Biodiversity Science ›› 2007, Vol. 15 ›› Issue (6): 618-625.doi: 10.1360/biodiv.070181

Special Issue: Studies on Plant–Pollinator Interaction

• Special Issue • Previous Article     Next Article

Floral advertisement and rewards in bumblebee-pollinated Aconitum kusnezoffii (Ranunculaceae)

Wanjin Liao*, Zhengmei Wang, Lina Xie, Wen Xiao, Yue Sun   

  1. Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering & Institute of Ecology, Bei-jing Normal University, Beijing 100875
  • Online:2007-11-20

Interaction between animal-pollinated plants and their pollinators is thought to be an important selecting force shaping the evolution of flowers. Successful pollination of a plant relies on its attractiveness to pollinators and the ability of the pollinators to deposit enough compatible pollen on the flower’s stigma. To assess the attractiveness, we manipulated the flower of Aconitum kusnezoffii by removing the sepals and pet-als, respectively. We then evaluated the mating system based on pollinator behavior and flower biology of A. kusnezoffii. The bumblebee, Bombus ignites, was the effective pollinator of A. kusnezoffii. Bumblebee be-havior differed on the manipulated flowers. The visiting frequency was significantly reduced by se-pal-removal treatment, but remained unchanged by nectar-removal treatment. Bumblebees were attracted by the flower exterior morphology formed by five sepals, not by the nectary formed by the two petals. The two lower sepals provided a landing platform, and the uppermost sepal functioned as a nectar guide, ensuring bumblebee find the nectar precisely and rapidly. The two lateral sepals restricted the direction in which a bumblebee can enter the flower, ensuring pollination efficiency in zygomorphic flowers. Nectar was the main reward for bumblebees, with a sugar concentration of 39.23% and histidine concentration of 0.25 μg/μL. The flower of A. kusnezoffii was large, protandrous and herkogamous, suggesting an outcrossing mating system based on the outcrossing index. In Aconitum inflorescences the oldest flowers were functionally female at the bottom of acropetal racemes, while younger flowers were functionally male at the upper positions. Bombus ignites generally flew from a younger functionally male flower near the top of an A. kusnezoffii inflorescence to an older functionally female flower near the bottom of another inflorescence, and then moved progres-sively upward. This behavior promoted the outcrossing of A. kusnezoffii. Aconitum kusnezoffii flowers were strongly protandrous, with the male phase lasting 2–4 days, during which the anthers gradually dehisced. Aconitum packaged pollen within each flower as individual anthers dehisced over a protracted period. Such pollen packaging necessarily limited pollen removal during single visits and increased male fitness by pro-moting pollen dispersal.

No related articles found!
Full text



[1] Xinghai Yang, Baoxuan Nong, Xiuzhong Xia, Zongqiong Zhang, Yu Zeng, Kaiqiang Liu, Guofu Deng, Danting Li. Genome-wide Association Study of Genes Related to Waxiness in Oryza sativa[J]. Chin Bull Bot, 2016, 51(6): 737 -742 .
[2] Wang Xiao-Dong, Wang Ching-Jui. New Taxa of Lappula from China[J]. J Syst Evol, 1992, 30(4): 367 -370 .
[3] Ronggai Li, Yanmei Lu, Yueying Wang, Baoqiang Wang, Wei Song, Wenying Zhang. Molecular Study on Maize Rough Dwarf Disease: A Review[J]. Chin Bull Bot, 2017, 52(3): 375 -387 .
[4] GUAN Jun-Feng LI Guang-Min. The Physiological Effects of Calcium on Ethylene Biosynthesis and Signal Transduction in Plants[J]. Chin Bull Bot, 2000, 17(05): 413 -418 .
[5] CHEN Qi_Jun, NIU Xu_Guang, CHAI Mao_Feng, CHEN Jia , LIU Qiang and WANG Xue_Chen. Isolation of an Arabidopsis Gene Encoding Ins (1,3,4) P3 5/6_Kinase_like Protein and Involved in Plant Response to Abiotic Stresses[J]. J Integr Plant Biol, 2003, 45(2): 211 -218 .
[6] Weimin Li, Sifeng Li, Bin Li. Genetic Diversity in Natural Populations of Abies chensiensis Based on Nuclear Simple Sequence Repeat Markers[J]. Chin Bull Bot, 2012, 47(4): 413 -421 .
[7] Juan Wang,Yaxin Zhai,Aiqin Zhang. Temporal variation of plant sexes in a wild population of Tulipa sinkiangensis over seven years[J]. Biodiv Sci, 2018, 26(5): 519 -526 .
[8] HAN Hou-Wei, JIANG Xin, PAN Jin-Hua, CONG Wei, SUN Juan, ZHANG Zhuang-Zhi, SONG Shao-Feng, SHENG Bao-Li, WANG Qing-Yan, and LI Xiao-Jie. Characteristics of seagrass seed and restoration of seagrass bed[J]. Chin J Plan Ecolo, 2012, 36(8): 909 -917 .
[9] Qinhong Ma,Yanpeng Li,Juyu Lian,Wanhui Ye. Difference in survival response of tree species to neighborhood crowding in a lower subtropical evergreen broad-leaved forest of Dinghushan[J]. Biodiv Sci, 2018, 26(6): 535 -544 .
[10] Qiong Wu, Fang Liu, Shaohui Li, Guoli Song, Chunying Wang, Xiangdi Zhang, Yuhong Wang, David Stelly, and Kunbo Wang. Uniqueness of the Gossypium mustelinum Genome Revealed by GISH and 45S rDNA FISH[J]. J Integr Plant Biol, 2013, 55(7): 654 -662 .