生物多样性, 2023, 31(6): 22626 doi: 10.17520/biods.2022626

研究报告: 动物多样性

西双版纳农林复合橡胶林土壤多营养级生物网络结构

王文婷,,1,2,*, 王蓉3, 牛翠平3, 白杨1, 杨效东,1,4

1.中国科学院西双版纳热带植物园, 云南勐腊 666303

2.中国科学院大学, 北京 100049

3.普洱学院, 云南普洱 665000

4.哀牢山国家森林生态系统野外科学观测研究站, 云南普洱 665000

Soil multitrophic ecological network structure of agroforestry rubber plantation in Xishuangbanna

Wenting Wang,,1,2,*, Rong Wang3, Cuiping Niu3, Yang Bai1, Xiaodong Yang,1,4

1. Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303

2. University of Chinese Academy of Sciences, Beijing 100049

3. Puer University, Puer, Yunnan 665000

4. National Field Scientific Observation and Research Station of Forest Ecosystem in Ailao Mountain, Puer, Yunnan 665000

通讯作者: * E-mail:wangwenting@xtbg.ac.cn

编委: 傅声雷

责任编辑: 闫文杰

收稿日期: 2022-11-3   接受日期: 2023-01-27  

基金资助: 国家自然科学基金(41877064)
国家自然科学基金(42061144005)

Corresponding authors: * E-mail:wangwenting@xtbg.ac.cn

Received: 2022-11-3   Accepted: 2023-01-27  

摘要

过度扩张的单一种植橡胶(Hevea brasiliensis)林会导致土壤生物多样性丧失和生态系统服务功能衰退, 为探究橡胶农林复合措施的实施对土壤生态系统的缓解效应, 解析多营养级土壤生物网络结构复杂性对不同橡胶林种植模式生态系统功能的影响有重要意义。本研究在西双版纳地区选取单一种植的橡胶林、橡胶 + 茶树(Camellia sinensis)、橡胶 + 大叶千斤拔(Flemingia macrophylla)和热带雨林作为研究对象, 分别在干季(3月)和雨季(9月)采集凋落物和土壤样品, 进一步鉴定土壤生物群落, 测定土壤理化性质、土壤酶活性、凋落物生物量和根系生物量, 分析并构建了不同复合种植模式橡胶林的土壤多营养级生物网络。结果表明: (1)总体而言, 不同种植模式橡胶林的土壤真菌和节肢动物丰富度均显著低于热带雨林, 但橡胶林间作大叶千斤拔可提升土壤细菌和线虫丰富度; (2)相较于单一种植橡胶林, 橡胶 + 茶树模式在干季显著增加了土壤多营养级生物网络的复杂性(边数目增加38.26%、节点数目增加37.59%), 且土壤节肢动物在网络结构中占比增加; 而橡胶 + 大叶千斤拔模式则在雨季显著增加此网络的复杂性(边数目增加23.38%、节点数目增加31.58%), 且网络结构以植食性线虫、根结线虫、外生菌根和根瘤菌为主的连接中心和模块中心增多; (3)橡胶 + 大叶千斤拔复合种植模式在干季显著提升土壤总碳氮含量, 在雨季则显著增加β-1,4-葡萄糖苷酶和酸性磷酸酶的活性。由此表明, 通过间作方式增加橡胶林植物多样性可提高土壤生物多样性和资源输入, 有助于土壤多营养级食物网络复杂性和土壤养分协调发展, 本文可为探索可持续发展的环境友好型橡胶园种植模式提供重要理论基础和数据支持。

关键词: 西双版纳; 土地利用; 农林复合; 土壤生物多样性; 生态网络

Abstract

Aims: Monoculture rubber plantations present a serious threat to regional biodiversity by reducing the ecological structure and function of terrestrial ecosystems in Xishuangbanna. The present research was conducted to (1) develop mitigation strategies to improve soil health under land use intensification and (2) to clarify the diversity and network complexity of soil multitrophic organisms under the influence of different land use types.

Methods: We set sampling sites in the following land use types: monoculture rubber plantation (MRP), rubber with Camellia sinensis (RCS), rubber with Flemingia macrophylla (RFM) and tropical rainforest (TRF). We collected soil samples in the dry (March) and wet (September) seasons. Soil physico-chemical properties, soil enzyme activities, litter mass and root mass were measured. Relevant soil organisms at the multitrophic level were selected for network analysis. Co-occurrence network analysis methods were used to elucidate the complexity of different trophic levels of biological networks in the different land use types.

Results: The results showed that: (1) richness of fungi and arthropods in rubber plantations was lower than tropical rainforest but bacteria and nematode were densely populated in RFM; (2) when examining samples collected in the dry season, when compared with MRP, the soil multitrophic biological network complexity of the RCS was significantly higher (the number of edges and nodes increased by 38.26% and 37.59%, respectively). Similarly, the proportion of soil arthropods increased in the network structure. The RFM, when compared to MRP, showed significant increase in the complexity of soil multitrophic biological network (the number of edges and nodes increased by 23.38% and 31.58%, respectively). When examining samples collected in the wet season, RFM showed significantly more connecting and modular centers dominated by herbivorous nematodes, root-knot nematodes, ectomycorrhiza and rhizobia; and (3) RFM showed significant increase in the total soil carbon and nitrogen content in dry season but increase in enzymatic activities of β-1,4-glucosidase and acid phosphatase in the wet season.

Conclusion: Our study provides a methodological approach that can accurately predict biological indicators of soil quality for agro-rubber forests. Moreover, we have generated a comprehensive dataset and technical support for the establishment and improvement of sustainable environmental-friendly rubber plantations.

Keywords: Xishuangbanna; land use; agroforestry; soil biota diversity; ecological network

PDF (9983KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

王文婷, 王蓉, 牛翠平, 白杨, 杨效东 (2023) 西双版纳农林复合橡胶林土壤多营养级生物网络结构. 生物多样性, 31, 22626. doi:10.17520/biods.2022626.

Wenting Wang, Rong Wang, Cuiping Niu, Yang Bai, Xiaodong Yang (2023) Soil multitrophic ecological network structure of agroforestry rubber plantation in Xishuangbanna. Biodiversity Science, 31, 22626. doi:10.17520/biods.2022626.

土壤生物多样性是维持土壤健康和功能的关键, 由多营养级生物组成的土壤食物网及其与地上植物的相互作用是保证生态系统生产力的重要基础(傅声雷, 2007; Gossner et al, 2016; 孙新等, 2021)。量化群落中物种或功能群间的相互作用或联结程度(土壤食物网)是探究土壤生物多样性和生态功能的理论基础和重要途径(Morriën et al, 2017)。相关研究认为群落养分循环的稳定性和生态系统功能不仅取决于地上物种的数量和种类, 还受控于地下不同营养级物种间的相互作用程度(Tylianakis et al, 2007; Andresen et al, 2018; 张卫信等, 2022)。土壤食物网中不同营养级间的物种相互作用强度和多种取食方式可以反映生态系统的养分供应能力(Crowther et al, 2015), 且对维持食物网结构及其稳定性有重要意义(Rooney et al, 2006; 陈云峰等, 2014)。集约化的土地利用方式往往会导致生物多样性降低(Wall et al, 2015), 为缓解集约化土地利用模式带来的生态威胁, 农林复合种植模式的应用显得尤为重要。农林复合种植模式中的生物多样性会受到其周围生物和环境因素的调节, 因为栖息地生境初级构建物种(植物类群)与其他物种(例如分解者、捕食者或消费者)之间的耦合作用通过创造新的生态位、改变资源可用性和环境异质性条件而对地上地下物种关系产生影响(van der Zee et al, 2016), 其中地表的植物多样性和功能类群可对土壤生物多样性及其网络关系和生态系统功能产生重要影响(Altieri et al, 2007)。

西双版纳地区因其温暖湿润的环境条件成为我国橡胶(Hevea brasiliensis)林种植的重点地区, 1976-2003年间, 西双版纳热带雨林的覆盖率下降了20%左右, 大部分被橡胶林所替代(Li et al, 2007), 因此, 构建具有较高生物多样性和健康生态系统功能的“环境友好型橡胶林”复合种植模式成为热带土地可持续利用亟待解决的问题之一。目前已发展了多种形式的农林复合种植模式, 包括橡胶与咖啡(Coffea arabica)可可(Theobroma cacao)、砂仁(Amomum yunnanense)、茶树(Camellia sinensis)和大叶千斤拔(Flemingia macrophylla)等。相关研究从土壤水分利用(Wu et al, 2017)和土壤质量(Zou et al, 2021)角度探讨了橡胶林复合模式的生态效应。然而关于橡胶农林复合种植模式中土壤生物多样性的研究大多聚焦在某些特定生物类群, 如不同橡胶农林复合种植模式对步甲(Meng et al, 2012)、蜘蛛(郑国等, 2009)、白蚁(林小兵等, 2017)、蝗虫(黄春梅和杨龙龙, 1998)、蚯蚓(杜杰等, 2008)、土壤线虫(Xiao et al, 2014)和土壤微生物(Lan et al, 2017a; Monkai et al, 2017; Cai et al, 2018)的影响, 但对于维持养分快速周转和协调发展的土壤多营养级生物网络结构和功能知之甚少。

探究橡胶林生态系统林下植物的增加对土壤生物多样性和网络结构的直接或间接影响效应, 揭示网络结构复杂性对不同土地利用方式的响应尤为重要。到目前为止, 土壤食物网结构的复杂性一般根据营养级网络本身的性质来分析, 如物种链接的数量(边数目)、连接性和强度等(Gross et al, 2009)。反映复杂性的参数有网络节点数、连通性、平均聚类系数和关键物种数量, 而且网络稳定性与网络复杂性密切相关(Yuan et al, 2021)。本研究以土壤多营养级生物(土壤细菌、真菌、线虫和节肢动物)的网络结构为研究重点, 探讨不同橡胶林复合种植模式下的土壤生物网络关系及其与维持生态系统功能要素之间的关系。并解答以下重要科学问题: (1)橡胶农林复合种植模式中的林下植物大叶千斤拔和茶树对土壤生物多样性和土壤生态过程要素的影响; (2)橡胶 + 茶树和橡胶 + 大叶千斤拔对土壤多营养级生物网络结构复杂性的影响; (3)土壤生物网络复杂性和土壤生态过程各要素的关系。

1 研究区域与方法

1.1 研究区域

研究区域位于西双版纳傣族自治州境内的纳板河国家级自然保护区的农林复合示范区(NBH)、中国科学院西双版纳热带植物园(XTBG)和勐腊县龙林村(LL)。该区域属热带季风气候(年均气温21.6℃, 年均降水量1,478 mm), 干湿季分明, 5-10月是雨季、11月至翌年4月是干季(Corlett, 2019)。在干季的1月, 橡胶树完全落叶, 3月则重新萌生新叶。本研究分别在两个季节(3月和9月)采样。在每个采样区域, 分别选择了3种不同的橡胶林种植模式: 单一种植的橡胶林、橡胶 + 茶树、橡胶 + 大叶千斤拔, 选择热带雨林作为对照(图1), 其中橡胶林的种植年限均在25年左右。

图1

图1   研究地点位置和不同橡胶林种植模式

Fig. 1   Location of the study site and different rubber plantations. NBH, Nabanhe National Nature Reserve; XTBG, Xishuangbanna Tropical Botanical Garden; LL, Longlin Village in Mengla County.


1.2 野外采样

在3个研究地点(XTBG、NBH和LL)的每种种植模式中各设置4个样方(5 m × 5 m), 样方之间间隔80 m以上。在每个样方中基于五点法采样, 首先使用直径为25 cm的PVC筐收集地表凋落物, 然后使用土壤环刀获取5个土芯(深度10 cm、直径5 cm), 并将5个样本混合为1个, 提取土壤生物和测定理化性质。本试验分别收集凋落物和土壤样品各96份(3地点 × 4种模式 × 4重复 × 2季节 = 96份样品)。

1.3 土壤生物鉴定

利用分子(细菌、真菌和线虫)和形态(节肢动物)方法鉴定土壤生物多样性。土壤微生物使用PowerSoil DNA分离试剂盒(MoBio Laboratories, Carlsbad, CA, USA)提取DNA, 其中细菌使用515F(GTGCCAGCMGCCGCGGTAA)和926R (CCGYCA ATTYMTTTRAGTTT), 真菌使用ITS2 (GCTGCGT TCTTCATCGATGC)和ITS1F (CTTGGTCATTTAG AGGAAGTAA)引物进行目的基因片段的扩增。PCR过程采用25 μL反应体系(3个重复), 正向和反向引物各1 μL, 10 μL Prime Hot MasterMix, 1 μL DNA作为模板。使用以下程序扩增: 94℃预变性3 min; 94℃变性45 s, 50℃退火60 s, 72℃延伸90 s, 35个循环; 72℃保温10 min, 最后将PCR产物建库后送至北京致源诺禾公司PE250测序平台进行测序。

土壤线虫的分离使用浅盘法(Wang et al, 2022), 将提取的线虫样本保存在-20℃, 采用EasyPure Genomic DNA试剂盒(Trans Gene)进行DNA提取。使用引物对NF1 (GCCTCCCTCGCGCCATCAGGG TGGTGCATGGCCGTTCTTAGTT)和18Sr2b (GCC TTGCCAGCCCGCTCAGTACAAAGGGCAGGGACGTAAT)进行目的基因片段的扩增(Porazinska et al, 2009)。PCR扩增体系同微生物, 扩增程序: 94℃预变性3 min; 94℃变性30 s, 55℃退火30 s, 72℃延伸45 s, 35个循环; 72℃保温5 min, 使反应物充分延伸。

土壤节肢动物通过干漏斗法从凋落物样本中提取(Rieske & Buss, 2001), 根据《中国土壤动物检索图鉴》鉴定到科水平(尹文英, 2000)。

1.4 土壤环境因素测定

使用Vario MAX CN测定土壤总碳(soil total carbon, TC)和土壤总氮(soil total nitrogen, TN)含量。使用iCAP 7400 ICP-OES消解法测定土壤总磷(soil total phosphorus, TP)含量。使用Multoskan FC荧光法测定β-1,4-葡萄糖苷酶(β-1,4-glucosidase, BG)、β-N-乙酰氨基葡萄糖酶(β-N-acetyl-glucosaminidase, NAG)和酸性磷酸酶(acid phosphatase, AP)的活性, 以每克每小时对硝基苯酚的微摩尔表示(Paz-Ferreiro et al, 2012)。使用Five Easy Plus土壤pH计测定土壤pH值(土水比1∶5)。使用烘干法测定土壤含水量(soil moisture, SM)。凋落物生物量(litter mass, LM)和根系生物量(root mass, RM)在65℃烘箱烘干至恒重后称量。

1.5 数据分析

使用FastqQc对测序原始数据进行质量控制, 使用usearch进行生物信息学分析: 首先合并双端序列(fastq_mergepairs)并切除引物, 其次进行数据过滤(fastx_filter, fastq_stripleft和fastq_maxee_rate (0.01)), 最后去冗余minuniquesizse (10), 使用unoise3去除嵌合体和噪音, 去噪得到Amplicon Sequence Variants (ASVs), 生成特征表。分别在RDP_16s、UNITE和SILVA数据库对细菌、真菌和线虫注释分类学信息, 并从线虫数据库(http://nemaplex.ucdavis.edu)中获取不同线虫取食类型和不同生活史对策类型, 即r对策者向K对策者过渡的5个c-p (colonizer-persister)值。

使用vegan包的specnum()函数计算不同生物类群的丰富度(不同分类阶元(科或属)的数目)。使用非度量多维尺度分析(non-metric multidimensional scaling, NMDS, 基于Bray-Curtis距离)降维排序生物群落差异, 显示95%的置信区间, 拟合R2越大越好, 应力值: stress < 0.2为具有一定信度; stress < 0.05效果较好; stress < 0.02效果好; stress < 0.01效果优异。使用非参数方法Tukey’s HSD比较不同土地利用方式的土壤生物类群多样性。使用双因素方差分析比较季节和种植模式对土壤理化性质的影响是否存在显著差异, 使用多重比较分析不同土壤理化性质在4种种植模式下的变化差异。

使用ggCLusterNet对生物类群进行网络分析。调用psych包中的corr.test函数, 选用M值的修剪平均值(trimmed mean of M-values, TMM)方法标准化群落矩阵数据(Wen et al, 2022)。计算经验C-score以量化成对物种共现, 并通过随机化算法重新分配物种共现以模拟C-score的零分布。随后, 比较经验C-score与零分布的偏离程度, 获取标准化效应大小值(standardized effect size, SES), 正值表示分离(segregated)的物种共现模式, 负值表示聚集(aggregated)的物种共现模式; 接近零的SES值, 或者经验C-score与零分布无明显差异时, 表示随机(random)的物种共现模式(Mo et al, 2021)。数据分析均在R.4.2.1 (https://www.r-project.org/)中完成。所有需要满足正态性的数据分析前先进行shapiro.test()的正态检验, 不符合正态性的数据进行log转化。

2 结果

2.1 土壤生物多样性的变化

单一种植橡胶林的土壤细菌丰富度与其他3种模式在干季和雨季均无显著差异(P > 0.05)。橡胶 + 大叶千斤拔的土壤细菌丰富度在干季显著高于橡胶 + 茶树(P = 0.019)和热带雨林(P = 0.003), 在雨季显著高于热带雨林(P = 0.019)。单一种植橡胶林(P = 0.005)和橡胶 + 茶树(P = 0.049)的土壤真菌丰富度在干季显著低于热带雨林。单一种植橡胶林(P = 0.035)和橡胶 + 大叶千斤拔(P = 0.043)的土壤真菌丰富度在雨季显著低于热带雨林; 单一种植橡胶林(P = 0.024)、橡胶 + 茶树(P = 0.028)和橡胶 + 大叶千斤拔(P = 0.037)的土壤线虫丰富度在干季均显著高于热带雨林。在雨季, 4种模式间没有差异。单一种植橡胶林的土壤节肢动物丰富度在干季(P = 0.003)和雨季(P = 0.016)均显著低于热带雨林, 橡胶 + 大叶千斤拔的土壤节肢动物在干季显著低于热带雨林(P = 0.01) (图2)。

图2

图2   不同橡胶林种植模式下干季和雨季土壤生物丰富度的多重比较

Fig. 2   Multiple comparison of the soil organisms in dry season and rain season in different rubber plantations. MRP, Monoculture rubber plantation; RCS, Rubber with Camellia sinensis; RFM, Rubber with Flemingia macrophylla; TRF, Tropical rainforest.


NMDS的结果表明, 土壤细菌(stress = 0.106, R2 = 0.963)、线虫(stress = 0.154, R2 = 0.890)和节肢动物(stress = 0.241, R2 = 0.743)的群落结构在干季和雨季间存在显著差异, 真菌群落无显著性季节差异(stress = 0.154, R2 = 0.923) (附录1)。干季和雨季橡胶 + 大叶千斤拔中的细菌群落与其他3种模式间存在显著差异; 热带雨林干季真菌群落与其他3种模式间存在显著差异, 雨季则是热带雨林和单一种植橡胶林与其他两种模式间存在显著差异。橡胶 + 大叶千斤拔干季的线虫群落结构与其他3种模式间存在显著差异, 雨季则是单一种植橡胶林与其他3种模式间存在差异。橡胶 + 茶树的节肢动物群落结构与其他模式在干季存在显著差异, 而单一种植橡胶林在雨季与其他模式存在显著差异(图3)。

图3

图3   基于Bray-Curtis差异度的非度量多维标度(NMDS)排序显示了不同橡胶林种植模式下细菌、真菌、线虫和节肢动物群落的变化。不同颜色/形状代表样本所属的分组信息。

Fig. 3   Non-metric multidimensional scaling (NMDS) ordination based on Bray-Curtis dissimilarity shows the variation of bacteria, fungi, nematode and arthropod communities in different rubber plantations. The different colors/shapes represent the grouping information to which the sample belongs. MRP, Monoculture rubber plantation; RCS, Rubber with Camellia sinensis; RFM, Rubber with Flemingia macrophylla; TRF, Tropical rainforest.


2.2 土壤环境因素的变化

双因素方差分析结果表明, 季节和种植方式对土壤元素(TC和TN)、土壤酶活性(AP)、土壤pH值、土壤含水量、凋落物生物量和根系生物量有显著影响(附录2)。TC和TN: 在干季, 热带雨林 > 橡胶 + 大叶千斤拔 > 橡胶 + 茶树 = 单一种植橡胶林,在雨季, 热带雨林 > 橡胶 + 大叶千斤拔 = 橡胶 + 茶树 = 单一种植橡胶林。AP: 在干季, 不同种植模式无显著变化趋势, 在雨季, 橡胶 + 大叶千斤拔 = 热带雨林 > 单一种植橡胶林 > 橡胶 + 茶树。土壤pH值: 在干季, 橡胶 + 大叶千斤拔 > 单一种植橡胶林 = 橡胶 + 茶树 = 热带雨林, 在雨季, 橡胶 + 大叶千斤拔 > 热带雨林 = 单一种植橡胶林 = 橡胶 + 茶树。土壤含水量: 在干季, 单一种植橡胶林 > 橡胶 + 大叶千斤拔 > 橡胶 + 茶树 > 热带雨林, 在雨季无显著变化趋势。凋落物生物量和根系生物量在季节间均存在显著差异, 不同种植方式的凋落物生物量在干季无显著性变化趋势, 在雨季呈现出热带雨林 > 橡胶 + 茶树 > 橡胶 + 大叶千斤拔 = 单一种植橡胶林。而根系生物量在干季表现为热带雨林 > 橡胶 + 大叶千斤拔 = 橡胶 + 茶树 = 单一种植橡胶林, 在雨季无显著性变化趋势, 根系生物量的增加量变化为单一种植橡胶林 > 橡胶 + 大叶千斤拔 > 热带雨林 > 橡胶 + 茶树(表1)。

表1   不同橡胶林种植模式下土壤理化性质的多重比较(平均值 ± 标准误)

Table 1  Multiple comparison of the soil properties in the different rubber plantations (mean ± SE)

测定项目
Item
季节
Season
橡胶林
MRP
橡胶 + 茶树
RCS
橡胶 + 大叶千斤拔
RFM
热带雨林
TRF
土壤总碳 Total carbon (TC, g/kg)干季 Dry15.75 ± 1.13b17.71 ± 1.38b19.47 ± 1.21ab22.44 ± 1.78a
雨季 Rain16.29 ± 0.89b17.27 ± 1.09b18.67 ± 1.07b22.25 ± 1.35a
土壤总氮 Total nitrogen (TN, g/kg)干季 Dry1.73 ± 0.09b1.87 ± 0.13b2.04 ± 0.09ab2.34 ± 0.15a
雨季 Rain1.78 ± 0.08b1.81 ± 0.10b1.98 ± 0.07b2.36 ± 0.14a
土壤总磷 Total phosphorus (TP, g/kg)干季 Dry0.35 ± 0.02a0.36 ± 0.03a0.41 ± 0.04a0.36 ± 0.02a
雨季 Rain0.44 ± 0.05a0.36 ± 0.03a0.38 ± 0.02a0.39 ± 0.04a
β-1,4-葡萄糖苷酶 β-1,4-glucosidase
(BG, μmol∙g-1 dry soil∙h-1)
干季 Dry5.03 ± 1.39a2.66 ± 0.33a6.31 ± 2.41a3.95 ± 0.51a
雨季 Rain3.90 ± 1.41ab3.38 ± 0.99b8.28 ± 2.31ab9.00 ± 2.51a
β-N-乙酰氨基葡萄糖酶 β-N-acetyl-glucosaminidase
(NAG, μmol∙g-1 dry soil∙h-1)
干季 Dry0.71 ± 0.21a0.93 ± 0.14a1.07 ± 0.35a0.74 ± 0.13a
雨季 Rain0.87 ± 0.27a0.46 ± 0.13a1.08 ± 0.26a1.06 ± 0.28a
酸性磷酸酶 Acid phosphatase
(AP, μmol∙g-1 dry soil∙h-1)
干季 Dry6.97 ± 1.59a5.84 ± 1.08a8.73 ± 1.90a7.21 ± 1.02a
雨季 Rain4.77 ± 1.06ab1.93 ± 0.46b5.87 ± 1.51a6.38 ± 1.51a
pH干季 Dry5.30 ± 0.13b5.27 ± 0.10b5.74 ± 0.08a5.26 ± 0.12b
雨季 Rain5.09 ± 0.15ab4.95 ± 0.10b5.45 ± 0.06a5.21 ± 0.21ab
土壤含水量 Soil moisture (SM, %)干季 Dry29.18 ± 1.60a24.38 ± 1.64b26.86 ± 1.40ab19.34 ± 1.08c
雨季 Rain35.37 ± 2.17a31.49 ± 2.20a34.03 ± 2.17a33.64 ± 1.75a
凋落物生物量 Litter mass (LM, kg/m2)干季 Dry2.42 ± 0.30a3.28 ± 0.60a2.25 ± 0.27a2.77 ± 0.25a
雨季 Rain0.64 ± 0.13b0.89 ± 0.30ab0.75 ± 0.09b1.25 ± 0.09a
减少比率 Rate of decrease (%)6个月 6 months73.4272.8866.6654.74
根系生物量 Root mass (RM, g/100g)干季 Dry0.15 ± 0.05b0.17 ± 0.06b0.13 ± 0.05b0.27 ± 0.06a
雨季 Rain0.50 ± 0.19a0.36 ± 0.09a0.34 ± 0.12a0.47 ± 0.14a
增加比率 Rate of increase (%)6个月 6 months71.0053.5262.6943.62

不同字母表示差异显著

Different letters indicate statistically significant differences (P < 0.05). MRP, Monoculture rubber plantation; RCS, Rubber with Camellia sinensis; RFM, Rubber with Flemingia macrophylla; TRF, Tropical rainforest.

新窗口打开| 下载CSV


2.3 土壤生物网络性质与土壤环境因素的关系

基于C-score零模型分析土壤生物网络结构的确定性关系, 结果表明C-score观测值与C-score模拟值存在显著差异, 标准化效应大小值(SES)均为正值, 表明土壤生物的网络共存关系为分离模式(附录3)。干季的网络相互作用力和正相关性要强于雨季, 包括节点数目(网络大小)和边数目(物种间相互作用), 网络关系以正相关(干季0.83-0.87, 雨季0.75-0.84)为主。总体而言, 热带雨林中网络结构的节点数目最多, 其次是橡胶 + 茶树和橡胶 + 大叶千斤拔, 单一种植橡胶林最少; 不同橡胶林种植方式的土壤生物网络结构的边数目和平均路径长度具有明显的季节性差异, 干季是橡胶 + 茶树最多, 雨季则是橡胶 + 大叶千斤拔最多(表2, 图4)。

表2   不同橡胶林种植模式下土壤生物类群的网络拓扑结构参数

Table 2  Network topology parameters of soil biological groups in different rubber plantations

参数 Parameter干季 Dry season雨季 Rain season
橡胶林橡胶 + 茶树橡胶 +
大叶千斤拔
热带雨林橡胶林橡胶 + 茶树橡胶 +
大叶千斤拔
热带雨林
MRPRCSRFMTRFMRPRCSRFMTRF
边数目 Number of edges531860530879557642727707
正相关边数目 Number of positive edges445713461767437538575530
负相关边数目 Number of negative edges8614769112120104152177
正相关性比例 Proportion of positive edges0.840.830.870.870.780.840.790.75
平均路径长度 Average path length4.394.174.903.744.164.394.014.19
节点数目 Number of nodes270334293316270295291299

MRP, Monoculture rubber plantation; RCS, Rubber with Camellia sinensis; RFM, Rubber with Flemingia macrophylla; TRF, Tropical rainforest.

新窗口打开| 下载CSV


图4

图4   不同橡胶林种植模式的土壤多营养级生物共存网络拓扑结构

Fig. 4   Topological structure of the soil multitrophic ecological co-occurrence network in different rubber plantations. MRP, Monoculture rubber plantation; RCS, Rubber with Camellia sinensis; RFM, Rubber with Flemingia macrophylla; TRF, Tropical rainforest.


节点模块化计算和可视化结果表明, 土壤生物网络模块中心和连接中心存在明显的季节和种植方式差异。总体而言, 在雨季会出现更多的连接中心和模块中心, 此趋势在橡胶 + 茶树和橡胶 + 大叶千斤拔中最为显著, 并且橡胶 + 茶树在干季具有最高中心介数, 雨季则以橡胶 + 大叶千斤拔最高。此外, 橡胶 + 大叶千斤拔中土壤生物网的模块中心和连接中心的数目最多, 其次是橡胶 + 茶树, 热带雨林和单一种植橡胶林最少。并且在橡胶 + 茶树中这些关键的生物属性以腐生真菌、外生菌根(丛枝菌根)、根瘤菌和植食性线虫为主(图5, 表2)。

图5

图5   不同种植模式橡胶林的多营养级土壤生物共存网络节点模块化的关键类群

Fig. 5   Node modularity of the soil multitrophic ecological co-occurrence network in different rubber plantations. MRP, Monoculture rubber plantation; RCS, Rubber with Camellia sinensis; RFM, Rubber with Flemingia macrophylla; TRF, Tropical rainforest. Acau, Acaulosporaceae; Acid, Acidobacteriales; Apha, Aphanolaimus; Aphe, Aphelenchoides; Bolb, Bolbitiaceae; Bole, Boleodorus; Cand, Candida; Cera, Cerasicoccales; Conl, Conlarium; Cyto, Cytophagales; Desu, Desulfovibrionales; Eart, Earthworm; Elap, Elaphomyces; Entol, Entolomataceae; Entot, Entotheonellales; File, Filenchus; Flav, Flavobacteriales; Fuso, Fusobacteriales; Gemm, Gemmatimonadales; Glom, Glomeraceae; Grac, Gracilacus; Lyop, Lyophyllaceae; Melo, Meloidogyne; Mono, Mononchus; Muco, Mucor; Nitr, Nitrospirales; Phyc, Phycisphaerales; Plan, Planctomycetales; Rhiz, Rhizobiales; Rhod, Rhodospirillales; Rubr, Rubrobacterales; Sage, Sagenomella; Seba, Sebacinaceae; Sphi, Sphingobacteriales; Spir, Spirobacillales; Stec, Steccherinaceae; Step, Stephanosporaceae; Ther, Thermogemmatisporales; Tric, Trichoderma; Trid, Tridenchthonidae; Tyle, Tylenchorhynchus.


土壤生物网络拓扑结构参数、植物属性、土壤生物和土壤理化性质的相关分析结果表明, 在干季, 节肢动物与网络连通性、节点数目、边数目(正相关和负相关)和平均度呈现显著正相关关系; 真菌与凋落物生物量和根系生物量正相关。土壤C、N、P与其对应的土壤酶活性具有正相关性。细菌与土壤pH值、网络聚集系数和中心介数呈正相关。土壤线虫与土壤含水量、平均路径长度和网络直径大小呈正相关(图6a)。在雨季, 真菌类群与网络连通性、节点数目、边数目(正相关和负相关)和平均度呈正相关; 节肢动物与凋落物量、中心介数、平均路径长度、网络直径和聚集系数正相关; 细菌与土壤pH值和土壤酶活性正相关。线虫与土壤含水量、土壤TC、TN、TP和根系生物量表现为正相关(图6b)。

图6

图6   网络拓扑结构参数、植物属性、土壤生物和土壤理化性质的相关性分析, 相同颜色的文字代表其聚在一类。英文缩写与中文翻译见表1和表2。

Fig. 6   Correlation analysis of ecological network topology parameters, plant attributes, soil organisms and soil properties. Words with the same color represent the same cluster. The English abbreviations and Chinese translations are shown in Table 1 and 2.


3 讨论

3.1 土壤生物多样性和群落结构差异

已有研究表明, 橡胶种植园和热带雨林之间的土壤生物群落有显著差异, 其中橡胶种植园的土壤细菌多样性高于热带雨林(Schneider et al, 2015; Kerfahi et al, 2016; Lan et al, 2017b)。因为在集约化的土地管理中, 施肥可增加生物有效氮, 为细菌类群提供了更好的生长条件(Allen et al, 2015; Liu et al, 2019), 同时土壤线虫在土壤氮转化过程中也发挥着重要作用(Neher, 2001)。本研究结果也表明在干季, 橡胶 + 大叶千斤拔模式的土壤细菌和线虫的丰富度要显著高于热带雨林, 这可能与橡胶林间作大叶千斤拔(固氮植物)可显著提升土壤的氮含量有关(Liu et al, 2019)。此外, 橡胶农林复合种植模式中的细菌群落表现出明显的季节差异性, 主要通过不同季节凋落物生物量和根系生物量的输入差异与分解作用来缓解单一橡胶林种植造成的土地退化, 进而也减缓对细菌群落的负面影响(Liu et al, 2019)。

相关研究表明从雨林转变为橡胶林后, 橡胶林中土壤真菌丰富度(Cai et al, 2018; Lan et al, 2020),和生物量变低(Monkai et al, 2018)。本研究也发现同样的结果, 即热带雨林的真菌多样性要显著高于单一橡胶林。资源多样性假说认为多样性高的植物群落会产生丰富的有机底物, 有利于真菌群落的专化, 从而形成多样性高的本地群落(Waldrop et al, 2006)。热带雨林具有高的植物多样性, 导致更多种类和数量的凋落物和根系碳资源输入, 从而形成更为丰富的小生境异质性, 增加了真菌的多样性。

不同种植模式橡胶林中土壤线虫的多样性差异仅表现在干季, 橡胶 + 茶树种植模式增加线虫多样性, 雨季则无显著差异。此前也有研究结果表明, 自然林转变为橡胶林后, 仅表征土壤质量不同程度退化的高c-p值(土壤线虫成熟度指数)线虫在单一橡胶种植模式中消失(Xiao et al, 2014), 而另一项研究结果显示线虫的α多样性差异不明显, 即热带雨林转变为橡胶林并不一定会导致土壤线虫多样性的降低(Kerfahi et al, 2016)。

本研究发现橡胶 + 茶树的复合种植模式会显著改变土壤节肢动物的群落组成, 尤其是在干季较为突出, 这与Beng等(2016)研究的结果截然不同, 其研究结果表明热带森林与人工林中的土壤节肢动物的α多样性有显著差异, 并且橡胶林的土壤节肢动物多样性要高于茶园。本研究在野外收集样品阶段发现, 相较于单一种植橡胶林, 橡胶 + 茶树中的凋落物积累量明显较高, 这可为土壤节肢动物提供更好的栖息地和食物资源(邵珍珍和吴鹏飞, 2019)。

3.2 植物性状和土壤理化性质的改变

本研究结果表明, 橡胶林间作具有固氮作用的大叶千斤拔可显著提高土壤碳氮的含量, 橡胶与大叶千斤拔的间作可提高土壤微生物活性, 进而可以提高土壤养分含量, 促进物质循环(Liu et al, 2018)。橡胶 + 大叶千斤拔中, 土壤碳氮磷相关的酶活性也接近甚至超过热带雨林, 这不仅与大叶千斤拔本身为固氮植物有关(Rao et al, 2021), 也可能是橡胶林中间作大叶千斤拔增加了根系生物量的作用。

值得注意的是, 以往研究认为单一种植橡胶林会使得土壤水土流失(Zou et al, 2021), 但本研究发现在干季单一种植橡胶林和橡胶农林复合种植模式的土壤含水量显著高于热带雨林。相关研究表明, 西双版纳地区干季雾日的水汽输入被认为在一定程度上缓解了干季低温和干旱的胁迫(Lin et al, 2022), 但是另一方面, 本研究中橡胶林中干季的地表凋落物量比雨季高54.74%-73.42%, 植物凋落物覆盖降低了橡胶林土壤水分的蒸发, 因此有利于土壤持水。之前也有研究表明, 橡胶树和茶树采用了水文生态位分离的互补型土壤水分获取方式, 增强了系统抵御干旱胁迫的能力, 减弱了它们之间在干季对有限水分的竞争(Wu et al, 2017)。

3.3 土壤多营养级生物网络结构的变化

共存网络(co-occurrence network)分析基于物种丰度的相关性来构建土壤生物群落结构网络模型, 探究不同生物物种或类群之间的联系和生态功能的共出现模式, 对解析土壤食物网结构和复杂性, 评价生态系统生物多样性和稳定性间的相互关系有重要意义(Barberán et al, 2012; Delgado-Baquerizo et al, 2020)。本研究发现橡胶林农林复合种植模式可增加土壤生物网络复杂性, 并且存在明显的季节特异性, 干季表现为橡胶林 + 茶树土壤生物网络复杂性最高, 雨季则以橡胶林 + 大叶千斤拔最高, 这可能与间种植物的物种特性密切相关。此外, 植物群落组成的变化可以通过凋落物、根系分泌物以及与菌根真菌的关系影响土壤生物网各类群发展(de Deyn & van der Putten, 2005; Eisenhauer et al, 2013), 如演替和恢复后期的土壤食物网络关系会随着植物种类增加而增强(Kardol et al, 2006)。

在橡胶和茶树的间作系统中, 土壤生物网络结构的变化主要体现在干季, 凋落物积累(橡胶和茶树的凋落物生物量积累在4种种植模式中最高, 为3.28 kg/m2)为土壤节肢动物提供了栖息地, 促进各营养级之间的互作, 表现出在干季土壤节肢动物与网络结构的边数目、网络节点、平均度和连通性显著正相关。之前的研究发现, 橡胶林下植物多样性的下降会导致捕食性的土壤地表节肢动物丰富度减少(Liu et al, 2021)。更多的研究已开始整合生态系统中不同营养层物种间的网络关系, 探讨其与生物地球化学通量的相互作用(de Vries et al, 2013; Neutel & Thorne, 2014)。研究发现, 以蚂蚁、等足目、部分弹尾目和螨类等大中型土壤动物为主构成的食物网是衡量整个土壤食物网的重要组成部分(Morriën, 2016; Soong & Nielsen, 2016), 它们有利于多通道食物网的发展(Porazinska et al, 2003), 因此需要特别考虑土地利用方式和恢复过程中土壤节肢动物群落的级联效应对生态系统功能的影响。

在橡胶和大叶千斤拔间作系统中, 土壤生物网络结构的变化主要体现在雨季, 根系生物量增加了62.69% (模块中心和连接中心最多)。随着雨季的到来, 植物处于快速生长期, 根系生长的根际激发效应会激活土壤酶活性, 从而提高根际周围的生物活性, 促进土壤微生物和根际线虫积极参与土壤生态过程(Kou et al, 2018)。本研究中, 橡胶林 + 大叶千斤拔模式在雨季土壤生物网络的边数目、网络节点、平均度和连通性与真菌类群显著正相关, 土壤酶活性与细菌显著正相关。由此表明橡胶间作大叶千斤拔增加的模块中心和连接中心以植食性线虫、根结线虫、外生菌根和根瘤菌为主, 这些根际功能类群间的相互关系增强了土壤生物网络结构的复杂性(Heleno et al, 2014), 这对结构复杂的热带生态系统尤其重要(Neutel & Thorne, 2014)。

相较于以往关注土地利用方式中土壤生物多样性变化的研究, 本文进一步结合垂直方向多样性(不同营养级), 分析了土壤生物不同功能类群之间的相互作用关系, 探究了土壤多营养级生物网络结构对热带土地利用方式的响应。试验中土壤微生物和土壤线虫的多样性是通过高通量测序技术获得, 因此对于微生物的生物量和线虫的绝对多度反映不足, 未来相关研究可结合磷脂脂肪酸、荧光定量PCR、线虫的直接计数和形态鉴定等方法进一步结合量化数据深入解答相关科学问题。

附录 Supplementary Material

附录1 基于Bray-Curtis差异度的非度量多维标度(NMDS)排序显示了不同季节的细菌、真菌、线虫和节肢动物群落的差异

Appendix 1 Non-metric multidimensional scaling (NMDS) ordination based on Bray-Curtis dissimilarity shows the variation of bacteria, fungi, nematode and arthropod communities in different seasons

附录2 土壤理化性质的双因素方差分析

Appendix 2 Two-way ANNOVA analysis of soil properties

附录3 使用C-score和标准化效应大小值(SES)评估物种共现模式和生态随机性

Appendix 3 Community species co-occurrence patterns and ecological randomness were assessed using board score (C-score) and standardized effect size (SES)

参考文献

Allen K, Corre MD, Tjoa A, Veldkamp E (2015)

Soil nitrogen-cycling responses to conversion of lowland forests to oil palm and rubber plantations in Sumatra, Indonesia

PLoS ONE, 10, e0133325.

[本文引用: 1]

Altieri AH, Silliman BR, Bertness MD (2007)

Hierarchical organization via a facilitation cascade in intertidal cordgrass bed communities

The American Naturalist, 169, 195-206.

PMID:17211804      [本文引用: 1]

It has recently been proposed that many communities are structured by a hierarchy of interactions in which facilitation by foundation species is of primary importance. We conducted the first explicit experimental test of this hypothesis by investigating the organization of positive interactions on New England cobblestone beaches. In this midintertidal community, wave-generated substrate instability and solar stress largely limit marine organisms to the shelter of cordgrass beds. Cordgrass, which can establish and persist without the aid of other foundation species, facilitates a dense assemblage of inhabitants (e.g., mussels, snails, seaweeds) with roots/rhizomes that stabilize substrate and a dense canopy that baffles waves and provides shade. Within the cordgrass bed community, ribbed mussels further enhance physical conditions and densities of other species (e.g., amphipods, barnacles) by providing crevice space and hard substrate. We conclude that cordgrass bed communities are hierarchically organized: secondary interactions (e.g., facilitation by ribbed mussels) play a key role within an assemblage dependent on primary facilitation by the independently successful foundation species cordgrass. Our results identify emergent indirect positive interactions in the form of facilitation cascades, have broad implications for conservation, and help unify existing models of community organization that were developed without considering the fundamental role of positive interactions.

Andresen E, Arroyo-Rodríguez V, Escobar F (2018) Tropical biodiversity:The importance of biotic interactions for its origin, maintenance, function, and conservation. In: Ecological Networks in the Tropics (eds Dáttilo W, Rico-Gray V), pp.1-13. Springer, Cham.

[本文引用: 1]

Barberán A, Bates ST, Casamayor EO, Fierer N (2012)

Using network analysis to explore co-occurrence patterns in soil microbial communities

The ISME Journal, 6, 343-351.

DOI:10.1038/ismej.2011.119      [本文引用: 1]

Beng KC, Tomlinson KW, Shen XH, Surget-Groba Y, Hughes AC, Corlett RT, Slik JWF (2016)

The utility of DNA metabarcoding for studying the response of arthropod diversity and composition to land-use change in the tropics

Scientific Reports, 6, 24965.

DOI:10.1038/srep24965      PMID:27112993      [本文引用: 1]

Metabarcoding potentially offers a rapid and cheap method of monitoring biodiversity, but real-world applications are few. We investigated its utility in studying patterns of litter arthropod diversity and composition in the tropics. We collected litter arthropods from 35 matched forest-plantation sites across Xishuangbanna, southwestern China. A new primer combination and the MiSeq platform were used to amplify and sequence a wide variety of litter arthropods using simulated and real-world communities. Quality filtered reads were clustered into 3,624 MOTUs at >= 97% similarity and the taxonomy of each MOTU was predicted. We compared diversity and compositional differences between forests and plantations (rubber and tea) for all MOTUs and for eight arthropod groups. We obtained similar to 100% detection rate after in silico sequencing six mock communities with known arthropod composition. Ordination showed that rubber, tea and forest communities formed distinct clusters. a-diversity declined significantly between forests and adjacent plantations for more arthropod groups in rubber than tea, and diversity of order Orthoptera increased significantly in tea. Turnover was higher in forests than plantations, but patterns differed among groups. Metabarcoding is useful for quantifying diversity patterns of arthropods under different land-uses and the MiSeq platform is effective for arthropod metabarcoding in the tropics.

Cai ZQ, Zhang YH, Yang C, Wang S (2018)

Land-use type strongly shapes community composition, but not always diversity of soil microbes in tropical China

CATENA, 165, 369-380.

DOI:10.1016/j.catena.2018.02.018      URL     [本文引用: 2]

Chen YF, Tang Z, Li H, Han XM, Li YF, Hu C (2014)

Research progress on ecosystem complexity-stability relationships based on soil food web

Acta Ecologica Sinica, 34, 2173-2186. (in Chinese with English abstract)

[本文引用: 1]

[陈云峰, 唐政, 李慧, 韩雪梅, 李钰飞, 胡诚 (2014)

基于土壤食物网的生态系统复杂性-稳定性关系研究进展

生态学报, 34, 2173-2186.]

[本文引用: 1]

Corlett RT (2019) The Ecology of Tropical East Asia, 3rd edn. Oxford University Press, Oxford.

[本文引用: 1]

Crowther TW, Thomas SM, Maynard DS, Baldrian P, Covey K, Frey SD, Bradford MA (2015)

Biotic interactions mediate soil microbial feedbacks to climate change

Proceedings of the National Academy of Sciences, USA, 112, 7033-7038.

[本文引用: 1]

de Deyn GB, van der Putten WH (2005)

Linking aboveground and belowground diversity

Trends in Ecology & Evolution, 20, 625-633.

[本文引用: 1]

de Vries FT, Thébault E, Liiri M, Birkhofer K, Tsiafouli MA, Bjørnlund L, Bracht Jørgensen H, Brady MV, Christensen S, de Ruiter PC, D’Hertefeldt T, Frouz J, Hedlund K, Hemerik L, Gera Hol WH, Hotes S, Mortimer SR, Setälä H, Sgardelis SP, Uteseny K, van der Putten WH, Wolters V, Bardgett RD (2013)

Soil food web properties explain ecosystem services across European land use systems

Proceedings of the National Academy of Sciences, USA, 110, 14296-14301.

[本文引用: 1]

Delgado-Baquerizo M, Reich PB, Trivedi C, Eldridge DJ, Abades S, Alfaro FD, Bastida F, Berhe AA, Cutler NA, Gallardo A, García-Velázquez L, Hart SC, Hayes PE, He JZ, Hseu ZY, Hu HW, Kirchmair M, Neuhauser S, Pérez CA, Reed SC, Santos F, Sullivan BW, Trivedi P, Wang JT, Weber-Grullon L, Williams MA, Singh BK (2020)

Multiple elements of soil biodiversity drive ecosystem functions across biomes

Nature Ecology & Evolution, 4, 210-220.

[本文引用: 1]

Du J, Yang XD, Zhang H, Yu GB (2008)

Quantitative distribution of earthworms and its relationships with environmental factors in tropical secondary forest and rubber plantation in Xishuangbanna

Chinese Journal of Ecology, 27, 1941-1947. (in Chinese with English abstract)

[本文引用: 1]

To understand the influence of land use change on earthworm communities, the quantitative distribution of earthworms and its relationships with environmental factors in the tropical secondary forest and rubber plantation in Xishuangbanna, Southwest China were studied in January 2006. The results showed that after the secondary forest converted into rubber plantation, soil nutrients and organic C input from plants reduced significantly, and earthworm communities altered. In rubber plantation, the density of tropical exotic earthworm (<EM>Pontoscolex corethrurus</EM>) (52.27 ind·m<SUP>-2</SUP>) was significantly higher than that of native earthworm (<EM>Amynthas</EM> sp.) (0.53 ind·m<SUP>-2</SUP>); while in secondary forest, no significant differences were observed in the density and biomass of the two earthworm species. The density (0.53 ind·m<SUP>-2</SUP>) and biomass (0.32 g·m<SUP>-2</SUP>) of <EM>Amynthas</EM> sp. in rubber plantation showed a decrease trend compared with those in secondary forest (6.93 ind·m<SUP>-2</SUP>, 7.76 g·m<SUP>-2</SUP>). An increasing population of <EM>P. corethrurus</EM> was accounted by the larger proportion of its juvenile’s density and biomass, while <EM>Amynthas</EM> sp. was mainly composed of adults. The fine-root biomass of rubber plantation was positively correlated with the density of <EM>P. corethrurus</EM>. It was suggested that the vegetation change and soil nutrient decrease due to the conversion of secondary forest into rubber plantation had promoted the reproduction of exotic earthworm, and the adaptive strategies of exotic and native earthworms could not be ignored.

[杜杰, 杨效东, 张花, 余广彬 (2008)

西双版纳热带次生林和橡胶林蚯蚓数量分布及其与环境因子的关系

生态学杂志, 27, 1941-1947.]

[本文引用: 1]

Eisenhauer N, Dobies T, Cesarz S, Hobbie SE, Meyer RJ, Worm K, Reich PB (2013)

Plant diversity effects on soil food webs are stronger than those of elevated CO2 and N deposition in a long-term grassland experiment

Proceedings of the National Academy of Sciences, USA, 110, 6889-6894.

[本文引用: 1]

Fu SL (2007)

A review and perspective on soil biodiversity research

Biodiversity Science, 15, 109-115. (in Chinese with English abstract)

DOI:10.1360/biodiv.060293      [本文引用: 1]

In this paper, the soil biodiversity and its functioning in ecosystem were briefly summarized, and the history and development of the discipline of soil biology were also reviewed. Meanwhile, I pointed out some issues on soil biology to be addressed for a few years to come. Due to the importance of soil biodiversity to the maintenance of ecosystem functions but inadequate study on soil biota in China, a series of articles on soil biota were collectively published in this issue of <em>Biodiversity Science</em>. The objectives of this issue were to enable the Chinese scientists to better understand the functions of soil biodiversity and to stimulate the interest of young scholars in the discipline of soil biology. The ultimate goal was to push forward the research and development of soil biology in China and to apply the knowledge and techniques of soil biology in the development of national economy.

[傅声雷 (2007)

土壤生物多样性的研究概况与发展趋势

生物多样性, 15, 109-115.]

DOI:10.1360/biodiv.060293      [本文引用: 1]

本文概括性地介绍了土壤生物类群的多样性及其在生态系统中的作用; 同时简要地回顾和比较了国内外在土壤生物学方面的研究动态, 分析了土壤生物学今后的发展趋势。鉴于土壤生物在生态系统中的重要性以及我国在土壤生物学研究方面的不足, 《生物多样性》本期刊登了一系列有关土壤生物的文章, 目的是为了使国内科学家对土壤生物多样性在生态系统中的作用有更好的认识, 并希望能够唤起更多的年轻学者加入到土壤生物学研究的行列, 以推动土壤生物学在我国的迅速发展并将土壤生物学的研究成果应用于国民经济的发展中。

Gossner MM, Lewinsohn TM, Kahl T, Grassein F, Boch S, Prati D, Birkhofer K, Renner SC, Sikorski J, Wubet T, Arndt H, Baumgartner V, Blaser S, Blüthgen N, Börschig C, Buscot F, Diekötter T, Jorge LR, Jung K, Keyel AC, Klein AM, Klemmer S, Krauss J, Lange M, Müller J, Overmann J, Pašalić E, Penone C, Perović DJ, Purschke O, Schall P, Socher SA, Sonnemann I, Tschapka M, Tscharntke T, Türke M, Venter PC, Weiner CN, Werner M, Wolters V, Wurst S, Westphal C, Fischer M, Weisser WW, Allan E (2016)

Land-use intensification causes multitrophic homogenization of grassland communities

Nature, 540, 266-269.

[本文引用: 1]

Gross T, Rudolf L, Levin SA, Dieckmann U (2009)

Generalized models reveal stabilizing factors in food webs

Science, 325, 747-750.

DOI:10.1126/science.1173536      PMID:19661430      [本文引用: 1]

Insights into what stabilizes natural food webs have always been limited by a fundamental dilemma: Studies either need to make unwarranted simplifying assumptions, which undermines their relevance, or only examine few replicates of small food webs, which hampers the robustness of findings. We used generalized modeling to study several billion replicates of food webs with nonlinear interactions and up to 50 species. In this way, first we show that higher variability in link strengths stabilizes food webs only when webs are relatively small, whereas larger webs are instead destabilized. Second, we reveal a new power law describing how food-web stability scales with the number of species and their connectance. Third, we report two universal rules: Food-web stability is enhanced when (i) species at a high trophic level feed on multiple prey species and (ii) species at an intermediate trophic level are fed upon by multiple predator species.

Heleno R, Garcia C, Jordano P, Traveset A, Gómez JM, Blüthgen N, Memmott J, Moora M, Cerdeira J, Rodríguez-Echeverría S, Freitas H, Olesen JM (2014)

Ecological networks: Delving into the architecture of biodiversity

Biology Letters, 10, 20131000.

[本文引用: 1]

Huang CM, Yang LL (1998)

Influences of habitat changes in the tropical rainforest on the fauna and species diversity of Acridoidea in Xishuangbanna

Chinese Biodiversity, 6, 122-131. (in Chinese with English abstract)

[本文引用: 1]

[黄春梅, 杨龙龙 (1998)

西双版纳热带雨林环境变化对蝗虫区系成分和物种多样性的影响

生物多样性, 6, 122-131.]

[本文引用: 1]

Kardol P, Martijn Bezemer T, van der Putten WH (2006)

Temporal variation in plant-soil feedback controls succession

Ecology Letters, 9, 1080-1088.

DOI:10.1111/j.1461-0248.2006.00953.x      PMID:16925657      [本文引用: 1]

Soil abiotic and biotic factors play key roles in plant community dynamics. However, little is known about how soil biota influence vegetation changes over time. Here, we show that the effects of soil organisms may depend on both the successional development of ecosystems and on the successional position of the plants involved. In model systems of plants and soils from different successional stages, we observed negative plant-soil feedback for early-successional plant species, neutral feedback for mid-successional species, and positive feedback for late-successional species. The negative feedback of early-successional plants was independent of soil origin, while late-successional plants performed best in late- and worst in early-successional soil. Increased performance of the subordinate, late-successional plants resulted in enhanced plant community diversity. Observed feedback effects were more related to soil biota than to abiotic conditions. Our results show that temporal variations in plant-soil interactions profoundly contribute to plant community assemblage and ecosystem development.

Kerfahi D, Tripathi BM, Dong K, Go R, Adams JM (2016)

Rainforest conversion to rubber plantation may not result in lower soil diversity of bacteria, fungi, and nematodes

Microbial Ecology, 72, 359-371.

DOI:10.1007/s00248-016-0790-0      PMID:27221090      [本文引用: 2]

Large areas of rainforest in Asia have been converted to plantations, with uncertain effects on soil biodiversity. Using standard metagenetic methods, we compared the soil biota of bacteria, fungi, and nematodes at three rainforest sites in Malaysia with two rubber plantation sites with similar soils and geology. We predicted the following: (1) that the rubber sites would have a lower α- and β-diversity than the rainforest sites, due to the monospecific canopy cover and intensive management with herbicides, pesticides, and fertilizers, and (2) that due to differences in the physical and biotic environment associated with cultivation, there would be distinct communities of bacteria, fungi, and nematodes. However, regarding (1), the results showed no consistent difference in α- and β-diversity of bacteria, fungi, or nematodes between rainforest and rubber plantation sites. It appears that conversion of rainforest to rubber plantations does not necessarily result in a decrease in diversity of soil biota. It may be that heterogeneity associated with the cultivation regimen compensates for loss of biotically imposed heterogeneity of the original rainforest. Regarding (2), as predicted there were statistically significant differences in community composition between rainforest and rubber plantation for bacteria, fungi, and nematodes. These differences could be related to a range of factors including light level, litter fall composition, pH, C and N, selecting a distinct set of soil taxa, and it is possible that this in itself would affect long-term soil function.

Kou XC, Su TQ, Ma NN, Li Q, Wang P, Wu ZF, Liang WJ, Cheng WX (2018)

Soil micro-food web interactions and rhizosphere priming effect

Plant and Soil, 432, 129-142.

DOI:10.1007/s11104-018-3782-7      [本文引用: 1]

Lan GY, Li YW, Jatoi MT, Tan ZH, Wu ZX, Xie GS (2017a)

Change in soil microbial community compositions and diversity following the conversion of tropical forest to rubber plantations in Xishuangbanna, Southwest China

Tropical Conservation Science, 10, 194008291773323.

[本文引用: 1]

Lan GY, Li YW, Wu ZX, Xie GS (2017b)

Impact of tropical forest conversion on soil bacterial diversity in tropical region of China

European Journal of Soil Biology, 83, 91-97.

DOI:10.1016/j.ejsobi.2017.10.007      URL     [本文引用: 1]

Lan GY, Wu ZX, Yang C, Sun R, Chen BQ, Zhang X (2020)

Tropical rainforest conversion into rubber plantations results in changes in soil fungal composition, but underling mechanisms of community assembly remain unchanged

Geoderma, 375, 114505.

DOI:10.1016/j.geoderma.2020.114505      URL     [本文引用: 1]

Li HM, Aide TM, Ma YX, Liu WJ, Cao M (2007)

Demand for rubber is causing the loss of high diversity rain forest in SW China

Biodiversity and Conservation, 16, 1731-1745.

DOI:10.1007/s10531-006-9052-7      URL     [本文引用: 1]

Lin XB, Liu SJ, Xiao HF, Xia SW, Yang XD (2017)

Effects of rubber plantation on structure and diversity of termite community

Chinese Journal of Ecology, 36, 2847-2854. (in Chinese with English abstract)

[本文引用: 1]

In this study, we investigated the termite community in natural forests (tropical rain forest and evergreen broadleaved forest) and rubber plantation in Nabanhe Natural Reserve in Xishuangbanna, and explored the effects of rubber plantation on termite community structure, feeding group composition and diversity. The results are as follows: (1) A total of 397 samples of termites were collected in the three forest types, and 20 species of termites were identified belonging to 2 families and 10 genera. The dominant species were tropical termites; (2) Season was an important factor affecting the termite community, and the diversity of termites in the rainy season was higher than that in dry season; (3) The abundance, richness and diversity index of termites in the natural forests were significantly higher than that of rubber plantation. For feeding groups, the proportion of soilwood feeding termites in the rubber plantation was significantly lower than that in the natural forests, while the proportion of wood feeding termites in the rubber plantation was higher. Our results suggested that large areas of monocluture rubber plantations in tropical region have negative impacts on termite community structure and diversity. We recommend that polyculture rubber plantations as the alternative monoculture rubber plantations should be developed to protect termite diversity.

[林小兵, 刘胜杰, 肖海峰, 夏尚文, 杨效东 (2017)

橡胶林种植对白蚁群落结构和多样性的影响

生态学杂志, 36, 2847-2854.]

[本文引用: 1]

采用样带法对西双版纳纳板河自然保护区自然林(热带雨林和常绿阔叶林)和橡胶林白蚁群落进行了调查,探讨了橡胶林种植对白蚁群落结构、食性类群组成和多样性的影响。结果表明: (1)在3种森林类型中,共收集白蚁样本397份,隶属于2科10属20种,热带性白蚁种属组成突出;(2)季节对白蚁群落多度和丰富度有显著影响,总体表现为雨季高于旱季;(3)自然林中白蚁多度、丰富度和多样性指数显著高于单一橡胶林,且橡胶林中白蚁稀有种数量显著减少,同时土木食性白蚁的数量比例显著低于自然林,而木食性白蚁比例增加。研究认为,热带地区大面积单一橡胶林种植可对&ldquo;生态系统工程师&rdquo;白蚁群落结构和多样性产生较大的负面影响,应重视发展复合橡胶林模式保护白蚁生物多样性。

Lin YX, Zhang YP, Zhou LG, Li J, Zhou RW, Guan HL, Zhang J, Sha LQ, Song QH (2022)

Phenology-related water-use efficiency and its responses to site heterogeneity in rubber plantations in Southwest China

European Journal of Agronomy, 137, 126519.

DOI:10.1016/j.eja.2022.126519      URL     [本文引用: 1]

Liu CA, Liang MY, Tang JW, Jin YQ, Guo ZB, Siddique KHM (2021)

Challenges of the establishment of rubber-based agroforestry systems: Decreases in the diversity and abundance of ground arthropods

Journal of Environmental Management, 292, 112747.

DOI:10.1016/j.jenvman.2021.112747      URL     [本文引用: 1]

Liu CA, Nie Y, Zhang YM, Tang JW, Siddique KHM (2018)

Introduction of a leguminous shrub to a rubber plantation changed the soil carbon and nitrogen fractions and ameliorated soil environments

Scientific Reports, 8, 17324.

DOI:10.1038/s41598-018-35762-0      [本文引用: 1]

The conversion of monoculture rubber (Hevea brasiliensis) plantations into rubber-based agroforestry systems has become a common trend in forestry management in the past few decades. Rubber–Flemingia macrophylla (a leguminous shrub) systems are popular in southwestern China’s Xishuangbanna region. The biogeochemical cycles of soil carbon and nitrogen in forests are mainly affected by their fractions. This study investigated the effect of introducing Flemingia macrophylla to rubber plantations of different ages on soil carbon and nitrogen fractions. The experimental treatments included R1 (young rubber plantation), RF1 (young rubber–Flemingia macrophylla system), R2 (mature rubber plantation) and RF2 (mature rubber–Flemingia macrophylla system). The results showed that the introduction of Flemingia macrophylla to rubber plantations of different ages significantly changed soil carbon and nitrogen fractions, improved soil labile organic carbon and nitrogen contents, and ameliorated soil environments. The average soil microbial biomass organic carbon, nitrogen and nitrate-nitrogen in the 0–10 cm soil layer during the experimental period was 38.9%, 55.5%, and 214.7% higher in RF1 than R1, respectively, and 22.1%, 22.2%, and 652.2% higher in RF2 than R2, respectively. Therefore, Flemingia macrophylla can be used as an alternative interplanted tree species within rubber plantations in similar environments of southeastern Asia.

Liu CG, Jin YQ, Hu YN, Tang JW, Xiong QL, Xu MX, Bibi F, Beng KC (2019)

Drivers of soil bacterial community structure and diversity in tropical agroforestry systems

Agriculture, Ecosystems & Environment, 278, 24-34.

DOI:10.1016/j.agee.2019.03.015      URL     [本文引用: 3]

Meng LZ, Martin K, Weigel A, Liu JX (2012)

Impact of rubber plantation on carabid beetle communities and species distribution in a changing tropical landscape (southern Yunnan, China)

Journal of Insect Conservation, 16, 423-432.

DOI:10.1007/s10841-011-9428-1      URL     [本文引用: 1]

Mo YY, Peng F, Gao XF, Xiao P, Logares R, Jeppesen E, Ren KX, Xue YY, Yang JZ (2021)

Low shifts in salinity determined assembly processes and network stability of microeukaryotic plankton communities in a subtropical urban reservoir

Microbiome, 9, 128.

DOI:10.1186/s40168-021-01079-w      PMID:34082826      [本文引用: 1]

Freshwater salinization may result in significant changes of microbial community composition and diversity, with implications for ecosystem processes and function. Earlier research has revealed the importance of large shifts in salinity on microbial physiology and ecology, whereas studies on the effects of smaller or narrower shifts in salinity on the microeukaryotic community in inland waters are scarce. Our aim was to unveil community assembly mechanisms and the stability of microeukaryotic plankton networks at low shifts in salinity.Here, we analyzed a high-resolution time series of plankton data from an urban reservoir in subtropical China over 13 consecutive months following one periodic salinity change ranging from 0 to 6.1‰. We found that (1) salinity increase altered the community composition and led to a significant decrease of plankton diversity, (2) salinity change influenced microeukaryotic plankton community assembly primarily by regulating the deterministic-stochastic balance, with deterministic processes becoming more important with increased salinity, and (3) core plankton subnetwork robustness was higher at low-salinity levels, while the satellite subnetworks had greater robustness at the medium-/high-salinity levels. Our results suggest that the influence of salinity, rather than successional time, is an important driving force for shaping microeukaryotic plankton community dynamics.Our findings demonstrate that at low salinities, even small increases in salinity are sufficient to exert a selective pressure to reduce the microeukaryotic plankton diversity and alter community assembly mechanism and network stability. Our results provide new insights into plankton ecology of inland urban waters and the impacts of salinity change in the assembly of microbiotas and network architecture. Video abstract.

Monkai J, Goldberg SD, Hyde KD, Harrison RD, Mortimer PE, Xu JC (2018)

Natural forests maintain a greater soil microbial diversity than that in rubber plantations in Southwest China

Agriculture, Ecosystems & Environment, 265, 190-197.

DOI:10.1016/j.agee.2018.06.009      URL     [本文引用: 1]

Monkai J, Hyde KD, Xu JC, Mortimer PE (2017)

Diversity and ecology of soil fungal communities in rubber plantations

Fungal Biology Reviews, 31, 1-11.

DOI:10.1016/j.fbr.2016.08.003      URL     [本文引用: 1]

Morriën E (2016)

Understanding soil food web dynamics, how close do we get?

Soil Biology and Biochemistry, 102, 10-13.

DOI:10.1016/j.soilbio.2016.06.022      URL     [本文引用: 1]

Morriën E, Hannula SE, Snoek LB, Helmsing NR, Zweers H, de Hollander M, Soto RL, Bouffaud ML, Buée M, Dimmers W, Duyts H, Geisen S, Girlanda M, Griffiths RI, Jørgensen HB, Jensen J, Plassart P, Redecker D, Schmelz RM, Schmidt O, Thomson BC, Tisserant E, Uroz S, Winding A, Bailey MJ, Bonkowski M, Faber JH, Martin F, Lemanceau P, de Boer W, van Veen JA, van der Putten WH (2017)

Soil networks become more connected and take up more carbon as nature restoration progresses

Nature Communications, 8, 14349.

DOI:10.1038/ncomms14349      PMID:28176768      [本文引用: 1]

Soil organisms have an important role in aboveground community dynamics and ecosystem functioning in terrestrial ecosystems. However, most studies have considered soil biota as a black box or focussed on specific groups, whereas little is known about entire soil networks. Here we show that during the course of nature restoration on abandoned arable land a compositional shift in soil biota, preceded by tightening of the belowground networks, corresponds with enhanced efficiency of carbon uptake. In mid-and long-term abandoned field soil, carbon uptake by fungi increases without an increase in fungal biomass or shift in bacterial-to-fungal ratio. The implication of our findings is that during nature restoration the efficiency of nutrient cycling and carbon uptake can increase by a shift in fungal composition and/or fungal activity. Therefore, we propose that relationships between soil food web structure and carbon cycling in soils need to be reconsidered.

Neher DA (2001)

Role of nematodes in soil health and their use as indicators

Journal of Nematology, 33, 161-168.

PMID:19265875      [本文引用: 1]

The composition of nematode communities (plant-parasitic and free-living) may be used as bioindicators of soil health or condition because composition correlates well with nitrogen cycling and decomposition, two critical ecological processes in soil. Maturity and trophic diversity indices withstand statistical rigor better than do abundances, proportions, or ratios of trophic groups. Maturity indices respond to a variety of land-management practices, based largely on inferred life history characteristics of families. Similarity indices may be more useful than diversity indices because they reflect taxon composition. Improving existing indices or developing alternative indices refined by a greater understanding of the biology of key taxa may enhance the utility of nematodes as bioindicators.

Neutel AM, Thorne MAS (2014)

Interaction strengths in balanced carbon cycles and the absence of a relation between ecosystem complexity and stability

Ecology Letters, 17, 651-661.

DOI:10.1111/ele.2014.17.issue-6      URL     [本文引用: 2]

Paz-Ferreiro J, Gascó G, Gutiérrez B, Méndez A (2012)

Soil biochemical activities and the geometric mean of enzyme activities after application of sewage sludge and sewage sludge biochar to soil

Biology and Fertility of Soils, 48, 511-517.

DOI:10.1007/s00374-011-0644-3      URL     [本文引用: 1]

Porazinska DL, Bardgett RD, Blaauw MB, Hunt HW, Parsons AN, Seastedt TR, Wall DH (2003)

Relationships at the aboveground-belowground interface: Plants, soil biota, and soil processes

Ecological Monographs, 73, 377-395.

DOI:10.1890/0012-9615(2003)073[0377:RATAIP]2.0.CO;2      URL     [本文引用: 1]

Porazinska DL, Giblin-davis RM, Faller L, Farmerie W, Kanzaki N, Morris K, Powers TO, Tucker AE, Sung W, Thomas WK (2009)

Evaluating high-throughput sequencing as a method for metagenomic analysis of nematode diversity

Molecular Ecology Resources, 9, 1439-1450.

DOI:10.1111/j.1755-0998.2009.02611.x      PMID:21564930      [本文引用: 1]

Nematodes play an important role in ecosystem processes, yet the relevance of nematode species diversity to ecology is unknown. Because nematode identification of all individuals at the species level using standard techniques is difficult and time-consuming, nematode communities are not resolved down to the species level, leaving ecological analysis ambiguous. We assessed the suitability of massively parallel sequencing for analysis of nematode diversity from metagenomic samples. We set up four artificial metagenomic samples involving 41 diverse reference nematodes in known abundances. Two samples came from pooling polymerase chain reaction products amplified from single nematode species. Two additional metagenomic samples consisted of amplified products of DNA extracted from pooled nematode species. Amplified products involved two rapidly evolving ~400-bp sections coding for the small and large subunit of rRNA. The total number of reads ranged from 4159 to 14771 per metagenomic sample. Of these, 82% were > 199 bp in length. Among the reads > 199 bp, 86% matched the referenced species with less than three nucleotide differences from a reference sequence. Although neither rDNA section recovered all nematode species, the use of both loci improved the detection level of nematode species from 90 to 97%. Overall, results support the suitability of massively parallel sequencing for identification of nematodes. In contrast, the frequency of reads representing individual species did not correlate with the number of individuals in the metagenomic samples, suggesting that further methodological work is necessary before it will be justified for inferring the relative abundances of species within a nematode community.© 2009 Blackwell Publishing Ltd.

Rao X, Liu CA, Tang JW, Nie Y, Liang MY, Shen WJ, Siddique KHM (2021)

Rubber-leguminous shrub systems stimulate soil N2O but reduce CO2 and CH4 emissions

Forest Ecology and Management, 480, 118665.

DOI:10.1016/j.foreco.2020.118665      URL     [本文引用: 1]

Rieske LK, Buss LJ (2001)

Effects of gypsy moth suppression tactics on litter- and ground-dwelling arthropods in the central hardwood forests of the Cumberland Plateau

Forest Ecology and Management, 149, 181-195.

DOI:10.1016/S0378-1127(00)00552-1      URL     [本文引用: 1]

Rooney N, McCann K, Gellner G, Moore JC (2006)

Structural asymmetry and the stability of diverse food webs

Nature, 442, 265-269.

DOI:10.1038/nature04887      [本文引用: 1]

Schneider D, Engelhaupt M, Allen K, Kurniawan S, Krashevska V, Heinemann M, Nacke H, Wijayanti M, Meryandini A, Corre MD, Scheu S, Daniel R (2015)

Impact of lowland rainforest transformation on diversity and composition of soil prokaryotic communities in Sumatra (Indonesia)

Frontiers in Microbiology, 6, 1339.

DOI:10.3389/fmicb.2015.01339      PMID:26696965      [本文引用: 1]

Prokaryotes are the most abundant and diverse group of microorganisms in soil and mediate virtually all biogeochemical cycles in terrestrial ecosystems. Thereby, they influence aboveground plant productivity and diversity. In this study, the impact of rainforest transformation to intensively managed cash crop systems on soil prokaryotic communities was investigated. The studied managed land use systems comprised rubber agroforests (jungle rubber), rubber plantations and oil palm plantations within two Indonesian landscapes Bukit Duabelas and Harapan. Soil prokaryotic community composition and diversity were assessed by pyrotag sequencing of bacterial and archaeal 16S rRNA genes. The curated dataset contained 16,413 bacterial and 1679 archaeal operational taxonomic units at species level (97% genetic identity). Analysis revealed changes in indigenous taxon-specific patterns of soil prokaryotic communities accompanying lowland rainforest transformation to jungle rubber, and intensively managed rubber and oil palm plantations. Distinct clustering of the rainforest soil communities indicated that these are different from the communities in the studied managed land use systems. The predominant bacterial taxa in all investigated soils were Acidobacteria, Actinobacteria, Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria. Overall, the bacterial community shifted from proteobacterial groups in rainforest soils to Acidobacteria in managed soils. The archaeal soil communities were mainly represented by Thaurnarchaeota and Euryarchaeota. Members of the Terrestrial Group and South African Gold Mine Group 1 (Thaumarchaeota) dominated in the rainforest and members of Thermoplasmata in the managed land use systems. The alpha and beta diversity of the soil prokaryotic communities was higher in managed land use systems than in rainforest. In the case of bacteria, this was related to soil characteristics such as pH value, exchangeable Ca and Fe content, C to N ratio, and extractable P content. Archaeal community composition and diversity were correlated to pH value, exchangeable Fe content, water content, and total N. The distribution of bacterial and archaeal taxa involved in biological N cycle indicated functional shifts of the cycle during conversion of rainforest to plantations.

Shao ZZ, Wu PF (2019)

Responses of epigeic microarthropods to alpine wetland degradation

Acta Ecologica Sinica, 39, 6990-7001. (in Chinese with English abstract)

[本文引用: 1]

[邵珍珍, 吴鹏飞 (2019)

小型表栖节肢动物群落对高寒湿地退化的响应

生态学报, 39, 6990-7001.]

[本文引用: 1]

Soong JL, Nielsen UN (2016)

The role of microarthropods in emerging models of soil organic matter

Soil Biology and Biochemistry, 102, 37-39.

DOI:10.1016/j.soilbio.2016.06.020      URL     [本文引用: 1]

Sun X, Li Q, Yao HF, Liu MQ, Wu DH, Zhu D, Zhu YG (2021)

Soil fauna and soil health

Acta Pedologica Sinica, 58, 1073-1083. (in Chinese with English abstract)

[本文引用: 1]

[孙新, 李琪, 姚海凤, 刘满强, 吴东辉, 朱冬, 朱永官 (2021)

土壤动物与土壤健康

土壤学报, 58, 1073-1083.]

[本文引用: 1]

Tylianakis JM, Tscharntke T, Lewis OT (2007)

Habitat modification alters the structure of tropical host-parasitoid food webs

Nature, 445, 202-205.

DOI:10.1038/nature05429      [本文引用: 1]

van der Zee EM, Angelini C, Govers LL, Christianen MJA, Altieri AH, van der Reijden KJ, Silliman BR, van de Koppel J, van der Geest M, van Gils JA, van der Veer HW, Piersma T, de Ruiter PC, Olff H, van der Heide T (2016) How habitat-modifying organisms structure the food web of two coastal ecosystems. Proceedings of the Royal Society B: Biological Sciences, 283, 20152326.

[本文引用: 1]

Waldrop MP, Zak DR, Blackwood CB, Curtis CD, Tilman D (2006)

Resource availability controls fungal diversity across a plant diversity gradient

Ecology Letters, 9, 1127-1135.

DOI:10.1111/j.1461-0248.2006.00965.x      PMID:16972876      [本文引用: 1]

Despite decades of research, the ecological determinants of microbial diversity remain poorly understood. Here, we test two alternative hypotheses concerning the factors regulating fungal diversity in soil. The first states that higher levels of plant detritus production increase the supply of limiting resources (i.e. organic substrates) thereby increasing fungal diversity. Alternatively, greater plant diversity increases the range of organic substrates entering soil, thereby increasing the number of niches to be filled by a greater array of heterotrophic fungi. These two hypotheses were simultaneously examined in experimental plant communities consisting of one to 16 species that have been maintained for a decade. We used ribosomal intergenic spacer analysis (RISA), in combination with cloning and sequencing, to quantify fungal community composition and diversity within the experimental plant communities. We used soil microbial biomass as a temporally integrated measure of resource supply. Plant diversity was unrelated to fungal diversity, but fungal diversity was a unimodal function of resource supply. Canonical correspondence analysis (CCA) indicated that plant diversity showed a relationship to fungal community composition, although the occurrence of RISA bands and operational taxonomic units (OTUs) did not differ among the treatments. The relationship between fungal diversity and resource availability parallels similar relationships reported for grasslands, tropical forests, coral reefs, and other biotic communities, strongly suggesting that the same underlying mechanisms determine the diversity of organisms at multiple scales.

Wall DH, Nielsen UN, Six J (2015)

Soil biodiversity and human health

Nature, 528, 69-76.

DOI:10.1038/nature15744      [本文引用: 1]

Wang WT, Sun ZH, Mishra S, Xia SW, Lin LX, Yang XD (2022)

Body size determines multitrophic soil microbiota community assembly associated with soil and plant attributes in a tropical seasonal rainforest

Molecular Ecology, 2022, 1-10.

[本文引用: 1]

Wen T, Xie PH, Yang SD, Niu GQ, Liu XY, Ding ZX, Xue C, Liu YX, Shen QR, Yuan J (2022)

ggClusterNet: An R package for microbiome network analysis and modularity-based multiple network layouts

iMeta, 1, e32.

[本文引用: 1]

Wu JN, Liu WJ, Chen CF (2017)

How do plants share water sources in a rubber-tea agroforestry system during the pronounced dry season?

Agriculture, Ecosystems & Environment, 236, 69-77.

DOI:10.1016/j.agee.2016.11.017      URL     [本文引用: 2]

Xiao HF, Tian YH, Zhou HP, Ai XS, Yang XD, Schaefer DA (2014)

Intensive rubber cultivation degrades soil nematode communities in Xishuangbanna, southwest China

Soil Biology and Biochemistry, 76, 161-169.

DOI:10.1016/j.soilbio.2014.05.012      URL     [本文引用: 2]

Yin WY (2000) Soil Animals of China. Science Press, Beijing. (in Chinese)

[本文引用: 1]

[尹文英 (2000) 中国土壤动物. 科学出版社, 北京.]

[本文引用: 1]

Yuan MM, Guo XE, Wu LW, Zhang Y, Xiao NJ, Ning DL, Shi Z, Zhou XS, Wu LY, Yang YF, Tiedje JM, Zhou JZ (2021)

Climate warming enhances microbial network complexity and stability

Nature Climate Change, 11, 343-348.

DOI:10.1038/s41558-021-00989-9      [本文引用: 1]

Zhang WX, Shen ZF, Song B, Ma ZH, Shao YH, Fu SL (2022)

Soil food web manipulation and ecological functions: Challenges and perspectives

Science & Technology Review, 40(3), 52-63. (in Chinese with English abstract)

[本文引用: 1]

[张卫信, 申智锋, 宋博, 马子鹤, 邵元虎, 傅声雷 (2022)

土壤食物网调控及其生态功能研究的困境与思考

科技导报, 40(3), 52-63.]

[本文引用: 1]

Zheng G, Yang XD, Li SQ (2009)

Biodiversity of ground-dwelling spider in six forest types in Xishuangbanna, S.W. China

Acta Entomologica Sinica, 52, 875-884. (in Chinese with English abstract)

[本文引用: 1]

The composition and distribution of ground-dwelling spider were investigated using small plot direct searching method to assess the impact of forest type and habitat management on spider diversity. Six forest types in Xishuangbanna, Yunnan Province, southwestern China were surveyed, <I>i.e.</I>, the tropical seasonal rain forest, limestone tropical seasonal rain forest, tropical montane evergreen broad-leaved forest, artificial forest, rubber-tea community and rubber plantation. A total of 18 plots (three repetitions for each forest type) were surveyed during three field trips in December 2006, March and July 2007. The relationships between forest type and spider diversity were explored using canonical correspondence analysis (CCA). A total of 9 849 individual spiders were collected from various habitats, of which 3 119 are identifiable adults representing 30 families. The most abundant families of ground-dwelling spider are Pholcidae, Linyphiidae, Theridiidae and Mysmenidae (62.2% of total species counts). Of the six forest types, 24 families were collected from the tropical seasonal rain forest including two endemic families; 22 families were collected from the limestone tropical seasonal rain forest; 22 families were collected from the tropical montane evergreen broad-leaved forest including two endemic families; 20 families were collected from the artificial forest; 21 families were collected from the rubber-tea community; and 19 families were collected from the rubber plantation including one endemic family. There are four families (13.3% of the total 30 families recorded) endemic to two types of rain forest, six families (20.0%) endemic to three types of natural forest, and one family (3.3%) endemic to plantations. Abundance of ground-dwelling spider in the tropical seasonal rain forest is significant higher than the remaining five types of forest. Shannon-Wiener (H′) index and Margalef index (Dmg) in the rubber plantation are significant lower than the three types of natural forest, and Pielou index (J) is also the lowest in the rubber plantation. The results of CCA and cluster analysis indicated that natural forests and plantations are well differentiated. In the group of natural forests, the tropical seasonal rain forest plots are well separated from two types of secondary forest plots. In the other group, the rubber plantation plots are well separated from the artificial forest and the rubber-tea community plots. The results suggested that: (1) human-management has an strong impact on ground-dwelling spider composition; (2) spider diversity decreases along with the increase of anthropogenic disturbance; and (3) reducing anthropogenic disturbance and increasing plant community diversity (<I>e.g.</I>, plant tea tree in rubber plantation) is a meaningful way to conserve and restore biodiversity.

[郑国, 杨效东, 李枢强 (2009)

西双版纳地区六种林型地表蜘蛛多样性比较研究

昆虫学报, 52, 875-884.]

[本文引用: 1]

Zou X, Zhu XA, Zhu P, Singh AK, Zakari S, Yang B, Chen CF, Liu WJ (2021)

Soil quality assessment of different Hevea brasiliensis plantations in tropical China

Journal of Environmental Management, 285, 112147.

DOI:10.1016/j.jenvman.2021.112147      URL     [本文引用: 2]

/