Biodiversity Science ›› 2016, Vol. 24 ›› Issue (7): 847-854.doi: 10.17520/biods.2015320

Special Issue: Marine Biodiversity Under Global Climate Change

• Orginal Article • Previous Article     Next Article

Observing the morphological features of Emiliania huxleyi coccoliths using atomic force microscopy

Yu Wang1, Huiyong Zhang2, Peng Xiang1, Youyin Ye1, Gengming Lin1, Qingliang Yang1, Mao Lin1, *()   

  1. 1 Third Institute of Oceanography, State Oceanic Administration, Xiamen, Fujian 361005
    2 Zealquest Open Laboratory of Zealquest Technology Limited Company, Shanghai 200333
  • Received:2015-11-16 Accepted:2016-04-15 Online:2016-08-04
  • Lin Mao E-mail:linmao@tio.org.cn

Coccolithophores are important components of the phytoplankton community that play a unique role in the global ocean biogeochemical cycle though carbon fixation and calcium carbonate production. In addition, coccolithophores are good indicators of climate change as they have indicative organic and inorganic remnants in sediments. Emiliania huxleyi is the most typical representative of coccolithophores. Classification of coccolithophores is mainly based on coccoliths, which have very fine and complex structures and are easily destroyed during the sample collection process. It becomes a technical problem to identify coccolithophores. In this study, atomic force microscopy (AFM) was employed to observe coccoliths of Emiliania huxleyi with the purpose of establishing an AFM sample preparation method for coccolithophores. Centrifugation was found to be an appropriate method to deal with the AFM samples compared with filtration. An optimized protocol was established: cells are centrifuged at 3,000-4,000 rpm, 20℃, over 5 minutes, a precipitate is suspended in 0.05 M NH4HCO3 solution, and then a droplet of solution containing suspended coccoliths is pipetted onto a glass attached to the sample holder. High resolution images had been captured under the contact mode of AFM in air conditioning with a scan range of 50 µm and frequency of 1 Hz. The method is applicable to analyze the morphological features of coccoliths under various environmental parameters or gradients in the laboratory and is also suitable for coccolithophore bloom detection.

Key words: Emiliania huxleyi, coccolith, morphological feature, atomic force microscopy (AFM), height image, deflection image

Fig. 1

Height (a) and deflection (b) images at 20 µm×20 µm in AFM of Emiliania huxleyi coccoliths collected by filteration"

Fig. 2

Deflection images at 20 µm×20 µm (a) and 5 µm×5 µm (b) in AFM of Emiliania huxleyi coccoliths collected by filteration"

Fig. 3

Height (a) and deflection (b) images at 100 µm×100 µm in AFM of Emiliania huxleyi coccoliths collected by centrifugation"

Fig. 4

Deflection image at 20×20 µm2 (a), 5 µm×5 µm2 (b) in AFM of Emiliania huxleyi coccoliths collected by centrifugation"

Fig. 5

Frontal (a) and inverse (b) deflection image at 2 µm×2 µm in AFM of Emiliania huxleyi coccoliths collected by centrifugation"

Fig. 6

Frontal height (a) and deflection (b) image at 1 µm×1 µm in AFM of Emiliania huxleyi coccoliths collected by centrifugation"

Fig. 7

Frontal height (a) and deflection (b) image at 500 nm×500 nm in AFM of Emiliania huxleyi coccoliths collected by centrifugation"

[1] Brown CW, Yoder JA (1994) Coccolithophorid blooms in the global ocean. Journal of Geophysics Research, 99, 7467-7482.
[2] Brownlee C, Taylor A (2004) Calcification in coccolitho- phores: a cellular perspective. In: Coccolithophore: From Molecular Process to Global Impacts (eds Theirstein HR, Young JR), pp. 31-50. Springer-Verlag Press, Berlin
[3] Chen YLL, Chen HY, Chung CW (2007) Seasonal variability of coccolithophore abundance and assemblage in the northern South China Sea. Deep Sea Research Part II Topical Studies in Oceanography, 54, 1617-1633.
[4] Cros L, Fortuño JM (2002) Atlas of northwestern Mediter- ranean coccolithophores. Scientia Marina, 66, 7-182.
[5] Dufrêne YF (2002) Atomic force microscopy, a powerful tool in microbiology. Journal of Bacteriology, 184, 5205-5213.
[6] Fabry VJ (1989) Aragonite production by pteropod molluscs in the subarctic Pacific. Deep Sea Research Part A Oceanographic Research Papers, 36, 1735-1751.
[7] Guillard RRL (1975) Culture of phytoplankton for feeding marine invertebrates. In: Culture of Marine Invertebrate Animals (eds Smith WL, Chanley MH), pp. 26-60. Plenum Press, New York.
[8] Henriksen K, Stipp SLS, Young JR, Bown PR (2003) Tailoring calcite: Nanoscale AFM of coccolith biocrystals. American Mineralogist, 88, 2040-2044.
[9] Henriksen K, Stipp SLS, Young JR, Marsh ME (2004a) Biological control on calcite crystallization: AFM investigation of coccolith polysaccharide function. American Mineralogist, 89, 1709-1716.
[10] Henriksen K, Young JR, Bown PR, Stipp SLS (2004b) Coccolith biomineralisation studied with atomic force microscopy. Palaeontology, 47, 725-743.
[11] Iglesias-Rodríguez MD, Brown CW, Doney SC, Joan K, Dorota K, Kolber Z, Hayes PK, Falkowski P (2002) Representing key phytoplankton functional groups in ocean carbon cycle models: coccolithophorids. Global Biogeochemical Cycles, 16, 47-1-47-20.
[12] Jin HL, Feng YY, Li XQ, Zhai WD, Sun J (2015) Spring and autumn living coccolithophores in the Bohai Sea and Yellow Sea, China. Acta Oceanologica Sinica, 34, 132-146.
[13] Jordan RW, Kleijne A (1994) A classification system for living coccolithophores. In: Coccolithophores (eds Winter A, Siesser WG), pp. 83-106. Cambridge University Press, Cambridge.
[14] Kasas S, Ikai A (1995) A method for anchoring round shaped cells for atomic force microscope imaging. Biophysical Journal, 68, 1678-1680.
[15] Li Y, Gao YH, Huang DQ (2002) Advances in study of marine coccolithophorids. Marine Sciences, 26, 13-16. (in Chinese with English abstract)
[李杨, 高亚辉, 黄德强 (2002) 海洋球石藻研究进展. 海洋科学, 26(3), 13-16.]
[16] Liu HJ, Sun J, Feng YY (2015) Study on modern cocco- lithophores in coastal region along the east Hainan Island. Acta Oceanologica Sinica, 37(12), 27-40. (in Chinese with English abstract)
[刘海娇, 孙军, 冯媛媛 (2015) 琼东海域今生颗石藻群落研究. 海洋学报, 37(12), 27-40.]
[17] Méndez-Vilas A, Gallardo-Moreno AM, González-Martín LM (2007) Atomic force microscopy of mechanically trapped bacterial cells. Microscopy and Microanalysis, 13, 55-64.
[18] Paasche E (2001) A review of the coccolithophorid Emiliania huxleyi (Prymnesiophyceae), with particular reference to growth, coccolith formation and calcification-photosynthesis interaction. Phycologia, 40, 503-529.
[19] Quintero-Torres R, Aragon JL, Torres M, Estrada M, Cros L (2006) Strong far-field coherent scattering of ultraviolet radiation by holococcolithophores. Physical Review E, 74, 032901.
[20] Riebesell U, Zondervan I, Rost BM Tortell PD, Zeebe RE, Morel FMM (2000) Reduced calcification of marine plankton in response to increased atmospheric CO2. Nature, 407, 364-367.
[21] Rost B, Riebesell U (2004) Coccolithophores and the biological pump: responses to environmental changes. In: Coccolithophores: From Molecular Processes to Global Impact (eds Theirstein R, Young R), pp. 99-125. Springer-Verlag Press, Berlin.
[22] Sun J (2007) Organic carbon pump and carbonate counter pump of living coccolithophorid. Advances in Earth Science, 22, 1231-1239. (in Chinese with English abstract)
[孙军 (2007) 今生颗石藻的有机碳泵和碳酸盐反向泵. 地球科学进展, 22, 1231-1239.]
[23] Sun J, An BZ, Dai MH, Li TG (2011) Living coccolithophores in the western South China Sea in summer 2007. Oceanologia et Limnologia Sinica, 42, 170-178. (in Chinese with English abstract)
[孙军, 安佰正, 戴民汉, 李铁刚 (2011) 夏季南海西部今生颗石藻. 海洋与湖沼, 42, 170-178.]
[24] Sun J, Jing SF (2011) Species diversity of living coccolithophores in Chinese sea waters. Biodiversity Science, 19, 787-797. (in Chinese with English abstract)
[孙军, 荆少非 (2011) 中国近海今生颗石藻物种多样性初步研究. 生物多样性 19, 787-797.]
[25] Sun J, Gu XX, Feng YY, Jing SF, Jiang WS, Jin HY, Chen JF (2014) Summer and winter living coccolithophores in the Yellow Sea and the East China Sea. Biogeosciences, 11, 779-806.
[26] Sun J, Liu DY, Qian SB (2002) A quantative research and analysis method for marine phytoplankton: an introduction to Utermöhl method and its modification. Journal of Oceanography of Huanghai & Bohai Seas, 20, 105-112. (in Chinese with English abstract)
[孙军, 刘东艳, 钱数本 (2002) 一种海洋浮游植物定量研究分析方法—Utermöhl方法的介绍及其改进. 黄渤海海洋, 20, 105-112.]
[27] Thierstern HR, Young JR (2004) Coccolithophores: From Molecular Processes to Global Impact. Springer-Verlag Press, Berlin.
[28] Touhami A, Jericho MH, Beveridge TJ (2004) Atomic force microscopy of cell growth and division in Staphylococcus aureus. Journal of Bacteriology, 186, 3286-3295.
[29] Tyrrell T, Merico A (2004) Emiliania huxleyi: bloom observations and the conditions that induce them. In: Coccolithophores: From Molecular Processes to Global Impact (eds Theirstein R, Young R), pp. 75-97. Springer-Verlag Press, Berlin.
[30] Vadillorodríguez V, Busscher HJ, Norde W, de VJ, Dijkstra RJ, Stokroos I, Van der Mei HC (2004) Comparison of atomic force microscopy interaction forces between bacteria and silicon nitride substrata for three commonly used immobilization methods. Applied and Environmental Microbiology, 70, 5541-5546.
[31] Wagner P (1998) Immobilization strategies for biological scanning probe microscopy. FEBS Letters, 430, 112-115.
[32] Wang J, Zuo Y, Chen RS (2008) Species composition of coccolithophorides in the Yellow Sea. Marine Fisheries Research, 29, 137-138. (in Chinese with English abstract)
[王俊, 左涛, 陈瑞盛 (2008) 黄海球石藻的种类组成. 海洋水产研究, 29, 137-138.]
[33] Westbroek P, Young JR, Linschooten K (1989) Coccolith production (biomineralisation) in the marine alga Emiliania huxleyi. Journal of Protozoology, 36, 368-373.
[34] Winter A, Jordan RW, Roth PH (1994) Biogeography of living coccolithophores in ocean waters. In: Coccolithophores (eds Winter A, Siesser WG), pp. 161-177. Cambridge University Press, UK.
[35] Yang TN, Wei KY, Chen LL (2003) Occurrence of coccolithophorids in the northeastern and central South China Sea. Taiwania, 48, 29-45.
[36] Yang TN, Wei KY, Gong GC (2001) Distribution of coccolithophorids and coccoliths in surface ocean off northeastern Taiwan. Botanical Bulletin of Academic Sinica, 42, 287-302.
[37] Young JR (1994) Functions of coccoliths. In: Coccolithophores (eds Winter A, Siesser WG), pp. 63-82. Cambridge University Press, Cambridge.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Meixia Zhang, Yan Luo, Zhengbing Yan, Jiao Chen, Anwar Eziz, Kaihui Li and Wenxuan Han. Resorptions of 10 mineral elements in leaves of desert shrubs and their contrasting responses to aridity[J]. J Plant Ecol, 2019, 12(2): 358 -366 .
[2] Guoping Wang Dayuan Xue Yi Wen Gong Cheng Qingwen Min. Diversity of traditional knowledge related to utilization of biological resources by Tu nationality in China[J]. Biodiv Sci, 0, 0(0): 735 -742 .
[3] Hai-Lin Qin, An-Jun Deng, Guan-Hua Du, Peng Wang, Jin-Lan Zhang and Zhi-Hong Li. Fingerprinting Analysis of Rhizoma Chuanxiong of Commercial Types using 1H Nuclear Magnetic Resonance Spectroscopy and High Performance Liquid Chromatography Method[J]. J Integr Plant Biol, 2009, 51(6): 537 -544 .
[4] KANG Bing, LIU Shi-Rong, WEN Yuan-Guang, ZHANG Yue-Jin, JIANG Zai-Min, CHANG Jian-Guo. POPULATION DYNAMICS DURING SUCCESSION OF SECONDARY NATURAL FOREST IN DAQINGSHAN, GUANGXI, CHINA[J]. Chin J Plan Ecolo, 2006, 30(6): 931 -940 .
[5] Gui Ji-xun, Zhu Ting-cheng. Study of Energy Flow Between Litter and Decomposers in Aneurolepidium chinese Grassland[J]. Chin J Plan Ecolo, 1992, 16(2): 143 -148 .
[6] Yu-Long Gao, Xue-Feng Yao, Wen-Zheng Li, Zhong-Bang Song, Bing-Wu Wang, Yu-Ping Wu, Jun-Li Shi, Guan-Shan Liu, Yong-Ping Li and Chun-Ming Liu. An efficient TILLING platform for cultivated tobacco[J]. J Integr Plant Biol, 0, (): 0 .
[7] Zhang Zhen-jue. Some Principles Governing Shedding of Flowers and Fruits in Vanilla fragrans[J]. Chin Bull Bot, 1985, 3(05): 36 -37 .
[8] LI De-Zhu-, WANG Yu-Hua-, YI Ting-Shuang. The Next-Generation Flora iFlora[J]. Plant Diversity, 2012, 34(6): 525 -531 .
[9] Guang-Wan HU, Heng LI,Ying TAN,Yan LIU,Chun-Lin LONG. Tupistra hongheensis (Ruscaceae), a new species from Yunnan, China based on morphological, karyotypic, and pollen morphological studies[J]. J Syst Evol, 2013, 51(2): 230 .
[10] Li-Na SHA, Xing FAN, Hai-Qin ZHANG, Hou-Yang KANG, Yi WANG, Xiao-Li WANG, Li ZHANG, Chun-Bang DING, Rui-Wu YANG, Yong-Hong ZHOU. Phylogenetic relationships in Leymus (Triticeae; Poaceae): Evidence from chloroplast trnH-psbA and mitochondrial coxII intron sequences[J]. J Syst Evol, 2014, 52(6): 722 -734 .