control | 氮添加 N addition (+N) | 磷添加 P addition (+P) | 氮磷同添 Combined N + P addition (N + P) | ||
幼树 Saplings | 115 | 34 | 25 | 22 | 34 |
木荷 Schima superba | 22 | 7 | 6 | 3 | 6 |
绒毛润楠 Machilus velutina | 18 | 5 | 5 | 3 | 5 |
短序润楠 Machilus breviflora | 14 | 4 | 4 | 2 | 4 |
丝栗栲 Castanopsis fargesii | 20 | 6 | 1 | 5 | 8 |
米槠 Castanopsis carlesii | 25 | 7 | 6 | 5 | 7 |
甜槠 Castanopsis eyrei | 16 | 5 | 3 | 4 | 4 |
成树 Adult trees | 45 | 11 | 12 | 12 | 10 |
木荷 Schima superba | 12 | 3 | 3 | 3 | 3 |
短序润楠 Machilus breviflora | 11 | 3 | 3 | 3 | 2 |
丝栗栲 Castanopsis fargesii | 12 | 3 | 3 | 3 | 3 |
米槠 Castanopsis carlesii | 10 | 2 | 3 | 3 | 2 |
所有个体 All trees | 160 | 45 | 37 | 34 | 44 |
表1 光合气体交换测定的物种及个体数量
Table 1 Number of individuals of different species measured by photosynthetic gas exchange
物种 Species | 合计 Total | CO2响应曲线数量 Number of CO2 response curves | |||
---|---|---|---|---|---|
对照 Control | 氮添加 N addition (+N) | 磷添加 P addition (+P) | 氮磷同添 Combined N + P addition (N + P) | ||
幼树 Saplings | 115 | 34 | 25 | 22 | 34 |
木荷 Schima superba | 22 | 7 | 6 | 3 | 6 |
绒毛润楠 Machilus velutina | 18 | 5 | 5 | 3 | 5 |
短序润楠 Machilus breviflora | 14 | 4 | 4 | 2 | 4 |
丝栗栲 Castanopsis fargesii | 20 | 6 | 1 | 5 | 8 |
米槠 Castanopsis carlesii | 25 | 7 | 6 | 5 | 7 |
甜槠 Castanopsis eyrei | 16 | 5 | 3 | 4 | 4 |
成树 Adult trees | 45 | 11 | 12 | 12 | 10 |
木荷 Schima superba | 12 | 3 | 3 | 3 | 3 |
短序润楠 Machilus breviflora | 11 | 3 | 3 | 3 | 2 |
丝栗栲 Castanopsis fargesii | 12 | 3 | 3 | 3 | 3 |
米槠 Castanopsis carlesii | 10 | 2 | 3 | 3 | 2 |
所有个体 All trees | 160 | 45 | 37 | 34 | 44 |
图1 表层土(0-10 cm)理化性质和林冠直接辐射对氮磷添加的响应。不同小写字母表示4种处理间差异显著(P < 0.05)。
Fig. 1 Response of physicochemical properties of surface soil (0-10 cm) and canopy direct radiation to N and P addition. +N, N addition; +P, P addition; N + P, Combined N + P addition. Lowercase letters indicate significant differences (P < 0.05) among the four treatments.
图2 氮磷添加对常绿阔叶林6种优势树种幼树Vcmax、Jmax和Jmax/Vcmax的影响。箱线图中, 中线代表中位数, 上下限分别表示第25和第75百分位数, 上下须线为1.5倍的四分位距(即第25和75百分位数之间的距离), 延伸出的点是离群值。图中S、N、P分别表示物种、氮添加、磷添加的效应, * P < 0.05; ** P < 0.01; *** P < 0.001。不同小写字母表示4种处理间差异显著(P < 0.05)。
Fig. 2 Effects of N and P addition on maximum carboxylation rate (Vcmax), maximum electron transport rate (Jmax), and Jmax/Vcmax in saplings of six dominant tree species in an evergreen broad-leaved forest. The line within the boxplot depicts the median, while the upper and lower bounds of the box signify the 25th and 75th percentiles, respectively. The whiskers extend to 1.5 times the interquartile range, the range between the 25th and 75th percentiles, with points beyond them considered outliers. S, N and P represent the effects of species, nitrogen addition and phosphorus addition, respectively. * P < 0.05; ** P < 0.01; *** P < 0.001. +N, N addition; +P, P addition; N + P, Combined N + P addition. Lowercase letters indicate significant differences (P < 0.05) among the four treatments.
图3 氮磷添加对常绿阔叶林4种优势树种成树Vcmax、Jmax和Jmax/Vcmax的影响。箱线图中, 中线代表中位数, 上下限分别表示第25和第75百分位数, 上下须线为1.5倍的四分位距(即第25和75百分位数之间的距离), 延伸出的点是离群值。
Fig. 3 Effects of N and P addition on maximum carboxylation rate (Vcmax), maximum electron transport rate (Jmax), and Jmax/Vcmax in adult trees of four dominant tree species in an evergreen broad-leaved forest. The line within the boxplot depicts the median, while the upper and lower bounds of the box signify the 25th and 75th percentiles, respectively. The whiskers extend to 1.5 times the interquartile range, the range between the 25th and 75th percentiles, with points beyond them considered outliers. +N, N addition; +P, P addition; N + P, Combined N + P addition.
图4 常绿阔叶林幼树和成树Vcmax和Jmax的相关性
Fig. 4 Correlation between maximum carboxylation rate (Vcmax) and maximum electron transport rate (Jmax) of saplings and adult trees in an evergreen broad-leaved forest.
图5 氮磷添加对常绿阔叶林优势树种幼树和成树比叶质量和叶片氮磷含量的影响。箱线图中, 中线代表中位数, 上下限分别表示第25和第75百分位数, 上下须线为1.5倍的四分位距(即第25和75百分位数之间的距离), 延伸出的点是离群值。图中S、N、P分别表示物种、氮添加、磷添加的效应, * P < 0.05; ** P < 0.01; *** P < 0.001。不同小写字母表示4种处理间差异显著(P < 0.05)。
Fig. 5 Effects of N and P addition on leaf mass per area (LMA), leaf N content (LNC), and leaf P content (LPC) of saplings and adult trees in an evergreen broad-leaved forest. The line within the boxplot depicts the median, while the upper and lower bounds of the box signify the 25th and 75th percentiles, respectively. The whiskers extend to 1.5 times the interquartile range, the range between the 25th and 75th percentiles, with points beyond them considered outliers. S, N and P represent the effects of species, nitrogen addition and phosphorus addition, respectively. * P < 0.05; ** P < 0.01; *** P < 0.001. +N, N addition; +P, P addition; N + P, Combined N + P addition. Lowercase letters indicate significant differences (P < 0.05) among the four treatments.
叶片性状 Leaf traits | 最大羧化速率 Maximum carboxylation rate (Vcmax) | 最大电子传递速率 Maximum electron transport rate (Jmax) | Jmax/Vcmax | |
---|---|---|---|---|
比叶质量 Leaf mass per area (LMA) | P | 0.157ns | 0.730ns | 0.827ns |
R2 | 0.09 | -0.07 | -0.08 | |
叶片氮含量 Leaf N content (LNC) | P | 0.248ns | 0.23ns | 0.167ns |
R2 | 0.047 | 0.09 | 0.08 | |
叶片磷含量 Leaf P content (LPC) | P | 0.94ns | 0.28ns | 0.45ns |
R2 | -0.08 | 0.021 | -0.03 |
表2 氮磷添加下优势树种(幼树和成树)叶片性状和光合参数相关性分析。ns P > 0.05。
Table 2 Correlation between leaf traits and photosynthetic parameters of dominant tree species (both saplings and adult trees) in an evergreen broad-leaved forest treated with N and P addition. ns P > 0.05.
叶片性状 Leaf traits | 最大羧化速率 Maximum carboxylation rate (Vcmax) | 最大电子传递速率 Maximum electron transport rate (Jmax) | Jmax/Vcmax | |
---|---|---|---|---|
比叶质量 Leaf mass per area (LMA) | P | 0.157ns | 0.730ns | 0.827ns |
R2 | 0.09 | -0.07 | -0.08 | |
叶片氮含量 Leaf N content (LNC) | P | 0.248ns | 0.23ns | 0.167ns |
R2 | 0.047 | 0.09 | 0.08 | |
叶片磷含量 Leaf P content (LPC) | P | 0.94ns | 0.28ns | 0.45ns |
R2 | -0.08 | 0.021 | -0.03 |
[1] | Alvarez-Clare S, Mack MC, Brooks M (2013) A direct test of nitrogen and phosphorus limitation to net primary productivity in a lowland tropical wet forest. Ecology, 94, 1540-1551. |
[2] | Aoyagi R, Kitayama K, Turner BL (2022) How do tropical tree species maintain high growth rates on low-phosphorus soils? Plant and Soil, 480, 31-56. |
[3] | Bartholomew DC, Bittencourt PR, da Costa AC, Banin LF, de Britto Costa P, Coughlin SI, Domingues TF, Ferreira LV, Giles A, Mencuccini M, Mercado L, Miatto RC, Oliveira A, Oliveira R, Meir P, Rowland L (2020) Small tropical forest trees have a greater capacity to adjust carbon metabolism to long-term drought than large canopy trees. Plant, Cell & Environment, 43, 2380-2393. |
[4] | Bauer GA, Berntson GM, Bazzaz FA (2001) Regenerating temperate forests under elevated CO2 and nitrogen deposition: Comparing biochemical and stomatal limitation of photosynthesis. New Phytologist, 152, 249-266. |
[5] | Bown HE, Watt MS, Clinton PW, Mason EG, Richardson B (2007) Partititioning concurrent influences of nitrogen and phosphorus supply on photosynthetic model parameters of Pinus radiata. Tree Physiology, 27, 335-344. |
[6] | Bubier JL, Smith R, Juutinen S, Moore TR, Minocha R, Long S, Minocha S (2011) Effects of nutrient addition on leaf chemistry, morphology, and photosynthetic capacity of three bog shrubs. Oecologia, 167, 355-368. |
[7] | Bucci SJ, Scholz FG, Goldstein G, Meinzer FC, Franco AC, Campanello PI, Villalobos-Vega R, Bustamante M, Miralles-Wilhelm F (2006) Nutrient availability constrains the hydraulic architecture and water relations of savannah trees. Plant, Cell & Environment, 29, 2153-2167. |
[8] | Chen FS, Niklas KJ, Liu Y, Fang XM, Wan SZ, Wang HM (2015) Nitrogen and phosphorus additions alter nutrient dynamics but not resorption efficiencies of Chinese fir leaves and twigs differing in age. Tree Physiology, 35, 1106-1117. |
[9] | Collalti A, Prentice I (2019) Is NPP proportional to GPP? Waring’s hypothesis 20 years on. Tree Physiology, 39, 1473-1483. |
[10] | Chu CJ, Wang YS, Liu Y, Jiang L, He FL (2017) Advances in species coexistence theory. Biodiversity Science, 25, 345-354. (in Chinese with English abstract) |
[储诚进, 王酉石, 刘宇, 蒋林, 何芳良 (2017) 物种共存理论研究进展. 生物多样性, 25, 345-354.] | |
[11] | Damián X, Fornoni J, Domínguez CA, Boege K (2018) Ontogenetic changes in the phenotypic integration and modularity of leaf functional traits. Functional Ecology, 32, 234-246. |
[12] | DeForest JL, Snell RS (2020) Tree growth response to shifting soil nutrient economy depends on mycorrhizal associations. New Phytologist, 225, 2557-2566. |
[13] | Domingues TF, Meir P, Feldpausch TR, Saiz G, Veenendaal EM, Schrodt F, Bird M, Djagbletey G, Hien F, Compaore H, Diallo A, Grace J, Lloyd J (2010) Co-limitation of photosynthetic capacity by nitrogen and phosphorus in West Africa woodlands. Plant, Cell & Environment, 33, 959-980. |
[14] | Farquhar GD, von Caemmerer SV, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta, 149, 78-90. |
[15] | Fownes JH, Harrington RA (2004) Seedling response to gaps: Separating effects of light and nitrogen. Forest Ecology and Management, 203, 297-310. |
[16] | Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland CC, Green PA, Holland EA, Karl DM, Michaels AF, Porter JH, Townsend AR, Vöosmarty CJ (2004) Nitrogen cycles: Past, present, and future. Biogeochemistry, 70, 153-226. |
[17] | Gough C, Seiler J, Maier C (2004) Short-term effects of fertilization on loblolly pine (Pinus taeda L.)physiology. Plant, Cell & Environement, 27, 876-886. |
[18] | Hidaka A, Kitayama K (2013) Relationship between photosynthetic phosphorus-use efficiency and foliar phosphorus fractions in tropical tree species. Ecology and Evolution, 3, 4872-4880. |
[19] | Hu Y, Schäfer KV, Zhu L, Zhao P, Zhao X, Ni G, Zhang Y, Ye H, Zhao W, Shen W, Fu SL (2021) Impacts of canopy and understory nitrogen additions on stomatal conductance and carbon assimilation of dominant tree species in a temperate broadleaved deciduous forest. Ecosystems, 24, 1468-1484. |
[20] | Jiang J, Wang Y, Liu F, Du Y, Zhuang W, Chang Z, Yu M, Yan J (2021) Antagonistic and additive interactions dominate the responses of belowground carbon-cycling processes to nitrogen and phosphorus additions. Soil Biology and Biochemistry, 156, 108216. |
[21] | Jiang L, Tian D, Ma SH, Zhou XL, Xu LC, Zhu JX, Jing X, Zheng CY, Shen HH, Zhou Z, Li YD, Zhu B, Fang JY (2018) The response of tree growth to nitrogen and phosphorus additions in a tropical montane rainforest. Science of the Total Environment, 618, 1064-1070. |
[22] | Kellomäki S, Wang KY (1997) Photosynthetic responses of Scots pine to elevated CO2 and nitrogen supply: Results of a branch-in-bag experiment. Tree Physiology, 17, 231-240. |
[23] | Kuusk V, Niinemets Ü, Valladares F (2018) Structural controls on photosynthetic capacity through juvenile-to-adult transition and needle ageing in Mediterranean pines. Functional Ecology, 32, 1479-1491. |
[24] | LeBauer DS, Treseder KK (2008) Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology, 89, 371-379. |
[25] | Leuning R (1997) Scaling to a common temperature improves the correlation between the photosynthesis parameters Jmax and Vcmax. Journal of Experimental Botany, 48, 345-347. |
[26] | Liang X, Zhang T, Lu X, Ellsworth DS, BassiriRad H, You C, Wang D, He P, Deng Q, Liu H, Mo J, Ye Q (2020) Global response patterns of plant photosynthesis to nitrogen addition: A meta-analysis. Global Change Biology, 26, 3585-3600. |
[27] | Liu L, Zhang T, Gilliam FS, Gundersen P, Zhang W, Chen H, Mo J (2013) Interactive effects of nitrogen and phosphorus on soil microbial communities in a tropical forest. PLoS ONE, 8, e61188. |
[28] | Lu D, Zhu J, Wang X, Hao G, Wang GG (2021) A systematic evaluation of gap size and within-gap position effects on seedling regeneration in a temperate secondary forest, Northeast China. Forest Ecology and Management, 490, 119140. |
[29] | Luo X, Keenan TF, Chen JM, Croft H, Colin Prentice I, Smith NG, Walker AP, Wang H, Wang R, Xu CG, Zhang Y (2021) Global variation in the fraction of leaf nitrogen allocated to photosynthesis. Nature Communications, 12, 4866. |
[30] | Manu R, Corre MD, Aleeje A, Mwanjalolo MJG, Babweteera F, Veldkamp E, van Straaten O (2022) Responses of tree growth and biomass production to nutrient addition in a semi-deciduous tropical forest in Africa. Ecology, 103, e3659. |
[31] | Mo Q, Li Z, Sayer EJ, Lambers H, Li Y, Zou B, Tang J, Heskel M, Ding Y, Wang F, Ostertag R (2019) Foliar phosphorus fractions reveal how tropical plants maintain photosynthetic rates despite low soil phosphorus availability. Functional Ecology, 33, 503-513. |
[32] | Niinemets Ü, Tenhunen J, Canta N, Chaves M, Faria T, Pereira JS, Reynolds JF (1999) Interactive effects of nitrogen and phosphorus on the acclimation potential of foliage photosynthetic properties of cork oak, Quercus suber, to elevated atmospheric CO2 concentrations. Global Change Biology, 5, 455-470. |
[33] | Pasquini SC, Santiago LS (2012) Nutrients limit photosynthesis in seedlings of a lowland tropical forest tree species. Oecologia, 168, 311-319. |
[34] | Peng Y, Peng Z, Zeng X, Houx JH (2019) Effects of nitrogen-phosphorus imbalance on plant biomass production: A global perspective. Plant and Soil, 436, 245-252. |
[35] | Poorter L, Wright SJ, Paz H, Ackerly DD, Condit R, Ibarra-Manríquez G, Harms KE, Licona JC, Martínez-Ramos M, Mazer SJ, Muller-Landau HC, Peña-Claros M, Webb CO, Wright IJ (2008) Are functional traits good predictors of demographic rates? Evidence from five neotropical forests. Ecology, 89, 1908-1920. |
[36] | Shigeo K, Li CH, Hideyuki K, Yasuhide N (2001) Nutrients return of litterfall of a natural evergreen broad-leaved forest in Southern China. Resources Science, 23(S1), 58-67. (in Chinese with English abstract) |
[片桐成夫, 李昌华, 川口英之, 长山泰秀 (2001) 中国南部天然常绿阔叶林的凋落物养分归还. 资源科学, 23(S1), 58-67.] | |
[37] | Stefanski A, Bermudez R, Sendall KM, Montgomery RA, Reich PB (2020) Surprising lack of sensitivity of biochemical limitation of photosynthesis of nine tree species to open-air experimental warming and reduced rainfall in a southern boreal forest. Global Change Biology, 26, 746-759. |
[38] | Sturchio MA, Chieppa J, Simpson LT, Feller IC, Chapman SK, Aspinwall MJ (2023) Contrasting effects of nitrogen addition on leaf photosynthesis and respiration in black mangrove in North Florida. Estuaries and Coasts, 46, 182-197. |
[39] | Tang XL, Cao YH, Gu LH, Zhou BZ (2017) Advances in photo-physiological responses of leaves to environmental factors based on the FvCB model. Acta Ecologica Sinica, 37, 6633-6645. (in Chinese with English abstract) |
[唐星林, 曹永慧, 顾连宏, 周本智 (2017) 基于FvCB模型的叶片光合生理对环境因子的响应研究进展. 生态学报, 37, 6633-6645.] | |
[40] | Tian DS, Niu SL (2015) A global analysis of soil acidification caused by nitrogen addition. Environmental Research Letters, 10, 024019. |
[41] | Tsujii Y, Onoda Y, Kitayama K (2017) Phosphorus and nitrogen resorption from different chemical fractions in senescing leaves of tropical tree species on Mount Kinabalu, Borneo. Oecologia, 185, 171-180. |
[42] | Turner BL, Brenes-Arguedas T, Condit R (2018) Pervasive phosphorus limitation of tree species but not communities in tropical forests. Nature, 555, 367-370. |
[43] | Walker AP, Beckerman AP, Gu LH, Kattge J, Cernusak LA, Domingues TF, Scales JC, Wohlfahrt G, Wullschleger SD, Woodward FI (2014) The relationship of leaf photosynthetic traits—Vcmax and Jmax—to leaf nitrogen, leaf phosphorus, and specific leaf area: A meta-analysis and modeling study. Ecology and Evolution, 4, 3218-3235. |
[44] | Wallace ZP, Lovett GM, Hart JE, Machona B (2007) Effects of nitrogen saturation on tree growth and death in a mixed-oak forest. Forest Ecology and Management, 243, 210-218. |
[45] | Wang D, Ling T, Wang P, Jing P, Fan J, Wang H, Zhang Y (2018) Effects of 8-year nitrogen and phosphorus treatments on the ecophysiological traits of two key species on Tibetan Plateau. Frontiers in Plant Science, 9, 1290. |
[46] | Wang H, Prentice IC, Davis TW, Keenan TF, Wright IJ, Peng C (2017) Photosynthetic responses to altitude: An explanation based on optimality principles. New Phytologist, 213, 976-982. |
[47] | Warren CR, McGrath JF, Adams MA (2005) Differential effects of N, P and K on photosynthesis and partitioning of N in Pinus pinaster needles. Annals of Forest Science, 62, 1-8. |
[48] | Wright SJ, Turner BL, Yavitt JB, Harms KE, Kaspari M, Tanner EVJ, Bujan J, Griffin EA, Mayor JR, Pasquini SC, Sheldrake M, Garcia MN (2018) Plant responses to fertilization experiments in lowland, species-rich, tropical forests. Ecology, 99, 1129-1138. |
[49] | Wright SJ, Yavitt JB, Wurzburger N, Turner BL, Tanner EV, Sayer EJ, Santiago LS, Kaspari M, Hedin LO, Harms KE, Garcia MN, Corre MD (2011) Potassium, phosphorus, or nitrogen limit root allocation, tree growth, or litter production in a lowland tropical forest. Ecology, 92, 1616-1625. |
[50] | Wullschleger SD (1993) Biochemical limitations to carbon assimilation in C3 plants—A retrospective analysis of the A-Ci curves from 109 species. Journal of Experimental Botany, 44, 907-920. |
[51] | Yavitt JB, Harms KE, Garcia MN, Mirabello MJ, Wright SJ (2011) Soil fertility and fine root dynamics in response to 4 years of nutrient (N, P, K) fertilization in a lowland tropical moist forest, Panama. Austral Ecology, 36, 433-445. |
[52] | Ye XM, Bu W, Hu X, Liu B, Liang K, Chen F (2023a) Species divergence in seedling leaf traits and tree growth response to nitrogen and phosphorus additions in an evergreen broadleaved forest of subtropical China. Journal of Forestry Research, 34, 137-150. |
[53] | Ye XM, Bu W, Hu X, Wang F, Sun R, He P, Liang X, Chen F (2023b) Are small trees more responsive to nutrient addition than large trees in an evergreen broadleaved forest? Forest Ecology and Management, 543, 121129. |
[54] | Yu Q, Ni X, Cheng X, Ma S, Tian D, Zhu B, Zhu J, Ji C, Tang Z, Fang J (2022) Foliar phosphorus allocation and photosynthesis reveal plants' adaptative strategies to phosphorus limitation in tropical forests at different successional stages. Science of the Total Environment, 846, 157456. |
[55] | Zhai ZW, Gong JR, Luo QP, Pan Y, Baoyin T, Xu S, Liu M, Yang LL (2017) Effects of nitrogen addition on photosynthetic characteristics of Leymus chinensis in the temperate grassland of Nei Mongol, China. Chinese Journal of Plant Ecology, 41, 196-208. (in Chinese with English abstract) |
[翟占伟, 龚吉蕊, 罗亲普, 潘琰, 宝音陶格涛, 徐沙, 刘敏, 杨丽丽 (2017) 氮添加对内蒙古温带草原羊草光合特性的影响. 植物生态学报, 41, 196-208.] | |
[56] | Zhu F, Lu X, Mo J (2014) Phosphorus limitation on photosynthesis of two dominant understory species in a lowland tropical forest. Journal of Plant Ecology, 7, 526-534. |
[1] | 马瑞霞, 郭屹立, 李冬兴, 王斌, 向悟生, 黄甫昭, 陆芳, 文淑均, 李健星, 陆树华, 李先琨. 桂西南喀斯特季节性雨林幼树更新的空间分布格局及机制[J]. 生物多样性, 2023, 31(2): 22251-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn