生物多样性, 2023, 31(5): 22473 doi: 10.17520/biods.2022473

动物多样性

基于取食行为探究北京居民区鸟类的食源特征及多样性

殷鲁秦1,2, 王成,1,2,*, 韩文静1,2

1.中国林业科学研究院林业研究所, 北京 100091

2.国家林业和草原局城市森林研究中心, 北京 100091

Food source characteristics and diversity of birds based on feeding behavior in residential areas of Beijing

Luqin Yin1,2, Cheng Wang,1,2,*, Wenjing Han1,2

1. Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091

2. Urban Forest Research Center, National Forestry and Grassland Administration, Beijing 100091

通讯作者: * E-mail:wch8361@163.com

编委: 吴永杰

责任编辑: 闫文杰

收稿日期: 2022-08-18   接受日期: 2022-11-15  

基金资助: 中央级公益性科研院所基本科研业务费专项资金(CAFYBB2022SY006)

Corresponding authors: * E-mail:wch8361@163.com

Received: 2022-08-18   Accepted: 2022-11-15  

摘要

城市是鸟类的重要栖息地, 城市绿地中占比最大的为居住绿地, 是容纳鸟类的重要生境。对于鸟类生存来说, 食物的种类和数量是关键的限制因子。本研究从鸟类的食物偏好入手, 旨在构建北京居住区鸟类的食源关系, 探究鸟类在居住区中取食的影响因素。研究选取40个居住小区作为调查样地, 于2020年6月至2021年5月每月调查1次, 采用广义线性模型评估鸟类在居住区中取食的影响因素, 并对鸟类的食源多样性指数与多度、分布范围进行线性回归。结果表明: (1)本研究共记录到取食行为的鸟种共14科35种2,242只, 丰富度为春季 > 秋季 > 冬季 > 夏季, 多度为春季 > 冬季 > 秋季 > 夏季, Shannon-Wiener多样性指数为秋季 > 春季 > 冬季 > 夏季。(2)鸟类的食源依次为昆虫(33.87%)、翅果(18.33%)、浆果(9.77%)、球果(8.16%)、草籽(5.17%)等。(3)鸟类对植物的直接利用高达60.4%, 间接利用为39.6%, 食源植物Shannon-Wiener多样性指数为秋季(3.1612) > 冬季(2.9651) > 春季(2.9203) > 夏季(2.1763)。(4)食源树种是影响鸟类在居住区中取食最关键的外界环境因素, 食源越丰富的鸟种, 其种群数量越大, 分布范围越广泛。居住区的食源植物具有类型丰富、种类繁多、从早春到晚秋覆盖全物候的特点, 在规划设计时应多配置北京乡土树种以及金银木(Lonicera maackii)等观果植物, 减少绿篱配置, 倡导低干扰的近自然园林养护管理措施。

关键词: 鸟类食性; 居住区; 食物来源; 食源植物; 鸟类多样性; 北京

Abstract

Aims: Urban areas can provide important habitats for birds. Residential green spaces can play an important role in urban green spaces and may provide valuable resources for urban birds. Food diversity and quantity can be one of the factors that could be limiting bird survival. Therefore, by considering the food preferences of birds, this study aims to determine the relationship between birds and their food sources in Beijing residential areas. Furthermore, this study seeks to determine what factors may influence bird feeding behavior in residential areas.
Methods: Forty residential areas were selected as survey plots and surveyed monthly from June 2020 to May 2021. Shannon-Wiener diversity index was used for evaluating bird diversity, and the distribution was defined as the numbers of residential areas where birds fed. A generalized linear model was used to evaluate the influencing factors of bird feeding in residential areas, and linear regression was performed on the diversity index, abundance and the distribution of bird feeding sources.
Results: (1) The feeding behavior of 2,242 birds (35 species, 14 families) were recorded. We observed that bird richness was at its highest in spring, followed by autumn, winter and summer, then abundance was at its highest in spring, followed by winter, autumn and summer, and the Shannon-Wiener diversity index was at its highest in autumn, followed by spring, winter, summer. (2) A decrease in food sources was observed in the following: insects (33.87%), samara (18.33%), berries (9.77%), cones (8.16%) and grass seeds (5.17%). (3) The direct utilization of plants by birds was 60.4%, while the indirect utilization was 39.6%. The Shannon-Wiener diversity index of food source plants decreased in autumn (3.1612), winter (2.9651), spring (2.9203) and summer (2.1763). (4) The species of food source was the most critical environmental factor that determined birds feeding behavior in residential areas. Birds with more abundant food sources had larger populations and wider distribution ranges.
Conclusion: Plant species in residential areas can be highly diverse and can offer a wide range of food sources for multiple species of birds throughout their entire phenology between the early spring and autumn. It is necessary to plant more native tree species and fruiting plants, reduce hedgerows, and advocate near-natural management measures with low disturbance.

Keywords: bird diet; residential area; food source; food source plant; bird diversity; Beijing

PDF (3122KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

殷鲁秦, 王成, 韩文静 (2023) 基于取食行为探究北京居民区鸟类的食源特征及多样性. 生物多样性, 31, 22473. doi:10.17520/biods.2022473.

Luqin Yin, Cheng Wang, Wenjing Han (2023) Food source characteristics and diversity of birds based on feeding behavior in residential areas of Beijing. Biodiversity Science, 31, 22473. doi:10.17520/biods.2022473.

城市是鸟类的重要栖息地, 城市中的鸟类可以作为重要的指示物种(Sandström et al, 2006)。城市绿地作为城市生态系统的重要组成部分, 是鸟类及其他动物的重要生境(庄艳美等, 2012)。其中, 居住绿地在城市绿地中占比最大, 是人类与鸟类共同生存的环境, 是人工环境和自然环境的复合体, 小区中的植物是人工选择的结果, 因此鸟类多样性可能不同于公园等其他城市绿地。近年来, 对城市鸟类多样性的研究主要集中在城市公园(王勇等, 2014; 杨刚, 2015)、森林公园(张皖清和董丽, 2015)、绿化带(隋金玲等, 2007)、湿地(李相逸等, 2018)等城市公共绿地, 而对居住绿地鲜有研究。

鸟类对生境的选择依赖于食物、水和生境空间等因素(刘旭等, 2018), 其中食物的种类和数量是限制鸟类生存的根本因子(范喜顺等, 2005)。鸟类偏好食源树种, 在北温带地区, 野生果肉是许多鸟类秋季迁徙时的重要食物来源(Gallinat et al, 2020), 候鸟会选择食物资源丰富的区域作为迁徙的中转停歇地(高洁等, 2022)。

北京作为高度城市化地区和鸟类迁徙路线上的重要节点, 公共绿地的植物配置将直接影响到鸟类的食物来源, 而居住绿地又占比最大, 因此有必要探究居住区的鸟类与食物资源的关系。本研究将从鸟类的食物偏好入手, 构建鸟类的食源关系, 探究在居住区中鸟类取食的影响因素, 以期为营建鸟语花香的森林社区、构建鸟类友好型城市提供科学支撑。

1 研究区域与研究方法

1.1 研究地点

北京市(115°24°-117°30° E, 39°38°-41°05° N)地处华北平原的北部, 属暖温带半湿润半干旱季风气候, 四季分明, 夏季高温多雨, 冬季寒冷干燥。本研究在中心城区的五环路范围内沿8个地理方向随机选取40个居住小区(图1), 各小区之间至少间隔1 km, 以减少相互影响。

图1

图1   研究点位置分布图

Fig. 1   Distribution of study sites


1.2 食源情况调查

2020年6月至2021年5月, 选择晴朗无风的上午(夏季6:00-9:00、冬季8:00-11:00), 沿小区人行道以1-1.5 km/h的步速无重复遗漏地调查所有小区, 每月调查1次, 累计调查12次。采用直接计数法进行连续观测, 记录鸟类取食行为的数据。由于麻雀(Passer montanus)属于城市适生种(刘娜娜等, 2018), 长期适应人类生活环境(张淑萍等, 2006), 在小区中广泛分布, 较少受到食源的限制, 对小区的环境特征、食源植物等不敏感, 指示作用不明显, 且数量过多属于离群值, 故本研究中不涉及麻雀。对居住小区的乔、灌木进行全面调查, 记录种类、数量、物候等特征。

根据取食的植物器官和实际观测情况, 将食物来源划分为花(花芽、花)、叶(叶芽、嫩叶)、果肉(核果、浆果、梨果、聚花果)、种子(翅果、荚果、球果、聚合蓇葖果、蓇葖果、蒴果)、草籽、树液、昆虫及小动物和人工食物(猫粮、投喂物)等8种类型(何海燕等, 2021)。将食源植物利用类型划分为直接利用和间接利用, 分别指鸟类直接取食该植物的花、叶、果实和种子等植物器官或间接取食停留在该植物表面的昆虫等(王玲等, 2016)。按照食性将鸟种分为虫食性、植食性和杂食性3类(王勇等, 2014; Souza et al, 2019)。

1.3 鸟类多样性指数计算

本研究分析了鸟类群落的丰富度、多度、密度(D)和Shannon-Wiener多样性指数(H')。其中物种丰富度为记录到取食行为的鸟类物种数, 多度即记录到的个体数。

D = N / S

式中, D为某个小区中记录到取食行为的鸟类密度, N为某个小区中记录到取食行为的鸟类总数量, S为居住小区的总面积(ha)。

${H}'=-\underset{i=1}{\overset{R}{\mathop \sum }}\,{{P}_{i}}\text{ln}{{P}_{i}}$

式中, R为居住小区中记录到取食行为的鸟类物种数, Pi为某个小区中记录到第i种取食行为的鸟类数量占鸟类总数的比例。

鸟类食源多样性指数: 借鉴蝴蝶蜜源植物网络中的伙伴多样性指数(partner diversity) (韩丹等, 2021), 计算了鸟类食源多样性指数, 即每个物种食物来源的Shannon-Wiener指数, 较高的值表明了该物种的食物来源广泛。具体计算公式如下:

$FD=-\underset{i=1}{\overset{R}{\mathop \sum }}\,{{F}_{i}}\text{ln}{{F}_{i}}$

式中, R为记录到取食行为的鸟类物种数, Fi为某鸟种第i种食物来源的数量占该鸟种食物总数的比例。

1.4 环境影响因子获取

结合居住区的特点, 本研究选取了以下10个影响鸟类取食的环境因子(附录1): (1)小区面积: 在影像图上勾勒小区边界并测量面积(ha)。(2)建成时间: 根据实地调查或从网上查阅相关数据。(3)建筑密度: 在影像图上勾勒建筑边界并测量面积(单位: ha)。建筑密度 = 建筑占地面积/小区面积。(4)平均层数: 调查小区中建筑物的层数, 并按照占地面积进行加权平均。(5)容积率(plot ratio): 依据《建筑工程建筑面积计算规范》(GB/T50353-2013)进行计算, 容积率 = 总建筑面积/净用地面积, 用来反映小区开发强度。(6)周长面积比(perimeter-area ratio, PAR): 周长面积比 = 小区周长/小区面积(李相逸等, 2018)。(7)树冠覆盖率: 对居住小区的影像图进行人工目视解译, 勾绘出树冠的覆盖范围, 计算公式为树冠覆盖率 = 树冠覆盖面积/小区面积(李彤等, 2021)。(8)食源树种丰富度: 统计居住小区中食源树种的物种数。(9)食源树种覆盖率: 统计小区中食源树种的总覆盖面积, 食源树种覆盖率 = 食源树种总覆盖面积/小区面积。(10)食源树种Shannon-Wiener多样性指数:

${H}'=-\underset{i=1}{\overset{n}{\mathop \sum }}\,{{T}_{i}}\text{ln}{{T}_{i}}$

式中, n为居住小区中食源树种的物种数, Ti为某个小区中记录到第i个食源树种数量占食源树种总量的比例。

1.5 数据分析

1.5.1 食源特征分析

利用R软件的sankeyD3程序包绘制桑葚图, 反映鸟类与食物类型和取食地点的关系, 同时对不同季节也构建关系图。利用circlize程序包绘制弦图, 反映鸟类不同季节对不同生活型植物的利用情况。计算不同季节的鸟类和食源的Bray-Curtis相似性系数, 比较不同季节之间的差异。

1.5.2 影响因素分析

为避免各环境因子之间的多重共线性, 首先检验了Pearson相关性系数(r)。结果显示小区面积与周长面积比、平均层数与容积率、树冠覆盖率与食源树种树冠覆盖率、食源树种丰富度与食源树种Shannon-Wiener多样性指数之间的相关系数均大于0.7 (附录2), 考虑到小区面积和周长面积比反映了小区不同的特征, 分析时仅去除了平均层数、树冠覆盖率和食源树种丰富度3个因子。将每个小区的鸟类多样性作为响应变量(附录3), 对计数数据物种丰富度构建符合Poisson分布的广义线性模型, 密度和Shannon-Wiener多样性指数构建一般线性模型, 建模前对所有数据进行标准化处理。采用小样本校正后的赤池信息量准则(Akaike information criterion, corrected, AICc)进行模型评价, 利用MuMIn程序包中的“dredge”函数进行模型排序和选择, ΔAICc ≤ 2的模型被认为是最优模型(Mortelliti et al, 2010)。利用“model.avg”函数对最优模型进行模型平均, 计算每个因子的参数估计值及标准误。

自身食性的影响采用基于Bray-Curtis距离的非度量多维标度排序(non-metric multidimensional scaling, NMDS)进行分析, 应力函数值stress小于0.2说明排序模型合理。进一步对鸟类的食源多样性指数和多度、分布范围进行一般线性回归。分析过程利用vegan和lme4程序包完成。

2 结果

2.1 居住区有取食行为的鸟类群落特征

本研究共记录到14科35种2,242只鸟类有取食行为, 占调查到鸟类种数(50种)的70%, 其中留鸟16种(占种数的45.71%)、旅鸟15种(42.86%)、夏候鸟1种(2.86%)、冬候鸟4种(11.43%)。灰喜鹊(Cyanopica cyanus, 376只)、白头鹎(Pycnonotus sinensis, 281只)、珠颈斑鸠(Spilopelia chinensis, 147只)和喜鹊(Pica pica, 107只)是小区中数量最多的留鸟。燕雀(Fringilla montifringilla)是北京地区典型的集群过冬的冬候鸟, 共记录到414只。黄腰柳莺(Phylloscopus proregulus, 222只)和黄眉柳莺(P. inornatus, 214只)在春秋迁徙季集中过境时记录到的数量也较多。

物种数在迁徙季时最多, 依次为春季28种(占种数的80%)、秋季25种(71.4%)、冬季16种(45.7%)、夏季9种(25.7%)。鸟类数量从多到少依次为春季(999只)、冬季(659只)、秋季(504只)、夏季(80只)。根据所有小区的总体数据计算出的鸟类群落的Shannon-Wiener多样性指数依次为秋季(2.3959) > 春季(2.3732) > 冬季(2.0342) > 夏季(1.8285)。

2.2 居住区鸟类的食源特征

2.2.1 鸟类的食源构成

鸟类的食源主要为昆虫(33.87%)、翅果(18.33%)、浆果(9.77%)、球果(8.16%)、草籽(5.17%)、聚花果(4.37%)等(图2)。昆虫主要依附在国槐(Styphnolobium japonicum)、绦柳(Salix matsudana ʻPendulaʼ)、刺槐(Robinia pseudoacacia)、榆树(Ulmus pumila)等高大乔木上, 为虫食性鸟类提供食物; 翅果主要来源于元宝枫(Acer truncatum)、白蜡(Fraxinus chinensis)和榆树, 前两者主要在秋冬季为燕雀等植食性的冬候鸟提供食物, 榆树则在早春提供食物; 浆果主要来自金银木(Lonicera maackii)、蔷薇科的小浆果和柿树(Diospyros kaki), 为白头鹎、灰喜鹊等杂食性鸟类提供食物; 球果则来自圆柏(Juniperus chinensis)、侧柏(Platycladus orientalis)、油松(Pinus tabuliformis)等松柏类树种, 主要取食者为灰喜鹊等杂食性鸟类; 喜鹊、珠颈斑鸠等地面觅食的鸟类则常在草地觅食草籽; 桑树(Morus alba)和构树(Broussonetia papyrifera)的聚花果富含充足的水分和糖分, 在5月和6月深受灰喜鹊、白头鹎的青睐。此外, 投喂物也是鸟类的重要食源。

图2

图2   北京居住区鸟类食源关系图。图中的数字表示取食行为频次。

Fig. 2   Relationship between birds and food sources in residential areas of Beijing. The number indicates the feeding frequency.


2.2.2 鸟类不同季节的食源构成

记录到的鸟类取食行为的频次依次为: 春季(44.60%) > 冬季(29.39%) > 秋季(22.44%) > 夏季(3.57%) (图3)。春季主要来自于元宝枫、榆树等翅果和植物嫩芽以及高大乔木的昆虫; 夏季育雏时均以捕食昆虫为主; 秋季主要来自于金银木、柿树等植物果实; 冬季则主要依赖于松柏类的种子和元宝枫、白蜡的翅果(图4)。

图3

图3   北京居住区不同季节鸟类食源关系图。图中的数字表示取食行为频次。

Fig. 3   Relationship between birds and food sources in residential areas of Beijing in different seasons. The number indicates the feeding frequency.


图4

图4   不同季节不同类型食物的取食频次

Fig. 4   Feeding frequency of different food types in different seasons


不同季节的食源植物存在一定差异, 春季和秋季的Bray-Curtis相似性系数最高(0.4725), 其次为冬春季(0.4655)和秋冬季(0.4291), 夏季与其他季节的相似性系数均低于0.2。这与鸟类相似性存在一致性, 春季和秋季旅鸟过境, 相似性系数高达0.5756 (表1)。

表1   北京居住区不同季节食源植物、鸟类的Bray-Curtis相似性系数

Table 1  Bray-Curtis similarity coefficients of food source plants or birds during different seasons in residential areas of Beijing

季节 Season食源植物 Food source plant鸟类 Bird
夏季 Summer秋季 Autumn冬季 Winter夏季 Summer秋季 Autumn冬季 Winter
春季 Spring0.07380.47250.46550.13890.57560.4789
夏季 Summer0.15240.11150.26410.2027
秋季 Autumn0.42910.4789

新窗口打开| 下载CSV


2.2.3 鸟类对不同生活型植物的利用

40个小区共有乔木22,628株, 主要的食源树种共计14,674株, 使用量高达64.85%, 其中使用较多的为国槐、圆柏、绦柳、白蜡、元宝枫等北京常见乡土树种。直接取食植物器官的占总取食频次的60.4%, 依托于植物的间接利用占比39.6%。根据不同的植物生活型, 乔木贡献占比高达84.77%, 各利用方式依次为: 乔木直接利用(51.12%)、乔木间接利用(33.65%)、草本直接利用(4.95%)、灌木直接利用(3.90%)、草本间接利用(3.09%)、竹类间接利用(2.62%)、藤本直接利用(0.48%)、灌木间接利用(0.19%), 藤本植物未记录到间接利用方式。

在各季节中均是利用乔木最多, 春季直接利用略多于间接利用, 秋季间接利用略多于直接利用, 而冬季间接利用明显减少; 灌木主要为秋冬季节的直接利用; 而草本直接利用主要在秋冬季节, 间接利用主要在春夏季节(图5)。基于所有小区的数据计算食源植物Shannon-Wiener多样性指数, 依次为秋季(3.1612) > 冬季(2.9651) > 春季(2.9203) > 夏季(2.1763), 在食物匮乏的秋冬季, 鸟类的食源更加丰富。

图5

图5   不同季节鸟类对不同生活型植物的利用方式关系图。图中的数字刻度表示取食行为的频次。

Fig. 5   Plant utilization of different life forms by birds in different seasons. The numerical scale in the figure indicates the feeding frequency.


2.3 鸟类在居住区中取食的影响因素

2.3.1 外界环境因素的影响

通过模型选择, 包含食源树种覆盖率和食源树种Shannon-Wiener多样性指数的模型是预测取食行为鸟类的丰富度(ΔAICc = 0, R2 = 0.5729)和Shannon-Wiener多样性指数(ΔAICc = 0, R2 = 0.2516)的最佳模型, 而密度的最佳模型仅包括食源树种覆盖率(ΔAICc = 0, R2 = 0.2352) (表2), 小区面积、周长面积比、建成时间和建筑密度仅被包括在部分模型中。对上述模型进行模型平均, 食源树种覆盖率(P < 0.001)和食源树种Shannon-Wiener多样性指数(P < 0.001)是影响取食行为鸟类丰富度的关键环境因子, 食源树种覆盖率(P < 0.001)是影响取食行为鸟类密度的关键环境因子, 食源树种Shannon-Wiener多样性指数(P = 0.0023)是影响取食行为鸟类Shannon-Wiener多样性指数的关键环境因子(表3)。综上, 食源树种是影响鸟类在居住区中取食最关键的外界环境因素, 而小区特征的影响不显著。

表2   基于取食行为的鸟类多样性与环境因子的模型选择

Table 2  Model selection relating bird diversity based on feeding behavior and environmental factors

响应变量 Response variables模型 Model自由度 dfΔAICc权重 WeightR2
物种丰富度
Species richness
CFST + SFST300.15180.5729
CFST + SFST + PAR40.01880.15040.5936
CFST + SFST + CY41.29200.07960.5786
CFST + SFST + AREA41.32090.07840.5692
物种密度
Species density
CFST300.14470.2352
CFST + SFST40.54660.11010.2516
CFST + SFST + AREA51.77030.05970.2572
Shannon-Wiener多样性指数
Shannon-Wiener diversity index
CFST + SFST400.11290.2516
CFST + SFST + CY50.96470.06970.2516
SFST31.10360.06500.0358
CFST + SFST + PAR51.25960.06010.2431
CFST + SFST + CY51.98310.04190.2431
CFST + SFST + BD61.98430.04190.2253

CFST: 食源树种覆盖率; SFST: 食源树种Shannon-Wiener多样性指数; PAR: 周长面积比; CY: 建成时间; AREA: 小区面积; BD: 建筑密度。

CFST, Coverage of food source tree; SFST, Shannon-Wiener diversity index of food source tree; PAR, Perimeter-area ratio; CY, Completed year; AREA, Residential area; BD, Building density.

新窗口打开| 下载CSV


表3   基于取食行为的鸟类多样性与环境因子平均模型的参数估计

Table 3  Parameter estimation of the average model relating bird diversity based on feeding behavior to environmental factors

响应变量 Response variables环境因子 Environmental factors参数估计 Estimate标准误 SEP
物种丰富度
Species richness
CFST0.38850.1141< 0.001***
SFST0.59790.1749< 0.001***
PAR-0.09180.16840.5909
CY0.02270.07070.7528
AREA0.02480.07760.7538
物种密度 Species densityCFST8.92472.5447< 0.001***
SFST2.19682.91150.4577
AREA-0.63991.85250.7342
Shannon-Wiener多样性指数
Shannon-Wiener diversity index
CFST0.23400.16960.1768
SFST0.50130.15940.0023**
CY0.03220.09280.7326
PAR-0.06650.15270.6672
AREA0.01380.06810.8434
BD0.02820.10340.7877

缩写含义见表2

The meaning of the abbreviation is shown in Table 2. ** P < 0.01, *** P < 0.001.

新窗口打开| 下载CSV


2.3.2 自身食性因素的影响

NMDS排序图表明, 虫食性和杂食性的鸟种较为聚集且存在部分重叠, 而植食性的鸟种较为分散(stress = 0.1247) (图6)。相似食性的鸟种排序聚集说明食性是影响鸟类取食重要的内在因素。白头鹎、灰喜鹊、大斑啄木鸟(Dendrocopos major)、喜鹊等食源丰富度较高, 取食多种食源植物, 其中白头鹎、灰喜鹊、大斑啄木鸟食源多样性指数也较高即食性广泛, 而乌鹟(Muscicapa sibirica)等10种鸟类仅观测到1种食源(附录4)。线性回归分析表明, 鸟类多度和所分布的小区数量均与鸟类食源多样性指数呈显著的正相关且解释率较高(R2 = 0.3455, P < 0.001; R2 = 0.7044, P < 0.001) (图7)。表明食源越丰富、食性越广泛的鸟种, 其种群数量越大、分布范围越广泛, 更能够适应城市居住区的复杂环境, 而食源越单一的鸟种, 数量越少、分布越集中, 对特定的食物依赖度越高。

图6

图6   基于取食行为的北京居住区鸟种排序图。图中数字表示前10位的取食地点, 椭圆表示95%的置信区间。1: 元宝枫; 2: 国槐; 3: 草地; 4: 榆树; 5: 绦柳; 6: 白蜡; 7: 裸土地; 8: 侧柏; 9: 重瓣粉海棠; 10: 栾树。

Fig. 6   Ranking map of bird species based on feeding behavior in residential areas of Beijing. Number indicates top 10 feeding sites, and ovals indicate 95% confidence intervals. 1, Acer truncatum; 2, Styphnolobium japonicum; 3, Lawn; 4, Ulmus pumila; 5, Salix matsudana ʻPendulaʼ; 6, Fraxinus chinensis; 7, Bare land; 8, Platycladus orientalis; 9, Malus spectabilis var. riversii; 10, Koelreuteria paniculata.


图7

图7   北京居住区鸟类多度(A)、分布小区数(B)与食源多样性指数的线性回归。灰色区域表示拟合线的置信区间。

Fig. 7   Relationship between bird abundance (A), number of residential areas (B) and Shannon-Wiener diversity index of food source in residential areas of Beijing. Gray areas indicate confidence intervals for the fitted lines.


3 讨论

3.1 在居住区中取食的鸟类群落特征

北京共有鸟类503种(http://yllhj.beijing.gov.cn/ztxx/ysdw/ml/), 中心城区448种(http://www.birdreport.cn/), 常见鸟类约100种(关翔宇, 2016), 本研究共调查到50种鸟类, 占中心城区鸟类种数的11.16%, 基本覆盖了取食城市绿化植物的常见鸟类。但与Huang等(2015)在城市公园中的114种、隋金玲等(2007)在绿化隔离带的131种相比, 鸟种数较低, 推测是由于小区植被人工化程度高、生境单一、缺少水域等。小区受人为干扰大, 多为麻雀、白头鹎、珠颈斑鸠、喜鹊等适应人类环境、分布广泛的鸟种, 印证了高度城市化地区鸟类以与人类伴生的物种为主(Kornélia et al, 2021)。

与徐诗等(2021)在某社区中的研究结果相类似, 鸟种在春季和秋季迁徙期较多。夏季记录到的鸟种数少于其他季节, 推测原因是: (1)夏季繁殖期鸟类以取食昆虫为主(隋金玲等, 2006), 例如家燕(Hirundo rustica)等夏候鸟为空中捕食, 对植物的依赖度较低; (2)冬季城市环境是重要的越冬场所, 物种丰富度在冬季显著升高(Tzortzakaki et al, 2018), 例如大山雀(Parus major)等许多留鸟在夏季会到近郊山地或森林里进行繁殖育雏, 而秋冬季食物匮乏时则会到城区游荡觅食; (3)夏季鸟类更易寻找到食物, 取食活动时间短且常隐蔽在树冠中不易观测, 因此记录到的物种数和数量较少。

3.2 鸟类食源特征及人为活动的影响

鸟类的食物具有种间特异性和时空特异性(李翔等, 2018), 其食物来源与动植物的物候相关联, 对植物的利用在11月至次年3月达到高峰。食物可获得性决定了鸟类分布(Ferger et al, 2014), 各季节的鸟类种类和数量与盛花期和盛果期的乔木种类变化趋势相同, 即使同一季节, 盛花盛果乔木上的鸟类较多(史慧灵等, 2016), 植物的结果期不同也使得鸟类对果实的利用存在差异(Gallinat et al, 2020), 当鸟类无法获得成熟的果实时, 则会取食平时不吃的未成熟的果实, 来确保营养和能量的获取(Mercedes, 1977)。植物的果肉能够吸引众多的食果鸟(Zhu et al, 2022), 它们的体重与可获得的果实丰度正相关(González-Varo et al, 2021)。此外, 初春植物体内各种组织开始活跃, 燕雀、啄木鸟类、山雀类等鸟类会通过吸食元宝枫树干分泌出的树液来补充养分。

鸟类对昆虫的取食集中在4-10月的昆虫活跃期, 繁殖期鸟类靠捕捉昆虫育雏, 如, 迁徙过境的柳莺类、鹟类等虫食性鸟类, 春季在槐树和各类柳树上取食, 秋季在紫叶李(Prunus cerasifera ʻPissardiiʼ)、榆树、栾树(Koelreuteria paniculata)等易受虫害的树种上取食。大斑啄木鸟、星头啄木鸟(Dendrocopos canicapillus)等攀禽也在刺槐、泡桐(Paulownia tomentosa)和榆树等高大乔木上取食天牛、小蠹、吉丁虫、象甲等各类蛀干害虫。研究表明, 食虫鸟的体型大小与其所食节肢动物的体型大小正相关, 鞘翅目是被鸟类利用最多的节肢动物, 其次是蛛形目、膜翅目和鳞翅目(Katerina et al, 2017), 甚至枯死木上大量的鳞翅目昆虫幼虫亦是鸟类的食物来源(范喜顺等, 2005)。今后有待将鸟类的食性与具体的昆虫种类进行关联。

受人为活动影响, 人工投喂在维持鸟类多样性上具有重要作用, 例如小米、玉米等谷物为食谷鸟珠颈斑鸠提供了全年的口粮。居民的友好行为为鸟类提供了食源, 在食物匮乏期实现与植物食源的互补, 灰喜鹊等鸟在深冬也会取食流浪猫的猫粮。

3.3 鸟类对不同生活型植物的利用

居住区的食源植物具有类型丰富、种类繁多、从早春到晚秋覆盖全物候、供给期长的特点。木本植物的丰富度和多样性显著影响鸟类多样性(Yang et al, 2015), 乔木是利用率最高的树种, 由于利用期长, 花芽、叶芽、果实等全物候均可作为食物。同时多数鸟类喜欢在冠大荫浓的树上采食(隋金玲等, 2006), 隐蔽性强增加了取食安全性。利用灌木或草本的较少, 这与绿化配置方式和养护管理方式有关, 灌木多为高度修剪的绿篱, 金银木等丛生型灌木也常过度修剪, 规则式或频繁修剪不易形成花与果实(冼丽铧等, 2020)。自生草本地被是维持生物多样性的重要因素(李晓鹏等, 2018; 李晓鹏和董丽, 2020; 陈颖等, 2021), 可全年为鸟类提供丰富的节肢动物、植物和种子(Cabodevilla et al, 2021), 枯枝落叶层也有利于维持较高的鸟类多样性(Shwartz et al, 2008)。而小区中多是人工种植的草或草坪, 自生草本也作为杂草被清理, 调查中发现苦荬菜(Ixeris polycephala)就吸引了成群的灰椋鸟(Spodiopsar cineraceus)前来取食花瓣。

春夏季频繁使用杀虫剂也减少了灌木层和草本层的昆虫。鸟类对昆虫的偏好依次为鲜活、新鲜死亡和死后干燥的个体(Stafford et al, 2003), 早园竹(Phyllostachys propinqua)易遭受蚜虫、竹螟等虫害, 却吸引了灰喜鹊、灰椋鸟成群觅食。过分依赖杀虫剂也间接杀灭了食虫鸟(范喜顺等, 2005), 同时农药包覆在种子上有潜在毒性, 例如鹧鸪(Francolinus pintadeanus)就会避开被杀虫剂处理的种子(Lopez-Antia et al, 2014), 因此避免过度使用杀虫剂有助于提高鸟类多样性。

3.4 鸟类在居住区中取食的影响因素

食源树种是影响鸟类取食最关键的外界环境因素, 虽然研究表明高度城市化使得鸟类食源更窄(Peneaux et al, 2021), 但居住区绿地碎片化、异质性较高(Jiao et al, 2021), 人工种植的食源植物为鸟类提供了丰富的食源。鸟类多样性与食源树种物种数之间存在正相关(谭丽凤和杨昌尚, 2010; 史慧灵等, 2016), 但密度仅受食源树种量的影响, 与种类无关, 即使种类单一但量多时也会吸引鸟类, 例如灰喜鹊常集群在松柏林中觅食。以往的研究中, 鸟类多样性与绿地面积常呈正相关(Huang et al, 2015; Callaghan et al, 2018), 鸟类更倾向于占据城市公园(Tiwary & Urfi, 2016), 但本研究中面积效应不显著, 可能是由于小区与大型城市公园绿地相比规模较小, 相较于鸟类的活动范围, 小区只是其中一部分或仅作为取食的餐厅。此外当拥有充分的食物供给时, 面积就不再是影响鸟类丰富度的主要因素(李相逸等, 2018)。本研究中用建筑密度反映城市化程度和人类干扰强度, 多数研究表明鸟类多样性与建筑物比例呈现负相关或不显著(郭诗怡等, 2022), 随着建筑密度的增加, 鸟类的丰富度以及虫食性鸟的丰度下降, 而城市适应者和杂食性物种却增加(Amaya-Espinel et al, 2019)。小区中鸟类多为城市适应者和开拓者(Geschke et al, 2018), 且以杂食性为主, 但其取食不存在明显的空间异质性, 可能是由于研究区是用地类型均质的高度城市化地区。

鸟类自身的习性对其取食行为有显著影响。研究中珠颈斑鸠、白头鹎等食性较广的鸟种受具体树种的影响较小, 广泛分布在各个小区, 更能够适应城市居住区的复杂环境, 表现出较强的环境适应能力(孙丰硕等, 2016)。食性窄的鸟种对食源植物选择性强, 可选择的范围较小(何海燕等, 2021), 在小区中数量少、分布集中。例如白蜡、元宝枫较多的小区会吸引成群的燕雀、黑尾蜡嘴雀(Eophona migratoria)越冬。

3.5 居住区绿化植物配置与养护管理的建议

居住区植物配置时, 要做到乔灌草科学配置、优化时空布局、乡土树种协调发展。配置杨、柳、榆、槐等乡土树种以及金银木等观果植物作为引鸟树种, 适当减少观赏性高而生态价值较低的绿篱、观花灌木和小乔木。增加野化灌木层, 为在不同生态位生活的多种鸟类提供适合的栖息条件(彭子嘉等, 2020)。这与北京市新一轮百万亩造林绿化工程 (http://yllhj.beijing.gov.cn/zwgk/fgwj/qtwj/201911/t20191130_766897.shtml)提出的“复层、异龄、混交、多功能”相契合。植被养护管理时, 在注重景观营造的同时更要营建近自然的生物栖息地。与传统绿地相比, 近自然绿地具有更显著的生物多样性(王沫等, 2022)。高度修剪的人工化栽培方式的绿篱、花灌木不利于鸟类微生境的营造, 地被层的杂草是种子、昆虫等食物的载体, 丰富了食物链。有研究显示公园管理程度与鸟类丰富度呈明显的负相关(Shwartz et al, 2008), 因此在小区内有必要倡导低干扰的近自然园林养护管理措施, 合理除草、适度修剪、避免过度用药、提倡生物防治。

本研究探究了北京居住区鸟类的食源特征, 揭示了绿化植物为鸟类直接或间接地提供食物, 人类的投喂行为也是鸟类度过食物匮乏期的重要补充。小区在绿化建设时配置食源树种、减少绿篱使用, 采取低干扰的近自然园林养护管理措施, 有利于营造鸟语花香的森林社区, 建设鸟类友好型城市。本研究是基于鸟类取食行为开展的, 而实际鸟类对生境的选择还依赖于是否能提供安全的筑巢场所、停息的庇护所等, 今后有待进一步在鸟类植物生境偏好、夜栖地选择等方面开展相关研究。

附录 Supplementary Material

附录1 北京市40个居住小区环境参数

Appendix 1 Environmental parameters of 40 residential areas in Beijing

附录2 外界环境因子的Pearson相关性(r)分析结果

Appendix 2 External Pearson correlations coefficients (r) among environmental factors

附录3 北京市居住小区基于取食行为的鸟类多样性参数

Appendix 3 Bird diversity parameters based on feeding behavior in residential areas of Beijing

附录4 北京市居住小区有取食行为的鸟类名录

Appendix 4 Bird list of feeding behavior in residential areas of Beijing

参考文献

Amaya-Espinel JD, Hostetler M, Henríquez C, Bonacic C (2019)

The influence of building density on neotropical bird communities found in small urban parks

Landscape and Urban Planning, 190, 103578.

DOI:10.1016/j.landurbplan.2019.05.009      URL     [本文引用: 1]

Cabodevilla X, Mougeot F, Bota G, Mañosa S, Cuscó F, Martínez-García J, Arroyo B, Madeira MJ (2021)

Metabarcoding insights into the diet and trophic diversity of six declining farmland birds

Scientific Reports, 11, 21131.

DOI:10.1038/s41598-021-00519-9      PMID:34702920      [本文引用: 1]

Knowledge of feeding ecology of declining species, such as farmland birds, is essential to address their conservation requirements, especially when their habitats are suffering important reductions of trophic resources. In this study, we apply a metabarcoding approach to describe the diet composition of six of the most significant farmland birds inhabiting European cereal pseudo-steppes: little bustard, great bustard, pin-tailed sandgrouse, black-bellied sandgrouse, red-legged partridge, and common quail. We further studied seasonal diet variations (autumn to spring) in all species but the common quail, whose diet was studied during spring and summer. We show that study species´ diets mostly consisted of plants, although in the case of little bustard and great bustard arthropods are also highly relevant. Among arthropods, we found high proportions of thrips, arachnids, and springtails, which were previously unreported in their diet, and some taxa that could be used as antiparasitic food. Moreover, we report that little bustard's diet is the least rich of that of all studied species, and that diet of all these species is less diverse in winter than in autumn and spring. Diet composition of these declining species supports the importance of natural and semi-natural vegetation and landscape mosaics that can provide a wide variety of arthropods, plants, and seeds all year-round.© 2021. The Author(s).

Callaghan CT, Major RE, Lyons MB, Martin JM, Kingsford RT (2018)

The effects of local and landscape habitat attributes on bird diversity in urban greenspaces

Ecosphere, 9, e02347.

DOI:10.1002/ecs2.2347      URL     [本文引用: 1]

Chen Y, Dai XA, Zhang QF, Zhou KX, Hu FL (2021)

Characteristics and utilization potential of spontaneous vegetation in Shanghai Chemical Industry Park

Journal of Chinese Urban Forestry, 19(5), 9-15. (in Chinese with English abstract)

[本文引用: 1]

[陈颖, 戴兴安, 张庆费, 周开叙, 胡芳亮 (2021)

上海化工区自生植被特征与利用潜力

中国城市林业, 19(5), 9-15.]

[本文引用: 1]

Fan XS, Hu DF, Chen HZ, Su X, Wang F (2005)

Study on the restrictive factors for bird survival in cultivation areas of North China Plain

Arid Zone Research, 22, 4497-4502. (in Chinese with English abstract)

[本文引用: 3]

[范喜顺, 胡德夫, 陈合志, 苏鑫, 王峰 (2005)

华北平原耕作区鸟类生存制约因子初步研究

干旱区研究, 22, 4497-4502.]

[本文引用: 3]

Ferger SW, Schleuning M, Hemp A, Howell KM, Böhning-Gaese K (2014)

Food resources and vegetation structure mediate climatic effects on species richness of birds

Global Ecology and Biogeography, 23, 541-549.

DOI:10.1111/geb.2014.23.issue-5      URL     [本文引用: 1]

Gallinat AS, Primack RB, Lloyd-Evans TL (2020)

Can invasive species replace native species as a resource for birds under climate change? A case study on bird-fruit interactions

Biological Conservation, 241, 108268.

DOI:10.1016/j.biocon.2019.108268      URL     [本文引用: 2]

Gao J, Li DH, Jiang HB, Deng GY, Zhang CF, He CG, Sun P (2022)

Reasons why white cranes use farmland as transit feeding habitat

Biodiversity Science, 30, 22093. (in Chinese with English abstract)

DOI:10.17520/biods.2022093      URL     [本文引用: 1]

[高洁, 李德浩, 姜海波, 邓光怡, 张超凡, 何春光, 孙鹏 (2022)

白鹤利用农田作为中转取食生境的原因

生物多样性, 30, 22093.]

DOI:10.17520/biods.2022093      [本文引用: 1]

白鹤(Grus leucogeranus)为IUCN红色名录极危物种, 在中转停歇地松嫩平原的停歇生境为湿地, 近年来却出现多数个体迁离湿地转移到玉米(Zea mays)地取食停歇的现象。为探究迁徙白鹤在中转停歇地取食生境利用变化的原因, 我们于2020年9月至2021年11月对该区域白鹤种群数量和取食生境等进行观测, 并对食物资源量进行了分析。结果表明: (1)在农田生境取食的白鹤个体数量占比达72.7%, 是湿地生境的2.66倍。农田已成为迁徙白鹤在中转停歇地的主要取食生境之一。(2)根据不同的收割方式, 农田可提供的总能量是湿地的1.24-2.79倍; 白鹤在农田的日摄入能量约为湿地的1.56倍。(3)在农田白鹤的每日取食时间约占总活动时长的53.5%, 是湿地的1.67倍, 取食成功率是湿地的1.56倍。白鹤取食生境利用变化的主要原因可能是由于水位变化、食物资源变化、取食难易度不同和人为干扰等综合作用导致。为有效保护和管理白鹤生境, 建议合理进行湿地生态补水调控并恢复白鹤主要食源植物, 开展农业用地保护计划并设置自然保护小区。

Geschke A, James S, Bennett AF, Nimmo DG (2018)

Compact cities or sprawling suburbs? Optimising the distribution of people in cities to maximise species diversity

Journal of Applied Ecology, 55, 2320-2331.

DOI:10.1111/jpe.2018.55.issue-5      URL     [本文引用: 1]

González-Varo JP, Onrubia A, Pérez-Méndez N, Tarifa R, Illera JC (2021)

Fruit abundance and trait matching determine diet type and body condition across frugivorous bird populations

Oikos, 2021, 511.

[本文引用: 1]

Guan XY (2016)

List of 100 common birds in Beijing

Forest & Humankind, (2), 158-159. (in Chinese)

[本文引用: 1]

[关翔宇 (2016)

北京100种常见鸟类名录

森林与人类, (2), 158-159.]

[本文引用: 1]

Guo SY, Kaoru S, Yoshihiro N, Cao Y (2022)

The mechanism of urban built environment impact on avian diversity—A systematic review

Chinese Landscape Architecture, 38(2), 71-76. (in Chinese with English abstract)

[本文引用: 1]

[郭诗怡, 斋藤馨, 夏原由博, 曹洋 (2022)

城市建成环境对鸟类多样性的影响机制研究评述及展望

中国园林, 38(2), 71-76.]

[本文引用: 1]

Han D, Wang C, Yin LQ (2021)

Characteristics of butterfly-nectar plant network in Beijing’s urban parks and identifying important nectariferous plant species

Acta Ecologica Sinica, 41, 8892-8905. (in Chinese with English abstract)

[本文引用: 1]

[韩丹, 王成, 殷鲁秦 (2021)

北京城市蝴蝶蜜源植物网络特征及重要蜜源植物识别

生态学报, 41, 8892-8905.]

[本文引用: 1]

He HY, Wang N, Dong L (2021)

A case study to investigate the foraging pattern of urban birds on edible plants in Beijing

Chinese Journal of Zoology, 56, 491-499. (in Chinese with English abstract)

[本文引用: 2]

[何海燕, 王楠, 董路 (2021)

北京城市鸟类对食源植物利用规律

动物学杂志, 56, 491-499.]

[本文引用: 2]

Huang Y, Zhao Y, Li S, Gadow K (2015)

The effects of habitat area, vegetation structure and insect richness on breeding bird populations in Beijing urban parks

Urban Forestry & Urban Greening, 14, 1027-1039.

[本文引用: 2]

Jiao M, Xue H, Yan J, Zheng Z, Wang J, Zhao C, Zhang L, Zhou W (2021)

Tree abundance, diversity and their driving and indicative factors in Beijing’s residential areas

Ecological Indicators, 125, 107462.

DOI:10.1016/j.ecolind.2021.107462      URL     [本文引用: 1]

Katerina S, Bonny K, Samuel J, Jana S, Vojtech N (2017)

Diet of land birds along an elevational gradient in Papua New Guinea

Scientific Reports, 7, 44018.

DOI:10.1038/srep44018      PMID:28276508      [本文引用: 1]

Food preferences and exploitation are crucial to many aspects of avian ecology and are of increasing importance as we progress in our understanding of community ecology. We studied birds and their feeding specialization in the Central Range of Papua New Guinea, at eight study sites along a complete ( 200 to 3700m a.s.l.) rainforest elevational gradient. The relative species richness and abundance increased with increasing elevation for insect and nectar eating birds, and decreased with elevation for fruit feeding birds. Using emetic tartar, we coerced 999 individuals from 99 bird species to regurgitate their stomach contents and studied these food samples. The proportion of arthropods in food samples increased with increasing elevation at the expense of plant material. Body size of arthropods eaten by birds decreased with increasing elevation. This reflected the parallel elevational trend in the body size of arthropods available in the forest understory. Body size of insectivorous birds was significantly positively correlated with the body size of arthropods they ate. Coleoptera were the most exploited arthropods, followed by Araneae, Hymenoptera, and Lepidoptera. Selectivity indexes showed that most of the arthropod taxa were taken opportunistically, reflecting the spatial patterns in arthropod abundances to which the birds were exposed.

Kornélia K, Purger JJ, Batáry P (2021)

Urbanization shapes bird communities and nest survival, but not their food quantity

Global Ecology and Conservation, 26, e01475.

DOI:10.1016/j.gecco.2021.e01475      URL     [本文引用: 1]

Li T, Jia BQ, Wang C, Qiu EF, Li XT (2021)

Village human habitat forest canopy coverage and regional difference analysis in Beijing

Acta Ecologica Sinica, 41, 5598-5610. (in Chinese with English abstract)

[本文引用: 1]

[李彤, 贾宝全, 王成, 邱尔发, 李晓婷 (2021)

北京市域乡村人居林树冠覆盖及其区域差异分析

生态学报, 41, 5598-5610.]

[本文引用: 1]

Li X, Li YB, Wu QM, Sui Y, Liu XY, Paiyizulamu S, He FY, Xia DX (2018)

Suggestion on provisioned food in bird week based on diet characteristic guild

Chinese Journal of Wildlife, 39, 366-372. (in Chinese with English abstract)

[本文引用: 1]

[李翔, 李祎斌, 吴庆明, 隋媛, 刘新宇, 沙力瓦·拍依祖拉木, 何富英, 夏丹霞 (2018)

基于食性集团的爱鸟周人工投食建议

野生动物学报, 39, 366-372.]

[本文引用: 1]

Li XP, Dong L, Guan JH, Zhao F, Wu SJ (2018)

Temporal and spatial characteristics of spontaneous plant composition and diversity in a Beijing urban park

Acta Ecologica Sinica, 38, 581-594. (in Chinese with English abstract)

[本文引用: 1]

[李晓鹏, 董丽, 关军洪, 赵凡, 吴思佳 (2018)

北京城市公园环境下自生植物物种组成及多样性时空特征

生态学报, 38, 581-594.]

[本文引用: 1]

Li XP, Dong L (2020)

Species composition and community types of autophytes in different parks in Beijing

Landscape Architecture, 27(4), 42-49. (in Chinese with English abstract)

[本文引用: 1]

[李晓鹏, 董丽 (2020)

北京不同公园自生植物物种组成特征及群落类型

风景园林, 27(4), 42-49.]

[本文引用: 1]

Li XY, Cao L, Ma C, Li WR (2018)

Research on avian abundance and their correlationship with environmental variables at coastal wet-land in Tianjin

Landscape Architecture, 25(6), 107-112. (in Chinese with English abstract)

[本文引用: 3]

[李相逸, 曹磊, 马超, 李维榕 (2018)

天津滨海滩涂湿地鸟类丰富度与环境因子的关系研究

风景园林, 25(6), 107-112.]

[本文引用: 3]

Liu NN, Shou DY, Da LJ (2018)

Biodiversity pattern and species group classification of park birds along urbanization gradient in Shanghai

Chinese Journal of Ecology, 37, 3676-3684. (in Chinese with English abstract)

[本文引用: 1]

[刘娜娜, 寿丹艺, 达良俊 (2018)

上海公园绿地鸟类多样性的城市化梯度格局及类群划分

生态学杂志, 37, 3676-3684.]

[本文引用: 1]

公园绿地是鸟类在城市中的重要栖息地,但其周边环境的城市化程度对鸟类多样性和分布的影响尚不明确。本研究以上海面积较一致的30个大型公园绿地为对象,在量化其周边环境城市化程度的基础上,分析春冬两季鸟类物种多样性在城市化梯度上的变化格局,并采用指示种分析法划分鸟类在城市化梯度上的分布类型。结果表明:春冬两季鸟类的丰富度、Shannon指数(H)和Pielou指数均随城市化程度降低呈现阶梯递增的趋势,其中丰富度和H与4个城市化因子呈显著负相关;鸟类在城市化梯度上存在5种分布类型:城市依赖型、城市适生型、郊区适生型、城市回避型、季节变化型;30种常见鸟类中多为郊区适生型和城市回避型,分别为7种和15种,表明只有少数鸟类能适应甚至依赖城市,大多数鸟类回避城市环境、多出现在城郊地区。鸟类这种在城市化梯度上的分布特征决定了其物种多样性随城市化程度增大而减小的格局。

Liu X, Zhang WH, Li YH, Gao PJ, Li L, Wang T (2018)

Planning and restoration of bird habitats in a wetland park: A case study of the Liuli River Wetland Park in Beijing

Acta Ecologica Sinica, 38, 4404-4411. (in Chinese with English abstract)

[本文引用: 1]

[刘旭, 张文慧, 李咏红, 高鹏杰, 李黎, 王彤 (2018)

湿地公园鸟类栖息地营建研究——以北京琉璃河湿地公园为例

生态学报, 38, 4404-4411.]

[本文引用: 1]

Lopez-Antia A, Ortiz-Santaliestra ME, Mateo R (2014)

Experimental approaches to test pesticide-treated seed avoidance by birds under a simulated diversification of food sources

Science of the Total Environment, 496, 179-187.

DOI:10.1016/j.scitotenv.2014.07.031      URL     [本文引用: 1]

Mercedes SF (1977)

Ecological and nutritional effects of food scarcity on a tropical frugivorous bird and its fruit source

Ecology, 58, 73-85.

DOI:10.2307/1935109      URL     [本文引用: 1]

Mortelliti A, Fagiani S, Battisti C, Capizzi D, Boitani L (2010)

Independent effects of habitat loss, habitat fragmentation and structural connectivity on forest-dependent birds

Diversity and Distributions, 16, 941-951.

DOI:10.1111/ddi.2010.16.issue-6      URL     [本文引用: 1]

Peneaux C, Grainger R, Lermite F, Machovsky-Capuska GE, Gaston T, Griffin AS (2021)

Detrimental effects of urbanization on the diet, health, and signal coloration of an ecologically successful alien bird

Science of the Total Environment, 796, 148828.

DOI:10.1016/j.scitotenv.2021.148828      URL     [本文引用: 1]

Peng ZJ, Gao T, Shi CZ, Chen YY, Bi J, Qiu L (2020)

The relationships between vegetation structure, habitat characteristics and bird diversity in campus green spaces

Chinese Journal of Ecology, 39, 3032-3042. (in Chinese with English abstract)

DOI:10.13292/j.1000-4890.202009.014      [本文引用: 1]

To improve ecosystem services of urban green spaces and explore habitat factors affecting urban bird diversity, a total of 23 greenspaces with nine different vegetation structures were examined in two campuses of the Northwest A&amp;F University (China) based on urban biotope mapping method. Bird diversity surveys were carried out once a week by point count method and line transect method from November 2018 to April 2019. With difference and correlation analyses, we analyzed the effects of vegetation structure and habitat characteristics on bird diversity. The results showed that bird diversity was affected by canopy density, vertical structure, and species composition of green spaces. The abundance, richness and Shannon index of birds were significantly positively correlated to greenspace area, plant richness and Shannon index of vegetation. The density of birds was significantly negatively correlated to perimeter and area of greenspace. We proposed increasing bird diversity oriented design strategies for plant communityassembly, providing theoretical guidance and practical methods for planning and design of urban greenspaces.

[彭子嘉, 高天, 师超众, 陈颖媛, 毕骄, 邱玲 (2020)

校园绿地植被结构、生境特征与鸟类多样性关系

生态学杂志, 39, 3032-3042.]

[本文引用: 1]

Sandström UG, Angelstam P, Mikusinski G (2006)

Ecological diversity of birds in relation to the structure of urban green space

Landscape and Urban Planning, 77, 39-53.

DOI:10.1016/j.landurbplan.2005.01.004      URL     [本文引用: 1]

Shi HL, Bai HT, Wu LZ, Wu ZL, Fu W, Lei Y (2016)

The effect of urban space structure on bird diversity in Kunming

Sichuan Journal of Zoology, 35, 774-780. (in Chinese with English abstract)

[本文引用: 2]

[史慧灵, 白皓天, 吴良早, 吴兆录, 傅伟, 雷苑 (2016)

昆明城市绿地结构对鸟类多样性的影响

四川动物, 35, 774-780.]

[本文引用: 2]

Shwartz A, Shirley S, Kark S (2008)

How do habitat variability and management regime shape the spatial heterogeneity of birds within a large Mediterranean urban park?

Landscape and Urban Planning, 84, 219-229.

DOI:10.1016/j.landurbplan.2007.08.003      URL     [本文引用: 2]

Souza F, Valente-Neto F, Severo-Neto F, Bueno B, Ochoa-Quintero JM, Laps RR, Bolzan F, de Oliveira Roque F (2019)

Impervious surface and heterogeneity are opposite drivers to maintain bird richness in a Cerrado city

Landscape and Urban Planning, 192, 103643.

DOI:10.1016/j.landurbplan.2019.103643      URL     [本文引用: 1]

Stafford JM, Brewer LW, Gessaman JA (2003)

Avian food selection with application to pesticide risk assessment: Are dead and desiccated insects a desirable food source?

Environmental Toxicology and Chemistry, 22, 1335-1339.

PMID:12785592      [本文引用: 1]

Past evaluations of pesticide exposure have been conducted with substantial uncertainty regarding avian consumption of contaminated food items. One question is whether birds consume invertebrates that are killed by a chemical application and that may present an increasing chemical concentration as they desiccate. We addressed the research question in two phases. First, a laboratory study was conducted in which wild-caught birds were individually offered three food choices, i.e., live, fresh-dead, and desiccated insect larvae. Second, these same food choices plus live, fresh-dead, and desiccated crickets were presented in study plots in two agricultural crops, i.e., a cornfield and an orchard. The experimental food items were monitored with videography equipment to determine their fate and to compare laboratory and field results. Laboratory results showed that birds have a strong preference for live and fresh-dead prey over desiccated prey, with live prey taken before fresh-dead prey in most trials. The field study revealed a similar preference for live prey over desiccated prey, with preference for fresh-dead prey intermediate to the two other types.

Sui JL, Zhang X, Hu DF, Li K, Wang MZ, Fu RH (2007)

Relationship between bird communities and environment factors at green belts in the urban area of Beijing

Journal of Beijing Forestry University, 29(5), 121-126. (in Chinese with English abstract)

[本文引用: 2]

[隋金玲, 张香, 胡德夫, 李凯, 王民中, 付瑞海 (2007)

北京绿化隔离地区鸟类群落与环境因子关系研究

北京林业大学学报, 29(5), 121-126.]

[本文引用: 2]

Sui JL, Zhang ZX, Hu DF, Wang MZ, Fu RH (2006)

Studies on bird-feed trees at green belts of Beijing urban area

Scientia Silvae Sinicae, 42(12), 83-89. (in Chinese with English abstract)

[本文引用: 2]

[隋金玲, 张志翔, 胡德夫, 王民中, 付瑞海 (2006)

北京市区绿化带内鸟类食源树种研究

林业科学, 42(12), 83-89.]

[本文引用: 2]

Sun FS, Liu Y, Qi L, Cao H, Sui JL (2016)

Characteristics of bird community in Beijing urban greenland in winter

Scientia Silvae Sinicae, 52(5), 134-141. (in Chinese with English abstract)

[本文引用: 1]

[孙丰硕, 刘垚, 齐磊, 曹翰, 隋金玲 (2016)

北京城市绿地冬季鸟类群落特征

林业科学, 52(5), 134-141.]

[本文引用: 1]

Tan LF, Yang CS (2010)

Study on bird-feed trees in parks of Liuzhou urban area in winter

Journal of Anhui Agricultural Sciences, 38, 19428-19430. (in Chinese with English abstract)

[本文引用: 1]

[谭丽凤, 杨昌尚 (2010)

柳州城市公园冬季鸟类食源树种调查研究

安徽农业科学, 38, 19428-19430.]

[本文引用: 1]

Tiwary NK, Urfi AJ (2016)

Spatial variations of bird occupancy in Delhi: The significance of woodland habitat patches in urban centres

Urban Forestry & Urban Greening, 20, 338-347.

[本文引用: 1]

Tzortzakaki O, Kati V, Kassara C, Tietze DT, Giokas S (2018)

Seasonal patterns of urban bird diversity in a Mediterranean coastal city: The positive role of open green spaces

Urban Ecosystems, 21, 27-39.

DOI:10.1007/s11252-017-0695-9      URL     [本文引用: 1]

Wang L, Ding ZF, Hu JM, Yin WY, Hu HJ (2016)

Bird preference to food source trees in urban green space, Guangzhou, China

Sichuan Journal of Zoology, 35, 838-844. (in Chinese with English abstract)

[本文引用: 1]

[王玲, 丁志锋, 胡君梅, 尹五元, 胡慧建 (2016)

广州城市绿地中鸟类对食源树种的偏好

四川动物, 35, 838-844.]

[本文引用: 1]

Wang M, Liu C, Li XL, Gao JH, Li X, Dong L (2022)

Biodiversity characteristics in near-natural community parks: A case study in the central area of Beijing

Acta Ecologica Sinica, 42, 8254-8264. (in Chinese with English abstract)

[本文引用: 1]

[王沫, 刘畅, 李晓璐, 高俊宏, 李霞, 董丽 (2022)

近自然社区公园的生物多样性特征研究——以北京市中心城区为例

生态学报, 42, 8254-8264.]

[本文引用: 1]

Wang Y, Xu J, Yang G, Li HQ, Wu SY, Tang HM, Ma B, Wang ZH (2014)

The composition of common woody plant species and their influence on bird communities in urban green areas

Biodiversity Science, 22, 196-207. (in Chinese with English abstract)

DOI:10.3724/SP.J.1003.2014.13168      [本文引用: 2]

Urban green areas are important habitats for birds in rapidly urbanized areas. The composition of woody plant species has a significant influence on the structure of bird communities in urban green areas. Therefore, to enhance the function of public green areas as wild bird habitats, we studied how woody plants influenced the composition of the bird community in Binjiang Forest Park, a typical urban green area in Shanghai city. A total of 5,368 individual birds belonging to 64 species from 25 families and 10 orders were recorded during line transect and point-count surveys conducted between 2009 and 2010. Data on bird abundance showed significant differences among months, with the two highest abundances recorded in April and November. A plot of the data on bird species richness against time (months) showed a curve with two peaks, with the highest abundance recorded in April and December. The values of the Simpson index showed significant variation in bird diversity over the year, with the highest value recorded in October and the lowest in August. With square-plot (400 m2) sampling analysis, a total of 77 woody plant species in the park was identified. Only 14 of these species were recorded in at least five plots (nine trees and five shrubs). These species were considered common woody species. The fruiting seasons of 12 of these species occurred during periods between September and the following February. The principal outbreaks of insects with significance to forestry occurred from May to November. A principal component analysis was used to group all birds observed on the 14 woody plant species into 8 guilds according to their diets, foraging behaviors, and distributions in various vegetation layers. A Spearman correlation analysis indicated that the autumn-winter fruiting season was significantly positively correlated with 5 bird guilds, including vegetarians, omnivores, raptors, and insectivores. The abundant food supply coincided with the highest bird abundance and richness in autumn and winter. An analysis of the importance of each common woody plant species for the bird community was also performed based on the evaluation of the relative richness, relative abundance, and relative number of bird guilds. The results showed that during autumn and winter, fruiting plants provided rich food resources for terrestrial migratory birds; trees such as Populus lasiocarpa, Pterocarya stenoptera, and Cinnamomum camphora had a greater importance than shrubs. The relatively lower importance of the common shrub species to birds implies that the shrub community of the park needs to be reviewed. Comments and recommendations are provided based on our research results.

[王勇, 许洁, 杨刚, 李宏庆, 吴时英, 唐海明, 马波, 王正寰 (2014)

城市公共绿地常见木本植物组成对鸟类群落的影响

生物多样性, 22, 196-207.]

DOI:10.3724/SP.J.1003.2014.13168      [本文引用: 2]

快速城市化背景下, 城市公共绿地已经成为重要的鸟类栖息地, 其中的木本植物群落构成对鸟类群落结构有显著影响, 研究木本植物配置与鸟类多样性的关系对提升城市公共绿地作为鸟类栖息地的生态服务功能有重要的理论和应用价值。我们于2009&#x02013;2010年间在上海市滨江森林公园就木本植物和鸟类群落的相互关系展开研究。样线法结合样点调查共记录到鸟类10目25科64种5,368只(次), 鸟类多度全年变化显著, 峰值分别出现在4月和11月。丰富度全年也呈现双峰型变化, 峰值出现在4月和12月。全年鸟类多样性(Simpson指数)差异显著, 10月最高, 8月最低。样方调查共记录到77种木本植物, 其中有14种(乔木9种、灌木5种)出现率超过5个样方, 定义为常见种, 其果期主要集中在9月到翌年2月, 其上常见林业致病害虫的发生盛期集中在5&#x02013;11月。主成分分析显示, 常见木本植物上观察到的鸟类可划分为8个鸟类集团, Spearman秩相关检验显示秋冬季常见木本植物果期与植食性、肉食性、食虫性、杂食性等多个鸟类集团的多度均呈显著正相关。说明在秋冬季鸟类迁徙高峰期不同鸟类集团均能获得丰富的食物资源。就常见木本植物对鸟类群落的重要值进行排序, 结果显示, 大叶杨(Populus lasiocarpa)、枫杨(Pterocarya stenoptera)、香樟(Cinnamomum camphora)等乔木对鸟类重要值较高, 而灌木层对鸟类的重要性整体偏低, 说明滨江森林公园的灌木层作为鸟类栖息地的功能建设尚需加强。根据以上研究结果, 我们提出了提高上海城市公园鸟类多样性的植被配置建议。

Xian LH, Xu BY, Weng SF, Feng ZJ (2020)

Application of food source tree species and the construction of ecological landscape in urban green space of Guangzhou

Journal of Central South University of Forestry & Technology, 40(2), 142-147. (in Chinese with English abstract)

[本文引用: 1]

[冼丽铧, 徐彬瑜, 翁殊斐, 冯志坚 (2020)

广州城市园林绿地食源树种应用及其生态景观营造

中南林业科技大学学报, 40(2), 142-147.]

[本文引用: 1]

Xu S, Wang C, Han D, Sun BQ, Zhao YL (2021)

Bird community composition and its seasonal variation in comprehensive communities in Beijing: A case study of Chinese Academy of Forestry

Journal of Chinese Urban Forestry, 19(1), 25-30. (in Chinese with English abstract)

[本文引用: 1]

[徐诗, 王成, 韩丹, 孙宝强, 赵伊琳 (2021)

北京综合性社区鸟类群落构成及其季节变化——以中国林业科学研究院社区为例

中国城市林业, 19(1), 25-30.]

[本文引用: 1]

Yang G, Wang Y, Xu J, Ding YZ, Wu SY, Tang HM, Li HQ, Wang XM, Ma B, Wang ZH (2015)

The influence of habitat types on bird community in urban parks

Acta Ecologica Sinica, 35, 4186-4195. (in Chinese with English abstract)

[本文引用: 2]

[杨刚, 王勇, 许洁, 丁由中, 吴时英, 唐海明, 李宏庆, 王小明, 马波, 王正寰 (2015)

城市公园生境类型对鸟类群落的影响

生态学报, 35, 4186-4195.]

[本文引用: 2]

Yang G, Xu J, Wang Y, Wang XM, Pei EL, Yuan X, Li HQ, Ding YZ, Wang ZH (2015)

Evaluation of microhabitats for wild birds in a Shanghai urban area park

Urban Forestry & Urban Greening, 14, 246-254.

Zhang SP, Zheng GM, Xu JL (2006)

Habitat use of urban tree sparrows in the process of urbanization: Beijing as a case study

Biodiversity Science, 14, 372-381. (in Chinese with English abstract)

DOI:10.1360/biodiv.060013      [本文引用: 1]

The tree sparrow (<i>Passer montanus</i>) is a dominant species of urban bird communities. With the development of urbanization, the habitats and food resources of tree sparrows are likely to decrease. Can the urban tree sparrow adapt to changes in the urban environment? To answer this question, we studied the habitat use of tree sparrows in eight types of urban areas in Beijing. The results showed that the number of both breeding and wintering tree sparrows decreases with increasing urbanization. The habitat use of tree sparrows, analyzed by discriminant analysis, was positively correlated with the number of brick bungalows, coniferous and broad-leaved trees, and air conditioners, whereas it was negatively correlated with the area of high buildings and hardened roads, and people and automobile flux. This indicates that the tree sparrow is not adaptable to rapid urbanization, although in general it is an adaptable species. Urban planning should take into consideration birds such as tree sparrows.

[张淑萍, 郑光美, 徐基良 (2006)

城市化对城市麻雀栖息地利用的影响: 以北京市为例

生物多样性, 14, 372-381.]

DOI:10.1360/biodiv.060013      [本文引用: 1]

本文以北京市为例研究了城市化水平不同的8个区域中麻雀(Passer montanus的数量分布现状以及影响麻雀分布的栖息地因子。结果表明, 越冬期和繁殖期的麻雀数量均与城市化程度呈显著的负相关关系; 城市化程度高的城市中心商业区、高层居民区和城市主干道中的麻雀数量均很少; 城市化程度较低的城乡结合区、公园、城市的平房区及古建筑区域中麻雀数量均较多; 高校校园和低层楼房居民区, 虽然城市化程度相对较高, 但由于植被较丰富, 麻雀数量也较多。平房面积、针叶树数量、阔叶树数量、空调数量、高层楼房的面积、硬化地面的面积、人流量及车流量是影响麻雀栖息地利用的重要因素。其中平房面积、针叶树、阔叶树、空调的数量增加, 可为麻雀提供栖息条件而有利于麻雀的利用; 硬化地面的面积、高层楼房的面积、人流量及车流量的增加, 由于减少了杂草等麻雀的食物来源并增加了干扰, 不利于麻雀的利用。结果表明, 虽然麻雀是一个适应人类生活环境的物种, 但在快速的城市化变迁中,它已表现出对高度城市化环境的不适应。在城市的规划与建设中, 应考虑到为以麻雀为代表的城市鸟类提供生存必要的植被和繁殖场所, 构建人鸟和谐共存的生态城市。

Zhang WQ, Dong L (2015)

Study of bird preference to plant habitat and species in Beijing urban park

Chinese Landscape Architecture, 31(8), 15-19. (in Chinese with English abstract)

[本文引用: 1]

[张皖清, 董丽 (2015)

北京城市公园中鸟类对植物生境及种类的偏好研究

中国园林, 31(8), 15-19.]

[本文引用: 1]

Zhu C, Li W, Gregory T, Wang DR, Ren P, Zeng D, Kang Y, Ding P, Si XF (2022)

Arboreal camera trapping: A reliable tool to monitor plant-frugivore interactions in the trees on large scales

Remote Sensing in Ecology and Conservation, 8, 92-104.

DOI:10.1002/rse2.v8.1      URL     [本文引用: 1]

Zhuang YM, Kong FH, Yin HW, Zhang LL, Sun ZR (2012)

A review on the urban green space pattern affecting avian community

Journal of Nanjing Forestry University (Natural Science Edition), 36(3), 131-136. (in Chinese with English abstract)

[本文引用: 1]

[庄艳美, 孔繁花, 尹海伟, 张琳琳, 孙振如 (2012)

城市绿地空间格局对鸟类群落影响的研究进展

南京林业大学学报(自然科学版), 36(3), 131-136.]

[本文引用: 1]

/