Biodiversity Science ›› 2004, Vol. 12 ›› Issue (6): 578-585.doi: 10.17520/biods.2004073

• Editorial • Previous Article     Next Article

Establishment of a core collection of Changjiang spring sowing soybean

WANG Li-Xia, LI Ying-Hui, LI Wei, ZHU Li, GUAN Yuan, NING Xue-Cheng, GUAN Rong-Xia, LIU Zhang-Xiong, CHANG Ru-Zhen, QIU Li-Juan   

  1. Key Lab of Crop Germplasm Resources and Biotechnology of the Ministry of Agriculture, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081
  • Received:2004-05-13 Revised:2004-09-18 Online:2004-11-20
  • QIU Li-Juan

Sampling strategy is very important for core collection establishment. In this study, different methods to construct a core collection of Changjiang spring sowing soybean were performed based on data of SSR(simple sequence repeat) markers and agronomic traits in order to optimize the sampling strategy for core collection. The results showed that, based on cluster analysis of SSR data, each of the three methods, i.e., random sampling within each group, sampling by genetic similarity coefficient within each group and sampling by genetic similarity coefficient, could be used to construct a soybean core collection. When SSR allelic reserving ratios were maintained at 90% and 80%, the core collections had higher genetic diversity indices of SSR alleles than if maintained at 70%. Core collections could also be constructed by agronomic and other basic data if there was no molecular data; however, SSR allelic reserving ratio might be decreased, which suggested that assessment of genetic diversity by SSR data was not always consistent with assessment by agronomic data. We found that core collections were heterogeneous, either when created with different sampling methods or with the same sampling method in different repeats, because randomicity always existed in selecting individuals. This indicated that the germplasm to form a core collection was variable, so optimal sampling strategies should be chosen to establish core collections based on different data according to practical or scientific objectives. Integrating phenotypic and genotypic data together would be better for improving the representativeness of core collections.

Key words: 2010 biodiversity target, assessment indicators, species richness, diversity of ecosystem types, completeness of vertical stratification of vegetation, endemism, extent of biological invasions

CLC Number: 

  • S32

[1] Zou Anlong, Ma Suhui, Ni Xiaofeng, Cai Qiong, Li Xiuping, Ji Chengjun. Response of understory plant diversity to nitrogen deposition in Quercus wutaishanica forests of Mt. Dongling, Beijing [J]. Biodiv Sci, 2019, 27(6): 607-618.
[2] Liu Yan, Yang Yushuang. Importance of conservation priority areas for bryophyte biodiversity in Chongqing [J]. Biodiv Sci, 2019, 27(6): 677-682.
[3] Gu Hanjiao, Zhang Cancan, Wang Jinsong, Shi Xuewen, Xia Ruixue, Liu Bin, Chen Fusheng, Bu Wensheng. Variation in basic morphological and functional traits of Chinese bamboo [J]. Biodiv Sci, 2019, 27(6): 585-594.
[4] Dong-Ting ZOU, Qing-Gang WANG, Ao LUO, Zhi-Heng WANG. Species richness patterns and resource plant conservation assessments of Rosaceae in China [J]. Chin J Plant Ecol, 2019, 43(1): 1-15.
[5] Anrong Liu,Teng Yang,Wei Xu,Zijian Shangguan,Jinzhou Wang,Huiying Liu,Yu Shi,Haiyan Chu,Jin-Sheng He. Status, issues and prospects of belowground biodiversity on the Tibetan alpine grassland [J]. Biodiv Sci, 2018, 26(9): 972-987.
[6] Xu Xiang, Zhang Huayong, Xie Ting, Sun Qingqing, Tian Yonglan. Elevational pattern of seed plant diversity in Xishuangbanna and its mechanisms [J]. Biodiv Sci, 2018, 26(7): 678-689.
[7] Zejin Zhang,Yanpei Guo,Jin-Sheng He,Zhiyao Tang. Conservation status of Wild Plant Species with Extremely Small Populations in China [J]. Biodiv Sci, 2018, 26(6): 572-577.
[8] Qian YANG, Wei WANG, Hui ZENG. Effects of nitrogen addition on the plant diversity and biomass of degraded grasslands of Nei Mongol, China [J]. Chin J Plan Ecolo, 2018, 42(4): 430-441.
[9] Haibin Yu,Yili Zhang,Linshan Liu,Zhao Chen,Wei Qi. Floristic characteristics and diversity patterns of seed plants endemic to the Tibetan Plateau [J]. Biodiv Sci, 2018, 26(2): 130-137.
[10] Zhigang Jiang,Lili Li,Yiming Hu,Huijian Hu,Chunwang Li,Xiaoge Ping,Zhenhua Luo. Diversity and endemism of ungulates on the Qinghai-Tibetan Plateau: Evolution and conservation [J]. Biodiv Sci, 2018, 26(2): 158-170.
[11] Binqiang Li, Pengying Li, Jiawei Yang, Hongjun Zi, Xingquan Li, Xihuan Duan, Xu Luo. Wildlife monitoring in Weishan Qinghua Green Peafowl Nature Reserve using infrared cameras, Yunnan Province [J]. Biodiv Sci, 2018, 26(12): 1343-1347.
[12] Ge Gao,Bin Wang,Chenxiang He,Xu Luo. Biodiversity of birds and mammals in alpine habitat of Mt. Gaoligong, Lushui County, Yunnan [J]. Biodiv Sci, 2017, 25(3): 332-339.
[13] Xiaobo Huang, Shuaifeng Li, Jianrong Su, Wande Liu, Xuedong Lang. The relationship between species richness and ecosystem multifunctionality in the Pinus yunnanensis natural secondary forest [J]. Biodiv Sci, 2017, 25(11): 1182-1191.
[14] Jianming Wang, Wenjuan Wang, Jingwen Li, Yiming Feng, Bo Wu, Qi Lu. Biogeographic patterns and environmental interpretation of plant species richness in desert regions of Northwest China [J]. Biodiv Sci, 2017, 25(11): 1192-1201.
[15] Yuanjie Xu,Dunmei Lin,Ming Shi,Yanjie Xie,Yizhi Wang,Zhenhua Guan,Jianying Xiang. Spatial heterogeneity and its causes in evergreen broad-leaved forests in the Ailao Mountains, Yunnan Province [J]. Biodiv Sci, 2017, 25(1): 23-33.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] CHANG Chen-Hui,WU Fu-Zhong,YANG Wan-Qin,TAN Bo,XIAO Sa,LI Jun,GOU Xiao-Lin. Changes in log quality at different decay stages in an alpine forest[J]. Chin J Plan Ecolo, 2015, 39(1): 14 -22 .
[2] WANG Hong-Xing, CHEN Xin, TANG Jian-Jun, SHIMIZU Katsuyoshi. Influence of released transgenic pest and disease resistant crops on plant associated microorganisms in soil[J]. Biodiv Sci, 2002, 10(2): 232 -237 .
[3] Qin SUN, Xiao-Rong WANG, Shi-Ming DING,Xin-Fang YUAN. Effects of Interaction Between Cadmium and Plumbum on Phytochelatins and Glutathione Production in Wheat (Triticum aestivum L.)[J]. J Integr Plant Biol, 2005, 47(4): .
[4] ZHANG Shi-Gong;GAO Ji-Yin and SONG Jing-Zhi. Effects of Betaine on Activities of Membrane Protective Enzymes in Wheat (Triticum aestivum L.) Seedlings Under NaCl Stress[J]. Chin Bull Bot, 1999, 16(04): 429 -432 .
[5] . [J]. Chin J Plan Ecolo, 1964, (2): 265 .
[6] HE Wei-Ming and ZHONG Zhang-Cheng. Effects of Soil Fertility on Gynostemma pentaphyllum Makino Population Behavior[J]. Chin Bull Bot, 1999, 16(04): 425 -428 .
[7] . [J]. Chin Bull Bot, 1996, 13(专辑): 76 .
[8] CHEN Jin, LI Yang, HUANG Jian-Hui. Decomposition of mixed litter of four dominant species in an Inner Mongolia steppe[J]. Chin J Plan Ecolo, 2011, 35(1): 9 -16 .
[9] ZHAN Zha_Jun, SUN Han_Dong, WU Hou_Ming and YUE Jian_Min. Chemical Components from the Fungus Englero myces goetzei[J]. J Integr Plant Biol, 2003, 45(2): 248 -252 .
[10] Wei Zhou,Xu Li,Kaiyuan Li,Minghui Li. Fish faunal presence value in three first level tributaries of the Salween River in Yunnan, China and its meaning for aquatic nature reserve plan- ning[J]. Biodiv Sci, 2016, 24(10): 1146 -1153 .