生物多样性 ›› 2019, Vol. 27 ›› Issue (2): 186-199.doi: 10.17520/biods.2018264

• 研究报告 • 上一篇    下一篇

新疆塔什库尔干野生动物自然保护区马可波罗盘羊潜在生态廊道识别

陈强强1, 2, 李美玲1, 3, 王旭4, FaisalMueenQamer5, 王鹏6, 杨建伟6, 汪沐阳1, 杨维康1, *()   

  1. 1 中国科学院新疆生态与地理研究所中国科学院干旱区生物地理与生物资源重点实验室, 乌鲁木齐 830011
    2 中国科学院大学, 北京 100049
    3 新疆大学资源与环境科学学院, 乌鲁木齐 830046
    4 新疆林业科学院, 乌鲁木齐 830063
    5 国际山地综合发展中心, 加德满都, 尼泊尔 999098
    6 塔什库尔干野生动物自然保护区管理局, 新疆喀什 844000
  • 收稿日期:2018-10-05 接受日期:2019-02-01 出版日期:2019-02-20
  • 通讯作者: 杨维康 E-mail:yangwk@ms.xjb.ac.cn
  • 基金项目:
    国家自然科学基金(31661143019);国家自然科学基金(41661144001);国家重点研发计划(2016YFC0503307)

Identification of potential ecological corridors for Marco Polo sheep in Taxkorgan Wildlife Nature Reserve, Xinjiang, China

Chen Qiangqiang1, 2, Li Meiling1, 3, Wang Xu4, Mueen Qamer Faisal5, Wang Peng6, Yang Jianwei6, Wang Muyang1, Yang Weikang1, *()   

  1. 1 CAS Key Laboratory of Biogeography and Bioresources in Arid Land, Xinjiang Institute of Ecology and Geography, Urumqi 830011, China
    2 University of Chinese Academy of Sciences, Beijing 100049, China
    3 College of Resources and Environment Science, Xinjiang University, Urumqi 830046, China
    4 Xinjiang Academy of Forestry Sciences, Urumqi 830063, China
    5 International Centre for Integrated Mountain Development, Kathmandu 999098, Nepal
    6 Taxkorgan Wildlife Nature Reserve Administration, Kashi, Xinjiang 844000, China
  • Received:2018-10-05 Accepted:2019-02-01 Online:2019-02-20
  • Contact: Yang Weikang E-mail:yangwk@ms.xjb.ac.cn

识别野生动物的适宜生境并在适宜生境之间构建生态廊道能够提高生境连通性, 有利于加强种群间基因交流并缓解生境破碎化带来的不利影响。本研究基于生境适宜性评价结果确定了塔什库尔干野生动物自然保护区内马可波罗盘羊(Ovis polii)的核心生境斑块, 运用廊道设计模型Linkage Mapper识别最低成本廊道并确定其优先级。结果表明, 马可波罗盘羊适宜生境主要分布在保护区西北部, 核心生境斑块少且破碎化明显, 夏冬两季核心生境斑块均为28个, 潜在生态廊道分别为45和47条。采用成本加权距离与欧几里得距离之比(CWD : EucD)以及成本加权距离与最低成本路径长度之比(CWD : LCP)两种度量方法评估了生态廊道的质量与重要性。以CWD : EucD来衡量, 夏季质量最高的4条廊道分别是皮斯岭至帕日帕克、同库至马尔洋、科克吐鲁克至帕日帕克, 以及哈尔努孜至同库; 冬季质量最高的3条廊道分别是其克尔克尔至亚希洛夫、萨提曼至依西代尔、其克尔克尔至科克吐鲁克。CWD : LCP分析表明, 夏季质量最高的廊道分别是哈尔努孜至阔克加尔和阔克加尔至马尔洋; 冬季质量最高的廊道分别是爱勒米希至塔萨拉、沙尔比列西南至依西代尔。利用流中心性评估各核心生境斑块和廊道的重要性表明, 帕日帕克、塔萨拉和马尔洋这三个斑块在促进马可波罗盘羊迁移扩散方面的贡献值最高。夏季皮斯岭至帕日帕克、同库至马尔洋和马拉特至其克尔克尔这3条廊道的贡献值最高; 冬季爱勒米希至塔萨拉、沙尔比列至沙尔比列西南和铁尔布尔列至沙尔比列这3条廊道的贡献值最高, 上述核心生境斑块和生态廊道在维持保护区马可波罗盘羊种群迁徙扩散中发挥着关键作用。此外, 赞坎、沙尔比列等斑块虽然面积小、贡献值低, 但起到了维持景观中重要斑块连通的踏脚石作用, 其重要性也不可忽略。研究结果可为塔什库尔干野生动物保护区马可波罗盘羊有效保护、保护区功能区划优化以及当地基础建设项目的规划选址提供科学指导。

关键词: 马可波罗盘羊, 最小成本路径, 生境适宜性指数, 生态廊道, 塔什库尔干野生动物自然保护区

Identifying suitable habitats for wildlife and building corridors between those habitats increases the connectivity of suitable habitat patches, enhancing gene communication, and mitigating the adverse effects of habitat fragmentation. In this study, the core distribution areas of Marco Polo sheep (Ovis polii) were determined based on a suitability index model. The lowest cost corridors were then identified using the Linkage Mapper model and their priorities were determined. Results showed that the suitable habitats of Marco Polo sheep were mainly distributed in the northwestern areas of the Taxkorgan Wildlife Nature Reserve. A total of 28 core patches (CPs) (core patches were defined as habitat patches with an area of larger than 10 km 2 in summer and 5 km 2 in winter) were confirmed both in summer and winter, which is a lower number and demonstrates fragmentation of suitable habitat. In total, 45 and 47 potential corridors for Marco Polo sheep habitat were identified for summer and winter habitats, respectively. The ratio of the cost-weighted distance and the Euclidean distance ratio (CWD : EucD), and ratio of cost-weighted distance and the least-cost path length (CWD : LCP) were used to evaluate the quality and importance of each corridor. Using the CWD : EucD, the top four highest quality corridors in summer were Tongku to Maeryang, Keketuluke to Paripake, Pisiling to Paripake and Haernuzi to Tongku; the top three highest quality corridors in winter were Qikeerkeer to Yaxiluofu, Satiman to Yixidaier and Qikeerkeer to Keketuluke. In comparison, using the CWD : LCP, the only two highest quality corridors were identified in summer and winter, i.e. Haernuzi to Kuokejiaer and Kuokejiaer to Maeryang in summer and Ailemixi to Tasala, the southwest of Shaerbilie to Yixidaier in winter. Current flow centrality was used to evaluate the contribution of each core patch and corridor to facilitate sheep movement. The highest contributions were from patches in Paripake, Tasala and Maeryang in summer and patches Paripake, Tasala and Maeryang in winter. The highest corridors were between patches Tongku to Maeryang, Malate to Qikeerkeer and Pisiling to Paripake in summer, and Ailemixi to Tasala, Shaerbilie to the southwest of Shaerbilie and Tieerbuerlie to Shaerbilie in winter. These results suggest that the above-mentioned CPs and corridors play key roles in maintaining connectivity of Marco Polo sheep habitats. Patches such as Zancan and Shaerbilie that are small in area and contribution little, still play an important role in maintaining the connectivity of important patches in the landscape. The results of present study will optimize understanding of functional zones and improve management schemes for conservation of this endangered species in the Taxkorgan Nature Reserve.

Key words: Marco Polo sheep, least-cost path, habitat suitability index, ecological corridor, Taxkorgan Wildlife Nature Reserve

图1

塔什库尔干野生动物自然保护区位置"

表1

影响马可波罗盘羊的生境因子取值(Fi)"

生境因子
Habitat factors
范围
Range
Fi (%) 生境因子
Habitat factors
范围
Range
Fi
(%)
夏季 Summer 冬季 Winter
海拔
Elevation (m)
≤ 3,500 2 0 距国道314线距离
Distance to G314 national
road (m)
≤ 1,000 0
3,501-4,000 65 65 1,001-2,000 25
4,001-4,500 100 100 2,001-3,000 50
4,501-5,000 10 14 3,001-4,000 75
≥ 5,001 5 0 ≥ 4,001 100
坡度
Slope (°)
≤ 10 35 100 距乡道距离
Distance to village road (m)
≤ 400 0
11-20 100 83 401-600 25
21-30 40 44 601-800 50
≥ 31 30 35 801-1,000 75
坡位
Slope position
上 Top 60 69 ≥ 1,001 100
中 Middle 100 100 距居民点距离
Distance to settlement (m)
≤ 400 0
下 Bottom 40 63 401-800 25
坡向
Slope aspect
东 East 100 73 801-1,200 50
南 South 60 100 1,201-1,600 75
西 West 35 16 ≥ 1,601 100
北 North 65 50 距牧场距离
Distance to pastures (m)
≤ 750 0
植被类型
Vegetation type
垫状驼绒藜高寒荒漠a 5 0 751-1,500 25
风毛菊、红景天稀疏植被b 10 0 1,501-2,250 50
羊茅高寒草原c 20 22 2,251-3,000 75
短花针茅荒漠草原d 25 30 ≥ 3,001 100
麻黄荒漠e 30 17
驼绒藜荒漠f 45 17
高山绢蒿、高山紫菀高寒荒漠g 100 100
距水源距离
Distance to water (m)
≤ 1,000 100 100
1,001-2,000 65 48
≥ 2,001 55 63

图2

马可波罗盘羊栖息地阻力(适宜性等级)栅格图"

图3

马可波罗盘羊核心生境斑块及成本加权距离(CWD)与最小成本路径(LCP)之比所示的廊道质量。红色表示沿着最小成本路径移动的成本较高, 绿色表示在最小成本路径上连接的质量更高。图中数字代表核心生境斑块。"

图4

马可波罗盘羊的最小成本廊道分布图。蓝色区域表示阻力较低的路径, 红色区域表示成本加权距离非常大。数字含义同图3。"

表2

夏季28个核心生境斑块(CPs)之间45条廊道的特征"

廊道Corridor 欧几里
得距离
EucD
(km)
加权成
本距离 CWD
(km)
最小成
本路径
LCP
(km)
CWD : EucD CWD : LCP 中心
性值 CFC (Amps)
廊道Corridor 欧几里
得距离
EucD
(km)
加权成本距离 CWD
(km)
最小成本路径
LCP
(km)
CWD : EucD CWD : LCP 中心
性值CFC (Amps)
3-28 13.68 9.60 0.90 0.70 10.67 75.06 19-20 33.96 378.30 6.30 11.14 60.05 35.23
5-10 5.93 59.95 2.35 10.12 25.53 69.68 9-28 21.94 345.53 10.56 15.75 32.71 34.34
4-20 25.24 65.65 2.95 2.60 22.27 68.02 7-28 12.60 197.59 6.77 15.68 29.20 33.65
5-28 14.41 151.92 5.55 10.55 27.40 67.89 20-24 53.19 1,024.50 28.79 19.26 35.59 32.74
25-26 19.42 150.66 3.62 7.76 41.61 66.95 14-23 24.48 457.02 23.16 18.67 19.74 32.55
24-25 34.96 239.04 15.21 6.84 15.72 62.88 18-20 27.22 389.17 6.59 14.30 59.05 32.32
11-15 26.88 118.06 4.35 4.39 27.17 59.10 6-20 27.56 424.47 10.39 15.40 40.86 32.26
10-14 19.88 109.08 7.37 5.49 14.81 56.77 12-14 20.13 391.45 13.74 19.45 28.49 31.20
1-3 13.30 39.67 4.87 2.98 8.14 56.26 15-23 17.21 380.47 5.32 22.10 71.54 29.35
18-19 12.59 71.92 4.87 5.71 14.76 53.08 10-11 9.67 402.79 5.57 41.64 72.37 28.81
13-20 16.96 222.02 10.49 13.09 21.16 52.00 4-6 18.49 407.77 9.67 22.05 42.16 27.89
7-12 9.33 128.15 5.37 13.74 23.87 51.24 8-13 8.31 113.96 6.39 13.72 17.82 27.00
6-9 8.20 66.22 3.37 8.08 19.64 49.61 15-16 20.48 187.68 12.66 9.16 14.82 27.00
9-18 11.71 126.48 5.19 10.81 24.35 46.89 17-20 44.94 79.65 4.65 1.77 17.15 27.00
2-28 26.20 301.39 10.17 11.50 29.64 44.66 20-21 11.31 125.54 5.67 11.10 22.14 27.00
23-26 30.33 214.05 8.39 7.06 25.51 43.61 20-22 33.10 174.76 5.85 5.28 29.90 27.00
7-9 10.44 304.11 7.47 29.14 40.72 42.75 25-27 19.13 240.98 4.57 12.60 52.71 27.00
14-15 13.17 282.16 4.05 21.42 69.76 40.14 14-19 29.39 895.98 13.97 30.49 64.15 26.42
1-11 14.26 507.33 9.32 35.58 54.43 38.09 2-6 14.56 172.00 9.06 11.81 18.98 26.31
6-28 25.55 347.54 13.21 13.60 26.30 38.01 6-18 14.43 187.94 11.52 13.03 16.32 26.30
19-24 24.20 663.07 22.25 27.39 29.81 36.52 10-12 13.10 451.88 14.46 34.50 31.24 21.91
15-26 40.58 457.27 13.74 11.27 33.28 35.96 14-24 35.42 1,056.31 30.62 29.82 34.49 19.06
2-4 11.42 366.32 6.24 32.07 58.71 35.74 平均
Average
20.54 282.52 8.79 14.79 32.78 41.00

表3

冬季28个核心生境斑块(CPs)之间47条廊道的特征"

廊道
Corridor
欧几里
得距离
EucD
(km)
加权成
本距离 CWD
(km)
最小成
本距离LCP
(km)
CWD : EucD CWD : LCP 中心
性值CFC (Amps)
廊道
Corridor
欧几里
得距离EucD (km)
加权成
本距离
CWD (km)
最小成
本距离LCP
(km)
CWD : EucD CWD : LCP 中心
性值CFC (Amps)
3-15 13.49 30.95 6.34 2.29 4.88 91.46 25-26 20.05 412.09 6.17 20.55 66.83 36.05
9-12 5.48 88.06 4.05 16.08 21.77 80.38 18-24 36.71 1,636.84 41.54 44.59 39.40 34.71
6-9 5.48 28.32 2.22 5.17 12.74 79.90 23-13 12.86 803.84 11.82 62.49 68.04 34.00
17-20 48.11 45.08 3.07 0.94 14.67 75.00 4-20 30.13 593.00 18.69 19.68 31.74 33.77
1-28 24.28 195.34 13.51 8.04 14.46 73.43 20-19 43.16 2,051.04 38.53 47.53 53.24 31.33
14-19 14.25 183.03 7.37 12.84 24.85 71.63 18-19 31.93 1,837.59 37.42 57.54 49.10 30.64
12-18 4.22 45.40 5.19 10.76 8.74 65.19 1-7 21.97 1,361.46 19.17 61.96 71.01 30.56
6-28 21.66 619.93 12.31 28.62 50.35 63.12 11-10 9.71 518.61 7.32 53.43 70.90 27.77
15-23 13.68 480.66 6.64 35.14 72.37 61.96 8-17 20.23 499.82 6.85 24.71 72.99 27.00
14-3 8.23 355.53 6.02 43.20 59.05 59.63 17-22 10.07 41.90 3.50 4.16 11.98 27.00
5-25 6.81 111.03 2.42 16.31 45.86 53.14 20-21 12.28 97.28 4.57 7.92 21.28 27.00
13-5 6.66 154.23 5.72 23.14 26.96 47.54 25-27 17.96 377.52 8.07 21.03 46.79 27.00
24-25 35.90 1,235.26 17.20 34.41 71.83 46.03 19-25 43.78 2,136.49 35.55 48.80 60.10 26.56
2-28 28.36 858.78 16.54 30.29 51.91 45.31 2-4 13.89 570.71 11.37 41.08 50.20 26.53
10-28 18.74 711.69 12.36 37.98 57.57 44.83 2-6 16.72 557.02 17.43 33.31 31.95 24.45
7-16 11.57 179.77 12.06 15.54 14.90 44.40 2-20 25.92 1,015.82 25.60 39.18 39.69 23.94
16-15 21.83 686.87 19.66 31.47 34.94 43.52 11-7 15.35 914.29 13.97 59.57 65.47 23.56
11-3 16.52 529.36 15.44 32.04 34.29 43.31 13-26 20.94 503.17 7.05 24.02 71.42 22.93
10-14 13.56 379.56 13.02 28.00 29.16 41.61 23-24 26.53 2,109.18 27.06 79.51 77.94 22.45
1-11 15.50 700.52 12.51 45.20 56.00 40.67 23-26 31.65 987.18 19.18 31.19 51.46 22.23
20-12 12.83 508.98 11.14 39.68 45.68 38.35 11-14 14.05 740.74 11.41 52.71 64.91 20.86
20-18 11.71 507.04 7.99 43.30 63.47 37.17 4-6 29.28 955.24 30.68 32.62 31.14 18.96
15-26 39.21 1,204.82 23.79 30.73 50.65 36.48 19-24 28.16 1,815.86 24.56 64.49 73.92 17.89
20-24 42.64 1,774.72 37.30 41.62 47.58 36.14 平均
Average
20.72 726.63 14.92 32.87 45.45 41.22

图5

研究区域核心生境斑块(CPs)和各廊道中心性值(色块显示的数值)"

图6

塔什库尔干野生动物自然保护区内国道314线两侧拟建廊道位置"

[4] Boyce MS, McDonald LL ( 1999) Relating populations to habitats using resource selection functions. Trends in Ecology & Evolution, 14, 268-272.
doi: 10.1016/S0169-5347(99)01593-1 pmid: 10370262
[5] Carroll C, McRae BH, Brookes A ( 2012) Use of Linkage Mapping and Centrality analysis across habitat gradients to conserve connectivity of gray wolf populations in western North America. Conservation Biology, 26, 78-87.
doi: 10.1111/j.1523-1739.2011.01753.x pmid: 22010832
[6] Chen QQ, Li ML, Han F, Wang MY, Xu WX, Yang WK ( 2018) Population survey of Ovis ammon polii in Taxkorgan Nature Reserve, Xinjiang. Sichuan Journal of Zoology, 37, 637-645. (in Chinese with English abstract)
[ 陈强强, 李美玲, 韩芳, 汪沐阳, 徐文轩, 杨维康 ( 2018) 新疆塔什库尔干野生动物自然保护区马可波罗盘羊种群调查. 四川动物, 37, 637-645.]
[7] Chi Y, Shi HH, Feng AP ( 2015) Typical island landscape ecological network establishment—A case study of Chongming Island. Marine Environmental Science, 34, 433-440. (in Chinese with English abstract)
doi: 10.13634/j.cnki.mes20150319
[ 池源, 石洪华, 丰爱平 ( 2015) 典型海岛景观生态网络构建——以崇明岛为例. 海洋环境科学, 34, 433-440.]
doi: 10.13634/j.cnki.mes20150319
[8] Crooks KR, Sanjayan MA ( 2006) Connectivity conservation: Maintaining connections for nature. In: Connectivity Conservation (eds Crooks KR, Sanjayan M), pp. 1-20. Cambridge University Press, Cambridge.
[9] Douglas-Hamilton I, Krink T, Vollrath F ( 2005) Movements and corridors of African elephants in relation to protected areas. Naturwissenschaften, 92, 158-163.
doi: 10.1007/s00114-004-0606-9
[10] Dutta T, Sharma S, McRae BH, Roy PS, DeFries R ( 2016) Connecting the dots: Mapping habitat connectivity for tigers in central India. Regional Environmental Change, 16, 53-67.
doi: 10.1007/s10113-015-0877-z
[11] Feng TT, Manen FT, Zhao NX, Li M, Wei FW ( 2009) Habitat assessment for giant pandas in the Qinling Mountain region of China. Journal of Wildlife Management, 73, 852-858.
doi: 10.2193/2008-186
[12] Gong MH, Dai ZG, Zeng ZG, Zhang Q, Song YL ( 2007) A preliminary survey of population size and habitats of Marco Polo sheep (Ovis ammon polii) in Taxkorgan Nature Reserve. Acta Theriologica Sinica, 27, 317-324. (in Chinese with English abstract)
doi: 10.3969/j.issn.