生物多样性, 2023, 31(2): 22491 doi: 10.17520/biods.2022491

研究报告: 动物多样性

雅鲁藏布大峡谷鸟兽多样性及其海拔和季节分布

史湘莹,1,2, 李雪阳,3, 魏春玥,1, 孙戈,4, 刘震5, 赵翔1, 周嘉鼎,1, 樊简1, 李成,6,*, 吕植,,1,3,*

1.山水自然保护中心, 北京 100871

2.北京大学国家发展研究院, 北京 100871

3.北京大学生命科学学院, 北京 100871

4.中国林业科学研究院森林生态环境与自然保护研究所, 北京 100091

5.西藏自治区林芝市墨脱县林业和草原局, 西藏林芝 860700

6.西子江生态保育中心, 广东深圳 518112

Avian and mammal diversities and their altitudinal and seasonal distribution patterns in Yarlung Zangbo Grand Canyon, China

Xiangying Shi,1,2, Xueyang Li,3, Chunyue Wei,1, Ge Sun,4, Zhen Liu5, Xiang Zhao1, Jiading Zhou,1, Jian Fan1, Cheng Li,6,*, Zhi Lü,,1,3,*

1. Shan Shui Conservation Center, Beijing 100871

2. National School of Development, Peking University, Beijing 100871

3. School of Life Sciences, Peking University, Beijing 100871

4. Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091

5. Forestry and Grassland Bureau of Medog County, Linzhi, Tibet 860700

6. Xizijiang Conservation Center, Shenzhen, Guangdong 518112

通讯作者: *E-mail:326516420@qq.com;luzhi@pku.edu.cn

编委: 蒋学龙

责任编辑: 闫文杰

收稿日期: 2022-08-25   接受日期: 2022-11-24  

基金资助: 国家林业与草原局“秘境之眼”自然保护区红外相机监测网络试点项目

Corresponding authors: *E-mail:326516420@qq.com;luzhi@pku.edu.cn

Received: 2022-08-25   Accepted: 2022-11-24  

摘要

雅鲁藏布大峡谷地区海拔高差大, 开发程度较低, 生物多样性高, 生态系统保存相对完整, 近年来不断有新的物种和记录发现。2020年10月至2021年11月, 我们在西藏墨脱县、波密县和米林县雅鲁藏布大峡谷区域内布设红外相机进行生物多样性本底调查, 选择了7个不同海拔样区, 累计设置116个红外相机位点(海拔范围646-4,360 m), 监测24,741个相机工作日, 获得独立有效视频12,010段。近一年的调查共记录到物种136种, 其中可确定物种的兽类37种, 分属4目14科, 此外还记录到难以定种的鼠兔、鼠类和蝙蝠; 鸟类99种, 分属9目28科; 记录到国家I级重点保护野生动物共14种, 国家II级重点保护野生动物37种。本次拍摄到10个之前红外相机监测未拍摄到的兽类和雉类物种, 包括林麝(Moschus berezovskii)、马麝(M. chrysogaster)、棕熊(Ursus arctos)、亚洲狗獾(Meles leucurus)、黄鼬(Mustela sibirica)、灰头小鼯鼠(Petaurista caniceps)、黑白飞鼠(Hylopetes alboniger)、灰鼯鼠(Petaurista xanthotis)、白尾梢虹雉(Lophophorus sclateri)和灰腹角雉(Tragopan blythii)。通过比较不同海拔段和季节物种相对多度、Shannon-Wiener多样性指数和Pianka指数, 本研究发现本区域物种多样性丰富, 各个海拔段食肉动物、有蹄类动物分布存在差异。与雨季(4-9月)相比, 豺(Cuon alpinus)、云豹(Neofelis nebulosa)、金猫(Catopuma temminckii)、野猪(Sus scrofa)等物种旱季(10月至翌年3月)相对多度更高。本研究为雅鲁藏布大峡谷区域生物多样性研究补充了更全面的基础数据, 建议成立雅鲁藏布大峡谷国家公园以进一步加强对该区域生态系统和物种的保护和管理。

关键词: 雅鲁藏布大峡谷; 红外相机; 生物多样性

Abstract

Aims: Due to its altitude and limited human development, the Yarlung Zangbo Grand Canyon area boasts high degree of biodiversity and intact ecosystems. These conditions, have been favorable to the study and discovery of new species in recent years. In this study, we present the results of a comprehensive camera trap survey method implemented throughout the Yarlung Zangbo Grand Canyon area that shows the distribution patterns of the surveyed species.

Methods: From October 2020 to November 2021, infrared remote cameras were set in the Medog County, Bomi County, and Milin County of Yarlung Zangbo Grand Canyon area to determine degree of biodiversity. Camera traps were placed in 116 sites in seven monitoring areas with different altitudes ranging from 646 m to 4,360 m. With a total survey effort of 24,741 camera days, 12,010 independent detections were obtained and relative abundance index (RAI) were calculated. Shannon-Wiener diversity index in different altitude bins and Pianka index were used to analyze the species altitudinal distribution. Seasonal distribution patterns of dry season (October 2020 to March 2021) and rainy season (April 2021 to September 2021) were also compared using seasonal RAI at different camera trap sites.

Results: In total, 37 mammal species, which belong to 4 orders and 14 families, and 99 bird species, which belong to 9 orders and 28 families, were identified. Of these, 51 of the identified species were classified as State Key Protected Species. Ten species were documented with the use of camera for the first time in Yarlung Zangbo Grand Canyon area. These species were the forest musk deer (Moschus berezovskii), alpine musk deer (Moschus chrysogaster), brown bear (Ursus arctos), Asian badger (Meles leucurus), Siberian weasel (Mustela sibirica), grey-headed flying squirrel (Petaurista caniceps), particolored flying squirrel (Hylopetes alboniger), Chinese giant flying squirrel (Petaurista xanthotis), Sclater’s monal (Lophophorus sclateri) and Blyth’s tragopan (Tragopan blythii). Species like the dhole (Cuon alpinus), clouded leopard (Neofelis nebulosa), Asian golden cat (Catopuma temminckii) and wild boar (Sus scrofa) had higher RAI during the dry season than in the rainy season.

Conclusion: This study reveals high degree of biodiversity in the Yarlung Zangbo Grand Canyon area, with high heterogeneity of the altitudinal and seasonal distribution pattern of carnivore and ungulates. The result of this survey provides a biodiversity baseline and a scientific basis for the protection and management of the Yarlung Zangbo Grand Canyon area.

Keywords: Yarlung Zangbo Grand Canyon; camera trap; biodiversity

PDF (3227KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

史湘莹, 李雪阳, 魏春玥, 孙戈, 刘震, 赵翔, 周嘉鼎, 樊简, 李成, 吕植 (2023) 雅鲁藏布大峡谷鸟兽多样性及其海拔和季节分布. 生物多样性, 31, 22491. doi:10.17520/biods.2022491.

Xiangying Shi, Xueyang Li, Chunyue Wei, Ge Sun, Zhen Liu, Xiang Zhao, Jiading Zhou, Jian Fan, Cheng Li, Zhi Lü (2023) Avian and mammal diversities and their altitudinal and seasonal distribution patterns in Yarlung Zangbo Grand Canyon, China. Biodiversity Science, 31, 22491. doi:10.17520/biods.2022491.

雅鲁藏布大峡谷地处我国西藏东南部, 位于全球34个生物多样性热点地区之一的东喜马拉雅地区(CEPF, 2005)。该区域处于山脉交界处, 地质环境复杂, 加之高原历史地质活动影响, 海拔落差大, 自然垂直带明显, 具有我国最完整的植物垂直分布类型, 分布有东洋界和古北界两个动物地理区系的鸟兽及青藏高原特有种, 具有多样而独特的物种组成(冯祚建等, 1980; 王祖祥, 1982; 徐凤翔, 1995; 中国科学院登山科学考察队, 1995)。

基于其重要的保护价值, 雅鲁藏布大峡谷国家级自然保护区于2000年成立, 由墨脱县和周边的波密县、巴宜区、米林县的部分区域组成, 总面积9,168 km2 (王渊等, 2019a)。雅鲁藏布大峡谷国家级自然保护区生物多样性丰富, 有国家I级重点保护野生动物近30种。虽然峡谷内环境艰险、调查难度大, 但随着考察力度加大和技术手段提升, 近年不断发现脊椎动物新种甚至新属, 如墨脱湍蛙(Amolops medogensis) (赵文阁等, 2005)、白颊猕猴(Macaca leucogenys) (Li et al, 2015)、墨脱鼹(Alpiscaptulus medogensis) (Chen et al, 2021)等。红外相机的应用也促使地区物种新记录层出不穷, 如温立嘉等(2014)、吴建普等(2016)的调查中记录到的帚尾豪猪(Atherurus macrourus)、云猫(Pardofelis marmorata)、戴帽叶猴(Trachypithecus shortridgei)等。孟加拉虎(Panthera tigris tigris)在2000年后鲜见, 王渊等(2019a)仅记录到痕迹, 而Li等(2021a)在2019年1月首次用红外相机记录到孟加拉虎。

雅鲁藏布大峡谷及周边地区生态环境脆弱, 多种综合因素带来的地质灾害如冰崩岩崩(刘传正等, 2019)、气候变化引起的冰川退缩与冻土消融(Hugonnet et al, 2021), 可能威胁着区域生态系统的稳定性、完整性与多样性。因而, 在雅鲁藏布大峡谷开展全面、持续的生物多样性监测, 对丰富本底信息、开展动态监测以及规划适应性保护行动具有重要意义。

红外相机适合探测活动隐秘、数量稀少的动物, 可应用于多样性及种群监测、行为学等方面的研究(李晟等, 2014; 肖治术等, 2014)。本区域以往的红外相机调查主要集中在旱季(10月至次年3月) (温立嘉等, 2014; 吴建普等, 2016; Li et al, 2021a), 缺乏雨季(4-9月)的调查, 并且调查海拔多在4,000 m以下, 未能完整呈现出生物多样性的时空分布格局。针对这些研究空缺, 本研究在雅鲁藏布大峡谷国家级自然保护区开展红外相机监测, 旨在获得区域内鸟兽分布及相对多度信息; 探讨不同海拔的物种分布差异; 探讨不同季节对物种(特别是大中型兽类)活动情况的影响, 从而获得雅鲁藏布大峡谷区域鸟兽分布格局及季节分布规律, 以期为开展更完整、全面的保护提供依据与基础。

1 研究地点和方法

1.1 监测区域概况

本次研究的监测区域位于雅鲁藏布大峡谷(94°39°‒96°06° E, 29°05°‒30°22° N), 属于喜马拉雅山东侧亚热带湿润气候区, 植被类型多样, 本次调查海拔范围内主要包括热带季雨林(海拔500-1,100 m)、亚热带常绿阔叶林(1,100-2,500 m)、针阔混交林(2,500-2,800 m)、常绿硬叶阔叶林(北坡, 2,800-3,500 m)、暗针叶林(2,800-3,700 m)和高山灌丛(3,700-4,200 m) (李渤生, 1985; 中国科学院青藏高原综合科学考察队, 1988; Li et al, 2021a)。该区域年均温18.4℃, 年均降水量约2,330 mm (http://www.linzhi.gov.cn/mtx/zjmt/202110/9712bcfe81ec4fcd9a4401fbca4310df.shtml)。

本次研究在保护区内选择不同海拔段、不同植被类型的7个代表性区域作为监测样区, 分别为位于波密县的巴卡和普热(暗针叶林至高山灌丛)、位于米林县的派镇(常绿硬叶阔叶林、暗针叶林、高山灌丛)和位于墨脱县的德尔贡村、格林村、马迪村(亚热带常绿阔叶林为主)、德果村(季节性雨林为主)、格当乡(针阔混交林为主) (图1)。部分监测样区的海拔分布虽有所重叠, 但已覆盖了雅鲁藏布大峡谷区域的大部分森林生境。

图1

图1   雅鲁藏布大峡谷红外相机布设位点示意图

Fig. 1   Sketch map of camera trap sites in Yarlung Zangbo Grand Canyon, China


1.2 监测方法

2020年10月至2021年11月在保护区的7个监测样区内各选择1条样线, 通过对动物痕迹和生境的观察判断, 选择远离人为干扰的鸟兽适宜生境, 沿样线布设相机(猎科6210和东方红鹰两种型号), 累计116个相机位点, 80台红外相机, 布设位置海拔646-4,360 m。本次调查主要通过前期调研和访谈信息, 按照具有代表性的生境类型, 选取野生动物的适宜生境作为调查区域(表1)。样线的选择则通过村民访谈和实地勘察选取样区内的主要山脊和兽径, 确定可行的布设路线, 并根据地形条件和可到达性沿海拔梯度布设红外相机, 尽量保证每台相机位点间距大于100 m, 但由于低海拔森林生境多位于无人区, 地形复杂, 地质灾害频发, 尽最大调查努力的同时, 为了更多地捕获野生动物活动信息, 有14台相机位点间距小于100 m。相机灵敏度设为“中”, 设置为每次触发后拍摄1段15 s的视频, 24 h连续工作。相机与地面平行安装在树干上约20-50 cm高处, 安装后使用GPS获取和记录经纬度信息。拍摄过程中相机无遮蔽或伪装, 未使用诱饵。2020年10月进行第一批次的布设, 每隔4-5个月采集一批数据(2021年1月、2021年5月、2021年11月; 共三批数据), 更换电池和SD卡, 并对部分相机的位点进行更换, 以覆盖更多的生境类型。相机工作时长共计24,741工作日。

表1   雅鲁藏布大峡谷7个监测样区红外相机布设情况

Table 1  Details of camera trap surveys carried out in seven monitoring areas in Yarlung Zangbo Grand Canyon, China

监测样区
Monitoring area
相机位点数
No. of camera trap sites
相机位点海拔范围
Site elevation range (m)
相机位点平均海拔
Site average elevation (m)
相机工作日
Total camera days
巴卡 Baka172,674-4,2743,2664,466
派镇 Paizhen63,676-4,3604,055435
德尔贡 De’ergong38646-2,6131,7267,847
格林 Gelin91,559-2,3021,9702,217
德果 Deguo28972-2,1211,3636,023
马迪 Madi51,746-2,6072,1481,244
格当 Gedang132,174-2,8802,6052,509

① 2021年5月开始监测; ② 2021年1月开始监测。

① Survey was started from May 2021; ② Survey was started from January 2021.

新窗口打开| 下载CSV


1.3 数据分析

对获取的影像数据进行整理和归档, 并参考《中国兽类野外手册》(Smith和解焱, 2009)和《中国鸟类观察手册》(刘阳和陈水华, 2021)进行影像中的物种识别, 动物分类采用《中国兽类野外手册》(Smith和解焱, 2009)、郑光美(2017)、蒋志刚等(2017)和魏辅文等(2021)的分类系统, 其中部分近缘物种, 如鬣羚属(Capricornis)、麂属(Muntiacus)、麝属(Moschus)等的物种鉴定方式见附录1。同一物种的连续照片和视频以间隔30 min作为1次独立捕获(O’Brien et al, 2003), 将识别结果汇总并建立Excel数据库。采用R软件的vegan包绘制物种累积曲线(Oksanen et al, 2020), 其余数据处理和分析使用Python 3.9和Microsoft Excel 2019完成。

通过计算各物种每100个相机工作日里的独立捕获次数, 得到其相对多度(relative abundance index, RAI) (O’Brien et al, 2003), 计算公式为:

$RAI=\frac{\mathop{\sum }_{i=1}{{N}_{i}}}{\mathop{\sum }_{i=1}{{T}_{i}}}\times 100$

其中, Ti为相机位点i的相机工作天数, Ni为相机位点i某一物种的独立捕获次数。

通过计算监测区域各物种的相对多度, 以及计算整个区域的生物多样性指数, 可以作为本区域生物多样性情况的评估指标。同时, 也可以与其他区域进行比较。我们利用Shannon-Wiener多样性指数(H')来评估物种多样性(Shannon, 1948; Spellerberg & Fedor, 2003), 并对不同海拔段(以1,000 m为间隔)的生物多样性指数进行比较, 计算公式为:

${H}'=-\underset{i=1}{\overset{S}{\mathop \sum }}\,{{P}_{i}}\text{ln}{{P}_{i}}$

其中, Pi是物种i的独立捕获次数占全部物种独立捕获总次数的比例, S是整个监测区或各海拔段的全部物种数。

通过比较不同海拔段的野生动物相对多度来比较不同海拔和植被类型中的生物多样性丰富度。为了直观反映物种随海拔分布的情况, 文章选择了独立捕获次数较高的食肉动物和有蹄类动物, 用Python的seaborn可视化包中的violinplot工具(Waskom, 2021)绘制各物种的海拔分布提琴图, 以比较不同海拔的物种组成, 并使用Pianka指数(Ojk) (Pianka, 1973; Jennings & Veron, 2011)计算物种在海拔利用上的生态位重叠程度, 计算公式如下:

${{O}_{jk}}=\frac{\mathop{\sum }_{i}^{n}{{p}_{ij}}{{p}_{ik}}}{\sqrt{\mathop{\sum }_{i}^{n}{{p}_{ij}}^{2}\mathop{\sum }_{i}^{n}{{p}_{ik}}^{2}}}$

其中, pijpik是物种j和物种k对第i个海拔段(以200 m为间隔, 600-800 m, …, 4,200-4,400 m, n = 19)的利用程度, 采用相对多度表示。

另一方面, 通过比较旱季和雨季物种相对多度的差异, 也可以比较食肉动物与有蹄类在季节分布上的动态变化与关系, 补充已有文献在雨季监测数据上的空缺。选取旱季(2020年10月至2021年3月)和雨季(2021年4-9月)均进行监测的相机位点(共78个), 采用Wilcoxon Signed-Rank检验比较各物种在两个季节的相对多度差异。

2 结果

2.1 监测区生物多样性现状

本次调查回收206台次相机, 累计监测24,741个相机工作日, 共获得野生动物的独立有效视频12,010段, 其中兽类9,613段, 鸟类1,906段, 无法识别的物种491段, 此外亦拍摄到人类及家畜活动的独立有效视频1,800段。共记录到物种136种, 其中可确定物种的兽类37种, 分属4目14科, 此外还记录到难以定种的鼠兔、鼠类和蝙蝠; 鸟类99种, 分属9目28科(附录2)。拍摄到的动物中, 有国家I级重点保护野生动物14种, 其中兽类10种, 即豺(Cuon alpinus)、金猫(Catopuma temminckii)、云豹(Neofelis nebulosa)、大灵猫(Viverra zibetha)、喜马拉雅鬣羚(Capricornis thar)、羚牛(Budorcas taxicolor)(①羚牛(Budorcas taxicolor)又称扭角羚(Wei & Hu, 2022), 亦有研究者将其分为贡山羚牛(B. taxicolor, 又称高黎贡羚牛、米什米羚牛)、不丹羚牛(B. whitei)、四川羚牛(B. tibetana)、秦岭羚牛(B. bedfordi) 4个物种(Groves & Grubb, 2011; 蒋志刚等, 2017), 此外也有研究者采用喜马拉雅羚牛(B. taxicolor, 包含贡山羚牛和不丹羚牛两个亚种)和中华羚牛(B. tibetana, 包含四川羚牛和秦岭羚牛两个亚种)两个物种的分类(Yang et al, 2022)。本调查中拍摄到的羚牛属于喜马拉雅羚牛, 其中派镇的部分相机位点拍摄到的羚牛形态近似不丹羚牛, 其他相机位点拍摄到的羚牛形态近似贡山羚牛。)、赤斑羚(Naemorhedus baileyi)、黑麝(Moschus fuscus)、林麝(M. berezovskii)和马麝(M. chrysogaster); 鸟类4种, 即灰腹角雉(Tragopan blythii)、棕尾虹雉(Lophophorus impejanus)、白尾梢虹雉(L. sclateri)和黄喉雉鹑(Tetraophasis szechenyii)。另有国家II级重点保护野生动物37种: 兽类13种, 鸟类24种。被IUCN红色名录评估为濒危(EN)的动物5种, 即豺、小熊猫(Ailurus fulgens)(②亦有研究者将小熊猫(Ailurus fulgens)分类为喜马拉雅小熊猫(A. fulgens)和中华小熊猫(A. styani)两个物种(Hu et al, 2020)。本调查中拍摄到的小熊猫在形态上近似中华小熊猫。)、黑麝、林麝和马麝。CITES附录I物种15种, 附录II物种17种。

整个监测区内相对多度最高的物种是赤麂(Muntiacus vaginalis, 11.717), 其次为黄喉貂(Martes flavigula, 2.554)、猕猴(Macaca mulatta, 2.401)、赤腹松鼠(Callosciurus erythraeus, 1.900)、喜马拉雅鬣羚(1.815); 鸟类中相对多度最高的为黑鹇(Lophura leucomelanos, 2.482), 其次为紫啸鸫(Myophonus caeruleus, 1.164)、环颈山鹧鸪(Arborophila torqueola, 0.493)、长尾地鸫(Zoothera dixoni, 0.384)、红喉山鹧鸪(Arborophila rufogularis, 0.364)。各样区各物种相对多度见附录2。

整个监测区的Shannon-Wiener多样性指数(H')为3.026, 且随海拔梯度上升呈先增加后减少的趋势, 在2,500-3,500 m海拔段达到峰值3.074, 海拔段1,500-2,500 m (H' = 2.799)和3,500-4,500 m (H' = 2.800)的Shannon-Wiener多样性指数相近, 低海拔段(500-1,500 m)的Shannon-Wiener多样性指数较低(H' = 2.174)。物种累积曲线显示整个监测区内记录到的兽类物种数趋于饱和(图2)。

图2

图2   雅鲁藏布大峡谷红外相机调查物种累积曲线

Fig. 2   Species accumulative curve of camera trapping survey in Yarlung Zangbo Grand Canyon, China


2.2 食肉动物与有蹄类动物的海拔分布变化

将主要食肉动物和有蹄类动物不同海拔的分布统计制成提琴图(图3)。从海拔分布的结果来看, 食肉动物中, 豺(2,265 ± 565 m; 分布范围1,060-4,086 m)、金猫(2,103 ± 779 m; 分布范围1,060-4,274 m)、豹猫(Prionailurus bengalensis, 1,669 ± 592 m; 分布范围646-3,699 m)、黑熊(Ursus thibetanus, 2,192 ± 917 m; 分布范围738-4,086 m)和黄喉貂(2,302 ± 683 m; 分布范围646-4,214 m)的海拔分布范围较广。云豹(1,445 ± 452 m; 分布范围812-2,386 m)和云猫(1,907 ± 405 m; 分布范围812-2,637 m)主要分布在中低海拔, 分布的海拔段相似。小熊猫(3,193 ± 304 m; 分布范围2,152-3,393 m)则主要分布在中高海拔。Pianka指数显示(附录3), 豺和云豹两种顶级食肉动物的海拔分布重叠度较低(0.27), 而豺与金猫(0.75)和云猫(0.70)这两种中小型猫科动物的海拔分布重叠度较高, 云豹和云猫虽均分布在中低海拔, 但海拔分布重叠度较低(0.37)。

图3

图3   雅鲁藏布大峡谷食肉动物和有蹄类动物海拔分布提琴图

Fig. 3   Violin plot of the elevation distribution of carnivores and ungulates in Yarlung Zangbo Grand Canyon, China


有蹄类动物中(图3), 中华鬣羚(Capricornis milneedwardsii)主要分布在中高海拔(3,268 ± 480 m; 分布范围1,496-4,360 m), 喜马拉雅鬣羚主要分布在中低海拔(1,990 ± 901 m; 分布范围812-4,086 m), 在米林派镇也有在高海拔区域的记录(3,858 m, 4,086 m), 中华鬣羚和喜马拉雅鬣羚的海拔分布重叠度很低(Pianka指数为0.06)。野猪(Sus scrofa, 2,057 ± 427 m; 分布范围1,078-3,056 m)、赤麂(1,389 ± 389 m; 分布范围646-3,393 m)、贡山麂(Muntiacus gongshanensis, 2,230 ± 286 m; 分布范围1,060-2,676 m)、赤斑羚(2,370 ± 619 m; 分布范围972-2,880 m)主要分布在中低海拔, 赤麂和贡山麂的海拔分布重叠度较低(Pianka指数为0.24), 羚牛则除在米林派镇有1次3,858 m的记录外, 主要记录于中低海拔(1,439 ± 366 m; 分布范围972-3,858 m); 黑麝(3,899 ± 75 m; 分布范围3,881-4,214 m)、林麝(3,645 ± 77 m; 分布范围3,536-3,699 m)和马麝(4,010 ± 108 m; 分布范围3,858-4,086 m)均分布在海拔3,500 m以上的高海拔区域, 但由于捕获次数较少, 尚无法看出海拔分布的分化。

通过比较食肉动物与有蹄类动物的Pianka指数可发现, 豺和野猪的海拔分布重叠度较高(0.62), 云豹则与赤麂(0.72)的海拔分布重叠度较高。各样区内物种间的海拔分布重叠度基本符合整体的海拔分布重叠度特征。

2.3 食肉动物与有蹄类动物活动的季节分布变化

对拍摄到主要食肉动物和有蹄类动物的相机位点分旱季和雨季统计各位点该物种的相对多度, 并检验是否有显著差异(图4)。从季节分布的结果来看, 食肉动物中豺、云豹、金猫、云猫的相对多度在旱季显著高于雨季, 花面狸(Paguma larvata)则在雨季显著高于旱季; 有蹄类动物中野猪和喜马拉雅鬣羚的旱季相对多度显著高于雨季, 赤斑羚呈现同样的趋势, 但区别不显著, 其余几种有蹄类动物在两个季节的活动无明显区别, 其中羚牛的雨季记录主要集中在4月。

图4

图4   雅鲁藏布大峡谷食肉动物和有蹄类动物各位点相对多度在雨季和旱季间的差异。* P < 0.05; ** P < 0.01。

Fig. 4   Relative abundance index (RAI) differences between rainy season and dry season of carnivores and ungulates in Yarlung Zangbo Grand Canyon, China. * P < 0.05; ** P < 0.01.


3 讨论

3.1 丰富的物种多样性

本次监测共记录到兽类37种, 鸟类99种, 其中国家I级、II级重点保护野生动物共51种。结合已有文献中调查的结果(温立嘉等, 2014; 吴建普等, 2016; 李学友等, 2020; Li et al, 2021a, b; 李学友, 2022(①李学友 (2022) 雅鲁藏布江大峡谷国家级自然保护区红外相机记录兽类物种多样性采样清单(2021). 国家青藏高原科学数据中心, DOI: 10.11888/HumanNat.tpdc.272650. CSTR: 18406.11.HumanNat.tpdc.272650.)), 雅鲁藏布大峡谷现有红外相机调查共记录到43科157种, 其中兽类14科45种, 鸟类29科112种。

在其他拥有丰富生物多样性的热带季雨林区域, 如高黎贡山国家级自然保护区, 红外相机调查记录的兽类在12-37种, 鸟类在5-44种, 其中国家I级、II级重点保护野生动物数量累积为41种(陈奕欣等, 2016; 高歌等, 2017; Li et al, 2019; 李学友等, 2020); 西双版纳国家级自然保护区的红外相机调查记录的兽类在12-43种, 鸟类在16-50种, 其中国家I级、II级重点保护野生动物为52种(张明霞等, 2014; 白德凤等, 2018; 贺如川等, 2020; 李学友等, 2020); 海南尖峰岭国家级自然保护区的红外相机调查记录兽类17种, 鸟类47种, 国家I级、II级重点保护野生动物21种(莫锦华等, 2019, 2021)。与以上区域相比, 本次为期一年的雅鲁藏布大峡谷红外相机调查记录的物种多样性高, 濒危物种种类多, 峡谷区域亟待更多保护与研究投入。雅鲁藏布大峡谷较高的生物多样性可能得益于峡谷内巨大的海拔落差, 多种生境类型为不同物种提供了多样的栖息地; 且雅鲁藏布大峡谷处于喜马拉雅山脉与横断山脉之间, 位于多个动物区系的交汇地带, 例如从动物地理区划看, 墨脱地区属于东洋界, 却在本次调查中记录到了棕熊(Ursus arctos)这一古北界的物种(张荣祖和郑昌琳, 1985)。

本次记录到10个之前红外相机监测(温立嘉等, 2014; 吴建普等, 2016; 李学友等, 2020; 徐婉芸等, 2020; Li et al, 2021a, b)未拍摄到的兽类和雉类物种(附录4), 即林麝、马麝、棕熊、亚洲狗獾(Meles leucurus)、黄鼬(Mustela sibirica)、灰头小鼯鼠(Petaurista caniceps)、黑白飞鼠(Hylopetes alboniger)、灰鼯鼠(Petaurista xanthotis)、白尾梢虹雉和灰腹角雉, 进一步增补了物种记录, 表明保护区内开展红外相机物种监测仍具潜力。在保护区内持续开展基于红外相机的物种调查, 有助于监测濒危物种的状态与变化、发现潜在的新记录种和新物种。

此外, 本研究有8个位点在同一位置记录到云豹和豺两种大型食肉动物。云豹和豺曾在我国多个省份有分布(张荣祖, 1997), 但目前豺仅在甘肃、西藏、青海、新疆、四川和云南有零星记录(Kamler et al, 2015; Xue et al, 2015; Li et al, 2020), 云豹更是仅记录于云南、西藏的部分区域(马子驭等, 2022)。本研究中云豹和豺的相对多度分别为0.178和0.816, 在国内的红外相机调查中处于较高的水平(施小刚等, 2017; 白德凤等, 2018; 宋志勇等, 2019)。此外, 金猫的相对多度高达0.687, 在已有国内外研究中也处于较高的水平(Azlan & Sharma, 2006; 武阿莉等, 2014; Yongdrup et al, 2019; 宋志勇等, 2019)。大型食肉动物作为其所在生态系统中的顶级捕食者, 与次级捕食者共同塑造生态系统的营养与群落结构, 因此其种群数量是一个健康完整的生态系统的重要标志(Ripple et al, 2014); 雅鲁藏布大峡谷因交通闭塞, 人类活动少于其他区域, 所以栖息地较为完整, 猎物资源相对丰富(本研究中记录有蹄类动物11种)。

3.2 不同海拔食肉动物和有蹄类动物分布

海拔可通过影响气温、降水、氧浓度、植被等多种因素综合影响动物分布(韩菡等, 2017; 王作波等, 2020), 本研究区域内海拔落差大, 植被垂直分布明显, 包括热带季雨林、亚热带常绿阔叶林、针阔混交林、常绿硬叶阔叶林、暗针叶林、高山灌丛(Li et al, 2021a), 多样的植被类型提供了不同类型的栖息地, 为多物种的共存提供了基础, 在分析中不同海拔的食肉动物、有蹄类动物也呈现出分布差异, 如云豹和豺、赤麂和贡山麂、中华鬣羚和喜马拉雅鬣羚。

食肉动物的分布与猎物密切相关, 本研究中,豺与野猪相较豺与其他有蹄类动物海拔分布重叠度更高, 也与以往对豺的食性研究相符(Kawanishi & Sunquist, 2008; Hayward et al, 2014); 中小型食肉动物如金猫、黄喉貂、豹猫海拔分布范围较广, 可能是由于其食性多样, 捕食的小型脊椎动物分布广, 本次调查甚至在林线以上拍摄到金猫(波密县巴卡, 海拔4,274 m), 是海拔最高的金猫记录点之一(Grassman et al, 2005; Zhou et al, 2011; Xiong et al, 2017; Kamler et al, 2020)。

本研究显示, 保护区内不同海拔食肉动物与有蹄类动物的分布和重叠度均存在差异, 不同海拔可能均存在完整营养结构。为保护整个生态系统的稳定性与完整性, 应对保护区各海拔均开展监测与保护。

3.3 食肉动物和有蹄类动物季节活动规律变化

本研究首次补充了雨季调查结果, 得以探讨兽类季节活动变化规律。以往研究显示, 季节可能通过影响食物资源分布、可利用生境数量从而影响兽类对不同海拔、栖息地类型的利用情况(吴鹏举和张恩迪, 2004; Qamar et al, 2008; Srivastava & Kumar, 2018), 其季节活动规律也会受行为规律(如发情、冬眠)影响(贾晓东等, 2014)。

花面狸和黑熊为杂食动物, 两者均以植食性为主(吴家炎, 1983; 王捷和胡锦矗, 1990; 刘务林, 2004; Zhou et al, 2011; 涂飞云等, 2016), 因而可能在食物充沛的雨季活动更频繁, 且花面狸的季节活动也有显著差异。而黑熊的冬眠时间约从11月开始, 多为半睡状态, 冬眠情况与气候、食源相关(吴家炎, 1983; 王捷和胡锦矗, 1990; 刘务林, 2004), 本研究中定义旱季为10月至次年3月, 可能纳入了黑熊冬眠前的活动高峰, 因而未出现显著差异。11月至次年3月黑熊的活动频率则显著低于4-10月(P < 0.05)。

有蹄类动物的季节活动规律可能受多种因素影响: 苏门羚(Capricornis sumatraensis)发情季集中在旱季(Boonsong & McNeely, 1977; Lovari et al, 2020), 这也可能是喜马拉雅鬣羚旱季活动增加的原因; 野猪旱季活动显著增加, 与以往研究相符, 可能是受食物资源、繁殖情况等综合因素影响(Guo et al, 2017), 雨季食物资源更集中, 活动范围可能更小。而食肉动物中的豺、云豹、金猫的旱季活动频次增加, 可能与繁殖周期、猎物活动与气候适应相关(Johnsingh, 1982; 陈鹏和师杜鹃, 2013; 王渊等, 2019b)。

以往研究显示, 秦岭羚牛、喜马拉雅鬣羚随季节存在海拔迁徙, 冬季会在偏低海拔活动(Wang et al, 2010; Srivastava & Kumar, 2018)。本研究中记录到的羚牛多集中在1,000-2,000 m之间, 与以往研究相比偏低(吴鹏举和张恩迪, 2006; 陈超等, 2019), 可能的原因是羚牛雨季迁徙到高海拔区域, 而本研究高海拔相机位点未覆盖羚牛的生境, 存在采样偏差; 本研究在雨季记录的羚牛多为4月, 正值羚牛的迁徙期(Wang et al, 2010), 也解释了部分相机位点雨季羚牛的高相对多度。低海拔区域也是人类活动较为频繁的区域, 在不丹的研究显示, 豺对家畜的捕食强度与放牧的季节变化有关(Thinley et al, 2011)。后续应关注保护区内放牧情况等人类活动对野生动物的影响及人兽冲突, 特别是旱季的情况。

3.4 雅鲁藏布大峡谷保护的挑战与展望

本研究显示, 本区域物种多样性丰富, 各个海拔段食肉动物和有蹄类动物的群落结构存在差异。与雨季相比, 旱季中低海拔区域记录到的物种更加丰富。调查过程中发现本区域仍然存在猎套、兽铗等盗猎威胁。近年来, 随着交通变得便捷, 雅鲁藏布大峡谷保护区外来人为活动和工程建设越来越频繁, 可能带来垃圾、对野生动物干扰、栖息地破坏等一系列负面影响, 对中低海拔地区影响尤为明显, 因此更应加强整体保护与管理(Li et al, 2021b)。

现有的雅鲁藏布大峡谷国家级自然保护区、工布自然保护区等由于保护范围与级别等因素的限制, 无法应对本区域未来面临的各种复杂挑战; 尤其是对于大规模的工程规划建设, 其生态影响急需评估和谨慎决策。有学者呼吁选择在雅鲁藏布江下游及支流区域生态与景观价值典型、集中的区域建立国家公园, 以保护该区域生态系统的原真性和完整性(Wang et al, 2021)。

本研究通过调查和分析西藏雅鲁藏布大峡谷的物种多样性, 进一步支持论证了本区域的生态价值和保护迫切性, 为未来国家公园等保护地的规划和论证提供了数据支持, 建议相关保护部门、研究机构、社会组织和社区共同合作, 进一步加强本地区完整的生态系统和生物多样性的保护和管理。

附录 Supplementary Material

附录1 部分有蹄类物种(鬣羚属、麂属、麝属)的鉴定方式

Appendix 1 Species identification methods for certain ungulates (i.e., Capricornis spp., Muntiacus spp., Moschus spp.)

附录2 雅鲁藏布大峡谷区域不同监测样区鸟兽多样性

Appendix 2 Mammals and birds at different monitoring areas in Yarlung Zangbo Grand Canyon area, China

附录3 犬科、猫科食肉动物与有蹄类动物海拔生态位重叠的Pianka指数

Appendix 3 Pianka index indicating elevational niche overlap of Canidae, Felidae, and ungulates

附录4 雅鲁藏布大峡谷区域红外相机新拍摄到的物种

Appendix 4 Species newly recorded by camera traps in Yarlung Zangbo Grand Canyon area, China

致谢

本研究得到国家林业和草原局自然保护地管理司、西藏自治区林业和草原局、林芝市林业和草原局、墨脱县人民政府和墨脱县林业和草原局的指导和支持。中国绿色碳汇基金会、北京中金公益基金会、广汽丰田对本研究的开展提供了支持。山水自然保护中心更尕依严、求尼旦土、郭钰琦等同事参加了红外相机野外数据收集和照片鉴定工作。谨此一并致谢!

参考文献

Azlan JM, Sharma DSK (2006)

The diversity and activity patterns of wild felids in a secondary forest in Peninsular Malaysia

Oryx, 40, 36-41.

DOI:10.1017/S0030605306000147      URL     [本文引用: 1]

A study to describe the diversity of wild felids was carried out in Jerangau Forest Reserve, Ulu Terengganu, Malaysia, using camera traps, over a period of 21 months. A total of 24 camera traps were used, with a total of 5,972 trap days. Six species of wild cats in five genera were recorded: tiger Panthera tigris, leopard Panthera pardus, clouded leopard Neofelis nebulosa, leopard cat Prionailurus bengalensis, golden cat Catopuma temminckii and marbled cat Pardofelis marmorata. This represents all but two of the felid species known to occur in Peninsular Malaysia. The use of camera traps provided detailed information on the occurrence and activity patterns of these relatively secretive mammals. The most frequently photographed species was tiger (38.5% of records) followed by leopard (26.3%) and leopard cat (21.9%). The presence of charismatic flagship species such as tiger in this unprotected lowland dipterocarp secondary forest will be of help to local conservation organizations and the Wildlife Department in any proposals for the protection of these areas.

Bai DF, Chen Y, Li JS, Tao Q, Wang LF, Piao Y, Shi K (2018)

Mammal diversity in Shangyong Nature Reserve, Xishuangbanna, Yunnan Province

Biodiversity Science, 26, 75-78. (in Chinese)

DOI:10.17520/biods.2017223      [本文引用: 2]

[白德凤, 陈颖, 李俊松, 陶庆, 王利繁, 飘优, 时坤 (2018)

西双版纳尚勇自然保护区哺乳动物物种多样性

生物多样性, 26, 75-78.]

DOI:10.17520/biods.2017223      [本文引用: 2]

Boonsong L, McNeely JA (1977)

Mammals of Thailand

Association for the Conservation of Wildlife, Bangkok, Thailand.

[本文引用: 1]

CEPF (2005)

Ecosystem Profile: Eastern Himalayas Region

WWF-US, Asia Program, Washington, DC.

[本文引用: 1]

Chen C, He XY, Xue YD (2019)

Habitat selection of takins in Gaoligong Mountain National Nature Reserve in Yunnan Province

Forest Resources Management, (4), 151-158. (in Chinese with English abstract)

[本文引用: 1]

[陈超, 和晓阳, 薛亚东 (2019)

云南高黎贡山国家级自然保护区羚牛生境选择

林业资源管理, (4), 151-158.]

[本文引用: 1]

Chen P, Shi DJ (2013)

The vertical distribution and seasonal activity patterns of Asian golden cat in Changqing National Nature Reserve

Shaanxi Forest Science and Technology, (1), 22-24. (in Chinese with English abstract)

[本文引用: 1]

[陈鹏, 师杜鹃 (2013)

长青自然保护区金猫垂直分布和季节性活动规律研究

陕西林业科技, (1), 22-24.]

[本文引用: 1]

Chen YX, Xiao ZS, Li M, Wang XW, He CX, He GP, Li HS, Shi SJ, Xiang ZF (2016)

Preliminary survey for the biodiversity of mammal and bird using camera traps in the west slope of mid-section Mt. Gaoligong

Acta Theriologica Sinica, 36, 302-312. (in Chinese with English abstract)

DOI:10.16829/j.slxb.201603006      [本文引用: 1]

Mt. Gaoligong, situated along the China-Myanmar borderis, is one of the biodiversity hotspots in the world. However, we have limited knowledge about the fauna diversity in this area due to complex terrain, and dense vegetation. During November 2013 to September 2015, we had investigated the biodiversity of mammals and birds by deploying 30 infrared camera traps in the west slope of mid-section of Mt. Gaoligong at Pianma, Yunnan, China. We established 41 different camera sites with 9,503 camera-trapping days and obtained 808 independent images. We identified 21 mammals and 24 birds, belonging to 10 orders, 21 families and 38 genera. We also identified Rhinopithecus strykeri, a recently discovered non-human primate species in the mid-section of Mt. Gaoligong. Primates, Carnivora, Artiodactyla, Passeriformes, Galliformes and Rodentia were the most abundant orders and widely distributed in the study area. Based on the detailed time records from seven most abundant species, the results were shown that: (1) Macaca assamensis, R. strykeriand Ithaginis cruentus had similar daily activity pattern with one peak in the morning and another in the afternoon;(2) the activity pattern of Dremomys lokriahand Myophonus caeruleus peaked at noon, but D. lokriah had another peak at dusk; and (3)Martes flavigula and Sus scrofa exhibited nocturnality, but S. scrofa were more active at night. This survey provide basic and valuable information for current status of mammal and bird diversity at Mt. Gaoligong, which are essential for wildlife monitoring and biodiversity conservation for this area.

[陈奕欣, 肖治术, 李明, 王新文, 何臣相, 何贵品, 李海曙, 施顺金, 向左甫 (2016)

利用红外相机对高黎贡山中段西坡兽类和鸟类多样性初步调查

兽类学报, 36, 302-312.]

[本文引用: 1]

Chen ZZ, He SW, Hu WH, Song WY, Jiang XL (2021)

Morphology and phylogeny of scalopine moles (Eulipotyphla: Talpidae: Scalopini) from the eastern Himalayas, with descriptions of a new genus and species

Zoological Journal of the Linnean Society, 193, 432-444.

DOI:10.1093/zoolinnean/zlaa172      URL     [本文引用: 1]

All scalopine moles are found in North America, except the Gansu mole (Scapanulus oweni), which is endemic to central-west China. In 2019, we collected two specimens of Scalopini on Mt Namjagbarwa in the eastern Himalayas, Tibet, China. We sequenced two mitochondrial (CYT B and 12S) and three nuclear (APOB, BRCA1 and RAG2) genes to estimate the phylogenetic relationships of the two moles, and also compared their morphology with other genera and species within the Scalopini. Both morphological and molecular analyses strongly suggest that the specimens represent a new monotypic genus and species, which are formally described here as Alpiscaptulus medogensis gen. et sp. nov. The dental formula of the new mole (44 teeth) is distinct from the Chinese Scapanulus oweni (36 teeth) and its hairy and pale brown tail is unique among species of the Scalopini. The Kimura-2-parameter (K2P) distances of CYT B between A. medogensis and the four recognized Scalopini genera range from 14.5% to 18.9%. A sister relationship between A. medogensis and Scapanulus oweni was strongly supported in the phylogenetic trees. The divergence between A. medogensis and Scapanulus oweni occurred in the mid-Miocene (c. 11.56 Mya), which corresponds with the rapid uplift of the Himalayan-Tibetan Plateau.

Feng ZJ, Zheng CL, Cai GQ (1980)

On mammals from southeastern Xizang (Tibet)

Acta Zoologica Sinica, 26, 91-97. (in Chinese with English abstract)

[本文引用: 1]

[冯祚建, 郑昌琳, 蔡桂全 (1980)

西藏东南部兽类的区系调查

动物学报, 26, 91-97.]

[本文引用: 1]

Gao G, Wang B, He CX, Luo X (2017)

Biodiversity of birds and mammals in alpine habitat of Mt. Gaoligong, Lushui County, Yunnan

Biodiversity Science, 25, 332-339. (in Chinese with English abstract)

DOI:10.17520/biods.2016276      [本文引用: 1]

Gaoligong Mountains, known for its richest biodiversity, locates in the Indo-Burma Biodiversity Hotspot. However, our knowledge of the fauna in the alpine habitat of Mt. Gaoligong is still lacking due to complex terrain and poor accessibility. From October 2014 to June 2016, infrared cameras were established to monitor the biodiversity of mammals and birds in the alpine habitat of Mt. Gaoligong, Lushui County, Yunnan. In this survey, we selected three sample plots, North (Jinman), Central (Tingming Lake), and South (Pianma Pass), and in each sample plot, 20 cameras were established for 10,400 camera trapping days and 1,342 effective images were obtained. We identified 18 species of mammals and 44 species of birds belonging to 9 orders and 28 families, including 11 species listed as State Key Protected Wild Animals. The most abundant species was Tarsiger chrysaeus, along with Ithaginis cruentus, Zoothera mollissima, Ochotona forresti, and Ailurus fulgens. Luscinia pectoralis was recorded for the first time in Mt. Gaoligong. A one year survey at the Jinman sample plot revealed that faunal diversity in the alpine habitat had strongly seasonality, i.e. the months from May to October had much higher abundance than the other months. This was a consequence of the high immigration rate to alpine habitats during this period due to altitudinal movement and autumn migration. This survey is the first time to use infrared cameras for alpine faunal surveys at Mt Gaoligong, and the generated data provided a scientific basis for the protection and management of this nature reserve.

[高歌, 王斌, 何臣相, 罗旭 (2017)

云南泸水高黎贡山高山生境的鸟兽多样性

生物多样性, 25, 332-339.]

DOI:10.17520/biods.2016276      [本文引用: 1]

高黎贡山位于印缅生物多样性保护热点地区, 但由于地形复杂、交通不便等客观原因的限制, 以往对高黎贡山高山生境的鸟兽多样性调查数据较为缺乏。2014年10月至2016年6月, 我们利用红外相机在高黎贡山高山环境开展鸟类和兽类物种多样性调查, 以期对鸟兽多样性数据进行补充。调查期间, 于泸水辖区内选取北(金满)、中(听命湖)、南(片马垭口) 3个样区, 每个样区布设20台红外相机。累计布设红外相机10,400台日, 拍摄到1,342张有效照片。共记录到18种兽类和44种鸟类, 分属9目28科, 包括3种国家一级、8种国家二级重点保护动物, IUCN濒危(EN)物种3种、易危(VU)物种3种、近危(NT)物种2种。相对丰富度较高的物种包括金色林鸲(Tarsiger chrysaeus)、血雉(Ithaginis cruentus)、光背地鸫(Zoothera mollissima)、灰颈鼠兔(Ochotona forresti)、小熊猫(Ailurus fulgens)等。记录到高黎贡山鸟类新记录1种: 黑胸歌鸲(Luscinia pectoralis)。金满样区1个年周期的监测结果显示, 高黎贡山高山生境鸟兽物种多样性有季节差异, 在5-10月动物活动频繁, 垂直迁移和鸟类的秋季迁徙对高山物种组成影响较大。本调查对高黎贡山高山环境的鸟兽多样性进行了有效补充, 可为高黎贡山高山鸟兽物种的保护和管理提供科学依据。

Grassman LI, Tewes ME, Silvy NJ, Kreetiyutanont K (2005)

Ecology of three sympatric felids in a mixed evergreen forest in north-central Thailand

Journal of Mammalogy, 86, 29-38.

DOI:10.1644/1545-1542(2005)086&lt;0029:EOTSFI&gt;2.0.CO;2      URL     [本文引用: 1]

Groves CP, Grubb P (2011) Ungulate Taxonomy. Johns Hopkins University Press, Baltimore.

[本文引用: 1]

Guo W, Cao G, Quan RC (2017)

Population dynamics and space use of wild boar in a tropical forest, Southwest China

Global Ecology and Conservation, 11, 115-124.

DOI:10.1016/j.gecco.2017.04.005      URL     [本文引用: 1]

Han H, Mu HQ, Wei W, Zhang ZJ, Hu JC, Zhou H (2017)

The richness and diversified elevation patterns of small nonvolant mammal in Fengtongzhai Nature Reserve and its correlation with vegetation factors

Journal of China West Normal University (Natural Sciences), 38, 241-247. (in Chinese with English abstract)

[本文引用: 1]

[韩菡, 母华强, 韦伟, 张泽钧, 胡锦矗, 周宏 (2017)

蜂桶寨自然保护区小型地栖兽类丰富度和多样性海拔分布及与植被的关系

西华师范大学学报(自然科学版), 38, 241-247.]

[本文引用: 1]

Hayward MW, Lyngdoh S, Habib B (2014)

Diet and prey preferences of dholes (Cuon alpinus): Dietary competition within Asia’s apex predator guild

Journal of Zoology, 294, 255-266.

DOI:10.1111/jzo.2014.294.issue-4      URL     [本文引用: 1]

He RC, Wang L, Quan RC (2020)

Introduction to Transboundary Animal Diversity Monitoring Platform of Southern Yunnan, China and Southeast Asia

Biodiversity Science, 28, 1097-1103. (in Chinese with English abstract)

DOI:10.17520/biods.2020154      URL     [本文引用: 1]

[贺如川, 王林, 权锐昌 (2020)

中国滇南-东南亚跨境动物多样性监测平台概述

生物多样性, 28, 1097-1103.]

[本文引用: 1]

Hu YB, Thapa A, Fan HZ, Ma TX, Wu Q, Ma S, Zhang DL, Wang B, Li M, Yan L, Wei FW (2020)

Genomic evidence for two phylogenetic species and long-term population bottlenecks in red pandas

Science Advances, 6, eaax5751.

DOI:10.1126/sciadv.aax5751      URL     [本文引用: 1]

Population genomics reveal two species in red pandas, correct their species boundaries, and reconstruct their evolutionary histories.

Hugonnet R, McNabb R, Berthier E, Menounos B, Nuth C, Girod L, Farinotti D, Huss M, Dussaillant I, Brun F, Kääb A (2021)

Accelerated global glacier mass loss in the early twenty-first century

Nature, 592, 726-731.

DOI:10.1038/s41586-021-03436-z      [本文引用: 1]

Jennings AP, Veron G (2011)

Predicted distributions and ecological niches of 8 civet and mongoose species in Southeast Asia

Journal of Mammalogy, 92, 316-327.

DOI:10.1644/10-MAMM-A-155.1      URL     [本文引用: 1]

Jia XD, Liu XH, Yang XZ, Wu PF, Songer M, Cai Q, He XB, Zhu Y (2014)

Seasonal activity patterns of ungulates in Qinling Mountains based on camera-trap data

Biodiversity Science, 22, 737-745. (in Chinese with English abstract)

DOI:10.3724/SP.J.1003.2014.140073      [本文引用: 1]

Between August 2009 and April 2013, in the Guanyingshan Nature Reserve, Shaanxi Province, we collected photo data on six ungulates (Budorcas taxicolor, Naemorhedus griseus, Elaphodus cephalophus, Capricornis milneedwardsii, Muntiacus reevesi and Moschus berezovskii) with 18 infrared cameras. Using the relative abundance index (RAI), we analyzed activity patterns and seasonal differences of these six species. The results show that: (1) their total RAI in the study area reaches 58.71%, the RAI of B. taxicolor was 28.02%, and it was 13.24% for N. griseus, 10.08% for E. cephalophus, 4.21% for C. milneedwardsii, 2.26% for M. reevesi, and 0.90% for M. berezovskii. (2) Monthly RAIs (MRAI) of six ungulates reflected seasonal activity patterns; B. taxicolor, N. griseus, E. cephalophus, C. milneedwardsii, M. reevesi exhibited similar activity patterns. These species were most active in summer, became inactive in autumn and winter, and then gradually increased activity in spring. M. berezovskii, on the other hand, was most active in winter and least active in summer. (3) The time-period relative abundance indices (TRAI) of the six ungulates reflect their daily activity patterns. B. taxicolor and N. griseus have similar daily activity patterns with an active peak at 06:00-20:00.The daily activity pattern of E. cephalophus, M. reevesi and M. berezovskii showed obvious crepuscular habits. C. milneedwardsii also has two peaks but at 02:00-06:00 and 20:00-22:00 implying nocturnal activities. (4) Comparative analyses of daily activity patterns among the four seasons showed that B. taxicolor displayed a different pattern in spring with an activity peak at 16:00-20:00. Compared with other seasons, N. gresius, E. cephalophus and C. milneedwardsii have different patterns in winter with either a delayed or advanced activity peak. In the case of M. reevesi, spring daily activity patterns showed two peaks at 00:00-10:00 and 18:00-20:00. Due to a paucity of captures, M. berezovskii showed different activity patterns in all four seasons. (5) Analysis of the nocturnality showed that C. milneedwardsii was obviously nocturnal with a nighttime relative abundance index (NRAI) of 65.81%. Our results help us to understand the activity patterns of these ungulates in Qinling, to monitor their population dynamics, and provide a theoretical basis and data support for the nature reserves to protect the ungulate animals more efficiently.

[贾晓东, 刘雪华, 杨兴中, 武鹏峰, Melissa Songer, 蔡琼, 何祥博, 朱云 (2014)

利用红外相机技术分析秦岭有蹄类动物活动节律的季节性差异

生物多样性, 22, 737-745.]

DOI:10.3724/SP.J.1003.2014.140073      [本文引用: 1]

2009年8月至2013年4月期间, 在陕西观音山自然保护区, 利用18台红外相机收集到羚牛(Budorcas taxicolor)、川西斑羚(Naemorhedus griseus)、中华鬣羚(Capricornis milneedwardsii)、毛冠鹿(Elaphodus cephalophus)、小麂(Muntiacus reevesi)、林麝(Moschus berezovskii) 6种有蹄类动物的照片数据, 通过相对丰富度指数分析了它们的活动规律及季节性差异。结果表明: (1)6种有蹄类动物在研究区域总丰富度达到了58.71%, 其中羚牛的相对丰富度是28.02%, 川西斑羚13.24%, 毛冠鹿10.08%, 中华鬣羚4.21%, 小麂2.26%, 林麝0.90%。(2)6种有蹄类动物的月相对丰富度反映了其年活动格局, 其中羚牛、川西斑羚、毛冠鹿、中华鬣羚、小麂表现出一致性, 即夏季活动最为频繁, 秋季减弱, 冬季达到活动低谷, 春季逐渐回升; 而林麝则在冬季活动最为频繁, 夏季最弱。(3)日时间段相对丰富度反映了动物全年的日活动规律, 其中川西斑羚和羚牛相似, 主要以白天活动为主; 毛冠鹿、小麂、林麝具有明显的晨昏活动习性; 中华鬣羚活动高峰出现在02:00-06:00和20:00-22:00, 以夜间活动为主。(4)分析不同季节6种有蹄类动物日活动规律, 羚牛在春季出现一定的差异, 活动高峰出现在16:00-20:00; 川西斑羚、毛冠鹿、中华鬣羚在冬季表现出一定的差异, 活动高峰相对延迟或者提前; 小麂春季表现出差异, 活动主要集中在00:00-10:00和18:00-20:00; 林麝由于数据相对较少, 在4个季节表现出不同的活动规律。(5)夜行性分析得到中华鬣羚具有较强的夜间活动能力, 夜间相对丰富度达到了65.81%。这些研究结果有助于监测有蹄类动物种群的变化, 为保护区有效保护管理提供了数据支持。

Jiang ZG, Liu SY, Wu Y, Jiang XL, Zhou KY (2017)

China’s mammal diversity (2nd edition)

Biodiversity Science, 25, 886-895. (in Chinese with English abstract)

DOI:10.17520/biods.2017098      URL     [本文引用: 2]

[蒋志刚, 刘少英, 吴毅, 蒋学龙, 周开亚 (2017)

中国哺乳动物多样性(第2版)

生物多样性, 25, 886-895.]

DOI:10.17520/biods.2017098      [本文引用: 2]

鉴于哺乳动物分类系统的修订、中国哺乳动物的新发现以及保育实践的需要, 有必要更新中国哺乳动物多样性编目。在收集整理2015年3月以来发表的中国哺乳动物新种和新分布记录种的基础上, 我们采用新的分类系统, 综合作者的最新研究, 补充了以前知之甚少的藏南地区哺乳动物信息, 更新了中国哺乳动物多样性编目。主要修改有: (1)将鲸偶蹄类(Cetartiodactyla)列为总目, 将鲸类与偶蹄类恢复为鲸目(Cetacea)和偶蹄目(Artiodactyla); (2)劳亚食虫目增加了新种霍氏缺齿鼩(Chodsigoa hoffmanni)、林猬一新种(Mesechinus sp.)及由亚种提升为种的烟黑缺齿鼩(Chodsigoa furva); (3)翼手目增补了梵净山管鼻蝠(Murina fanjingshanensis)、渡濑氏鼠耳蝠(Myotis rufoniger)和葛氏菊头蝠(Rhinolophus subbadius), 删除了毛须鼠耳蝠(Myotis hirsutus)和琉球长翼蝠(Miniopterus fuscus); (4)灵长目增补了高黎贡白眉长臂猿(Hoolock tianxing)、戴帽叶猴(Trachypithecus pileatus)、懒猴(Nycticebus coucang)和西白眉长臂猿(Hoolock hoolock); (5)食肉目增补了分布在中国藏南的懒熊(Melursus ursinus)、亚洲胡狼(Canis aureus)、孟加拉狐(Vulpes bengakensis)、灰獴(Herpestes edwardsii)和渔猫(Felis viverrinus); (6)依据Wilson和Mittermeier Handbook of the Mammals of the World, Vol. 2, Ungulates (2012)的偶蹄类分类系统, 重新厘定了中国偶蹄目动物分类。偶蹄目增加了阿尔泰盘羊(Ovis ammon)、哈萨克盘羊(O. collium)、高黎贡羚牛(Budorcas taxicolor)和印度麂(Muntiacus muntjak)。将中国境内的梅花鹿合并为Cervus nippon、驼鹿合并为Alces alces。删去了阿拉善马鹿(Cervus alashanicus)、四川马鹿(C. macneilli)和矮岩羊(Psuodois sharferi)。将分布在西双版纳的小鼷鹿定为鼷鹿未定种(Tragulus sp.); (7)鲸目增加了恒河豚(Platanista gangetica), 删除了长喙真海豚(Delphinus capensis), 将短喙真海豚(D. delphis)的中文名修改为真海豚; (8)啮齿目增加了小板齿鼠(Bandicota bengalensis)、小猪尾鼠(Typhlomys nanus)、墨脱松田鼠(Neodon medogensis)、聂拉木松田鼠(N. nyalamensis)以及由亚种提升为种的大猪尾鼠(Typhlomys daloushanensis); 还增加了甘肃鼢鼠(Myospalax cansus)、比氏鼯鼠(Biswamoyopterus biswasi)、白腹鼠(Niviventer niviventer)、印度小鼠(Mus booduga)。删去了休氏壮鼠(Hadromys humei)。同时厘清了我国田鼠亚科Arvicolini族的分类; (9)兔形目增加了粗毛兔(Caprolagus hispidus)和尼泊尔黑兔(Lepus nigricollis)。理清了鼠兔属(Ochotona)的分类, 降级了5个鼠兔种, 提升了4个鼠兔亚种为种, 增加了5个新种。中国有29种鼠兔分布, 北美鼠兔(O. princeps)、斑颈鼠兔(O. collaris)、荷氏鼠兔(O. hoffinanni)、阿富汗鼠兔(O. rufescens)和草原鼠兔(O. pusilla)在中国没有分布。与2015年的《中国哺乳动物多样性》比较, 本编目删除了21个种, 新增了41个种, 其中, 新增了藏南地区分布的哺乳动物16种。截至2017年8月底, 中国记录到哺乳动物13目56科248属693种, 比《中国哺乳动物多样性》多1目1科3属20种。人们对18种中国哺乳动物的分类地位尚存在争议。中国有146种特有哺乳动物, 占中国哺乳动物总数的21%。兔形目、劳亚食虫目和偶蹄目中的特有种比率分别为37%、35%和25%。

Johnsingh AJT (1982)

Reproductive and social behaviour of the dhole, Cuon alpinus (Canidae)

Journal of Zoology, 198, 443-463.

DOI:10.1111/jzo.1982.198.issue-4      URL     [本文引用: 1]

Kamler JF, Songsasen N, Jenks K, Srivathsa A, Sheng L, Kunkel K (2015) Cuon alpinus. https://dx.doi.org/10.2305/IUCN.UK.2015-4.RLTS.T5953A72477893.en. (accessed on 2023-02-22)

URL     [本文引用: 1]

Kamler JF, Inthapanya X, Rasphone A, Bousa A, Vongkhamheng C, Johnson A, MacDonald DW (2020)

Diet, prey selection, and activity of Asian golden cats and leopard cats in northern Laos

Journal of Mammalogy, 101, 1267-1278.

DOI:10.1093/jmammal/gyaa113      URL     [本文引用: 1]

The Asian golden cat (Catopuma temminckii) occurs in small, declining, and highly fragmented populations throughout Southeast Asia, whereas the smaller leopard cat (Prionailurus bengalensis) is common and widespread. In contrast to leopard cats, little is known about the ecology of Asian golden cats, and resource partitioning between these species has not been studied. We used DNA-confirmed scats, camera-trap data, and prey surveys, to determine the diet, prey selection, and activity, of Asian golden cats and leopard cats in a protected area in northern Laos. The two felids had different diets: Asian golden cats consumed mostly ungulates (35% biomass consumed), murid rodents (23%), and carnivores (15%), whereas leopard cats consumed mostly murid rodents (79%). Asian golden cats were not random in their consumption of ungulates, because muntjac (Muntiacus spp.) were selectively consumed over larger ungulates, indicating muntjac were preyed upon rather than scavenged. Dietary overlap between the two felid species was moderate (R0 = 0.60), and the dietary niche breadth of Asian golden cats (B = 8.44) was nearly twice as high as that of leopard cats (4.54). The mean (± SD) scat diameter was greater for Asian golden cats (2.1 ± 0.3 cm) than leopard cats (1.8 ± 0.2 cm), although diameters of leopard cat scats were considerably larger than previously assumed for this species. The felid species differed in their activity patterns, because Asian golden cats were diurnal, whereas leopard cats were nocturnal, although they did not differ in their use of elevation, suggesting there was no habitat segregation. Overall, leopard cats appeared to coexist with Asian golden cats, a potential predator and competitor, by exhibiting dietary and temporal partitioning. Our results showed that muntjac were important prey of Asian golden cats, suggesting the management of muntjac might be important for conserving populations of Asian golden cats.

Kawanishi K, Sunquist ME (2008)

Food habits and activity patterns of the Asiatic golden cat (Catopuma temminckii) and dhole (Cuon alpinus) in a primary rainforest of Peninsular Malaysia

Mammal Study, 33, 173-177.

DOI:10.3106/1348-6160-33.4.173      URL     [本文引用: 1]

Li BS (1985)

The zonation of vegetation in the Mt. Namjagbarwa region

Journal of Mountain Research, 3, 291-298. (in Chinese with English abstract)

[本文引用: 1]

[李渤生 (1985)

南迦巴瓦峰地区植被水平地带

山地研究, 3, 291-298.]

[本文引用: 1]

Li C, Zhao C, Fan PF (2015)

White-cheeked macaque (Macaca leucogenys): A new macaque species from Medog, southeastern Tibet

American Journal of Primatology, 77, 753-766.

DOI:10.1002/ajp.22394      PMID:25809642      [本文引用: 1]

We describe a newly discovered Macaca species from the Medog, in southeastern Tibet, China, Macaca leucogenys sp. nov or the "white-cheeked macaque". Based on 738 photos taken during direct observations and captured by camera traps this new species appears to be distinct from the Macaca sinica species group. Moreover, the species is distinguished from all potential sympatric macaque species (M. mulatta, M. thibetana, M. assamensis, and M. munzala) in exhibiting a suite of pelage characteristics including relatively uniform dorsal hair pattern, hairy ventral pelage, relative hairless short tail, prominent pale to white side- and chin-whiskers creating a white cheek and round facial appearance, dark facial skin on the muzzle, long and thick hairs on its neck, and a round rather than arrow-shaped male genitalia. This new macaque species was found to exploit a diverse set of habitat types from tropical forest at 1395 m, to primary and secondary evergreen broad-leaved forest at 2000 m, as well as mixed broadleaf-conifer forest at 2700 m. Its range may extend to neighboring counties in Tibet and the part of southeastern Tibet controlled by India. The white-cheeked macaque is threatened by illegal hunting and the construction of hydropower stations. Discovery of this new primate species further highlights the high value for biodiversity conservation of southeastern Tibet and calls for more intensive surveys, studies, and environmental protection in this area.© 2015 Wiley Periodicals, Inc.

Li F, Huang XY, Zhang XC, Zhao XX, Yang JH, Chan BPL (2019)

Mammals of Tengchong Section of Gaoligongshan National Nature Reserve in Yunnan Province, China

Journal of Threatened Taxa, 11, 14402-14414.

DOI:10.11609/jott.2019.11.11.14391-14470      URL     [本文引用: 1]

Li S, Wang DJ, Xiao ZS, Li XH, Wang TM, Feng LM, Wang Y (2014)

Camera-trapping in wildlife research and conservation in China: Review and outlook

Biodiversity Science, 22, 685-695. (in Chinese with English abstract)

DOI:10.3724/SP.J.1003.2014.14203      [本文引用: 1]

During the last two decades, infrared-triggered camera-trapping has been widely used in wildlife and biodiversity research and conservation. In the areas of wildlife ecology research, animal species inventory, biodiversity monitoring and protected area management in China, considerable outputs have been produced by scientific research and conservation applications based on camera-trapping. This technique has been successfully used to detect rare or elusive species, conduct biodiversity inventory, study animal behavior, estimate population parameters, and evaluate the effectiveness of protected area management. Along with the rapid development of modern ecological analysis and modeling tools, camera-trapping will play a more important role in wildlife research at various levels. Meanwhile, along with improvements in techniques, decreasing cost and increasing application interests, camera-trapping will be adopted by more researchers, wildlife managers and protected areas, and can be used for systematic wildlife monitoring using standard protocols. Efforts devoted to its future development and applications should focus on establishing systematically-designed monitoring networks and data-sharing protocols, and developing new analytical approaches and statistical models specifically based on camera-trapping data.

[李晟, 王大军, 肖治术, 李欣海, 王天明, 冯利民, 王云 (2014)

红外相机技术在我国野生动物研究与保护中的应用与前景

生物多样性, 22, 685-695.]

DOI:10.3724/SP.J.1003.2014.14203      [本文引用: 1]

20年来, 红外相机技术在国内外野生动物研究、监测与保护中得到了广泛应用。基于红外相机技术, 我国在野生动物生态学研究、动物行为学研究、稀有物种的探测与记录、动物本底资源调查、生物多样性监测及保护地管理与保护评价等领域取得了众多成果。目前, 数学模型、统计分析方法和新的概念正在促进红外相机技术在野生动物监测研究与保护管理中的发展和推广应用。同时, 随着红外相机技术的成熟、成本降低和应用普及, 这一技术也将会被更多的野生动物研究人员、管理人员和自然保护区管理者所采用, 并成为全国各级保护地和区域生物多样性监测研究的关键技术和方法。今后, 建立并完善系统化的监测网络和数据共享平台、开发新一代的数据分析方法与模型, 将是此项技术进一步发展和应用的主要方向。

Li S, McShea WJ, Wang DJ, Gu XD, Zhang XF, Zhang L, Shen XL (2020)

Retreat of large carnivores across the giant panda distribution range

Nature Ecology & Evolution, 4, 1327-1331.

[本文引用: 1]

Li XY, Hu WQ, Pu CZ, Li Q, Yu QP, Hu ZC, Bleisch WV, Jiang XL (2020)

Camera-trapping monitoring platform for mammals and pheasants in the Longitudinal Range and Gorge Region of Southwest China: Protocol, progress and future outlook

Biodiversity Science, 28, 1090-1096. (in Chinese with English abstract)

DOI:10.17520/biods.2020105      URL     [本文引用: 4]

[李学友, 胡文强, 普昌哲, 李权, 于秋鹏, 胡哲畅, William V. Bleisch, 蒋学龙 (2020)

西南纵向岭谷区兽类及雉类红外相机监测平台: 方案、进展与前景

生物多样性, 28, 1090-1096.]

[本文引用: 4]

Li XY, Bleisch WV, Liu XW, Jiang XL (2021a)

Camera-trap surveys reveal high diversity of mammals and pheasants in Medog, Tibet

Oryx, 55, 177-180.

DOI:10.1017/S0030605319001467      URL     [本文引用: 6]

Medog County lies within the Eastern Himalaya biodiversity hotspot, but biodiversity in the region remains largely unexplored as there was no permanent road access until 2014. Here we present data from camera-trap surveys in five areas of Medog County, to ascertain the occurrence and occupancy of threatened wildlife species. With a total survey effort of 4,570 trap days we detected 23 medium and large terrestrial mammal species and six pheasant species, 13 of which are categorized as Endangered, Vulnerable or Near Threatened in the IUCN Red List and 19 of which are categorized as regionally threatened on the China Species Red List. Carnivora was the most diverse order, with 15 species recorded. Our study produced the first camera-trap photographic evidence of the Bengal tiger Panthera tigris tigris in China. In addition, we detected the dhole Cuon alpinus, golden cat Catopuma temminckii, marbled cat Pardofelis marmorata and mainland clouded leopard Neofelis nebulosa, highlighting the conservation value of the region. The occupancy of muntjac Muntiacus spp. was high (52.7%), indicating prey for large carnivores was abundant. People, livestock and domestic dogs were also recorded frequently, suggesting the fauna are potentially threatened by human disturbance. In the light of recent development in the region, conservation efforts are urgently required, to prevent prey depletion and habitat degradation in this priority region for conservation.

Li XY, Bleisch WV, Liu XW, Hu WQ, Jiang XL (2021b)

Human disturbance and prey occupancy as predictors of carnivore richness and biomass in a Himalayan hotspot

Animal Conservation, 24, 64-72.

DOI:10.1111/acv.v24.1      URL     [本文引用: 3]

Liu CZ, JT, Tong LQ, Chen HQ, Liu QQ, Xiao RH, Tu JN (2019)

Research on glacial/rock fall-landslide-debris flows in Sedongpu basin along Yarlung Zangbo River in Tibet

Geology in China, 46, 219-234. (in Chinese with English abstract)

[本文引用: 1]

[刘传正, 吕杰堂, 童立强, 陈红旗, 刘秋强, 肖锐铧, 涂杰楠 (2019)

雅鲁藏布江色东普沟崩滑-碎屑流堵江灾害初步研究

中国地质, 46, 219-234.]

[本文引用: 1]

Liu WL (2004)

Study on ecology and resources of black bear in Tibet

Tibet’s Science and Technology, (8), 21-25. (in Chinese)

[本文引用: 2]

[刘务林 (2004)

西藏黑熊生态学和资源状况研究

西藏科技, (8), 21-25.]

[本文引用: 2]

Liu Y, Chen SH (2021) A Guide to the Bird in China. Hunan Science and Technology Press, Changsha. (in Chinese)

[本文引用: 1]

[刘阳, 陈水华 (2021) 中国鸟类观察手册. 湖南科学技术出版社, 长沙.]

[本文引用: 1]

Lovari S, Mori E, Procaccio EL (2020)

On the behavioural biology of the mainland serow: A comparative study

Animals, 10, 1669.

DOI:10.3390/ani10091669      URL     [本文引用: 1]

Comparative behavioural studies help reconstruct the phylogeny of closely related species. In that respect, the serows Capricornis spp. occupy an important position as they have been assumed to be the closest forms to the ancestors of Caprinae. In spite of that, information on the behavioural repertoire of the mainland serow Capricornis sumatraensis is exceedingly poor. In this paper, we report data on the activity rhythms and social behaviour of rutting mainland serows in captivity (Central Thailand, January 1986; January–February 1987). Activity was bimodal with peaks in mid-afternoon and late night. Resting and ruminating peaked at noon and twilight. Four patterns of marking behaviour were observed out of a total of 1900 events. Males and females were found to use different marking sites and frequencies. A total of 33 social behaviour patterns were observed: 18 patterns concerned agonistic behaviour, whereas 15 patterns were relevant to courtship behaviour. A comparison across Caprinae species with unritualised piercing weapons (i.e., Capricornis, Naemorhedus, Rupicapra, Budorcas, and Hemitragus) has shown that inter-sexual direct forms of aggressive behaviour are used significantly more often than indirect ones, but for chamois, confirming Rupicapra spp. as the most advanced genus among them in terms of an early ritualisation of weapons. Conversely, horns of the goral Nemorhaedus spp. and the serow lie on the same plane of the frontal bones, thus making possible the usage of a dominance display through frontal pushing.

Ma ZY, He ZX, Wang YQ, Song DZ, Xia F, Cui SM, Su HX, Deng JL, Li P, Li S (2022)

An update on the current distribution and key habitats of the clouded leopard (Neofelis nebulosa) populations in China

Biodiversity Science, 30, 59-73. (in Chinese with English abstract)

[本文引用: 1]

[马子驭, 何再新, 王一晴, 宋大昭, 夏凡, 崔士明, 苏红信, 邓建林, 李平, 李晟 (2022)

中国云豹种群分布现状与关键栖息地信息更新

生物多样性, 30, 59-73.]

[本文引用: 1]

Mo JH, Li J, Liu F, Li XG, Li DQ (2019)

A survey of mammals and birds diversity in Jianfengling District of Hainan Province by using camera-trapping

Scientia Silvae Sinicae, 55, 203-210. (in Chinese with English abstract)

[本文引用: 1]

[莫锦华, 李佳, 刘芳, 李晓光, 李迪强 (2019)

利用红外相机调查海南尖峰岭地区兽类和鸟类多样性

林业科学, 55, 203-210.]

[本文引用: 1]

Mo JH, Ji YR, Xu H, Li DQ, Liu F (2021)

Camera-trapping survey on mammals and birds in a forest dynamics plot in Hainan Jianfengling National Nature Reserve

Biodiversity Science, 29, 819-824. (in Chinese with English abstract)

DOI:10.17520/biods.2020350      URL     [本文引用: 1]

[莫锦华, 姬云瑞, 许涵, 李迪强, 刘芳 (2021)

海南尖峰岭国家级自然保护区森林动态监测样地鸟类和兽类多样性

生物多样性, 29, 819-824.]

[本文引用: 1]

Mountaineering Scientific Expedition Team of Chinese Academy of Sciences (1995) Species in Mt. Namjabarwa Region of Xizang. Science Press, Beijing. (in Chinese)

[本文引用: 1]

[中国科学院登山科学考察队 (1995) 南迦巴瓦峰地区生物. 科学出版社, 北京.]

[本文引用: 1]

O’Brien TG, Kinnaird MF, Wibisono HT (2003)

Crouching tigers, hidden prey: Sumatran tiger and prey populations in a tropical forest landscape

Animal Conservation, 6, 131-139.

DOI:10.1017/S1367943003003172      URL     [本文引用: 2]

Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara R, Simpson GL, Solymos P, Stevens MHH, Wagner H (2020) vegan: Community Ecology Package. R package version 2.5-7. https://CRAN.R-project.org/package=vegan. (accessed on 2022-07-26)

URL     [本文引用: 1]

Pianka ER (1973)

The structure of lizard communities

Annual Review of Ecology and Systematics, 4, 53-74.

DOI:10.1146/ecolsys.1973.4.issue-1      URL     [本文引用: 1]

Qamar Q, Anwar M, Minhas R (2008)

Distribution and population status of Himalayan musk deer (Moschus chrysogaster) in the Machiara National Park, AJ&K

Pakistan Journal of Zoology, 40, 159-163.

[本文引用: 1]

Ripple WJ, Estes JA, Beschta RL, Wilmers CC, Ritchie EG, Hebblewhite M, Berger J, Elmhagen B, Letnic M, Nelson MP, Schmitz OJ, Smith DW, Wallach AD, Wirsing AJ (2014)

Status and ecological effects of the world’s largest carnivores

Science, 343, 1241484.

[本文引用: 1]

Shannon CE (1948)

A mathematical theory of communication

The Bell System Technical Journal, 27, 379-423.

DOI:10.1002/bltj.1948.27.issue-3      URL     [本文引用: 1]

Shi XG, Hu Q, Li JQ, Tang Z, Yang J, Li WJ, Shen XL, Li S (2017)

Camera-trapping surveys of the mammal and bird diversity in Wolong National Nature Reserve, Sichuan Province

Biodiversity Science, 25, 1131-1136. (in Chinese with English abstract)

DOI:10.17520/biods.2017193      [本文引用: 1]

Wolong National Nature Reserve is the core nature reserve in the reserve network found in the Qionglai Mountains. Between 2014 and 2016, we conducted a baseline survey in Wolong on large fauna using camera-trapping. After an extensive survey effort comprised of 10,961 camera-days from 83 camera stations in 58 survey blocks (1 km × 1 km each), we recorded 32 wild and 4 domestic mammal species (belonging to 6 orders and 15 families) with 2,095 detections. Five and eleven mammals were listed as Class I and Class II Nationally Protected Wildlife, respectively, and 4, 6, and 4 species were listed as EN, VU, and NT species, respectively, according to the IUCN Red List. Among the recorded wild mammals, Carnivora was the order with the greatest species richness (16 from 6 families), followed by Artiodactyla (8 from 4 families) and Rodentia (5 from 2 families), whereas Artiodactyla was the order with greatest detection (accounting for 63.33% of all mammal detections), followed by Carnivora (20.01%) and Rodentia (5.73%). The most detected species in Carnivora was the hog badger (Arctonyx collaris, RAI = 12.23), and tufted deer (Elaphodus cephalophus, RAI = 32.21) in Artiodactyla. Three large apex carnivores were detected in Wolong, including snow leopard (Panthera uncia), wolf (Canis lupus) and dhole (Cuon alpinus). We recorded 59 bird species (belonging to 5 orders and 18 families) with a total detection of 655, including 4 newly recorded species in the reserve. Pheasants (Galliformes) had the highest detection of bird groups and accounted for 56.76% of all bird detections. Our results provide basic information on the community structure, spatial distribution and relative abundance of terrestrial wild mammals and birds in Wolong, which provide support and guidelines for reserve management and long-term monitoring of Wolong.

[施小刚, 胡强, 李佳琦, 唐卓, 杨建, 李文静, 申小莉, 李晟 (2017)

利用红外相机调查四川卧龙国家级自然保护区鸟兽多样性

生物多样性, 25, 1131-1136.]

DOI:10.17520/biods.2017193      [本文引用: 1]

卧龙国家级自然保护区位于邛崃山脉东南坡, 地处邛崃山自然保护区群的核心地带。2014-2016年, 我们在卧龙保护区内使用红外相机技术开展大中型兽类与鸟类的本底调查。经过10,961个相机工作日的调查, 完成有效调查位点83个, 覆盖58个公里网格。共鉴定出分属6目15科的32种野生兽类和4种家畜, 探测数总计2,095次, 其中国家一、二级重点保护野生动物分别有5、11种, 被IUCN红色名录评估为濒危(EN)、易危(VU)、近危(NT)的动物分别有4、6、4种。野生兽类中, 食肉目物种数最多, 共6科16种, 其次为偶蹄目(4科8种)和啮齿目(2科5种)。偶蹄目是有效拍摄数最多的类群(占总探测数的63.33%), 其次为食肉目(20.01%)和啮齿目(5.73%)。食肉目中相对多度最高的物种是猪獾(Arctonyx collaris, RAI = 12.23), 偶蹄目中最高的物种是毛冠鹿(Elaphodus cephalophus, RAI = 32.21)。记录到雪豹(Panthera uncia)、狼(Canis lupus)、豺(Cuon alpinus) 3种大中型顶级食肉兽类。鸟类探测数655 次, 鉴定出分属5目18科的59种鸟类, 其中国家一、二级重点保护野生动物分别有3、9种, 保护区新记录鸟类4种。鸡形目是探测数最高的类群, 占全部鸟类探测数的56.76%。本次调查了解了区内兽类和鸟类的物种组成、空间分布和相对多度, 提供了区内大中型兽类和鸟类群落的初步本底信息, 为后续的保护管理规划和长期监测提供了数据支持和指导。

Smith AT, Xie Y (2009) A Guide to the Mammals of China. Hunan Education Publishing House, Changsha. (in Chinese)

[本文引用: 2]

[ Smith AT, 解焱 (2009) 中国兽类野外手册. 湖南教育出版社, 长沙.]

[本文引用: 2]

Song ZY, Li JH, Wen SR, Li JS, Wan ZL, Liu SQ (2019)

Application of infrared camera technology in biodiversity monitoring of mammals and birds in Xishuangbanna National Nature Reserve

Forest Inventory and Planning, 44(4), 53-59. (in Chinese with English abstract)

[本文引用: 2]

[宋志勇, 李金华, 文世荣, 李俊松, 万正林, 刘生强 (2019)

红外相机技术在西双版纳国家级自然保护区兽类和鸟类多样性监测中的运用

林业调查规划, 44(4), 53-59.]

[本文引用: 2]

Spellerberg IF, Fedor PJ (2003)

A tribute to Claude Shannon (1916-2001) and a plea for more rigorous use of species richness, species diversity and the ‘Shannon-Wiener’ Index

Global Ecology and Biogeography, 12, 177-179.

DOI:10.1046/j.1466-822X.2003.00015.x      URL     [本文引用: 1]

Srivastava T, Kumar A (2018)

Seasonal habitat use in three species of wild ungulates in Sikkim Himalaya

Mammalian Biology, 88, 100-106.

DOI:10.1016/j.mambio.2017.11.013      URL     [本文引用: 2]

Thinley P, Kamler JF, Wang SW, Lham K, Stenkewitz U, Macdonald DW (2011)

Seasonal diet of dholes (Cuon alpinus) in northwestern Bhutan

Mammalian Biology, 76, 518-520.

DOI:10.1016/j.mambio.2011.02.003      URL     [本文引用: 1]

Tibetan Plateau Scientific Expedition Team of Chinese Academy of Sciences (1988) Vegetation of Tibet. Science Press, Beijing. (in Chinese)

[本文引用: 1]

[中国科学院青藏高原综合科学考察队 (1988) 西藏植被. 科学出版社, 北京.]

[本文引用: 1]

Tu FY, Han WJ, Sun ZY, Huang T, Huang XF (2016)

Status and perspective of the research on Paguma larvata

South China Forestry Science, 44(6), 70-73. (in Chinese with English abstract)

[本文引用: 1]

[涂飞云, 韩卫杰, 孙志勇, 黄挺, 黄晓凤 (2016)

果子狸研究现状与展望

南方林业科学, 44(6), 70-73.]

[本文引用: 1]

Wang F, Zhang ZX, Li C, Sun G, Zhao X, Lu Z (2021)

Add Himalaya’s Grand Canyon to China’s first national parks

Nature, 592, 353.

[本文引用: 1]

Wang J, Hu JC (1990)

Primary study on black bear biology in west Sichuan Plateau

Journal of Henan Normal University (Natural Science), 18, 124-130. (in Chinese with English abstract)

[本文引用: 2]

[王捷, 胡锦矗 (1990)

川西高原黑熊生物学的初步研究

河南师范大学学报(自然科学版), 18, 124-130.]

[本文引用: 2]

Wang TJ, Skidmore AK, Zeng ZG, Beck PSA, Si YL, Song YL, Liu XH, Prins HHT (2010)

Migration patterns of two endangered sympatric species from a remote sensing perspective

Photogrammetric Engineering & Remote Sensing, 76, 1343-1352.

[本文引用: 2]

Wang Y, Li S, Liu WL, Zhu XL, Li BZ (2019a)

Coat pattern variation and activity rhythm of Asiatic golden cat (Catopuma temminckii) in Yarlung Zangbo Grand Canyon National Nature Reserve of Tibet, China

Biodiversity Science, 27, 638-647. (in Chinese with English abstract)

DOI:10.17520/biods.2019070      URL     [本文引用: 2]

[王渊, 李晟, 刘务林, 朱雪林, 李炳章 (2019a)

西藏雅鲁藏布大峡谷国家级自然保护区金猫的色型类别与活动节律

生物多样性, 27, 638-647.]

[本文引用: 2]

Wang Y, Liu WL, Liu F, Li S, Zhu XL, Jiang ZG, Feng LM, Li BZ (2019b)

Investigation on the population of wild Bengal tiger (Panthera tigris tigris) in Medog, Tibet

Acta Theriologica Sinica, 39, 504-513. (in Chinese with English abstract)

[本文引用: 1]

[王渊, 刘务林, 刘锋, 李晟, 朱雪林, 蒋志刚, 冯利民, 李炳章 (2019b)

西藏墨脱县孟加拉虎种群数量调查

兽类学报, 39, 504-513.]

[本文引用: 1]

Wang ZB, Hu YM, Zhou ZX, Liang JC, Huang ZW, Zheng SY, Zhou J, Hu HJ (2020)

Verification of the vertical distribution pattern of species diversity of non-flying small mammal in the Lebu Valley of Eastern Himalayas, China

Acta Theriologica Sinica, 40, 493-502. (in Chinese with English abstract)

[本文引用: 1]

[王作波, 胡一鸣, 周智鑫, 梁健超, 黄志文, 郑舒旸, 周江, 胡慧建 (2020)

东喜马拉雅勒布沟非飞行小型兽类物种多样性垂直分布格局

兽类学报, 40, 493-502.]

[本文引用: 1]

Wang ZX (1982)

Avifauna of Medog Region, Xizang

Acta Biologica Plateau Sinica, 1, 123-134. (in Chinese with English abstract)

[本文引用: 1]

[王祖祥 (1982)

西藏墨脱地区的鸟类区系

高原生物学集刊, 1, 123-134.]

[本文引用: 1]

Waskom M (2021)

Seaborn: Statistical data visualization

Journal of Open Source Software, 6, 3021.

DOI:10.21105/joss      URL     [本文引用: 1]

Wei FW, Yang QS, Wu Y, Jiang XL, Liu SY, Li BG, Yang G, Li M, Zhou J, Li S, Hu YB, Ge DY, Li S, Yu WH, Chen BY, Zhang ZJ, Zhou CQ, Wu SB, Zhang L, Chen ZZ, Chen SD, Deng HQ, Jiang TL, Zhang LB, Shi HY, Lu XL, Li Q, Liu Z, Cui YQ, Li YC (2021)

Catalogue of mammals in China (2021)

Acta Theriologica Sinica, 41, 487-501. (in Chinese with English abstract)

[本文引用: 1]

[魏辅文, 杨奇森, 吴毅, 蒋学龙, 刘少英, 李保国, 杨光, 李明, 周江, 李松, 胡义波, 葛德燕, 李晟, 余文华, 陈炳耀, 张泽钧, 周材权, 吴诗宝, 张立, 陈中正, 陈顺德, 邓怀庆, 江廷磊, 张礼标, 石红艳, 卢学理, 李权, 刘铸, 崔雅倩, 李玉春 (2021)

中国兽类名录(2021版)

兽类学报, 41, 487-501.]

DOI:10.16829/j.slxb.150595      [本文引用: 1]

中国是全球兽类物种多样性最高的国家之一,掌握我国兽类物种多样性和分类地位是兽类学研究的基础前提,也是科学保护野生种群的前提。为厘清中国兽类的物种数量及分类地位等关键分类学信息,中国动物学会兽类学分会组织国内长期致力于兽类各类群分类的科学研究人员,在总结前人研究的基础上,根据最新的形态学和分子遗传学证据,综合现代兽类分类学家意见,经编委会充分讨论,形成了最新的中国兽类名录,包括我国现阶段兽类12目59科254属686种。该中国兽类名录使用基于系统发生关系的分类系统,并对物种有效性进行了充分慎重的确认和讨论。

Wei FW, Hu YB (2022) Budorcas taxicolor in Catalogue of Life China: 2022 Annual Checklist, Beijing. http://www.sp2000.org.cn/species/show_species_details/fd2370aeb792442b986fa97902c4a6de. (accessed on 2022-07-25)

URL     [本文引用: 1]

Wen LJ, Shi K, Huang J, Song Y, Guo YM (2014)

Preliminary analysis of mammal and bird diversity monitored with camera traps in Medog, Tibet

Biodiversity Science, 22, 798-799. (in Chinese)

DOI:10.3724/SP.J.1003.2014.13256      [本文引用: 4]

[温立嘉, 时坤, 黄建, 宋阳, 郭玉民 (2014)

西藏墨脱鸟兽红外相机监测初报

生物多样性, 22, 798-799.]

DOI:10.3724/SP.J.1003.2014.13256      [本文引用: 4]

Wu AL, Chen P, Zhang XF (2014)

Shooting rate of Catopuma temminckii by auto-induction infrared camera and estimation of population density in Changqing Nature Reserve

Shaanxi Forest Science and Technology, (1), 22-24. (in Chinese with English abstract)

[本文引用: 1]

[武阿莉, 陈鹏, 张晓峰 (2014)

长青保护区自动感应红外相机金猫拍摄率与种群密度

陕西林业科技, (1), 22-24.]

[本文引用: 1]

Wu JP, Luo H, Zhu XL, Li BZ, Liu WL, Ci P (2016)

Monitoring mammals and birds with camera traps at different altitudes of Medog, Tibet

Biodiversity Science, 24, 351-354. (in Chinese)

DOI:10.17520/biods.2015106      [本文引用: 4]

[吴建普, 罗红, 朱雪林, 李炳章, 刘务林, 次平 (2016)

西藏墨脱不同海拔区鸟兽红外相机监测

生物多样性, 24, 351-354.]

DOI:10.17520/biods.2015106      [本文引用: 4]

Wu JY (1983)

Preliminary observation on diet of black bear in Qinling Mountains

Chinese Journal of Zoology, 18(4), 48-51. (in Chinese)

[本文引用: 2]

[吴家炎 (1983)

秦岭黑熊食性的初步观察

动物学杂志, 18(4), 48-51.]

[本文引用: 2]

Wu PJ, Zhang ED (2004)

Habitat selection and its seasonal change of serow (Capricornis sumatraensis) in Cibagou Nature Reserve, Tibet

Acta Theriologica Sinica, 24, 6-12. (in Chinese with English abstract)

[本文引用: 1]

[吴鹏举, 张恩迪 (2004)

西藏慈巴沟自然保护区鬣羚生境选择的季节性变化

兽类学报, 24, 6-12.]

[本文引用: 1]

2001 年12 月至2002 年8 月, 在西藏察隅慈巴沟国家级自然保护区采用设立固定样方的方法, 调查鬣羚对植被类型, 海拔、坡度、郁闭度、隐蔽度以及水源距离等指标的选择利用情况。通过计算Ivlev 的选择性指数,对鬣羚植被类型选择及其季节性变化进行了研究。研究发现, 鬣羚冬季主要选择箭竹—针叶林型, 到春季向下迁移, 对针阔混交林的选择性最大, 而夏季向上迁移, 利用范围扩大, 选择类型包括针阔混交林、箭竹—针叶林、杜鹃—针叶林。鬣羚对植被与对海拔高度选择趋势呈极显著相关( P &lt; 0.01), 表明海拔高度和植被类型对鬣羚活动分布有着相似的影响。食物的季节性变化可能是鬣羚对植被类型和垂直高度选择变化的主要原因。鬣羚在春季和冬季对平缓坡利用最大, 夏季对急陡坡利用最大, 这可能是因为随坡位变化而表现出的冬春与夏季差异。但鬣羚对隐蔽度、郁闭度和水源距离这3 个因子的选择并没有表现出明显的季节变化, 仅表现为利用中隐蔽度、高郁闭度和距离水源较近的地方。

Wu PJ, Zhang ED (2006)

Habitat selection of takin (Budorcas taxicolor) in Cibagou Nature Reserve of Tibet, China

Acta Theriologica Sinica, 26, 152-158. (in Chinese with English abstract)

[本文引用: 1]

[吴鹏举, 张恩迪 (2006)

西藏慈巴沟自然保护区羚牛栖息地选择

兽类学报, 26, 152-158.]

[本文引用: 1]

2001 年12 月至2002 年8 月,笔者在西藏慈巴沟自然保护区对羚牛栖息地选择性及其季节变化进行了调查研究。调查中,沿慈巴沟河谷随机选择起始点,系统地设置了187个10 m×10 m 的固定样方,记录了样方所在位置的植被类型、海拔、坡度、坡向、距水源距离、乔木密度、灌木密度、箭竹密度、郁闭度和隐蔽度等,并分别在冬、春、夏三季检查样方是否被羚牛利用。本文通过计算Vanderloeg 选择系数和Scavia 选择指数来研究羚牛对植被的选择性,结果发现羚牛冬季对杜鹃针叶林、箭竹针叶林和针阔混交林具有正选择性,春季则对箭竹针叶林和针阔混交林、夏季对高山灌丛草甸和杜鹃针叶林具有正选择性。对9 个数量化因子进行分组处理,利用Vanderloeg 选择系数和Scavia 选择指数,计算了这些因子在各个季节不同的选择性,进一步分析了羚牛对栖息地的选择性。对9 个数量化因子的判别分析表明,冬、夏及春、夏之间有极显著差异,海拔对判别函数的贡献最大,其它因子如箭竹密度、隐蔽度、郁闭度和乔木密度等贡献也较大,说明这些因子的季节分离明显。而羚牛的冬、春之间判别分析不显著,季节分离的程度较小。在结合其它分布区羚牛栖息地研究的基础上,本文探讨了食物和盐源在羚牛栖息地选择季节变化中的作用。

Xiao ZS, Li XH, Jiang GS (2014)

Applications of camera trapping to wildlife surveys in China

Biodiversity Science, 22, 683-684. (in Chinese)

DOI:10.3724/SP.J.1003.2014.14244      [本文引用: 1]

[肖治术, 李欣海, 姜广顺 (2014)

红外相机技术在我国野生动物监测研究中的应用

生物多样性, 22, 683-684.]

DOI:10.3724/SP.J.1003.2014.14244      [本文引用: 1]

Xiong MY, Wang DJ, Bu HL, Shao XN, Zhang D, Li S, Wang RJ, Yao M (2017)

Molecular dietary analysis of two sympatric felids in the Mountains of Southwest China Biodiversity Hotspot and conservation implications

Scientific Reports, 7, 41909.

DOI:10.1038/srep41909      PMID:28195150      [本文引用: 1]

Dietary information is lacking in most of small to mid-sized carnivores due to their elusive predatory behaviour and versatile feeding habits. The leopard cat (LPC; Prionailurus bengalensis) and the Asiatic golden cat (AGC; Catopuma temminckii) are two important yet increasingly endangered carnivore species in the temperate mountain forest ecosystem in Southwest China, a global biodiversity hotspot and a significant reservoir of China's endemic species. We investigated the vertebrate prey of the two sympatric felids using faecal DNA and a next-generation sequencing (NGS)/metabarcoding approach. Forty vertebrate prey taxa were identified from 93 LPC and 10 AGC faecal samples; 37 taxa were found in the LPC diet, and 20 were detected in the AGC diet. Prey included 27 mammalian taxa, 11 birds, one lizard and one fish, with 73% (29/40) of the taxa assigned to the species level. Rodents and pikas were the most dominant LPC prey categories, whereas rodents, pheasant, fowl and ungulates were the main AGC prey. We also analysed the seasonal and altitudinal variations in the LPC diet. Our results provide the most comprehensive dietary data for these felids and valuable information for their conservation planning.

Xu FX (1995) Ecological Research on Plateau Forest in Tibet. Liaoning University Press, Shenyang. (in Chinese)

[本文引用: 1]

[徐凤翔 (1995) 西藏高原森林生态研究. 辽宁大学出版社, 沈阳.]

[本文引用: 1]

Xu WY, Liu YR, Meng M, Yu JJ, Zong C (2020)

Analyzing species tolerance to human disturbance in Southeast Tibet using infrared camera data

Chinese Journal of Ecology, 39, 3164-3173. (in Chinese with English abstract)

[本文引用: 1]

[徐婉芸, 刘琰冉, 梦梦, 于晶晶, 宗诚 (2020)

利用红外相机数据分析藏东南地区物种对人为干扰的耐受性

生态学杂志, 39, 3164-3173.]

[本文引用: 1]

Xue YD, Li DQ, Xiao WF, Zhang YG, Feng B, Jia H (2015)

Records of the dhole (Cuon alpinus) in an arid region of the Altun Mountains in western China

European Journal of Wildlife Research, 61, 903-907.

DOI:10.1007/s10344-015-0947-z      URL     [本文引用: 1]

Yang L, Wei FW, Zhan XJ, Fan HZ, Zhao PP, Huang GP, Chang J, Lei YH, Hu YB (2022)

Evolutionary conservation genomics reveals recent speciation and local adaptation in threatened takins

Molecular Biology and Evolution, 39, msac111.

DOI:10.1093/molbev/msac111      URL     [本文引用: 1]

Incorrect species delimitation will lead to inappropriate conservation decisions, especially for threatened species. The takin (Budorcas taxicolor) is a large artiodactyl endemic to the Himalayan–Hengduan–Qinling Mountains and is well known for its threatened status and peculiar appearance. However, the speciation, intraspecies taxonomy, evolutionary history, and adaptive evolution of this species still remain unclear, which greatly hampers its scientific conservation. Here, we de novo assembled a high-quality chromosome-level genome of takin and resequenced the genomes of 75 wild takins. Phylogenomics revealed that takin was positioned at the root of Caprinae. Population genomics based on the autosome, X chromosome, and Y chromosome SNPs and mitochondrial genomes consistently revealed the existence of two phylogenetic species and recent speciation in takins: the Himalayan takin (B. taxicolor) and the Chinese takin (B. tibetana), with the support of morphological evidence. Two genetically divergent subspecies were identified in both takin species, rejecting three previously proposed taxonomical viewpoints. Furthermore, their distribution boundaries were determined, suggesting that large rivers play important roles in shaping the genetic partition. Compared with the other subspecies, the Qinling subspecies presented the lowest genomic diversity, higher linkage disequilibrium, inbreeding, and genetic load, thus is in urgent need of genetic management and protection. Moreover, coat color gene (PMEL) variation may be responsible for the adaptive coat color difference between the two species following Gloger’s rule. Our findings provide novel insights into the recent speciation, local adaptation, scientific conservation of takins, and biogeography of the Himalaya–Hengduan biodiversity hotspot.

Yongdrup P, Sherub K, Tshering U, Chaida L, Chaten C (2019)

Abundance and distribution of Asiatic golden cat (Catopuma temminckii Vigors and Horsfield) and clouded leopard (Neofelis nebulosa Grifith) in Jomotsangkha Wildlife Sanctuary, Bhutan

Bhutan Journal of Natural Resources and Development, 6, 19-26.

DOI:10.17102/cnr      URL     [本文引用: 1]

Zhang MX, Cao L, Quan RC, Xiao ZS, Yang XF, Zhang WF, Wang XZ, Deng XB (2014)

Camera trap survey of animals in Xishuangbanna forest dynamics plot, Yunnan

Biodiversity Science, 22, 830-832. (in Chinese)

DOI:10.3724/SP.J.1003.2014.14064      [本文引用: 1]

[张明霞, 曹林, 权锐昌, 肖治术, 杨小飞, 张文富, 王学志, 邓晓保 (2014)

利用红外相机监测西双版纳森林动态样地的野生动物多样性

生物多样性, 22, 830-832.]

DOI:10.3724/SP.J.1003.2014.14064      [本文引用: 1]

Zhang RZ (1997) Distribution of Mammalian Species in China. China Forestry Publishing House, Beijing. (in Chinese)

[本文引用: 1]

[张荣祖 (1997) 中国哺乳动物分布. 中国林业出版社, 北京.]

[本文引用: 1]

Zhang RZ, Zheng CL (1985)

The geographical distribution of mammals and the evolution of mammalian fauna in Qinghai-Xizang Plateau

Acta Geographica Sinica, 40, 225-231. (in Chinese with English abstract)

[本文引用: 1]

[张荣祖, 郑昌琳 (1985)

青藏高原哺乳动物地理分布特征及区系演变

地理学报, 40, 225-231.]

DOI:10.11821/xb198503004      [本文引用: 1]

动物地理学的研究,早已明确第四纪以来欧亚大陆发生过数次冰期,大量第三纪喜暖动物,总的趋势是向南部撤退或被消灭。同时,一些适应于冰缘地带的喜寒种类在北方形成,动物区系产生古北界与东洋界的分化。

Zhao WG, Rao DQ, SQ, Dong BJ (2005)

Herpetological surveys of Xizang Autonomous Region 2. Medog

Sichuan Journal of Zoology, 24, 250-253, 227. (in Chinese with English abstract)

[本文引用: 1]

[赵文阁, 饶定齐, 吕顺清, 董丙君 (2005)

西藏两栖爬行动物考察报告2. 墨脱

四川动物, 24, 250-253, 227.]

[本文引用: 1]

Zheng GM (2017) A Checklist on the Classification and Distribution of the Birds of China, 3rd edn. Science Press, Beijing. (in Chinese)

[本文引用: 1]

[郑光美 (2017) 中国鸟类分类与分布名录(第三版). 科学出版社, 北京.]

[本文引用: 1]

Zhou YB, Newman C, Buesching CD, Zalewski A, Kaneko Y, MacDonald DW, Xie ZQ (2011)

Diet of an opportunistically frugivorous carnivore, Martes flavigula, in subtropical forest

Journal of Mammalogy, 92, 611-619.

DOI:10.1644/10-MAMM-A-296.1      URL     [本文引用: 2]

/