Biodiversity Science ›› 2018, Vol. 26 ›› Issue (1): 1-13.doi: 10.17520/biods.2017263

• Original Papers: Animal Diversity • Previous Article     Next Article

Longitudinal patterns in α and β diversity of the taxonomic and functional organizations of stream fish assemblages in the Qingyi River

Dong Zhang1, Fengying Wan2, Ling Chu1, Yunzhi Yan1()   

  1. 1 Provincial Key Laboratory of Biotic Environment and Ecological Safety, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000
    2 Anhui Normal University Library, Wuhu, Anhui 241000
  • Received:2017-10-11 Accepted:2018-01-26 Online:2018-05-05
  • About author:

    # Co-first authors

Identifying the spatial and temporal patterns of fish diversity in streams is the basis for the conservation and management of stream fishes. The “upstream-downstream” pattern in the taxonomic diversity of stream fish assemblages has been widely studied. However, spatial patterns in functional diversity of stream fishes along longitudinal gradients have been given less attention. Based on data collected in 15 segments representing 1st- to 5th-order streams in the Qingyi River basin during April, July, October 2009 and January 2010, we examined the variations in taxonomic and functional organizations of stream fish assemblages across 1st- to 5th-order streams, and determined the longitudinal patterns of both taxonomic and functional diversities along the stream-order gradient. According to the feeding habits and functional morphological traits, all 56 species collected were divided into four trophic groups, five locomotion groups and 14 combined groups. Two-way crossed ANOSIM showed that both the taxonomic and functional organizations varied significantly across 1st- to 5th-order streams, but did not present significant among-season variation. Two-way ANOVA showed that both α and β diversity of the taxonomic and functional organizations differed significantly with stream order, but not with season. According to the results of regression analysis, α diversity of both the taxonomic and functional organizations had positive linear correlations with stream order, but the maximum α diversity occurred in 4th-order streams. β diversity of taxonomic and functional organizations showed a quadratic distribution (i.e., U-shape) with increasing stream order. The spatial variation in the taxonomic β diversity was mainly driven by species turnover, but variation in the functional β diversity was mainly driven by function nestedness. Our results suggest that, along the “upstream-downstream” gradient, α and β diversity of stream fishes may present different spatial patterns. Although the taxonomic and functional α diversity show similar longitudinal distributions, the ecological processes driving the longitudinal variations in β diversity may be different for the taxonomic (i.e., species turnover) and functional organizations (i.e., function nestedness).

Key words: taxonomic and functional organizations, α and β diversity;, community turnover and nestedness, river longitudinal gradient

Table 1

Species composition and the frequency of occurrence of fishes collected in the 1st-order-5th-order streams of the Qingyi River basin"

物种
Species
营养功
能群
Trophic
groups
运动功能群
Locomotion
groups
复合功能群
Combined
groups
出现频率 Frequency of occurrence (%)
1级河流
1st-order streams
2级河流
2nd-order
streams
3级河流
3rd-order
streams
4级河流
4th-order
streams
5级河流
5th-order
streams
鲤形目 Cyprinformes
鳅科 Cobitidae
中华花鳅 Cobitis sinensis TG4 LG5 CG12 33.3 41.7 25 16.7 8.3
稀有花鳅 Cobitis rarus TG4 LG5 CG12 66.7 75 58.3 33.3
桂林薄鳅 Leptobotia guilinensis TG4 LG4 CG14 25 16.7 75 33.3
泥鳅 Misgurnus anguillicaudatus TG4 LG5 CG12 50 50 33.3 8.3 8.3
爬鳅科 Balitoridae
原缨口鳅 Vanmanenia stenosoma TG4 LG5 CG12 50 75 41.7 16.7 25
鲤科 Cyprindae
钝吻棒花鱼 Abbottina obtusirostris TG2 LG5 CG6 16.7
棒花鱼 Abbottina rivularis TG2 LG3 CG7 8.3 33.3 58.3 50 83.3
短须鱊 Acheilognathus barbatulus TG3 LG2 CG9 8.3 16.7 66.7 41.7 58.3
兴凯鱊 Acheilognathus chankaensis TG3 LG2 CG9 8.3 47.1 41.7 41.7
光唇鱼 Acrossocheilus fasciatus TG4 LG5 CG12 91.7 83.3 58.3 100 25
似? Belligobio nummifer TG4 LG3 CG11 41.7 33.3 16.7 33.3 33.3
Cyprinus carpio TG4 LG2 CG13 16.7
Carassius auratus TG4 LG2 CG13 8.3 50 50 91.7
红鳍原鲌 Cultrichthys erythropterus TG1 LG3 CG2 8.3
翘嘴鲌 Culter alburnus TG1 LG3 CG2 8.3 41.7
圆吻鲴 Distoechodon tumirostris TG4 LG3 CG11 8.3
Elopichthys bambusa TG1 LG4 CG3 8.3 8.3
颌须鮈 Gnathopogon taeniellus TG4 LG3 CG11 8.3 33.3 41.7
董氏鳅鮀 Gobiobotia tungi TG2 LG3 CG7 16.7
唇? Hemibarbus labeo TG4 LG3 CG11 25
花? Hemibarbus maculatus TG2 LG3 CG7 8.3 33.3 16.7
? Hemiculter leucisculus TG4 LG3 CG11 75
油? Hemiculter bleekeri TG4 LG3 CG11 6.7 16.7 33.3 58.3
青鱼 Mylopharyngodon piceus TG2 LG3 CG7 41.7
台湾白甲鱼 Onychostoma barbatulum TG4 LG3 CG11 16.7
马口鱼 Opsarrichthys bidens TG2 LG3 CG7 58.3 33.3 33.3 66.7
Parabramis pekinensis TG3 LG2 CG9 8.3 25
尖头鱥 Phoxinus oxycephalus TG4 LG3 CG11 33.3
麦穗鱼 Pseudorasbora parva TG4 LG3 CG11 8.3 25 33.3 58.3
似鳊 Pseudobrama simoni TG4 LG3 CG11 25 50
高体鳑鲏 Rhodeus ocellatus TG3 LG2 CG9 16.7 25 100 75 58.3
黑鳍鳈 Sarcocheilichthys nigripinnis TG4 LG3 CG11 33.3 75
小鳈 Sarcocheilichthys parvus TG4 LG3 CG11 8.3 66.7 66.7
华鳈 Sarcocheilichthys sinensis TG4 LG3 CG11 8.3
蛇鮈 Saurogobio dabryi TG2 LG4 CG8 16.7 8.3 8.3
光倒刺鲃 Spinibarbus hollandi TG4 LG3 CG11 16.7

Table 1

(continued)"

物种
Species
营养功
能群
Trophic
groups
运动功
能群
Locomotion
groups
复合功能群
Combined
groups
出现频率 Frequency of occurrence (%)
1级河流
1st-order streams
2级河流
2nd-order
streams
3级河流
3rd-order
streams
4级河流
4th-order
streams
5级河流
5th-order
streams
银鮈 Squalidus argentatus TG4 LG3 CG11 6.7 33.3 33.3 33.3
宽鳍鱲 Zacco platypus TG4 LG3 CG11 100 100 100 100 58.2
鲇形目 Siuriformes
鲿科 Bagridae
大鳍鳠 Mystus macropterus TG2 LG5 CG6 8.3
黄颡鱼 Pelteobagrus fulvidraco TG1 LG3 CG2 33.3 100
切尾拟鲿 Pseudobagrus truncatus TG2 LG5 CG6 16.7 16.7 33.3 66.7
鲇科 Siluridae
Silurus asotus TG1 LG5 CG4 8.3 33.3 41.7
鮡科 Sisoridae
福建纹胸鮡 Glyptothorax fukiensis TG2 LG5 CG6 8.3
钝头鮠科 Amblycipitidae
司氏? Liobagrus styani TG2 LG4 CG8 16.7 50 25 8.3
颌针鱼目 Beloniformes
鱵科 Hemiramphidae
间下鱵 Hyporhamphus intermedius TG4 LG1 CG10 25
合鳃目 Synbranchiformes
合鳃科 Synbranchidae
黄鳝 Monopterus albus TG1 LG1 CG1 25 50 16.7 33.3
刺鳅科 Mastacembelidae
中华刺鳅 Sinobdella sinensis TG2 LG1 CG5 33.3 25
鲈形目 Perciformes
鳜科 Sinipercidae
长身鳜 Slender mandarinfish TG1 LG5 CG4 16.7 33.3
Siniperca chuatsi TG1 LG3 CG2 8.3 50 75
暗鳜 Siniperca obscura TG1 LG3 CG2 8.3 50
沙塘鳢科 Odontobutidae
小黄黝鱼 Hypseleotris swinhonis TG2 LG5 CG6 16.7 8.3
河川沙塘鳢 Odontobutis potamophila TG1 LG5 CG4 16.7 25 75 91.7
虾虎鱼科 Gobiidae
吻虾虎鱼一种 Rhinogobius sp. TG4 LG5 CG12 66.7 100 91.7 75 25
鳢科 Channidae
月鳢 Channa asiatica TG1 LG5 CG4 8.3 8.3
乌鳢 Ophiocephalus argus TG1 LG5 CG4 25 91.7
丝足鲈科 Osphronemidae
圆尾斗鱼 Macropodus ocellatus TG4 LG2 CG9 16.7

Fig. 1

Non-metric multidimensional scaling (NMS) analysis plots of taxonomic (a) and functional (b) organizations of stream fish in Qingyi River"

Table 2

Key species and functional groups explaining the spatial variations in taxonomic and functional organizations of stream fish assemblages"

1级河流
1st-order streams
2级河流
2nd-order streams
3级河流
3rd-order streams
4级河流
4th-order streams
5级河流
5th-order streams
AA AS Con AA AS Con AA AS Con AA AS Con AA AS Con
分类群 Taxonomic organizations
光唇鱼 Acrossocheilus fasciatus 0.92 13.51 24.01 0.83 7.86 13.88
吻虾虎鱼一种 Rhinogobius sp. 1.00 11.98 21.16 0.92 8.13 15.13 0.75 5.23 10.73
高体鳑鲏 Rhodeus ocellatus 1.00 9.78 18.20 1.00 7.94 16.30
桂林薄鳅 Leptobotia guilinensis 0.75 4.57 9.38
黄颡鱼 Pelteobagrus fulvidraco 1.00 5.64 9.65
乌鳢 Ophiocephalus argus 0.92 4.75 8.13
Carassius auratus 0.92 4.62 7.92
河川沙塘鳢
Odontobutis potamophila
0.92 4.60 7.87
棒花鱼 Abbottina rivularis 0.83 3.92 6.70
? Hemiculter leucisculus 0.75 2.98 5.11
黑鳍鳈
Sarcocheilichthys nigripinnis
0.75 2.98 5.10
功能群 Functional organizations
CG11 Combined groups 11 1.00 38.84 48.60 1.00 22.42 34.38 1.00 18.02 25.4 1.00 15.26 21.63 1.00 12.24 14.55
CG12 Combined groups 12 1.00 22.42 34.38 1.00 18.02 25.4 1.00 15.26 21.63
CG9 Combined groups 9 1.00 18.02 25.4 1.00 15.26 21.63 0.92 9.84 11.93
CG2 Combined groups 2 1.00 12.24 14.55
CG4 Combined groups 4 1.00 12.24 14.55

Fig. 2

Relationship between α and β diversity of taxonomic and functional organizations and stream order"

1 Angermeier PL, Karr JR (1983) Fish communities along environmental gradients in a system of tropical streams. Environmental Biology of Fishes, 9, 117-135.
2 Baselga A (2010) Partitioning the turnover and nestedness components of beta diversity. Global Ecology and Biogeography, 19, 134-143.
3 Bishop TR, Robertson MP, Rensburg BJ, Parr CL (2014) Elevation-diversity patterns through space and time: Ant communities of the Maloti-Drakensberg Mountains of southern Africa. Journal of Biogeography, 41, 2256-2268.
4 Chen XY (2013) Checklist of fishes of Yunnan. Zoological Research, 34, 281-343.(in Chinese with English abstract)
[陈小勇 (2013) 云南鱼类名录. 动物学研究, 34, 281-343.]
5 Chu L, Wang WJ, Yan LL, Yan YZ, Zhu R, Si C (2015) Fish assemblages and longitudinal patterns in the headwater streams of the Chencun Reservoir in the Huangshan Area. Acta Ecologica Sinica, 35, 900-910.(in Chinese with English abstract)
[储玲, 王文剑, 闫莉莉, 严云志, 朱仁, 司春 (2015) 黄山陈村水库上游河源溪流的鱼类群落及其纵向梯度格局. 生态学报, 35, 900-910.]
6 Chu XL, Zheng BS, Dai DY (1999) Fauna Sinica, Osteichthyes. Science Press, Beijing.(in Chinese)
[褚新洛, 郑葆珊, 戴定远 (1999) 中国动物志·硬骨鱼纲. 科学出版社, 北京.]
7 Costas N, Pardo I (2015) Isotopic variability in a stream longitudinal gradient: Implications for trophic ecology. Aquatic Sciences, 77, 231-260.
8 Dauwalter DC, Splinter DK, Fisher WL, Marston RA (2008) Biogeography, ecoregions, and geomorphology affect fish species composition in stream of eastern Oklahoma, USA. Environmental Biology of Fishes, 82, 237-249.
9 Dunn RR, Gavin MC, Sanchez MC (2006) The pigeon paradox: Dependence of global conservation on urban nature. Conservation Biology, 20, 1814-1816.
10 Erös T, Grossman GD (2005) Effects of within-patch habitat structure and variation on fish assemblage characteristics in the Bernecei stream, Hungary. Ecology of Freshwater Fish, 14, 256-266.
11 Gilliam JF, Fraser DF, Alkins-Koo M (1993) Structure of a tropical stream fish community: A role for biotic interactions. Ecology, 74, 1856-1870.
12 Goldstein RM, Meador MR (2004) Comparisons of fish species traits from small streams to large rivers. Transactions of The American Fisheries Society, 133, 971-983.
13 Grenouillet G, Pont D, Hérissé C (2004) Within-basin fish assemblage structure: The relative influence of habitat versus stream spatial position on local species richness. Canadian Journal of Fisheries and Aquatic Sciences, 61, 93-102.
14 Grossman GD, Dowd JF, Crawford M (1990) Assemblage stability in stream fish: A review. Environmental Management, 14, 661-671.
15 Hoeinghaus DJ, Winemiller KO, Birnbaum JS (2007) Local and regional determinants of stream fish assemblage structure: Inferences based on taxonomic vs. functional groups. Journal of Biogeography, 34, 324-338.
16 Jackson DA, Peres-Neto PR, Olden JD (2001) What controls who is where in freshwater fish communities the roles of biotic, abiotic, and spatial factors. Canadian Journal of Fisheries and Aquatic Sciences, 58, 157-170.
17 Jaramillo-Villa U, Maldonado-Ocampo JA, Escobar F (2010) Altitudinal variation in fish assemblage diversity in streams of the central Andes of Colombia. Journal of Fish Biology, 76, 2401-2417.
18 Kessler M, Abrahamczyk S, Bos M, Buchori D, Putra DD, Gradstein SR, Tscharntke AT (2009) Alpha and beta diversity of plants and animals along a tropical land-use gradient. Ecological Applications, 19, 2142-2156.
19 Leprieur F, Tedesco PA, Hugueny B, Beauchard O, Durr HH, Brosse S, Oberdorff T (2011) Partitioning global patterns of freshwater fish beta diversity reveals contrasting signatures of past climate change. Ecology Letters, 14, 325-334.
20 Li YH, Yan YZ, Zhu R, Zhou K, Chu L, Wan A, Wang XS (2014) Spatial variations in fish assemblages within the headwater streams of the Wanhe watershed: A river network-based approach. Journal of Fishery Sciences of China, 21, 988-999.(in Chinese with English abstract)
[李艳慧, 严云志, 朱仁, 周科, 储玲, 万安, 汪小三 (2014) 基于河流网络体尺度的皖河河源溪流鱼类群落的空间格局. 中国水产科学, 21, 988-999.]
21 Li YR, Tao J, Chu L, Yan YZ (2018) Effects of anthropogenic disturbances on α and β diversity of fish assemblages and their longitudinal patterns in subtropical streams, China. Ecology of Freshwater Fish, 27, 433-441.
22 Matthews WJ (1998) Patterns in Freshwater Fish Ecology. Chapman and Hall, London.
23 Mazzoni R, Lobón-Cerviá J (2000) Longitudinal structure, density and production rates of a neotropical stream fish assemblage: The river Ubatiba in the Serra Do Mar, Southeast Brazil. Ecography, 23, 588-602.
24 McGarvey DJ, Hughes RM (2008) Longitudinal zonation of Pacific Northwest (USA) fish assemblages and the species-discharge relationship. Copeia, 2008, 311-321.
25 Nelson JS (2006) Fishes of the World, 4th edn. John Wiley & Sons, Hoboken, New Jersey.
26 Oberdorff T, Guilbert E, Lucchetta JC (1993) Patterns of fish species richness in the Seine River Basin, France. Hydrobiologia, 259, 157-167.
27 Pease AA, Winemiller KO (2012) Functional diversity and trait-environment relationships of stream fish assemblages in a large tropical catchment. Freshwater Biology, 57, 1060-1075.
28 Poff NL, Allan JD (1995) Functional organization of stream fish assemblages in relation to hydrological variability. Ecology, 76, 606-627.
29 Pouilly M, Barrera S, Rosales C (2006) Changes of taxonomic and trophic structure of fish assemblages along an environmental gradient in Upper Beni watershed (Bolivia). Journal of Fish Biology, 68, 137-156.
30 Resh VH, Brown AV, Covich AP, Gurtz ME, Li HW, Minshall GW (1988) The role of disturbance in stream ecology. Journal of the North American Benthological Society, 7, 433-455.
31 Roberts JH, Hitt NP (2010) Longitudinal structure in temperate stream fish communities: Evaluating conceptual models with temporal data. American Fisheries Society Symposium, 73, 281-299.
32 Schlosser IJ (1982) Fish community structure and function along two habitat gradients in a headwater stream. Ecological Monographs, 52, 395-414.
33 Strahler AN (1957) Quantitative analysis of watershed geomorphology. Eos, Transactions American Geophysical Union, 38, 913-920.
34 Sui XY, Lu Z, Yan YZ, Chen YF, Jia YT (2014) Influence of a large dam on the longitudinal patterns of fish assemblages in Qingyi Stream. Zoological Research, 35, 362-372.
35 Suvarnaraksha A, Lek S, Lek-Ang S, Jutagate T (2012) Fish diversity and assemblage patterns along the longitudinal gradient of a tropical river in the Indo-Burma hotspot region (Ping-Wang River Basin, Thailand). Hydrobiologia, 694, 153-169.
36 Taylor CM, Warren ML Jr (2001) Dynamics in species composition of stream fish assemblages: Environmental variability and nested subsets. Ecology, 82, 2320-2330.
37 Tisseuil C, Leprieur F, Grenouillet G, Vrac M, Lek S (2012) Projected impacts of climate change on spatio-temporal patterns of freshwater fish beta diversity: A deconstructing approach. Global Ecology & Biogeography, 21, 1213-1222.
38 Torgersen CE, Baxter CV, Li HW, McIntosh BA (2006) Landscape influences on longitudinal patterns of river fishes: Spatially continuous analysis of fish-habitat relationships. American Fisheries Society Symposium, 48, 473-492.
39 Troia MJ, Gido KB (2015) Functional strategies drive community assembly of stream fishes along environmental gradients and across spatial scales. Oecologia, 177, 545-559.
40 Tylianakis JM, Klein AM, Tscharntke T (2008) Spatiotemporal variation in the diversity of Hymenoptera across a tropical habitat gradient. Ecology, 86, 3296-3302.
41 Vannote RL, Minshall GW, Cumins KW, Sedell JR, Cushing CE (1980) The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences, 37, 130-137.
42 Wang WJ, Chu L, Si C, Zhu R, Chen WH, Chen FM, Yan YZ (2013) Spatial and temporal patterns of stream fish assemblages in the Qiupu Headwater National Wetland Park. Zoological Research, 34, 417-428.(in Chinese with English abstract)
[王文剑, 储玲, 司春, 朱仁, 陈文豪, 陈方明, 严云志 (2013) 秋浦河源国家湿地公园溪流鱼类群落的时空格局. 动物学研究, 34, 417-428.]
43 Whittaker RH (1972) Evolution and measurement of species diversity. Taxon, 21, 213-251.
44 Whittaker RJ, Fernández-Palacios JM (2007) Island Biogeography: Ecology, Evolution, and Conservation. Oxford University Press, Oxford.
45 Yao WQ (2010) Systematic Synopsis of Fishes in Anhui Province. Anhui University Press, Hefei.(in Chinese)
[姚闻卿 (2010) 安徽鱼类系统检索. 安徽大学出版社, 合肥.]
46 Zbinden ZD, Matthews WJ (2017) Beta diversity of stream fish assemblages: Partitioning variation between spatial and environmental factors. Freshwater Biology, 62, 1460-1471.
47 Zhu R, Si C, Chu L, Rui M, Wu TT, Yan YZ (2015) The spatio-temporal distribution of fish population in the headwaters of the Qingyi River: A study based on the habitat patches. Acta Hydrobiologica Sinica, 39, 686-694.(in Chinese with English abstract)
[朱仁, 司春, 储玲, 芮明, 吴添天, 严云志 (2015) 基于栖息地斑块尺度的青弋江河源溪流鱼类群落的时空格局. 水生生物学报, 39, 686-694.]
48 Zhu R, Yan YZ, Sun JJ, Huang HL, Tan XL, Lin L (2012) Feeding habits of fish assemblage in headwater streams of Chencun Reservoir in Huangshan Mountain. Chinese Journal of Ecology, 31, 359-366.(in Chinese with English abstract)
[朱仁, 严云志, 孙建建, 黄海玲, 谈小龙, 林璐 (2012) 黄山陈村水库河源溪流鱼类群落的食性. 生态学杂志, 31, 359-366.]
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed