生物多样性 ›› 2019, Vol. 27 ›› Issue (2): 186-199.doi: 10.17520/biods.2018264

• 研究报告 • 上一篇    下一篇

新疆塔什库尔干野生动物自然保护区马可波罗盘羊潜在生态廊道识别

陈强强1, 2, 李美玲1, 3, 王旭4, FaisalMueenQamer5, 王鹏6, 杨建伟6, 汪沐阳1, 杨维康1, *()   

  1. 1 中国科学院新疆生态与地理研究所中国科学院干旱区生物地理与生物资源重点实验室, 乌鲁木齐 830011
    2 中国科学院大学, 北京 100049
    3 新疆大学资源与环境科学学院, 乌鲁木齐 830046
    4 新疆林业科学院, 乌鲁木齐 830063
    5 国际山地综合发展中心, 加德满都, 尼泊尔 999098
    6 塔什库尔干野生动物自然保护区管理局, 新疆喀什 844000
  • 收稿日期:2018-10-05 接受日期:2019-02-01 出版日期:2019-02-20
  • 通讯作者: 杨维康 E-mail:yangwk@ms.xjb.ac.cn
  • 基金项目:
    国家自然科学基金(31661143019);国家自然科学基金(41661144001);国家重点研发计划(2016YFC0503307)

Identification of potential ecological corridors for Marco Polo sheep in Taxkorgan Wildlife Nature Reserve, Xinjiang, China

Chen Qiangqiang1, 2, Li Meiling1, 3, Wang Xu4, Mueen Qamer Faisal5, Wang Peng6, Yang Jianwei6, Wang Muyang1, Yang Weikang1, *()   

  1. 1 CAS Key Laboratory of Biogeography and Bioresources in Arid Land, Xinjiang Institute of Ecology and Geography, Urumqi 830011, China
    2 University of Chinese Academy of Sciences, Beijing 100049, China
    3 College of Resources and Environment Science, Xinjiang University, Urumqi 830046, China
    4 Xinjiang Academy of Forestry Sciences, Urumqi 830063, China
    5 International Centre for Integrated Mountain Development, Kathmandu 999098, Nepal
    6 Taxkorgan Wildlife Nature Reserve Administration, Kashi, Xinjiang 844000, China
  • Received:2018-10-05 Accepted:2019-02-01 Online:2019-02-20
  • Contact: Yang Weikang E-mail:yangwk@ms.xjb.ac.cn

识别野生动物的适宜生境并在适宜生境之间构建生态廊道能够提高生境连通性, 有利于加强种群间基因交流并缓解生境破碎化带来的不利影响。本研究基于生境适宜性评价结果确定了塔什库尔干野生动物自然保护区内马可波罗盘羊(Ovis polii)的核心生境斑块, 运用廊道设计模型Linkage Mapper识别最低成本廊道并确定其优先级。结果表明, 马可波罗盘羊适宜生境主要分布在保护区西北部, 核心生境斑块少且破碎化明显, 夏冬两季核心生境斑块均为28个, 潜在生态廊道分别为45和47条。采用成本加权距离与欧几里得距离之比(CWD : EucD)以及成本加权距离与最低成本路径长度之比(CWD : LCP)两种度量方法评估了生态廊道的质量与重要性。以CWD : EucD来衡量, 夏季质量最高的4条廊道分别是皮斯岭至帕日帕克、同库至马尔洋、科克吐鲁克至帕日帕克, 以及哈尔努孜至同库; 冬季质量最高的3条廊道分别是其克尔克尔至亚希洛夫、萨提曼至依西代尔、其克尔克尔至科克吐鲁克。CWD : LCP分析表明, 夏季质量最高的廊道分别是哈尔努孜至阔克加尔和阔克加尔至马尔洋; 冬季质量最高的廊道分别是爱勒米希至塔萨拉、沙尔比列西南至依西代尔。利用流中心性评估各核心生境斑块和廊道的重要性表明, 帕日帕克、塔萨拉和马尔洋这三个斑块在促进马可波罗盘羊迁移扩散方面的贡献值最高。夏季皮斯岭至帕日帕克、同库至马尔洋和马拉特至其克尔克尔这3条廊道的贡献值最高; 冬季爱勒米希至塔萨拉、沙尔比列至沙尔比列西南和铁尔布尔列至沙尔比列这3条廊道的贡献值最高, 上述核心生境斑块和生态廊道在维持保护区马可波罗盘羊种群迁徙扩散中发挥着关键作用。此外, 赞坎、沙尔比列等斑块虽然面积小、贡献值低, 但起到了维持景观中重要斑块连通的踏脚石作用, 其重要性也不可忽略。研究结果可为塔什库尔干野生动物保护区马可波罗盘羊有效保护、保护区功能区划优化以及当地基础建设项目的规划选址提供科学指导。

关键词: 马可波罗盘羊, 最小成本路径, 生境适宜性指数, 生态廊道, 塔什库尔干野生动物自然保护区

Identifying suitable habitats for wildlife and building corridors between those habitats increases the connectivity of suitable habitat patches, enhancing gene communication, and mitigating the adverse effects of habitat fragmentation. In this study, the core distribution areas of Marco Polo sheep (Ovis polii) were determined based on a suitability index model. The lowest cost corridors were then identified using the Linkage Mapper model and their priorities were determined. Results showed that the suitable habitats of Marco Polo sheep were mainly distributed in the northwestern areas of the Taxkorgan Wildlife Nature Reserve. A total of 28 core patches (CPs) (core patches were defined as habitat patches with an area of larger than 10 km 2 in summer and 5 km 2 in winter) were confirmed both in summer and winter, which is a lower number and demonstrates fragmentation of suitable habitat. In total, 45 and 47 potential corridors for Marco Polo sheep habitat were identified for summer and winter habitats, respectively. The ratio of the cost-weighted distance and the Euclidean distance ratio (CWD : EucD), and ratio of cost-weighted distance and the least-cost path length (CWD : LCP) were used to evaluate the quality and importance of each corridor. Using the CWD : EucD, the top four highest quality corridors in summer were Tongku to Maeryang, Keketuluke to Paripake, Pisiling to Paripake and Haernuzi to Tongku; the top three highest quality corridors in winter were Qikeerkeer to Yaxiluofu, Satiman to Yixidaier and Qikeerkeer to Keketuluke. In comparison, using the CWD : LCP, the only two highest quality corridors were identified in summer and winter, i.e. Haernuzi to Kuokejiaer and Kuokejiaer to Maeryang in summer and Ailemixi to Tasala, the southwest of Shaerbilie to Yixidaier in winter. Current flow centrality was used to evaluate the contribution of each core patch and corridor to facilitate sheep movement. The highest contributions were from patches in Paripake, Tasala and Maeryang in summer and patches Paripake, Tasala and Maeryang in winter. The highest corridors were between patches Tongku to Maeryang, Malate to Qikeerkeer and Pisiling to Paripake in summer, and Ailemixi to Tasala, Shaerbilie to the southwest of Shaerbilie and Tieerbuerlie to Shaerbilie in winter. These results suggest that the above-mentioned CPs and corridors play key roles in maintaining connectivity of Marco Polo sheep habitats. Patches such as Zancan and Shaerbilie that are small in area and contribution little, still play an important role in maintaining the connectivity of important patches in the landscape. The results of present study will optimize understanding of functional zones and improve management schemes for conservation of this endangered species in the Taxkorgan Nature Reserve.

Key words: Marco Polo sheep, least-cost path, habitat suitability index, ecological corridor, Taxkorgan Wildlife Nature Reserve

图1

塔什库尔干野生动物自然保护区位置"

表1

影响马可波罗盘羊的生境因子取值(Fi)"

生境因子
Habitat factors
范围
Range
Fi (%) 生境因子
Habitat factors
范围
Range
Fi
(%)
夏季 Summer 冬季 Winter
海拔
Elevation (m)
≤ 3,500 2 0 距国道314线距离
Distance to G314 national
road (m)
≤ 1,000 0
3,501-4,000 65 65 1,001-2,000 25
4,001-4,500 100 100 2,001-3,000 50
4,501-5,000 10 14 3,001-4,000 75
≥ 5,001 5 0 ≥ 4,001 100
坡度
Slope (°)
≤ 10 35 100 距乡道距离
Distance to village road (m)
≤ 400 0
11-20 100 83 401-600 25
21-30 40 44 601-800 50
≥ 31 30 35 801-1,000 75
坡位
Slope position
上 Top 60 69 ≥ 1,001 100
中 Middle 100 100 距居民点距离
Distance to settlement (m)
≤ 400 0
下 Bottom 40 63 401-800 25
坡向
Slope aspect
东 East 100 73 801-1,200 50
南 South 60 100 1,201-1,600 75
西 West 35 16 ≥ 1,601 100
北 North 65 50 距牧场距离
Distance to pastures (m)
≤ 750 0
植被类型
Vegetation type
垫状驼绒藜高寒荒漠a 5 0 751-1,500 25
风毛菊、红景天稀疏植被b 10 0 1,501-2,250 50
羊茅高寒草原c 20 22 2,251-3,000 75
短花针茅荒漠草原d 25 30 ≥ 3,001 100
麻黄荒漠e 30 17
驼绒藜荒漠f 45 17
高山绢蒿、高山紫菀高寒荒漠g 100 100
距水源距离
Distance to water (m)
≤ 1,000 100 100
1,001-2,000 65 48
≥ 2,001 55 63

图2

马可波罗盘羊栖息地阻力(适宜性等级)栅格图"

图3

马可波罗盘羊核心生境斑块及成本加权距离(CWD)与最小成本路径(LCP)之比所示的廊道质量。红色表示沿着最小成本路径移动的成本较高, 绿色表示在最小成本路径上连接的质量更高。图中数字代表核心生境斑块。"

图4

马可波罗盘羊的最小成本廊道分布图。蓝色区域表示阻力较低的路径, 红色区域表示成本加权距离非常大。数字含义同图3。"

表2

夏季28个核心生境斑块(CPs)之间45条廊道的特征"

廊道Corridor 欧几里
得距离
EucD
(km)
加权成
本距离 CWD
(km)
最小成
本路径
LCP
(km)
CWD : EucD CWD : LCP 中心
性值 CFC (Amps)
廊道Corridor 欧几里
得距离
EucD
(km)
加权成本距离 CWD
(km)
最小成本路径
LCP
(km)
CWD : EucD CWD : LCP 中心
性值CFC (Amps)
3-28 13.68 9.60 0.90 0.70 10.67 75.06 19-20 33.96 378.30 6.30 11.14 60.05 35.23
5-10 5.93 59.95 2.35 10.12 25.53 69.68 9-28 21.94 345.53 10.56 15.75 32.71 34.34
4-20 25.24 65.65 2.95 2.60 22.27 68.02 7-28 12.60 197.59 6.77 15.68 29.20 33.65
5-28 14.41 151.92 5.55 10.55 27.40 67.89 20-24 53.19 1,024.50 28.79 19.26 35.59 32.74
25-26 19.42 150.66 3.62 7.76 41.61 66.95 14-23 24.48 457.02 23.16 18.67 19.74 32.55
24-25 34.96 239.04 15.21 6.84 15.72 62.88 18-20 27.22 389.17 6.59 14.30 59.05 32.32
11-15 26.88 118.06 4.35 4.39 27.17 59.10 6-20 27.56 424.47 10.39 15.40 40.86 32.26
10-14 19.88 109.08 7.37 5.49 14.81 56.77 12-14 20.13 391.45 13.74 19.45 28.49 31.20
1-3 13.30 39.67 4.87 2.98 8.14 56.26 15-23 17.21 380.47 5.32 22.10 71.54 29.35
18-19 12.59 71.92 4.87 5.71 14.76 53.08 10-11 9.67 402.79 5.57 41.64 72.37 28.81
13-20 16.96 222.02 10.49 13.09 21.16 52.00 4-6 18.49 407.77 9.67 22.05 42.16 27.89
7-12 9.33 128.15 5.37 13.74 23.87 51.24 8-13 8.31 113.96 6.39 13.72 17.82 27.00
6-9 8.20 66.22 3.37 8.08 19.64 49.61 15-16 20.48 187.68 12.66 9.16 14.82 27.00
9-18 11.71 126.48 5.19 10.81 24.35 46.89 17-20 44.94 79.65 4.65 1.77 17.15 27.00
2-28 26.20 301.39 10.17 11.50 29.64 44.66 20-21 11.31 125.54 5.67 11.10 22.14 27.00
23-26 30.33 214.05 8.39 7.06 25.51 43.61 20-22 33.10 174.76 5.85 5.28 29.90 27.00
7-9 10.44 304.11 7.47 29.14 40.72 42.75 25-27 19.13 240.98 4.57 12.60 52.71 27.00
14-15 13.17 282.16 4.05 21.42 69.76 40.14 14-19 29.39 895.98 13.97 30.49 64.15 26.42
1-11 14.26 507.33 9.32 35.58 54.43 38.09 2-6 14.56 172.00 9.06 11.81 18.98 26.31
6-28 25.55 347.54 13.21 13.60 26.30 38.01 6-18 14.43 187.94 11.52 13.03 16.32 26.30
19-24 24.20 663.07 22.25 27.39 29.81 36.52 10-12 13.10 451.88 14.46 34.50 31.24 21.91
15-26 40.58 457.27 13.74 11.27 33.28 35.96 14-24 35.42 1,056.31 30.62 29.82 34.49 19.06
2-4 11.42 366.32 6.24 32.07 58.71 35.74 平均
Average
20.54 282.52 8.79 14.79 32.78 41.00

表3

冬季28个核心生境斑块(CPs)之间47条廊道的特征"

廊道
Corridor
欧几里
得距离
EucD
(km)
加权成
本距离 CWD
(km)
最小成
本距离LCP
(km)
CWD : EucD CWD : LCP 中心
性值CFC (Amps)
廊道
Corridor
欧几里
得距离EucD (km)
加权成
本距离
CWD (km)
最小成
本距离LCP
(km)
CWD : EucD CWD : LCP 中心
性值CFC (Amps)
3-15 13.49 30.95 6.34 2.29 4.88 91.46 25-26 20.05 412.09 6.17 20.55 66.83 36.05
9-12 5.48 88.06 4.05 16.08 21.77 80.38 18-24 36.71 1,636.84 41.54 44.59 39.40 34.71
6-9 5.48 28.32 2.22 5.17 12.74 79.90 23-13 12.86 803.84 11.82 62.49 68.04 34.00
17-20 48.11 45.08 3.07 0.94 14.67 75.00 4-20 30.13 593.00 18.69 19.68 31.74 33.77
1-28 24.28 195.34 13.51 8.04 14.46 73.43 20-19 43.16 2,051.04 38.53 47.53 53.24 31.33
14-19 14.25 183.03 7.37 12.84 24.85 71.63 18-19 31.93 1,837.59 37.42 57.54 49.10 30.64
12-18 4.22 45.40 5.19 10.76 8.74 65.19 1-7 21.97 1,361.46 19.17 61.96 71.01 30.56
6-28 21.66 619.93 12.31 28.62 50.35 63.12 11-10 9.71 518.61 7.32 53.43 70.90 27.77
15-23 13.68 480.66 6.64 35.14 72.37 61.96 8-17 20.23 499.82 6.85 24.71 72.99 27.00
14-3 8.23 355.53 6.02 43.20 59.05 59.63 17-22 10.07 41.90 3.50 4.16 11.98 27.00
5-25 6.81 111.03 2.42 16.31 45.86 53.14 20-21 12.28 97.28 4.57 7.92 21.28 27.00
13-5 6.66 154.23 5.72 23.14 26.96 47.54 25-27 17.96 377.52 8.07 21.03 46.79 27.00
24-25 35.90 1,235.26 17.20 34.41 71.83 46.03 19-25 43.78 2,136.49 35.55 48.80 60.10 26.56
2-28 28.36 858.78 16.54 30.29 51.91 45.31 2-4 13.89 570.71 11.37 41.08 50.20 26.53
10-28 18.74 711.69 12.36 37.98 57.57 44.83 2-6 16.72 557.02 17.43 33.31 31.95 24.45
7-16 11.57 179.77 12.06 15.54 14.90 44.40 2-20 25.92 1,015.82 25.60 39.18 39.69 23.94
16-15 21.83 686.87 19.66 31.47 34.94 43.52 11-7 15.35 914.29 13.97 59.57 65.47 23.56
11-3 16.52 529.36 15.44 32.04 34.29 43.31 13-26 20.94 503.17 7.05 24.02 71.42 22.93
10-14 13.56 379.56 13.02 28.00 29.16 41.61 23-24 26.53 2,109.18 27.06 79.51 77.94 22.45
1-11 15.50 700.52 12.51 45.20 56.00 40.67 23-26 31.65 987.18 19.18 31.19 51.46 22.23
20-12 12.83 508.98 11.14 39.68 45.68 38.35 11-14 14.05 740.74 11.41 52.71 64.91 20.86
20-18 11.71 507.04 7.99 43.30 63.47 37.17 4-6 29.28 955.24 30.68 32.62 31.14 18.96
15-26 39.21 1,204.82 23.79 30.73 50.65 36.48 19-24 28.16 1,815.86 24.56 64.49 73.92 17.89
20-24 42.64 1,774.72 37.30 41.62 47.58 36.14 平均
Average
20.72 726.63 14.92 32.87 45.45 41.22

图5

研究区域核心生境斑块(CPs)和各廊道中心性值(色块显示的数值)"

图6

塔什库尔干野生动物自然保护区内国道314线两侧拟建廊道位置"

[4] Boyce MS, McDonald LL ( 1999) Relating populations to habitats using resource selection functions. Trends in Ecology & Evolution, 14, 268-272.
doi: 10.1016/S0169-5347(99)01593-1 pmid: 10370262
[5] Carroll C, McRae BH, Brookes A ( 2012) Use of Linkage Mapping and Centrality analysis across habitat gradients to conserve connectivity of gray wolf populations in western North America. Conservation Biology, 26, 78-87.
doi: 10.1111/j.1523-1739.2011.01753.x pmid: 22010832
[6] Chen QQ, Li ML, Han F, Wang MY, Xu WX, Yang WK ( 2018) Population survey of Ovis ammon polii in Taxkorgan Nature Reserve, Xinjiang. Sichuan Journal of Zoology, 37, 637-645. (in Chinese with English abstract)
[ 陈强强, 李美玲, 韩芳, 汪沐阳, 徐文轩, 杨维康 ( 2018) 新疆塔什库尔干野生动物自然保护区马可波罗盘羊种群调查. 四川动物, 37, 637-645.]
[7] Chi Y, Shi HH, Feng AP ( 2015) Typical island landscape ecological network establishment—A case study of Chongming Island. Marine Environmental Science, 34, 433-440. (in Chinese with English abstract)
doi: 10.13634/j.cnki.mes20150319
[ 池源, 石洪华, 丰爱平 ( 2015) 典型海岛景观生态网络构建——以崇明岛为例. 海洋环境科学, 34, 433-440.]
doi: 10.13634/j.cnki.mes20150319
[8] Crooks KR, Sanjayan MA ( 2006) Connectivity conservation: Maintaining connections for nature. In: Connectivity Conservation (eds Crooks KR, Sanjayan M), pp. 1-20. Cambridge University Press, Cambridge.
[9] Douglas-Hamilton I, Krink T, Vollrath F ( 2005) Movements and corridors of African elephants in relation to protected areas. Naturwissenschaften, 92, 158-163.
doi: 10.1007/s00114-004-0606-9
[10] Dutta T, Sharma S, McRae BH, Roy PS, DeFries R ( 2016) Connecting the dots: Mapping habitat connectivity for tigers in central India. Regional Environmental Change, 16, 53-67.
doi: 10.1007/s10113-015-0877-z
[11] Feng TT, Manen FT, Zhao NX, Li M, Wei FW ( 2009) Habitat assessment for giant pandas in the Qinling Mountain region of China. Journal of Wildlife Management, 73, 852-858.
doi: 10.2193/2008-186
[12] Gong MH, Dai ZG, Zeng ZG, Zhang Q, Song YL ( 2007) A preliminary survey of population size and habitats of Marco Polo sheep (Ovis ammon polii) in Taxkorgan Nature Reserve. Acta Theriologica Sinica, 27, 317-324. (in Chinese with English abstract)
doi: 10.3969/j.issn.1000-1050.2007.04.002
[ 龚明昊, 戴志刚, 曾治高, 张琼, 宋延龄 ( 2007) 新疆塔什库尔干自然保护区马可波罗盘羊种群数量和栖息地初步调查. 兽类学报, 27, 317-324.]
doi: 10.3969/j.issn.1000-1050.2007.04.002
[13] Hashmi MM, Frate L, Nizami SM, Carranza ML ( 2017) Assessing transhumance corridors on high mountain environments by least cost path analysis: The case of yak herds in Gilgit-Baltistan, Pakistan. Environmental Monitoring and Assessment, 189, 488-497.
doi: 10.1007/s10661-017-6189-7 pmid: 28884253
[14] Jiang ZG, Jiang JP, Wang YZ, Zhang E, Zhang YY, Li LL, Xie F, Cai B, Cao L, Zheng GM, Dong L, Zhang ZW, Ding P, Luo ZH, Ding CQ, Ma ZJ, Tang SH, Cao WX, Li CW, Hu HJ, Ma Y, Wu Y, Wang YX, Zhou KY, Liu SY, Chen YY, Li JT, Feng ZJ, Wang Y, Wang B, Li C, Song XL, Cai L, Zang CX, Zeng Y, Meng ZB, Fang HX, Ping XG ( 2016) Red list of China’s vertebrates. Biodiversity Science, 24, 501-551. (in Chinese and in English)
[ 蒋志刚, 江建平, 王跃招, 张鹗, 张雁云, 李立立, 谢锋, 蔡波, 曹亮, 郑光美, 董路, 张正旺, 丁平, 罗振华, 丁长青, 马志军, 汤宋华, 曹文宣, 李春旺, 胡慧建, 马勇, 吴毅, 王应祥, 周开亚, 刘少英, 陈跃英, 李家堂, 冯祚建, 王燕, 王斌, 李成, 宋雪琳, 蔡蕾, 臧春鑫, 曾岩, 孟智斌, 方红霞, 平晓鸽 ( 2016) 中国脊椎动物红色名录. 生物多样性, 24, 501-551.]
[15] Jiang ZG, Ma Y, Wu Y, Wang YX, Feng ZJ, Zhou KY, Liu SY, Luo ZH, Li CW ( 2015) China’s mammalian diversity. Biodiversity Science, 23, 351-364. (in Chinese with English abstract)
doi: 10.17520/biods.2014202
[ 蒋志刚, 马勇, 吴毅, 王应祥, 冯祚建, 周开亚, 刘少英, 罗振华, 李春旺 ( 2015) 中国哺乳动物多样性. 生物多样性, 23, 351-364.]
doi: 10.17520/biods.2014202
[16] Kanagaraj R, Wiegand T, Kramer-Schadt S, Goyal SP ( 2013) Using individual-based movement models to assess inter-patch connectivity for large carnivores in fragmented landscapes. Biological Conservation, 167, 298-309.
doi: 10.1016/j.biocon.2013.08.030
[17] Khan B, Ablimit A, Khan G, Jasra AW, Ali H, Ali R, Ahmad E, Ismail M ( 2016) Abundance, distribution and conservation status of Siberian ibex, Marco Polo and Blue sheep in Karakoram-Pamir Mountain area. Journal of King Saud University - Science, 28, 216-225.
doi: 10.1016/j.jksus.2015.02.007
[18] Knaapen JP, Scheffer M, Harms B ( 1992) Estimating habitat isolation in landscape. Landscape and Urban Planning, 23, 1-16.
doi: 10.1016/0169-2046(92)90060-D
[19] Lees AC, Peres CA ( 2008) Conservation value of remnant riparian forest corridors of varying quality for Amazonian birds and mammals. Conservation Biology, 22, 439-449.
doi: 10.1111/j.1523-1739.2007.00870.x
[20] Li S, Zhang XF, Shi JB, Dong SK, Gao XX ( 2018) Effects of highway from Inner Mongolia to Xinjiang on habitat suitability of ungulates in Alashan desert. Chinese Journal of Ecology, 37, 103-110. (in Chinese with English abstract)
[ 李帅, 张相锋, 石建斌, 董世魁, 高晓霞 ( 2018) 蒙新高速公路对阿拉善荒漠区有蹄类野生动物生境适宜性的影响. 生态学杂志, 37, 103-110.]
[21] Li WP, Bao H, Zhang MH ( 2017) Habitat analysis and design of potential ecological corridors for Amur tiger in Northeastern China. Acta Theriologica Sinica, 37, 317-326. (in Chinese with English abstract)
doi: 10.16829/j.slxb.201704001
[1] Abrahms B, Sawyer SC, Jordan NR, McNutt JW, Wilson AM, Brashares JS, Hayward M ( 2017) Does wildlife resource selection accurately inform corridor conservation? Journal of Applied Ecology, 54, 412-422.
doi: 10.1111/1365-2664.12714
[2] Adriaensen F, Chardon JP, De Blust G, Swinnen E, Villalba S, Gulinck H, Matthysen E ( 2003) The application of ‘least- cost’ modelling as a functional landscape model. Landscape and Urban Planning, 64, 233-247.
doi: 10.1016/S0169-2046(02)00242-6
[21] [ 李维平, 包衡, 张明海 ( 2017) 中国东北虎栖息地分析与潜在生态廊道构建. 兽类学报, 37, 317-326.]
doi: 10.16829/j.slxb.201704001
[22] Liang GD ( 1984) The Taxkorgan Nature Reserve was established. Xinjiang Forestry, ( 5), 26. (in Chinese)
[ 梁果栋 ( 1984) 塔什库尔干野生动物保护区成立. 新疆林业, ( 5), 26.]
[23] Liu HM, Liu XM, Wang CZ, Wang Q ( 2016) Assessment and conservation strategy on habitat suitability of Syrmaticus humiae in Jinzhongshan National Nature Reserve. Journal of Geo-information Science, 18, 526-536. (in Chinese with English abstract)
doi: 10.3724/SP.J.1047.2016.00526
[ 刘慧明, 刘晓曼, 王昌佐, 王桥 ( 2016) 金钟山国家级自然保护区黑颈长尾雉生境适宜性评价. 地球信息科学学报, 18, 526-536.]
doi: 10.3724/SP.J.1047.2016.00526
[24] McRae BH ( 2012) Centrality Mapper Connectivity Analysis Software. The Nature Conservancy, Fort Collins.
[25] McRae BH, Kavanagh DM ( 2011) Linkage Mapper Connectivity Analysis Software. The Nature Conservancy, Fort Collins.
[26] McRae BH, Shah VB ( 2009) Circuit Scape Users’ Guide. The University of California, Santa Barbara.
[27] Mi CR, Guo YM, Huettmann F, Han XS ( 2017) Species distribution model sampling contributes to the identification of target species: Take black-necked crane and hooded crane as two cases. Acta Ecologica Sinica, 37, 4476-4482. (in Chinese with English abstract)
[ 宓春荣, 郭玉民, Huettmann F, 韩雪松 ( 2017) 基于物种分布模型的精确采样提高目标物种发现率: 以黑颈鹤(Grus nigricollis)、白头鹤(Grus monacha)为例. 生态学报, 37, 4476-4482.]
[28] Pelletier D, Clark M, Anderson MG, Rayfield B, Wulder MA, Cardille JA ( 2014) Applying circuit theory for corridor expansion and management at regional scales: Tiling, pinch points, and omni directional connectivity. PLoS ONE, 9, e84135.
doi: 10.1371/journal.pone.0084135
[29] Pierik ME, Dell’Acqua M, Confalonieri R, Bocchi S, Gomarasca S ( 2016) Designing ecological corridors in a fragmented landscape: A fuzzy approach to circuit connectivity analysis. Ecological Indicators, 67, 807-820.
doi: 10.1016/j.ecolind.2016.03.032
[30] Qing J, Xu C, Yang B, Yang ZS, Qi DW, Yang XY, Gu XD, Dai Q ( 2016) Corridor design for the giant panda in the Xiaoxiangling Mountains. Acta Ecologica Sinica, 36, 1125-1133. (in Chinese with English abstract)
doi: 10.5846/stxb201406131225
[ 青菁, 胥池, 杨彪, 杨志松, 齐敦武, 杨旭煜, 古晓东, 戴强 ( 2016) 小相岭山系大熊猫廊道规划. 生态学报, 36, 1125-1133.]
doi: 10.5846/stxb201406131225
[31] Salas EAL, Valdez R, Michel S ( 2017) Summer and winter habitat suitability of Marco Polo argali in southeastern Tajikistan: A modeling approach. Heliyon, 3, e00445.
doi: 10.1016/j.heliyon.2017.e00445
[32] Sawyer SC, Epps CW, Brashares JS ( 2011) Placing linkages among fragmented habitats: Do least-cost models reflect how animals use landscapes? Journal of Applied Ecology, 48, 668-678.
doi: 10.1111/j.1365-2664.2011.01970.x
[33] Schaller GB, Kang A ( 2008) Status of Marco Polo sheep Ovis ammon polii in China and adjacent countries: Conservation of a vulnerable subspecies. Oryx, 42, 100-106.
[34] Schaller GB, Li H, Ta LP, Lü H, Ren JR, Qiu MJ, Wang HB ( 1987) Status of large mammals in the Taxkorgan Reserve, Xinjiang, China. Biological Conservation, 42, 53-71.
doi: 10.1016/0006-3207(87)90052-8
[35] Smallwood P, Shank C, Dehgan A, Zahler P ( 2011) Wildlife Conservation .. in Afghanistan? BioScience, 61, 506-511.
doi: 10.1525/bio.2011.61.7.4
[36] Spear SF, Balkenhol N, Fortin M, McRae BH, Scribner KIM ( 2010) Use of resistance surfaces for landscape genetic studies: Considerations for parameterization and analysis. Molecular Ecology, 19, 3576-3591.
doi: 10.1111/j.1365-294X.2010.04657.x pmid: 20723064
[37] Tian B, Zhou YX, Zhang LQ, Ma ZJ, Yang B, Tang CD ( 2008) A GIS and remote sensing based analysis of migratory bird habitat suitability for Chongming Dongtan Nature Reserve. Acta Ecologica Sinica, 28, 3049-3059. (in Chinese with English abstract)
[ 田波, 周云轩, 张利权, 马志军, 杨波, 汤臣栋 ( 2008) 遥感与GIS支持下的崇明东滩迁徙鸟类生境适宜性分析. 生态学报, 28, 3049-3059.]
[38] Tischendorf L, Fahring L ( 2000) On the usage and measurement of landscape connectivity. Oikos, 90, 7-19.
doi: 10.1034/j.1600-0706.2000.900102.x
[39] Titeux N, Dufrene M, Radoux J, Hirzel AH, Defourny P ( 2007) Fitness-related parameters improve presence-only distribution modelling for conservation practice: The case of the red-backed shrike. Biological Conservation, 138, 207-223.
doi: 10.1016/j.biocon.2007.04.019
[40] Valdez R, Michel S, Subbotin A, Klich D ( 2016) Status and population structure of a hunted population of Marco Polo argali Ovis ammon polii (Cetartiodactyla, Bovidae) in Southeastern Tajikistan. Mammalia, 80, 49-57.
[41] Wang YT, Dai ZG, Yang SJ, Luo YZ ( 2016) The distribution of Marco Polo sheep and their habitat vegetation dynamics in east Pamir. Acta Ecologica Sinica, 36, 209-217. (in Chinese with English abstract)
doi: 10.5846/stxb201407281523
[ 王玉涛, 戴志刚, 杨世杰, 罗玉柱 ( 2016) 东帕米尔高原盘羊分布与栖息地植被覆盖时空变化. 生态学报, 36, 209-217.]
doi: 10.5846/stxb201407281523
[42] Wang ZQ, Chen ZC, Hao CY ( 2009) Breeding habitat suitability evaluation of red-crown crane in Zhalong National Nature Reserve by the method of habitat suitability index. Wetland Science, 7, 197-201. (in Chinese with English abstract)
[ 王志强, 陈志超, 郝成元 ( 2009) 基于HSI模型的扎龙国家级自然保护区丹顶鹤繁殖生境适宜性评价. 湿地科学, 7, 197-201.]
[43] Willis EO ( 1974) Populations and local extinctions of birds on Barro Colorado Island, Panama. Ecological Monographs, 44, 153-169.
doi: 10.2307/1942309
[44] Wu CG, Zhou ZX, Wang PC, Xiao WF, Teng MJ, Peng L ( 2009) Evaluation of landscape connectivity based on Least Cost Model. Chinese Journal of Applied Ecology, 20, 2042-2048. (in Chinese with English abstract)
[ 吴昌广, 周志翔, 王鹏程, 肖文发, 滕明君, 彭丽 ( 2009) 基于最小费用模型的景观连接度评价. 应用生态学报, 20, 2042-2048.]
[45] Yeganeh KZ, Faryadi S, Yavari A, Kamali Y, Shabani AA ( 2016) Habitat suitability & connectivity of Alborz wild sheep in the east of Tehran, Iran. Open Journal of Ecology, 6, 325-342.
doi: 10.4236/oje.2016.66032
[46] Yu YQ, Ji MZ, Liu CG, Li KC, Guo ST ( 2008) Geographical distribution and vicissitude of argali, Ovis ammon, in China. Biodiversity Science, 16, 197-204. (in Chinese with English abstract)
doi: 10.3321/j.issn:1005-0094.2008.02.014
[ 余玉群, 姬明周, 刘楚光, 李克长, 郭松涛 ( 2008) 中国盘羊的地理分布和历史变迁. 生物多样性, 16, 197-204.]
doi: 10.3321/j.issn:1005-0094.2008.02.014
[47] Zeller KA, McGarigal K, Whiteley AR ( 2012) Estimating landscape resistance to movement: A review. Landscape Ecology, 27, 777-797.
doi: 10.1007/s10980-012-9737-0
[48] Zhuge HJ, Li XW, Zhang X, Gao F, Xu DH ( 2014) Identification and conservation assessment of suitable habitats for Tibetan antelope in the alpine desert, Qinghai-Tibet Plateau. Chinese Journal of Applied Ecology, 25, 3483-3490. (in Chinese with English abstract)
[ 诸葛海锦, 李晓文, 张翔, 高峰, 许东华 ( 2014) 青藏高原高寒荒漠区藏羚适宜生境识别及其保护状况评估. 应用生态学报, 25, 3483-3490.]
[49] Zhuge HJ, Lin DQ, Li XW ( 2015) Identification of ecological corridors for Tibetan antelope and assessment of their human disturbances in the alpine desert of Qinghai-Tibet Plateau. Chinese Journal of Applied Ecology, 26, 2504-2510. (in Chinese with English abstract)
[ 诸葛海锦, 林丹琪, 李晓文 ( 2015) 青藏高原高寒荒漠区藏羚生态廊道识别及其保护状况评估. 应用生态学报, 26, 2504-2510.]
[3] Allen CH, Parrott L, Kyle C ( 2016) An individual-based modelling approach to estimate landscape connectivity for bighorn sheep (Ovis canadensis). PeerJ, 4, 1-22.
doi: 10.7717/peerj.2001 pmid: 4860333
[1] 齐增湘, 徐卫华, 熊兴耀, 欧阳志云, 郑华, 甘德欣. 基于MAXENT模型的秦岭山系黑熊潜在生境评价[J]. 生物多样性, 2011, 19(3): 343-352.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed