Biodiversity Science ›› 2018, Vol. 26 ›› Issue (3): 238-247.doi: 10.17520/biods.2017259

• Original Papers:Animal Diversity • Previous Article     Next Article

Mitochondrial genetic diversity and maternal origin of Guangdong indigenous chickens

Xunhe Huang1, 2, Zheqi Yu1, Zhuoxian Weng1, 2, 3, Danlin He4, Zhenhua Yi4, Weina Li1, 2, Jiebo Chen1, 2, Xiquan Zhang4, Bingwang Du5, Fusheng Zhong1, 2, 3, *()   

  1. 1 School of Life Sciences, Jiaying University, Meizhou, Guangdong 514015
    2 Guangdong Innovation Centre for Science and Technology of Wuhua Yellow Chicken, Meizhou, Guangdong 514015
    3 College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128
    4 College of Animal Sciences, South China Agricultural University, Guangzhou, Guangdong 510642
    5 College of Agriculture, Guangdong Ocean University, Zhanjiang, Guangdong 524088
  • Received:2017-10-08 Accepted:2017-12-27 Online:2018-05-05
  • Zhong Fusheng E-mail:zfs@jyu.edu.cn
  • About author:

    # Co-first authors

The evaluation of the genetic diversity of indigenous chickens and the tracing of their matrilineal origin need to be facilitated to protect and utilize the germplasm bank of quality poultry. Twelve indigenous chicken breeds from Guangdong Province and its adjacent regions were used for mitochondrial DNA (mtDNA) D-loop sequencing, and analyses of genetic distance and genetic relationship between breeds were conducted. We constructed a phylogenetic tree and median-joining network based on haplotypes. Sixty mutation sites were detected in 360 samples, and all of these were found to be in transition. Eighty-five haplotypes, belonging to haplogroups A, B, C, and E, were defined. B was the predominant haplogroup (187, 51.94%), followed by E (76, 21.11%). Haplogroups A, B, C, and E were distributed in all the 12 breeds. B02 and C01 were the predominant haplotypes (85, 23.61%; 48, 13.33%), which were shared by all twelve breeds; and E03 ranked third (35, 9.72%), and was absent in the Xinghua, Huanglang and Ningdu yellow chicken. Xinghua chickens occurred mainly in haplogroup B, while Huiyang bearded and Zhongshan shalan chickens were distributed mainly in E. The number of haplotypes of Huaixiang chicken was the largest, while the Zhongshan shalan chicken had the fewest. The genetic distance between Guangdong chicken breeds ranged from 0.012 to 0.015, with haplotype diversity and nucleotide diversity ranging from 0.805 ± 0.047 to 0.949 ± 0.026, and from 0.0102 ± 0.0017 to 0.0138 ± 0.0009, respectively. Eighty-five haplotypes were divided into clades A, B, C, and E in the phylogenetic tree and median-joining network. Similar patterns of geographical distribution of mtDNA haplotypes was found in the chicken from Guangdong Province and its adjacent regions. A neutral test indicated that Guangdong indigenous chickens have not sustained obvious population expansion. Our results suggested that Guangdong chickens have a desirable conservation status, as they carry high levels of genetic diversity, and demographic histories were influenced to some extent, by the gene flow of domestic chickens from adjacent provinces and northern China. The red junglefowls from Southeast Asia have an important genetic contribution to the indigenous chickens of Guangdong Province.

Key words: Guangdong indigenous chicken, mitochondrial DNA, D-loop, genetic diversity, origin

Table 1

Sample information of the present study (30 samples for every chicken breed)"

品种 Breed 代号 Code 产地 Origin
怀乡鸡 Huaixiang chicken HX 广东省信宜市 Xinyi, Guangdong
杏花鸡 Xinghua chicken XH 广东省封开县 Fengkai, Guangdong
阳山鸡 Yangshan chicken YS 广东省阳山县 Yangshan, Guangdong
清远麻鸡 Qingyuan spotted chicken QY 广东省清远市 Qingyuan, Guangdong
惠阳胡须鸡 Huiyang bearded chicken HY 广东省惠州市 Huizhou, Guangdong
五华三黄鸡 Wuhua yellow chicken WH 广东省五华县 Wuhua, Guangdong
中山沙栏鸡 Zhongshan shalan chicken SL 广东省中山市 Zhongshan, Guangdong
广西三黄鸡 Guangxi yellow chicken GX 广西省桂平市 Guiping, Guangxi
文昌鸡 Wenchang chicken WC 海南省文昌市 Wenchang, Hainan
河田鸡 Hetian chicken HT 福建省长汀县 Changting, Fujian
黄郎鸡 Huanglang chicken HL 湖南省衡南县 Hengnan, Hunan
宁都三黄鸡 Ningdu yellow chicken ND 江西省宁都县 Ningdu, Jiangxi

Table 2

mtDNA D-loop haplotypes and their distribution in the 12 indigenous chicken breeds. Star (*) indicate the corresponding position with the reference sequence NC_007235, Dots (.) within the nucleotide position indicate the same nucleotides as given in reference sequences."

单倍型
Haplotype
变异位点*
Variable sites
单倍型的品种分布(频率)
Haplotype distribution in breeds (frequency)
合计
Total



NC_007235
111111222222222222222222222222223333333333333333333334444444
356899011112223334445556788989990011123333445566689991334467
387279102790250792362691413162694603590135274523741690456960
TGTTTTTCATCTACTAAGTTATATAAAAAACTTTCCTACTTAAATTCCTACTGTAGCTAT
A01 ..C.....G....T.....C...C............C....................... HX2, HY1, QY3, WH4, XH2, YS3, SL2,
GX1, WC1, HL1
20
A02 ..C.....G....T.....C...C............C.......C............... XH1 1
A03 ..C.....G....T.....C...C........G...C....................... XH1 1
A04 ..C.....G....T..G..C...C............C....................... HY1, YS2 3
A05 ..C....TG....T.....C...C............C....................... HX1 1
A06 ..C.....G....T.....C...C............C.........T.....A....... HY1 1
A07 ..C.....G....T.....C...C............C...............A....... HX1, HT1, HL2 4
A08 ..C.....G....T.....C...C............C...C................... HY1 1
A09 ..C.....G....T.....C...C..G.........C..............C......G. HL1 1
A10 ..C.....G....T.....C...C............C........C......A....... HL1 1
A11 ..C.....G....T..G..C...C............C...............A....... HT1 1
A12 ..C.....G..C.T.....C...C............C...............A....... HT2 2
B01 ............................................................ XH2, ND1 3
B02 .......................C.................................... HX6, HY6, QY7, WH5, XH8, YS9, SL5,
HT1, GX20, WC13, HL2, ND3
85
B03 .......................C......T............................. XH2, GX1, WC1, HL1 5
B04 .......................C.....................C.............. XH3 3
B05 ......................GC.........C.......................... XH3 3
B06 .....................A.C.................................... XH2 2
B07 .......................C.............................C...... XH1 1
B08 .....................C.C.................................... WH2, YS2, GX1, WC1, HL1 7
B09 .......................C..........................T......... HX1, WH1, YS1, HT1, ND1 5
B10 ...................C...C.................................... HX1 1
B11 ..............C........C.................................... HX1 1
B12 .......................C............................A....... HX3, WH3, HT6, HL2, ND9 23
B13 ..........T............C............................A....... HX1, ND2 3
B14 .......................C......T.....................A....... HX1 1
B15 .......................C..........................T.A....... HX1 1
B16 ............................................C............... WH1 1
B17 ............................................C.......A....... WH1 1
B18 .......................C.......C............................ QY1 1
B19 .......................C.........C.......................... QY1, WC1 2
B20 .......................C.G.................................. QY1 1
B21 ...C...................C.................................... QY1 1
B22 .......................C.............G...................... QY1 1
B23 ..................C....C.................................... SL2 2
B24 .......................CG................................... SL1 1
B25 .......................C...............C.................... HY1 1
单倍型
Haplotype
变异位点*
Variable sites
单倍型的品种分布(频率)
Haplotype distribution in breeds (frequency)
合计
Total
B26 .......................C.........................G.......... GX1 1
B27 .......................C.................G.................. GX1 1
B28 ......C................C.....G.............................. GX1 1
B29 ......................GC.........C....T..................... GX1 1
B30 .......................C...........T........................ WC1 1
B31 .......................C.................................C.. WC1 1
B32 .......................C..........................A......... WC1 1
B33 .......................C....................C............... HL2 2
B34 .......................C.....................C......A....... HL1 1
B35 .....................C.C...............................C.... HL1 1
B36 .............T.........C............................A....... HL1 1
B37 .......................C..............................G.T..C HL1 1
B38 .......................C...G........................A....... HL1 1
B39 ..........T............C.................................... ND1 1
B40 ................C......C.................................... ND1 1
B41 .......................C.........C..................A....... ND2 2
B42 .................................C..................A....... ND3 3
B43 .......................C.....G.............................. HT1 1
B44 .......................C.....G......................A....... HT3 3
B45 .......................C...........................C........ HT1 1
B46 C.........T............C.................................... HT1 1
B47 .......................C...................G........A....... HT1 1
B48 .....................C.C............................A....... HX2, ND1 3
C01 ........G........ACC.C.C.G........T.C.....G....TC........... HX2, HY7, QY2, WH4, XH3, YS6, SL6,
HT2, GX2, WC4, HL5, ND5
48
C02 ........G........ACC.C.C.G........T.C.....G....TC.T......... XH1, HL2 3
C03 ........G........ACC.C.C.G.......CT.C..........TC........... HX2 2
C04 .......TG........ACC.C.C.G........T.C.....G....TC........... WH1 1
C05 ........G........ACC.C.C.G........T.C.T...G....TC.T......... HL1 1
C06 ....C...G........ACC.C.C.G........T.C..........TC........... HL1 1
C07 ........G........ACC.C.C..........T.C.....G....TC........... HT2 2
C08 ........G........ACC.C...G........T.C.....G....TC........... HT2 2
E01 .....C..GC........CC.C............T.C...................T... HY1, QY1, WH1, XH1, YS1, SL3, WC1 9
E02 ........GC........CC.C............T.C.....G.............T... YS1 1
E03 ........GC........CC.C............T.C...................T... HX1, HY8, QY5, WH2, YS2, SL11, HT1,
GX1, WC4
35
E04 ........GC..G.....CC.C............T.C.T.................T... QY3, YS2 5
E05 .A......GC........CC.C............T.C...................T... YS1 1
E06 ........GC........CC.C............T.C.......C...........T... HX1, HY1 2
E07 ........GC........CC.C............T.C.T.................T... HX1, HY1, WC1 3
E08 ........GC........CC.C............T.C...............A...T... HX1, WH2, HT2, HL2 7
E09 .....C..GC........CC.C............T.C...............A...T... WH3 3
E10 ........GC........CC.C......G.....T.C......T............T... QY1 1
E11 ........GC........C..C............T.C...................T... QY1 1
E12 ........GC........CCTC............T.C...................T... QY1 1
E13 ........GC.....G..CC.C............T.C...................T... QY1 1
E14 ........GC........CCTC............T.C...............A...T... HY1 1
E15 ........GC........CC.C............T.C.............A.....T... HY1 1
E16 ........GC........CC.C............T.C.....G.........A...T... HT2, HL1 3
E17 ........G..C......CC.C...........CT.C.............A......... ND1 1

Table 3

Genetic diversity of mtDNA D-loop in the 12 indigenous chicken breeds. Breed codes are the same with Table 1."

品种
Breed
突变位点数
Variable sites
单倍型数量
No. of haplotypes
单倍型类群(个体数)
Haplogroups
(individuals)
单倍型多样性
Haplotype diversity (SD)
核苷酸多样性
Nucleotide diversity (SD)
平均核苷酸差异
Average number of nucleotide differences
Tajima’s D检验
Tajima’s D test
HX 26 19 (A=4, B=9, C=2, E=4) A(5), B(17), C(4), E(4) 0.949 (0.026) 0.0123 (0.0014) 6.382 -0.0987
HY 25 12(A=3, B=2, C=1, E=6) A(3), B(7), C(7), E(13) 0.853 (0.039) 0.0132 (0.0008) 6.837 0.2969
QY 27 15 (A=1, B=6, C=1, E=7) A(3), B(12), C(2), E(13) 0.913 (0.032) 0.0127 (0.0008) 6.623 -0.1011
WH 21 13 (A=1, B=6, C=2, E=4) A(4), B(13), C(5), E(8) 0.929 (0.022) 0.0138 (0.0009) 7.177 1.2395
XH 25 13 (A=3, B=7, C=2, E=1) A(4), B(21), C(4), E(1) 0.906 (0.036) 0.0102 (0.0017) 5.285 -0.6955
YS 22 11 (A=2, B=3, C=1, E=5) A(5), B(12), C(6), E(7) 0.867 (0.042) 0.0134 (0.0009) 6.989 0.9093
SL 18 7 (A=1, B=3, C=1, E=2) A(2), B(8), C(6), E(14) 0.805 (0.047) 0.0120 (0.0009) 6.248 1.2923
GX 24 10 (A=1, B=7, C=1, E=1) A(1), B (26), C(2), E(1) 0.561 (0.109) 0.0055 (0.0018) 2.839 -1.8847*
HL 30 20 (A=4, B=10, C=4, E=2) A(5), B(13), C(9), E(3) 0.963 (0.021) 0.0155 (0.0009) 8.025 0.2160
HT 25 17 (A=3, B=8, C=3, E=3) A(4), B(15), C(6), E(5) 0.945 (0.025) 0.0141 (0.0011) 7.317 0.5680
ND 18 12 (B=10, C=1, E=1) B(24), C(5), E(1) 0.876 (0.041) 0.0097 (0.0019) 5.039 0.1757
WC 23 12 (A=1, B=7, C=1, E=3) A(1), B(19), C(4), E(6) 0.793 (0.067) 0.0108 (0.0015) 5.630 -0.1070
合计Total 60 85 (A=12, B=48, C=8,
E=17)
A(37), B(187), C(60),
E(76)
0.909 (0.010) 0.0130 (0.0003) 6.739 -0.9237

Table 4

Net distances (above diagonal) and K2P distance (below diagonal) among 12 chicken breeds. Breed codes are the same with Table 1."

品种 breed XH YS HX WH QY SL HY GX WC HL ND HT
XH 0.001 0.000 0.001 0.002 0.003 0.003 0.000 0.000 0.001 0.001 0.001
YS 0.013 0.000 0.000 0.000 0.000 0.000 0.002 0.000 0.000 0.002 0.000
HX 0.012 0.013 0.000 0.001 0.002 0.002 0.001 0.000 0.000 0.000 0.000
WH 0.013 0.014 0.013 0.000 0.000 0.000 0.002 0.000 0.000 0.001 0.000
QY 0.013 0.013 0.014 0.014 0.000 0.000 0.003 0.000 0.001 0.003 0.001
SL 0.015 0.013 0.014 0.014 0.013 0.000 0.005 0.002 0.001 0.005 0.002
HY 0.015 0.014 0.015 0.014 0.013 0.012 0.005 0.002 0.001 0.004 0.002
GX 0.008 0.012 0.010 0.012 0.012 0.014 0.015 0.001 0.002 0.001 0.002
WC 0.011 0.013 0.012 0.013 0.012 0.013 0.014 0.009 0.001 0.001 0.001
HL 0.014 0.015 0.014 0.015 0.015 0.015 0.016 0.013 0.014 0.001 0.000
ND 0.011 0.014 0.012 0.013 0.014 0.016 0.016 0.008 0.011 0.014 0.001
HT 0.013 0.015 0.013 0.014 0.015 0.015 0.015 0.012 0.013 0.015 0.013

Fig. 1

Neighbor-joining tree of 85 mtDNA D-loop haplotypes from Guangdong and its adjacent provinces indigenous chicken breeds"

Fig. 2

Median-joining network of mtDNA D-loop haplotypes of 12 indigenous chicken breeds from Guangdong and its adjacent provinces. The links are labeled by the nucleotide positions to designate transitions. Cycle size is roughly proportional to the haplotype frequency. The breeds are indicated by different colors. Breed codes are the same with Table 1."

Table 5

Geographical distribution of the major clades in domestic chickens. a, Number of haplotypes and unique haplotypes (in parentheses); b, Excluding those from Guangdong Province."

地区
Region
个体数Individuals 单倍型a/个体数 Haplotypesa/individuals
A B C D E F G H I Z
广东省
Guangdong
210 8(4)/26 26(13)/90 5(2)/34 15(5)/60
中国北方
northern China
273 25(12)/111 11(6)/66 11(2)/59 2/2 8/35
中国南方b
southern China
863 28(17)/182 67(45)/394 22(12)/131 5 (3)/13 17(3)/137 1/1 2/4 1(1)/1
中国西南
southwest China
1,153 36(19)/366 22(12)/260 6(2)/29 9/98 22(16)/152 40(31)/237 3(3)/11
东南亚
Southeast Asia
621 38(29)/146 53(41)/289 5(2)/19 45(41)/67 15(9)/42 12(9)/38 4(1)/11 2 (2)/2 3(3)/7
南亚
South Asia
603 3(1)/14 4(1)/16 19(16)/31 17(10)/56 102(79)/450 3(1)/12 11(9)/21 1(1)/3
合计 Total 3,723
[1] Bandelt HJ, Forster P, Rohl A (1999) Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution, 16, 37-48.
doi: 10.1093/oxfordjournals.molbev.a026036 pmid: 10331250
[2] Chen GH, Wang KH, Wang JY, Ding C, Yang N (2004) oultry Genetic Resources in China. Shanghai Scientific and Technical Publishers, Shanghai. (in Chinese)
[陈国宏, 王克华, 王金玉, 丁铲, 杨宁 (2004) 中国禽类遗传资源. 上海科学技术出版社, 上海.]
[3] China National Commission of Animal Genetic Resources(2011) Animal Genetic Resources in China: Poultry. China Agriculture Press, Beijing. (in Chinese)
[国家畜禽遗传资源委员会(2011) 中国畜禽遗传资源志: 家禽志. 中国农业出版社, 北京.]
[4] Editorial Committee of Local Historiography of Guangdong(2004) Guangdong Provincial Local-Records Compilation: Executive Summary. Guangdong People Press, Guangzhou. (in Chinese)
[广东省地方史志编纂委员会(2004) 广东省志?总述. 广东人民出版社, 广州.]
[5] Fu Y, Niu D, Luo J, Ruan H, He GQ, Zhang YP (2001) Studies of the origin of Chinese domestic fowls. Acta Genetica Sinica, 28, 411-417. (in Chinese)
[傅衍, 牛冬, 罗静, 阮晖, 何国庆, 张亚平 (2001) 中国家鸡的起源探讨. 遗传学报, 28, 411-417.]
[6] Fumihito A, Miyake T, Sumi S, Takada M, Ohno S, Kondo N (1994) One subspecies of the red jungle fowl (Gallus gallus gallus) suffices as the matriarchic ancestor of all domestic breeds. Proceedings of the National Academy of Sciences, USA, 91, 12505-12509.
doi: 10.1073/pnas.91.26.12505 pmid: 7809067
[7] Gao YS, Jia XX, Tang XJ, Fan YF, Lu JX, Huang SH, Tang MJ (2017) The genetic diversity of chicken breeds from Jiangxi, assessed with BCDO2 and the complete mitochondrial DNA D-loop region. PLoS ONE, 12, e0173192.
doi: 10.1371/journal.pone.0173192 pmid: 28257510
[8] Hall TA (1999) Bioedit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95-98.
doi: 10.1021/bk-1999-0734.ch008
[9] Huang XH, Chen JB, He DL, Zhang XQ, Zhong FS (2016c) DNA barcoding of indigenous chickens in China: A reevaluation. Scientia Agricultura Sinica, 49, 2622-2633. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2016.13.018
[黄勋和, 陈洁波, 何丹林, 张细权, 钟福生 (2016c) DNA条形码技术鉴定地方鸡品种的重新评估. 中国农业科学, 49, 2622-2633.]
doi: 10.3864/j.issn.0578-1752.2016.13.018
[10] Huang XH, Li LZ, Zhang JF, He DL, Zhang XQ, Chen JB, Li WN, Du BW, Zhong FS (2016a) Evaluation of diversity and evolution of the microsatellite LEI0258 in chicken MHC-B region from South China. Acta Veterinaria et Zootechnica Sinica, 47, 2175-2183. (in Chinese with English abstract)
[黄勋和, 李丽芝, 张金枫, 何丹林, 张细权, 陈洁波, 李威娜, 杜炳旺, 钟福生 (2016a) 华南家鸡MHC-B区域复合微卫星位点LEI0258的遗传多样性与进化研究. 畜牧兽医学报, 47, 2175-2183.]
[11] Huang XH, Wu YJ, Miao YW, Peng MS, Chen X, He DL, Suwannapoom C, Du BW, Li XY, Weng ZX, Jin SH, Song JJ, Wang MS, Chen JB, Li WN, Otecko NO, Geng ZY, Qu XY, Wu YP, Yang XR, Jin JQ, Han JL, Zhong FS, Zhang XQ, Zhang YP (2018) Was chicken domesticated in northern China? New evidence from mitochondrial genomes. Science Bulletin, DOI: 10.1016/j.scib.2017.12.004.
doi: 10.1016/j.scib.2017.12.004
[12] Huang XH, Zhang JF, He DL, Zhang XQ, Zhong FS, Li WN, Zheng QM, Chen JB, Du BW (2016) Genetic diversity and population structure of indigenous chicken breeds in South China. Frontiers of Agricultural Science and Engineering, 3, 97-101.
doi: 10.15302/J-FASE-2016102
[13] Huang XH, Zhang JF, Tan KF, Li LZ, Li WN, Zhong FS (2016b) Diversity and evolution of the highly tandem repeat LEI0258 with in MHC-B region in Wuhua three-yellow chicken. Guangdong Agricultural Sciences, 43, 163-168. (in Chinese with English abstract)
doi: 10.16768/j.issn.1004-874X.2016.06.028
[黄勋和, 张金枫, 谭坤凤, 李丽芝, 李威娜, 钟福生 (2016b) 五华三黄鸡MHC-B区域复合微卫星位点LEI0258遗传多样性与进化研究. 广东农业科学, 43, 163-168.]
doi: 10.16768/j.issn.1004-874X.2016.06.028
[14] Jia XX, Tang XJ, Fan YF, Lu JX, Huang SH, Ge QL, Gao YS, Han W (2017) Genetic diversity of local chicken breeds in East China based on mitochondrial DNA D-loop region. Biodiversity Science, 25, 540-548. (in Chinese with English abstract)
doi: 10.17520/biods.2017012
[贾晓旭, 唐修君, 樊艳凤, 陆俊贤, 黄胜海, 葛庆联, 高玉时, 韩威 (2017) 华东地区地方鸡品种mtDNA控制区遗传多样性. 生物多样性, 25, 540-548.]
doi: 10.17520/biods.2017012
[15] Lan D, Hu YD, Zhu Q, Liu Y (2017) Mitochondrial DNA study in domestic chicken. Mitochondrial DNA Part A: DNA Mapping, Sequencing, and Analysis, 28, 25-29.
doi: 10.3109/19401736.2015.1106526 pmid: 26680506
[16] Langford SM, Kraitsek S, Baskerville B, Ho SYW, Gongora J (2013) Australian and Pacific contributions to the genetic diversity of Norfolk Island feral chickens. BMC Genetics, 14, 91.
doi: 10.1186/1471-2156-14-91 pmid: 24063717
[17] Lawler A (2015) Why Did the Chicken Cross the World? G Duckworth, New York.
[18] Liao YY, Mo GD, Sun JL, Wei FY, Liao DJ (2016) Genetic diversity of Guangxi chicken breeds assessed with microsatellites and the mitochondrial DNA D-loop region. Molecular Biology Reports, 43, 415-425.
doi: 10.1007/s11033-016-3976-0 pmid: 27038171
[19] Liu YP, Wu GS, Yao YG, Miao YW, Luikart G, Baig M, Beja-Pereira A, Ding ZL, Palanichamy MG, Zhang YP (2006) Multiple maternal origins of chickens: Out of the Asian jungles. Molecular Phylogenetics and Evolution, 38, 12-19.
doi: 10.1016/j.ympev.2005.09.014 pmid: 16275023
[20] Miao YW, Peng MS, Wu GS, Ouyang YN, Yang ZY, Yu N, Liang JP, Pianchou G, Beja-Pereira A, Mitra B, Palanichamy MG, Baig M, Chaudhuri TK, Shen YY, Kong QP, Murphy RW, Yao YG, Zhang YP (2013) Chicken domestication: An updated perspective based on mitochondrial genomes. Heredity, 110, 277-282.
doi: 10.1038/hdy.2012.83
[21] Peng MS, Shi NN, Yao YG, Zhang YP (2015) Caveats about interpretation of ancient chicken mtDNAs from northern China. Proceedings of the National Academy of Sciences, USA, 112, E1970-E1971.
doi: 10.1073/pnas.1501151112 pmid: 25795243
[22] Peters J, Lebrasseur O, Best J, Miller H, Fothergill T, Dobney K, Thomas RM, Maltby M, Sykes N, Hanotte O, O’Connor T, Collins MJ, Larson G (2015) Questioning new answers regarding Holocene chicken domestication in China. Proceedings of the National Academy of Sciences, USA, 112, E2416.
doi: 10.1073/pnas.1503956112 pmid: 25886772
[23] Qu H, Shu DM, Yang CF (2004) The actuality and development proposal in Guangdong quality chicken germplasm resources. Guangdong Agricultural Sciences, 31(6), 4-7. (in Chinese)
doi: 10.3969/j.issn.1004-874X.2004.06.002
[瞿浩, 舒鼎铭, 杨纯芬 (2004) 广东优质鸡种质资源的现状及发展建议. 广东农业科学, 31(6), 4-7.]
doi: 10.3969/j.issn.1004-874X.2004.06.002
[24] Qu LJ, Li XY, Xu GF, Chen KW, Yang HJ, Zhang LC, Wu GQ, Hou ZC, Xu GY, Yang N (2006) Evaluation of genetic diversity in Chinese indigenous chicken breeds using microsatellite markers. Science in China Series C: Life Science, 49, 332-341.
doi: 10.1007/s11427-006-2001-6 pmid: 16989278
[25] Rozas J, Ferrer-Mata A, Sánchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE, Sánchez-Gracia A (2017) DnaSP 6: DNA sequence polymorphism analysis of large datasets. Molecular Biology Evolution, 34, 3299-3302.
doi: 10.1093/molbev/msx248 pmid: 29029172
[26] Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Molecular Biology and Evolution, 30, 2725-2729.
doi: 10.1093/molbev/mst197 pmid: 24132122
[27] Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The Clustal_X Windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 25, 4876-4882.
doi: 10.1093/nar/25.24.4876 pmid: 147148
[28] Wu YP, Huo JH, Xie JF, Liu LX, Wei QP, Xie MG, Kang ZF, Ji HY, Ma YH (2014) Phylogeography and origin of Chinese domestic chicken. Mitochondrial DNA, 25, 126-130.
doi: 10.3109/19401736.2013.786704 pmid: 23617370
[29] Xiang H, Gao JQ, Yu BQ, Zhou H, Cai DW, Zhang YW, Chen XY, Wang X, Michael H, Zhao XB (2014) Early Holocene chicken domestication in northern China. Proceedings of the National Academy of Sciences, USA, 111, 11564-11569.
[30] Zhang L, Zhang P, Li QQ, Gaur U, Liu YP, Zhu Q, Zhao XL, Wang Y, Yin HD, Hu YD, Liu AP, Li DY (2017) Genetic evidence from mitochondrial DNA corroborates the origin of Tibetan chickens. PLoS ONE, 12, e0172945.
doi: 10.1371/journal.pone.0172945 pmid: 5328412
[31] Zhang XQ, Liang SD, Zhang DX (2006) Review on new breed selection of quality chicken in Guangdong Province. China Poultry, 28(1), 9-11. (in Chinese)
doi: 10.3969/j.issn.1004-6364.2006.01.003
[张细权, 梁少东, 张德祥 (2006) 广东优质鸡新品种选育回顾. 中国家禽, 28(1), 9-11.]
doi: 10.3969/j.issn.1004-6364.2006.01.003
[1] QIN Hao,ZHANG Yin-Bo,DONG Gang,ZHANG Feng. (2019) Altitudinal patterns of taxonomic, phylogenetic and functional diversity of forest communities in Mount Guandi, Shanxi, China . Chin J Plant Ecol, 43(9): 762-773.
[2] XU Jin-Shi,CHAI Yong-Fu,LIU Xiao,YUE Ming,GUO Yao-Xin,KANG Mu-Yi,LIU Quan-Ru,ZHENG Cheng-Yang,JI Cheng-Jun,YAN Ming,ZHANG Feng,GAO Xian-Ming,WANG Ren-Qing,SHI Fu-Chen,ZHANG Qin-Di,WANG Mao. (2019) Community assembly, diversity patterns and distributions of broad-leaved forests in North China . Chin J Plant Ecol, 43(9): 732-741.
[3] He Jieli,Shi Tiantian,Chen Ling,Wang Haigang,Gao Zhijun,Yang Meihong,Wang Ruiyun,Qiao Zhijun. (2019) The Genetic Diversity of Common Millet (Panicum miliaceum) Germplasm Resources Based on the EST-SSR Markers . Chin Bull Bot, 54(6): 723-732.
[4] ZHANG Xin-Xin, WANG Xi, HU Ying, ZHOU Wei, CHEN Xiao-Yang, HU Xin-Sheng. (2019) Advances in the study of population genetic diversity at plant species’ margins . Chin J Plant Ecol, 43(5): 383-395.
[5] LIU Cheng-Zhu, JIA Juan, DAI Guo-Hua, MA Tian, FENG Xiao-Juan. (2019) Origin and distribution of neutral sugars in soils . Chin J Plant Ecol, 43(4): 284-295.
[6] Zhang Yahong, Jia Huixia, Wang Zhibin, Sun Pei, Cao Demei, Hu Jianjun. (2019) Genetic diversity and population structure of Populus yunnanensis . Biodiv Sci, 27(4): 355-365.
[7] Tang Kang,Yang Ruolin. (2019) Origin and Evolution of Soybean Protein-coding Genes . Chin Bull Bot, 54(3): 316-327.
[8] CHENG Yi-Kang, ZHANG Hui, WANG Xu, LONG Wen-Xing, LI Chao, FANG Yan-Shan, FU Ming-Qi, ZHU Kong-Xin. (2019) Effects of functional diversity and phylogenetic diversity on the tropical cloud forest community assembly . Chin J Plant Ecol, 43(3): 217-226.
[9] Xie Lifeng, Li Ning, Li Ye, Yao Minghua. (2019) Genetic Diversity and Population Structure of Eggplant (Solanum melongena) Germplasm Resources Based on SRAP Method . Chin Bull Bot, 54(1): 58-63.
[10] Dexin Sun, Xiang Liu, Shurong Zhou. (2018) Dynamical changes of diversity and community assembly during recovery from a plant functional group removal experiment in the alpine meadow . Biodiv Sci, 26(7): 655-666.
[11] Shaoshuai Yu, Caili Lin, Shengjie Wang, Wenxin Zhang, Guozhong Tian. (2018) Structures of the tuf gene and its upstream part genes and characteristic analysis of conserved regions and activity from related gene promoters of a phytoplasma . Biodiv Sci, 26(7): 738-748.
[12] Weilin Fu,Mei Dong,Wenhua Yang,Xingyuan Yang,Yujue Wang,Gong Cheng. (2018) Protection of Chinese traditional knowledge in the backdrop of the Nagoya Protocol: A case study on acid tea of the De’ang Minority . Biodiv Sci, 26(6): 645-650.
[13] Zhiping Song,Jiakuan Chen,Yao Zhao. (2018) Rice domestication and the Yangtze River civilization . Biodiv Sci, 26(4): 346-356.
[14] Wenju Zhang,Jun Rong,Chaoling Wei,Lianming Gao,Jiakuan Chen. (2018) Domestication origin and spread of cultivated tea plants . Biodiv Sci, 26(4): 357-372.
[15] Shengyuan Qin,Jun Rong,Wenju Zhang,Jiakuan Chen. (2018) Cultivation history of Camellia oleifera and genetic resources in the Yangtze River Basin . Biodiv Sci, 26(4): 384-395.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed