城市土壤微生物多样性研究进展
An overview of advances in soil microbial diversity of urban environment
通讯作者: * E-mail:lijsh@craes.org.cn
编委: 张丽梅
责任编辑: 李会丽
收稿日期: 2022-04-14 接受日期: 2022-06-23
基金资助: |
|
Corresponding authors: * E-mail:lijsh@craes.org.cn
Received: 2022-04-14 Accepted: 2022-06-23
城市化对生物多样性的影响是当前生态学研究的热点之一, 引起了人们的广泛关注。土壤微生物多样性是城市生物多样性的重要组成部分, 对维持城市生态系统的健康稳定具有重要意义和作用。近年来, 已有研究关注城市土壤微生物群落结构及多样性, 回答了一些关键问题, 但缺乏系统的总结与论述。基于此, 本文分析了城市化对土壤微生物特性、群落组成、功能和多样性的影响, 总结了影响城市土壤微生物多样性的主要因素, 发现城市化改变了土壤微生物组成和功能, 并且对细菌和真菌多样性的影响存在差异, 城市环境因子通过直接和间接作用共同影响土壤微生物多样性。进一步探讨了城市土壤微生物多样性的维持与保护, 并对今后城市土壤微生物研究需要关注的问题进行了展望, 包括: (1)城市化对城市绿地土壤微生物多样性的影响机制; (2)城市土壤微生物多样性变化对生态系统多功能性的影响; (3)土壤微生物多样性与人类健康的关系。以期为城市土壤生物多样性保护研究提供参考。
关键词:
Background & Aims: The impact of urbanization on biodiversity is one of the hotspot issues of ecology, which has attracted extensive attention. Soil microorganisms are the key driver of ecosystem process, which is very important in the exertion of ecosystem function and the provision of ecosystem services. Soil microbial diversity as an important part of urban biodiversity play vital roles in maintaining the health and stability of urban ecosystem. In recent years, studies have focused on the structure and diversity of urban soil microbial community and addressed some key questions, but the related systematic summary and discussion remains limited.
Progresses: Here we analyzed the impact of urbanization on soil microbial characteristics, community composition, function and diversity. Then we summarized the main factors affecting urban soil microbial diversity. We found that urbanization has changed the community composition and function of soil microorganisms, and had different impacts on bacterial and fungal diversities. Urban environmental factors affected soil microbial diversity through direct and indirect effects.
Prospects: We discussed the maintaining mechanisms and protection of urban soil microbial diversity. Finally we highlighted the questions needing attention in the future research of urban soil microorganisms. We recommend that future researches need focus on (1) influence mechanism of urbanization on soil microbial diversity in urban green space; (2) effects of microbial diversity change in urban soil on ecosystem multi-function; and (3) relationship between soil microbial diversity and human health. This could provide guidance for the protection of urban soil biodiversity.
Keywords:
本文引用格式
闫冰, 陆晴, 夏嵩, 李俊生 (2022)
Bing Yan, Qing Lu, Song Xia, Junsheng Li (2022)
土壤微生物在地球化学、生态系统物质循环和能量流动中扮演着重要角色, 它们通过调控土壤肥力与结构影响植物营养与健康, 进而耦合地下、地上生态过程(Curtis & Sloan, 2005)。城市土壤微生物作为城市生态系统的重要组成部分, 在缓解土壤污染、调控碳氮循环、改善土壤环境等方面发挥着不可替代的作用, 是支撑城市生态系统稳定健康的基础(Delgado-Baquerizo et al, 2016; Bond-Lamberty et al, 2018)。同时, 它们也与人体健康密切相关。例如, 有研究认为减少人与自然环境及生物多样性的接触可能会影响人类共生菌群及其免疫调节能力, 并导致免疫功能障碍和慢性炎症性疾病(von Hertzen et al, 2011; Hanski et al, 2012; Ruokolainen et al, 2015), 而增加与土壤微生物多样性接触可以有效降低过敏人群的患病率(von Hertzen et al, 2011; Hanski et al, 2012), 因此, 城市土壤微生物多样性对人类健康也有重要影响。
当前, 生物多样性受到严重威胁, 尤其是人类活动正使生物多样性加速丧失, 物种消亡速度达到了有史以来的最大值(Pimm et al, 1995)。城市化是所有人类活动中较为剧烈的方式, 被认为是威胁生物多样性的主要因素之一, 也是物种灭绝和同质化最主要的驱动力(Savard et al, 2000; McKinney, 2006; Buczkowski & Richmond, 2012)。同时, 城市化过程中城市扩张所引起的生境丧失, 比其他类型造成的生境丧失持续时间更长且更为严重(McKinney, 2002)。土壤微生物对环境敏感, 易受其变化影响, 城市化过程中的环境变化将导致土壤微生物群落结构和多样性发生显著变化(Yan et al, 2016; Novoa et al, 2020)。然而, 已有关于城市生物多样性的研究和保护多集中于城市植物和动物, 对城市土壤微生物及城市化对土壤微生物的影响等方面认识不足。
随着全球城市化快速发展, 解析城市土壤微生物群落特征及其影响机制, 是当前城市生态学所面临的重要科学问题之一, 也是生物多样性保护面临的新挑战。因此, 本文综述了城市化对土壤微生物多样性的影响, 分析了城市土壤微生物群落特征及城市化对土壤微生物的影响, 探讨了城市土壤微生物多样性的维持策略, 并对未来的研究进行了展望, 旨在为城市土壤微生物多样性的保护、生态系统服务功能的维持及城市生态学研究提供参考。
1 城市化对土壤微生物群落组成特征的影响
城市化的快速推进已经成为全球普遍趋势, 据估计到2050年, 在全球范围内约68%的人口将居住在城市(UN DESA, 2018)。城市化给人类社会带来巨大经济发展和生活便利的同时, 也使原生生态系统遭到毁灭性破坏, 更带来了前所未有的生态环境问题, 如: 土壤污染、水体污染、大气沉降、城市热岛、生境破碎化和土地利用方式转变等, 对城市环境中的生物多样性产生了严重威胁(Grimm et al, 2008; McKinney, 2008)。城市化过程沿中心城区向外扩展形成了城市中心区-城市郊区-自然区域的城市化梯度, 也造就了城市化环境梯度(图1)。城市化梯度上环境类型多样、空间异质性较大, 土壤微生物群落组成和分布也存在差异(Yan et al, 2016; Wang et al, 2017)。城市发展过程中的基础设施建设、城市道路交通等对城市土壤产生了强烈的扰动, 造成土壤孔隙度与渗透性减小、土壤污染、土壤养分流失、土壤酸碱度变化、土壤生物群落变化等(张甘霖等, 2003), 引起城市土壤的理化性质、生物特征等方面的改变(Scharenbroch et al, 2005; Kaye et al, 2006), 进而对土壤微生物群落产生影响。
图1
图1
城市化环境梯度 (改编自网络图片)。
箭头表示城市化梯度方向。
Fig. 1
The environmental gradients of urbanization (adapted from the web images).
Arrow indicates the direction of the urbanization gradient.
1.1 城市化对土壤微生物量的影响
一般来说, 城市土壤的微生物生物量低于农村土壤(Zhu & Carreiro, 2004; Rai et al, 2018), 如符方艳和陆宏芳(2015)基于城区-近郊-远郊的城市化梯度, 发现土壤微生物生物量在远郊最高, 而城区土壤微生物量显著低于远郊。还有研究发现城市化导致土壤中微生物个体总数减少(侯颖等, 2014)。对北京城市土壤微生物量研究也得到相似结论, 即沿城市到自然区域的城市化梯度上土壤微生物量呈现出增加的趋势(Zhao et al, 2012)。但也有学者认为, 城市化并没有对土壤微生物量产生严重影响, 相比于自然土壤, 城市土壤微生物量碳、氮都没有呈现出显著的减少, 反而略有升高(王焕华等, 2005)。Wang等(2017)对厦门城市土壤微生物研究发现, 虽然相比于城区和郊区, 自然区域的土壤微生物量仍为最高, 但城区土壤细菌微生物量略高于郊区。这可能是城市土壤受人类活动频繁影响, 土壤有机碳含量升高, 激发了土壤微生物和酶的活性, 最终使土壤微生物量增大(Madejón et al, 2001)。
1.2 城市化对土壤微生物群落组成的影响
土壤微生物群落组成与土壤环境紧密相关, 城市化发展过程造成土壤环境变化进而对城市土壤微生物群落组成及分布特征产生影响。随着高通量测序技术的广泛应用, 当前我们对城市土壤微生物群落组成已有了深刻的认识。基于已有的研究, 我们发现城市土壤细菌的优势菌门是变形菌门、酸杆菌门、拟杆菌门、放线菌门、芽单胞菌门和疣微菌门, 土壤真菌的优势菌门(相对丰度 > 1%)主要包括, 子囊菌门、担子菌门和接合菌门(表1)。同时, 沿城市化梯度(城市-郊区-农村)土壤细菌群落组成呈现显著差异(Wang et al, 2017)。虽然在门分类水平上城市土壤主要细菌、真菌存在较高的相似性(Ramirez et al, 2014; Huot et al, 2017; Tan et al, 2019), 但属、种组成及其相对丰度因城市化水平不同而存在差异(Xu et al, 2014; Yan et al, 2016; Tan et al, 2019)。笔者发现, 虽然土壤微生物群落组成在城市化过程中发生明显变化, 但其在城市化梯度上的分布规律仍不清楚, 还需进一步研究。
表1 城市土壤微生物群落组成
Table 1
研究区域 Study area | 研究对象 Research object | 环境梯度 Environmental gradient | 微生物类群 Microbial taxa | 优势菌门 Dominant phylum | 文献来源 References |
---|---|---|---|---|---|
中国16个城市 16 representative cities, China | 公园土壤 Park soil | - | 细菌 Bacteria | 变形菌门、放线菌门、酸杆菌门、浮霉菌门、绿弯菌门、拟杆菌门 Proteobacteria, Actinobacteria, Acidobacteria, Planctomycetes, Chloroflexi, and Bacteroidetes | Xu et al, 2014 |
中国广东东莞 Dongguan, Guangdong, China | 公园土壤 Park soil | 城市-郊区-农村 Urban-Suburban-Rural | 细菌 Bacteria | 变形菌门、酸杆菌门、放线菌门、疣微菌门、WPS-2、浮霉菌门、绿弯菌门、拟杆菌门 Proteobacteria, Acidobacteria, Actinobacteria, Verrucomicrobia, WPS-2, Planctomycetes, Chloroflexi, and Bacteroidetes | Tan et al, 2019 |
真菌 Fungi | 子囊菌门、担子菌门、接合菌门 Ascomycota, Basidiomycota, and Zygomycota | ||||
美国纽约 New York, USA | 绿色基础设施土壤/生长介质 Green infrastructure soil/substrate | 街边绿地-城市森林 Street green space-Urban forest | 细菌 Bacteria | 变形菌门、酸杆菌门、拟杆菌门、放线菌门、疣微菌门、浮霉菌门、绿弯菌门 Proteobacteria, Acidobacteria, Bacteroidetes, Actinobacteria, Verrucomicrobia, Planctomycetes, and Chloroflexi | Joyner et al, 2019 |
西班牙加利西亚 Galicia, Spain | 海滩沙丘 Coastal dune | 城市海滩-自然海滩 Urban beaches-Natural beaches | 细菌 Bacteria | 变形菌门、放线菌门、酸杆菌门、拟杆菌门 Proteobacteria, Actinobacteria, Acidobacteria, and Bacteroidetes | Novoa et al, 2020 |
美国纽瓦克市 Newark, USA | 树木根际土壤 Tree rhizosphere soil | 城市-郊区-农村 Urban-Suburban-Rural | 细菌 Bacteria | 浮霉菌门、变形菌门、绿弯菌门、酸杆菌门 Planctomycetes, Proteobacteria, Chloroflexi, and Acidobacteria | Rosier et al, 2021 |
中国北京 Beijing, China | 公园土壤 Park soil | 现代公园-古典公园 Young park-Old park | 细菌 Bacteria | 酸杆菌门、变形菌门、绿弯菌门、放线菌门 Acidobacteria, Proteobacteria, Chloroflexi, and Actinobacteria | 张骏达等, 2019 |
中国福建 Fujian, China | 草坪土壤 Turfgrass soil | 城市-郊区-自然区域 Urban-Suburban-Natural | 细菌 Bacteria | 变形菌门、酸杆菌门、放线菌门、装甲菌门、厚壁菌门、疣微菌门 Acidobacteria, Acidobacteria, Actinobacteria, Armatimonadetes, Firmicutes, and Verrucomicrobia | Zhang et al, 2020 |
美国芝加哥 Chicago, USA | 公园/街道/居民区绿地土壤 Park/Street/Resid-ential soil | 人口密度/绿地类型 Population densities/Greenspace types | 细菌 Bacteria | 变形菌门、酸杆菌门、拟杆菌门、疣微菌门、放线菌门 Proteobacteria, Acidobacteria, Bacteroidetes, Verrucomicrobia, and Actinobacteria | Wang et al, 2018 |
芬兰赫尔辛基、拉赫蒂 Helsinki and Lahti, Finland | 公园土壤 Park soil | 公园年龄: 10, 50, >100 Park age: 10, 50, >100 | 细菌 Bacteria | 变形菌门、酸杆菌门、放线菌门、绿弯菌门、芽单胞菌门、硝化螺旋菌门 Proteobacteria, Acidobacteria, Actinobacteria, Chloroflexi, Gemmatimonadetes, and Nitrospirae | Hui et al, 2017 |
真菌 Fungi | 子囊菌门、担子菌门、接合菌门、球囊菌门、壶菌门 Ascomycota, Basidiomycota, Zygomycota, Glomeromycota, and Chytridiomycota | ||||
中国北京 Beijing, China | 公园/街道/居民区绿地土壤 Park/Street/Resid-ential soil | 城市环路: 2环、2-3环、3-4环、4-5环、5环 Urban ring road: 2H, 2-3H, 3-4H, 4-5H, 5H | 细菌 Bacteria | 变形菌门、酸杆菌门、拟杆菌门、放线菌门、芽单胞菌门、疣微菌门 Proteobacteria, Acidobacteria, Bacteroidetes, Actinobacteria, Gemmatimonadetes, and Verrucomicrobia | Yan et al, 2016 |
中国北京 Beijing, China | 公园土壤 Park soil | 公园年龄: 10, 30, >100年 Park age: 10, 30, > 100 | 细菌 Bacteria | 变形菌门、酸杆菌门、拟杆菌门、放线菌门、芽单胞菌门、疣微菌门、浮霉菌门 Proteobacteria, Acidobacteria, Bacteroidetes, Actinobacteria, Gemmatimonadetes, Verrucomicrobia, and Planctomycetes | Yan et al, 2021 |
美国纽约 New York, USA | 绿色基础设施土壤/生长介质 Green infrastructure soil/subtrate | 绿色屋顶-街旁洼地-非工程化绿色基础设施 Green roof-Bioswale-Non-engineered Green infrastructure | 细菌 Bacteria | 变形菌门、放线菌门、酸杆菌门、拟杆菌门、浮霉菌门、疣微菌门、厚壁菌门、绿弯菌门、芽单胞菌门 Proteobacteria, Actinobacteria, Acidobacteria, Bacteroidetes, Planctomycetes, Verrucomicrobia, Firmicutes, Chloroflexi, and Gemmatimonadetes | Gill et al, 2020 |
真菌 Fungi | 子囊菌门、担子菌门、被孢霉门、球囊菌门、油壶菌门 Ascomycota, Basidiomycota, Mortierellomycota, Glomeromycota, and Olpidiomycota | ||||
研究区域 Location | 研究对象 | 环境梯度 Environmental gradient | 微生物类群 Microbial taxa | 优势菌门 Dominant phylum | 文献来源 References |
中国北京 Beijing, China | 公园/居民区/街道绿地土壤 Park/Residential/ Street soil | 公园-街道-居民区-工业区绿地 Park-Street-Residential- Industrial green space | 细菌 Bacteria | 变形菌门、酸杆菌门、绿弯菌门、放线菌门、芽单胞菌门、拟杆菌门 Proteobacteria, Acidobacteria, Chloroflexi, Actinobacteria, Gemmatimonadetes, and Bacteroidetes | Zhang et al, 2019 |
中国北京 Beijing, China | 公园土壤 Park soil | 公园年龄 Park ages | 真菌 Fungi | 子囊菌门、担子菌门、被孢霉门、壶菌门、隐真菌门 Ascomycota, Basidiomycota, Mortierellomycota, Chytridiomycota, and Cryptomycota | 于天赫等, 2021 |
城市环境中土地覆盖类型多样, 不同土地覆盖类型承受的城市压力和人类活动干扰强度不同(Reese et al, 2016), 进而引起土壤生境差异, 导致土壤微生物群落组成不同。例如, Hu等(2018)对北京5种典型的土地覆盖类型(不透水的表面、可渗透的路面、灌木、草坪和路边的树木)下土壤细菌群落研究发现, 土地覆盖类型改变了细菌群落组成, 在不透水表面之下的土壤细菌群落组成与其他的土地覆盖类型存在差异。在垂直方向上(即不同土层深度)细菌群落组成也呈现出差异。表现为, 城市土壤剖面不同深度细菌群落组成发生变化, 某些细菌门, 如拟杆菌门、浮霉菌门, 在表层土壤中呈现较为丰富的情况, 而在较深的土层中则有另外的一些菌门, 如绿弯菌门、芽单胞菌门、硝化螺旋菌门、酸杆菌门, 丰度更高(Michel & Williams, 2011; Eilers et al, 2012)。
土壤微生物可调控生物地球化学循环, 其群落结构对生态系统功能发挥起决定性作用(Fuhrman, 2009)。沿城市-郊区-农村梯度, 土地利用方式和人口密度呈现明显差异, 土壤细菌群落结构也显示出显著差异(Wang et al, 2017)。一般来说, 在城市建成区, 土壤微生物群落物种和结构不同于城市边缘及周边农耕区, 建成区的细菌和真菌所占的比例高于郊区和农村, 而放线菌占比则是农村要高于城市建成区和郊区(侯颖等, 2014)。杨元根等(2000)研究发现, 城市建成区和邻近农耕区土壤微生物群落结构发生了改变。闫冰等(2016)对北京城市化梯度下土壤微生物的研究发现, 居民区内绿地和公园内绿地中土壤微生物群落结构具有显著的空间分异特征, 而街道边绿地在城市环路梯度上无明显的土壤微生物群落结构分异, 说明不同类型绿地土壤微生物群落结构受城市化影响不同。现有研究表明, 城市化发展过程中土壤微生物群落结构发生明显变化。基于高通量测序分析也发现, 土壤细菌群落结构在不同城市发展梯度下存在显著差异(Yan et al, 2016), 进一步佐证了上述观点。
2 城市化对土壤微生物多样性的影响
土壤中蕴藏着巨大的微生物多样性, 对于土壤功能的发挥(包括碳、氮及其他养分转化、温室气体排放等)及整个生态系统恢复力的维持都极为重要(Allison & Martiny, 2008; Gkorezis et al, 2016; Reese et al, 2016; Neilson et al, 2017)。尽管自2000年以来, 有关土壤生物多样性的知识积累呈指数增长, 但迄今为止, 相关研究工作主要集中在自然或农业环境上(De Kimpe & Morel, 2000), 对城市土壤的调查相对较少(仅约1%的土壤研究涉及城市土壤, 2020年2月Web of Science查询结果)。因此, 人们对城市土壤的微生物多样性特征, 及其在城市生态系统服务功能中扮演的角色, 以及在改善城市居民生活质量上发挥的重要作用等方面所知甚少(McDonnell & Hahs, 2008; Pataki et al, 2011; Morel et al, 2015)。
2.1 城市化梯度上土壤微生物多样性分布特征
城市化过程中, 随着建设时间和人类活动强度的不同形成了城市化环境梯度, 对土壤微生物多样性产生了影响。例如, 沿着北京不同城市环路梯度(2环-5环), 土壤细菌多样性呈先下降后升高的趋势(Yan et al, 2016)。此外, 在城市中心区-近郊-远郊的城市化梯度上, 与远郊乡村或自然生态系统相比, 城市环境受高度干扰和破碎化的生态系统, 其草坪土壤细菌多样性低于乡村农田(Wang et al, 2017), 并且城区森林中通常显示出较低的菌根真菌物种丰富度和多样性(Ochimaru & Fukuda, 2007)。Epp Schmidt等(2017)通过对全球5个城市的土壤微生物研究发现, 城市化导致土壤真菌多样性丧失及群落同质性, 但土壤中古菌和细菌的多样性不易受城市化影响。即使在城市内, 不同类型绿地的土壤微生物多样性也不同。城市绿地中, 城市公园被认为是支撑居民福祉的重要绿地类型。尽管城市公园的主要作用是休闲娱乐, 但它们同时也是城市环境中生物多样性的重要避难所。城市公园相对于其他城市绿地而言生境类型多样, 因此, 公园土壤微生物多样性显著高于居民区绿地(Wang et al, 2018)。同时, 城市公园的历史年限也对土壤微生物群落多样性产生影响, 历史年限长的公园土壤微生物群落功能多样性及α多样性都高于历史年限短的公园(闫冰等, 2019; 张骏达等, 2019)。综上, 城市化改变了土壤微生物多样性, 但其对土壤细菌和真菌的影响不同。
城市化造成生物同质化并将导致全球生物多样性丧失(McKinney & Lockwood, 1999; McKinney et al, 2006; Baiser et al, 2012), 但有研究发现城市化似乎不影响土壤细菌多样性(Epp Schmidt et al, 2017), 意味着城市化并非必然导致土壤微生物多样性的丧失。实际上, 城市化过程中城市环境被人类不断改变, 这种条件更有利于生态幅更宽的物种生存(van Rensburg et al, 2009; Magle et al, 2012; Russo & Ancillotto, 2015)。这些物种能够应对多种多样的食物资源或极端温度条件, 而且它们通常表现出高度的表型(行为、生理或形态)可塑性。Ramirez等(2014)对纽约城市中央公园土壤微生物多样性研究, 发现即使在人工管理的土壤系统中仍然具有丰富的土壤微生物多样性, 但中央公园土壤中主要的细菌、古菌和真核生物的种系型的相对丰度和全球样品数据非常相似。意味着, 当前对于城市土壤微生物多样性分布格局及其形成机制还未能形成统一认识, 具体研究结果因研究尺度、绿地类型、微生物类群的不同而存在较大差异。
2.2 影响城市绿地土壤微生物多样性的主要因素
图2
图2
城市绿地土壤微生物多样性影响因素
Fig. 2
Impacting factors of soil microbial diversity in urban green space
2.2.1 土壤理化性质对土壤微生物多样性的影响
土壤微生物与土壤环境特征密切相关(Singh & Walker, 2006), 土壤pH (Fierer & Jackson, 2006)、土壤含水量(Brockett et al, 2012)、土壤类型(Wu et al, 2008)、土壤粒径(Wang et al, 2018)、盐分(Lozupone & Knight, 2007; Rajaniemi & Allison, 2009)、土壤养分有效性(Jesus et al, 2009)、有机碳和碳氮比(Shen et al, 2013)等均被认为是影响微生物群落的重要因子, 其中土壤pH被认为是微生物多样性变化最好的预测因子之一(Chu et al, 2010; Zhalnina et al, 2015)。城市建设过程中, 人为活动(翻动、压实等)将改变城市土壤pH、容重、孔隙度及含水量和养分等, 进而对土壤微生物多样性产生影响(张甘霖等, 2003)。例如, Xu等(2014)对中国有代表性的16个城市土壤细菌群落的研究发现, pH是与土壤细菌群落变化最相关的因子。于天赫等(2021)通过对北京城市公园乔木土壤真菌的研究发现, 土壤pH、土壤养分和水分影响土壤真菌群落多样性, 城市土壤腐生真菌多样性与土壤pH呈正相关关系。对城市绿地土壤微生物多样性的进一步研究发现, 土壤含水量、土壤含砂量也与土壤微生物多样性密切相关(Wang et al, 2018)。就已有研究而言, 土壤理化性质被认为是影响城市绿地土壤微生物多样性的主要环境因子, 且pH是最重要的因子之一。
2.2.2 土地利用对土壤微生物多样性的影响
快速的城市扩张和人类扰动, 通过改变土地利用对未封闭的城市绿地土壤生物化学过程和土壤质量产生强烈的影响(Betts, 2007)。城市发展过程中, 农田、森林、草地等转换为城市用地, 土地利用类型的转变可能造成土壤微生物多样性变化。对比研究发现, 城市残留森林中土壤细菌的多样性指数(物种丰富度和Shannon指数)显着高于城市公园, 而土壤真菌多样性在两种绿地空间类型中相似(Barrico et al, 2018); 并且研究发现与农村土壤相比, 城市土壤中细菌的多样性有所减少(Huot et al, 2017; Wang et al, 2017; Parajuli et al, 2018)。如前所述, 土壤微生物群落的多样性也受到不同城市土地利用类型的影响。例如, Gill等(2017)对布朗克斯区(纽约州, 美国)的生态湿地、公园和树坑中细菌群落的比较研究发现, 与公园和树坑相比, 重建土壤(生态湿地)中细菌群落的多样性增加了。与此同时, 城市内部,不同功能区绿地土壤真菌α多样性指数存在差异(郭大陆等, 2022)。此外, 对城市内部不同类型绿地之间的土壤微生物多样性比较发现, 细菌和真菌物种丰富度在公园和路边绿岛都没有显著差异(Reese et al, 2016), 且对城市中3种土地利用类型的土壤微生物研究也发现, 城市不同土地利用类型似乎不影响细菌多样性(Epp Schmidt et al, 2017)。究其原因, 笔者认为可能是土地利用往往通过间接作用影响土壤微生物多样性。一方面, 土地利用类型的变化通过改变土壤理化特征及生境作用于土壤微生物; 另一方面, 土地利用类型的转变在一定程度上也涉及到植被类型和植物群落的变化, 这也决定了土地利用变化可能耦合植物群落共同影响土壤微生物多样性。
2.2.3 植物对土壤微生物多样性的影响
植物与土壤微生物关系密切, 不同植物物种的生物化学组成不同, 植物多样性的变化可能会改变养分资源的质量和数量, 进而影响土壤微生物群落(Zak et al, 2003; Neilson et al, 2008); 并且植物物种差异影响土壤养分库和凋落物及根系分泌物化学组成, 从而影响土壤细菌群落多样性(Orwin et al, 2006; Berg & Smalla, 2009)。基于实验研究发现, 增加植物物种丰富度能导致微生物群落功能多样性的增加(Zak et al, 2003; Loranger-Merciris et al, 2006)。此外, 植物根系的分泌物是土壤微生物重要的养分来源, 植物通过根系分泌物与土壤微生物相互之间共同进化, 最终引起土壤微生物群落呈现出多样性。例如, 有研究显示, 即使在土壤特征相同的土地上不同植物根际对应的微生物多样性也存在显著差异(Garbeva et al, 2008; Berg & Smalla, 2009)。这说明植物以凋落物和根系分泌物为纽带, 将植物与土壤微生物密切联系在一起, 进而影响土壤微生物多样性。
然而, 也有研究持相反观点, 认为植物多样性与土壤微生物多样性间无显著相关关系(Meier & Bowman, 2008; McGuire et al, 2013; Ramirez et al, 2014; Prober et al, 2015), 一方面城市绿地受人为管理影响严重, 地上凋落物经常被清扫, 因此不会对土壤微生物产生影响; 另一方面, 植物多样性与凋落物化学成分多样性无显著相关性, 即使物种组成不同但它们凋落物的化学组成成分可能相同(Meier et al, 2008)。同样, 有研究发现, 无论是在城市公园还是在绿地中, 植物多样性似乎都不是土壤微生物多样性的主要决定因素(McGuire et al, 2013; Ramirez et al, 2014), 进一步证实了上述观点。城市生态系统是典型的人工生态系统, 植物物种主要受人为控制, 这一特殊性导致植物对土壤微生物的影响与已知的其他生态系统的结果可能存在差异, 因此, 城市植物对土壤微生物的影响仍需进一步研究。
2.2.4 城市污染对土壤微生物多样性的影响
城市化过程中人类活动剧烈, 导致城市土壤普遍呈现严重污染的状况(De Miguel et al, 1998), 主要包括重金属、持久性有机污染物(POPs)、持久性有毒污染物(PTS) (Perrodin et al, 2011)和抗生素抗性基因(ARGs) (Yan et al, 2019)。人类活动产生的重金属在土壤中富集, 随之而来的城市土壤重金属污染问题日益突出(McBride et al, 2014), 城市土壤中重金属和有机污染物的累积, 以及生活废弃物和废水中污染物直接或间接进入土壤(李有文等, 2017), 对土壤微生物多样性产生了影响(杭小帅等, 2010)。例如, 有研究发现, 土壤微生物多样性随着重金属浓度的增加而降低(Xie et al, 2016); Zhang等(2015)的研究表明, 土壤重金属污染显著改变土壤细菌多样性; Singh等(2019)研究发现, 城市受污染的土壤中细菌群落对重金属污染敏感, 尤其是与Cu、Zn和Pb关系密切。但不同土壤微生物类群受土壤污染的影响不同, 相比于土壤细菌, 土壤真菌群落更易受重金属污染影响(Rex et al, 2018; Abo Shelbaya et al, 2021)。例如, 于天赫等(2021)研究发现, 土壤真菌丰富度指数与重金属铅含量呈负相关关系; 并且郭大陆等(2022)认为, 随重金属铅污染程度加深土壤真菌多样性降低。与城市重金属污染情况类似, 城市绿地土壤中多环芳烃(PHAs)显著高于周边农村, 城市土壤普遍存在有机污染问题(蒋煜峰, 2009; Peng et al, 2016)。相比于重金属, 持久性有机污染物和持久性有毒污染物具有挥发特性, 对土壤微生物更具危害性, 然而相关研究不足。城市化过程中, ARGs丰度和分布特征也受到显著影响, 例如, 工业因素(Yan et al, 2019)和再生水灌溉(Wang et al, 2014)都引起城市绿地ARGs丰度升高。ARGs通过水平基因转移的方式进入微生物体内, 并在微生物间进行扩散传播。这使得某些微生物类群成为特定抗生素抗性基因的宿主, 进而产生多重耐药性(Wichmann et al, 2014)。因此, 当土壤中存在抗生素输入时, 某些类群可能消失, 而具有抗生素抗性的类群则大量繁殖, 进而可能对土壤微生物多样性产生影响。然而, 相关研究当前多关注于土壤微生物群落结构对抗性基因丰度的影响(Forsberg et al, 2014; Dunivin & Shade, 2018), ARGs如何影响土壤微生物多样性仍需进一步研究。
3 城市化对土壤微生物群落功能的影响
土壤微生物是凋落物分解、元素循环转化、气候调节和污染物消纳等土壤及生态系统功能发挥的引擎, 因此城市化对土壤微生物群落功能的影响正在成为城市土壤生态学的研究热点。例如, 研究发现, 空间轴上的不同城市土壤特性或时间轴上的同一城市化历史均导致微生物碳、基础呼吸和微生物代谢熵不同(Yang et al, 2006; Ghosh et al, 2016), 即使是同一城市, 土壤剖面深度也影响其微生物特性, 城市化主要对表层土壤微生物产生影响, 而对下层土壤微生物的影响较小, 如Demina等(2018)研究发现, 表层土壤和下层土壤微生物呼吸存在差异, 并发现土地利用历史也导致城市地区表层土壤微生物呼吸存在高度的空间变异。此外, 城市土地利用类型多样, 即使同一土地利用类型也存在不同植被类型, 如公园内的草坪、疏林和近自然林等, 也造成土壤呼吸速率显著不同, 并且具有显著的季节变化特征(张鸽香等, 2010)。
在城市-郊区-农村梯度上, 与城市和郊区的草地土壤相比, 农村农田土壤N2O排放潜力和反硝化活性更高, 这表明由于城市化导致的土地利用变化可能会减少反硝化过程中N2O的排放(Wang et al, 2017)。进一步对城乡环境梯度森林土壤微生物研究发现, 相比远郊林、城市林, 乡村自然林土壤微生物群落碳源代谢能力最高, 城乡梯度上土壤微生物群落碳源利用能力存在差异(何越等, 2021), 并且城市内不同类型绿地土壤微生物群落偏向于利用不同类型碳源, 但对羧酸类碳源的利用能力都较弱(闫冰等, 2016)。此外, 即使城市内的同一土地利用类型, 不同的利用历史也会导致土壤微生物功能变化(Hermans et al, 2020)。例如, 闫冰等(2019)研究发现, 不同历史年限公园土壤微生物利用碳源能力存在差异, 历史年限较短的公园对多聚物类碳源利用能力强。由此可见, 土壤微生物功能在城市不同生境下具有明显的分异特征, 但已有研究停留在单一功能描述上, 对城市土壤微生物功能的认识不足, 下一步需利用多组学技术深入探究城市化对土壤微生物群落功能的影响。
4 保护和维持城市土壤微生物多样性
4.1 保护城市土壤微生物多样性
土壤微生物具有分解、转化和运输并参与生物地球化学循环以及土壤结构的形成和维持等功能, 对于陆地生态系统服务功能的稳定发挥不可或缺, 因此对于人类社会的发展也必不可少。此外, 最近研究表明人们广泛接触环境中因土地利用类型多样而产生的微生物多样性, 可以有效降低过敏症的患病率(von Hertzen et al, 2011; Hanski et al, 2012), 因此, 这可能是一种潜在的更有益于人类健康的途径。与之相反, 减少人与自然环境及生物多样性的接触可能会对人类共生菌群及免疫调节能力产生不利影响, 并导致免疫功能障碍和慢性炎症性疾病(von Hertzen et al, 2011; Hanski et al, 2012; Ruokolainen et al, 2015)。White等(2019)通过大量调研认为, 每周花费至少2 h亲近自然环境将有助于身心健康, 并可能对控制疾病有积极作用。进一步的研究发现, 广泛接触环境中的土壤微生物多样性, 可改善人体微生物多样性增强免疫系统调节能力(Roslund et al, 2020; Selway et al, 2020)。由此可见, 城市绿地土壤微生物多样性与居民健康密切相关, 城市土壤微生物多样性的维持和保护, 不论是对城市可持续发展还是对城市居民健康, 都显得尤为重要。
4.2 维持城市土壤微生物多样性
土壤微生物与地上植物和其他大型生物不同, 人们很少能直接管理土壤微生物, 因此, 维护土壤生物多样性极具挑战性。一般而言, 增加地上生境的复杂性会促进地下生物多样性(Byrne, 2007; Ossola et al, 2015)。例如, Mills等(2020)认为植被重建可以通过创造更多的野生栖息地条件, 进而改善城市土壤微生物群落多样性。McGuire等(2013)对纽约市绿化屋顶网络研究表明, 虽然屋顶绿地基质人工化程度比较高, 但也为微生物群落提供了栖息地。尽管屋顶绿地土壤微生物量低于同一城市公园绿地, 但仍具有较高的微生物量(McGuire et al, 2013)。屋顶绿地基质也是多种真菌种群的栖息地, 这些真菌种群在污染和高度干扰的环境中具有很强的生存能力(McGuire et al, 2013),说明在这些人类活动强烈的环境中也会形成特殊的微生物群落生态。此外, 具有自然残留植被的城市公园, 通常是生物多样性丰富的区域(Shanahan et al, 2015)。不同种类的城市景观提供了不同水平的生物多样性, 因此, 可以针对不同的需求进行城市景观管理以提高土壤微生物多样性。
人们已经认识到, 维持多样化的土壤微生物群落对于维持城市景观中的土壤长期稳定和人居环境健康至关重要。然而, 当前关于城市环境中土壤微生物多样性维持和保护的文献相对较少, 对于如何调控土壤微生物多样性仍是一个需要深入探究的方向。
5 展望
中国正处于并将持续处于快速城市化进程中。城市生物多样性的研究一直受到大量关注, 城市地上生物多样性的研究已经为人们认识城市化对生物多样性的影响提供了基础。对城市生物多样性的研究, 一方面对生物多样性的认识和保护起到积极作用, 另一方面为城市生态学发展提供理论基础。城市化是生物多样性灭绝和同质化的主要原因之一, 但是由于微生物本身的复杂性及城市环境的复杂性等方面的限制, 关于城市化对土壤微生物多样性的影响仍有待进一步研究。基于对已有研究的梳理, 今后相关研究应注重以下3个方面:
(1)城市化对城市绿地土壤微生物多样性的影响机制。当前, 城市化对土壤微生物多样影响的相关研究仍然不足, 仍存在未知的影响因子, 且已有研究多集中于相关分析, 具有很大的局限性。今后的研究需要进一步解决尺度问题, 在根际、不同大小绿地以及城市不同功能区尺度上开展研究, 并结合地理信息系统技术手段揭示城市景观格局下土壤微生物多样性空间格局特征, 通过多学科交叉融合探究城市化对土壤微生物多样性的驱动机制, 为研究城市土壤微生物多样性维持策略提供基础。
(2)城市土壤微生物多样性变化对生态系统多功能性的影响。城市化引起土壤微生物群落结构和多样性变化, 应进一步运用多组学技术结合生物信息学分析手段, 深入探究土壤微生物群落功能变化特征, 明确土壤微生物多样性变化对土壤碳氮循环、污染物降解、养分维持、气候调节等生态系统功能发挥的影响, 对理解城市土壤微生物如何保障城市生态系统服务功能具有重要意义。
(3)土壤微生物多样性与人类健康的关系。城市绿地中耐药菌和ARGs传播对人类健康存在潜在风险。应进一步研究城市土壤中耐药菌和ARGs的空间分布规律和迁移特征, 明确土壤微生物多样性在ARGs流动中的作用, 探索土壤微生物多样性在改善人居环境中的作用, 并通过维护城市土壤微生物多样性保障人类健康。
参考文献
Heavy metals and microbial activity in alluvial soils affected by different land-uses
DOI:10.21608/jssae.2021.158670 URL [本文引用: 1]
Resistance, resilience, and redundancy in microbial communities
Biodiversity in urban ecosystems: Plants and macromycetes as indicators for conservation planning in the city of Coimbra (Portugal)
DOI:10.1016/j.landurbplan.2012.02.011 URL [本文引用: 1]
Plant and microbial biodiversity in urban forests and public gardens: Insights for cities’ sustainable development
Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere
DOI:10.1111/j.1574-6941.2009.00654.x URL [本文引用: 2]
Implications of land ecosystem‐atmosphere interactions for strategies for climate change adaptation and mitigation
DOI:10.1111/j.1600-0889.2007.00284.x URL [本文引用: 1]
Globally rising soil heterotrophic respiration over recent decades
DOI:10.1038/s41586-018-0358-x URL [本文引用: 1]
Soil moisture is the major factor influencing microbial community structure and enzyme activities across seven biogeoclimatic zones in western Canada
DOI:10.1016/j.soilbio.2011.09.003 URL [本文引用: 1]
The effect of urbanization on ant abundance and diversity: A temporal examination of factors affecting biodiversity
Habitat structure: A fundamental concept and framework for urban soil ecology
DOI:10.1007/s11252-007-0027-6 URL [本文引用: 1]
Soil bacterial diversity in the Arctic is not fundamentally different from that found in other biomes
DOI:10.1111/j.1462-2920.2010.02277.x URL [本文引用: 1]
Preliminary assessment of arbuscular mycorrhizal fungal diversity and community structure in an urban ecosystem
DOI:10.1007/s00572-003-0239-4 URL [本文引用: 1]
Exploring microbial diversity—A vast below
Urban soil management: A growing concern
DOI:10.1097/00010694-200001000-00005 URL [本文引用: 1]
The overlooked contribution of compost application to the trace element load in the urban soil of Madrid (Spain)
DOI:10.1016/S0048-9697(98)00112-0 URL [本文引用: 1]
Microbial diversity drives multifunctionality in terrestrial ecosystems
DOI:10.1038/ncomms10541
PMID:26817514
[本文引用: 1]
Despite the importance of microbial communities for ecosystem services and human welfare, the relationship between microbial diversity and multiple ecosystem functions and services (that is, multifunctionality) at the global scale has yet to be evaluated. Here we use two independent, large-scale databases with contrasting geographic coverage (from 78 global drylands and from 179 locations across Scotland, respectively), and report that soil microbial diversity positively relates to multifunctionality in terrestrial ecosystems. The direct positive effects of microbial diversity were maintained even when accounting simultaneously for multiple multifunctionality drivers (climate, soil abiotic factors and spatial predictors). Our findings provide empirical evidence that any loss in microbial diversity will likely reduce multifunctionality, negatively impacting the provision of services such as climate regulation, soil fertility and food and fibre production by terrestrial ecosystems.
Microbial properties of urban soils with different land-use history in New Moscow
DOI:10.1097/SS.0000000000000240 URL [本文引用: 1]
Community structure explains antibiotic resistance gene dynamics over a temperature gradient in soil
Digging deeper to find unique microbial communities: The strong effect of depth on the structure of bacterial and archaeal communities in soil
DOI:10.1016/j.soilbio.2012.03.011 URL [本文引用: 1]
Urbanization erodes ectomycorrhizal fungal diversity and may cause microbial communities to converge
The diversity and biogeography of soil bacterial communities
Bacterial phylogeny structures soil resistomes across habitats
DOI:10.1038/nature13377 URL [本文引用: 1]
Effects of urbanization on soil community structure under subtropical evergreen broad-leaved forests
城市化对南亚热带常绿阔叶林土壤生物群落结构的影响
Microbial community structure and its functional implications
DOI:10.1038/nature08058 URL [本文引用: 1]
Rhizosphere microbial community and its response to plant species and soil history
DOI:10.1007/s11104-007-9432-0 URL [本文引用: 1]
Soil organic carbon distribution in roadside soils of Singapore
DOI:10.1016/j.chemosphere.2016.09.028 URL [本文引用: 1]
Phylogenetic and functional diversity of total (DNA) and expressed (RNA) bacterial communities in urban green infrastructure bioswale soils
Microbial composition and functional diversity differ across urban green infrastructure types
DOI:10.3389/fmicb.2020.00912 URL [本文引用: 1]
The interaction between plants and bacteria in the remediation of petroleum hydrocarbons: An environmental perspective
Global change and the ecology of cities
DOI:10.1126/science.1150195 URL [本文引用: 1]
Effects of heavy metal content on fungal community structure in urban soil
重金属含量对城市土壤真菌群落结构的影响
Heavy metal contamination characteristics and its impacts on microbial and enzymatic activities in the soil surrounding an electroplating factory
电镀厂附近土壤重金属污染特征及其对微生物与酶活性的影响
Environmental biodiversity, human microbiota, and allergy are interrelated
Variation of subtropical forest soil microbial biomass and soil microbial community functional characteristics along an urban-rural gradient
亚热带森林土壤微生物生物量及群落功能特征的城乡梯度变化
DOI:10.13287/j.1001-9332.202101.034
[本文引用: 1]
土壤微生物在土壤养分循环以及生物地球化学循环中起着重要作用,土壤微生物对环境变化响应灵敏。为研究城乡梯度环境变化对亚热带森林土壤微生物的影响,本研究选取合肥市大蜀山国家森林公园(城市林)、紫蓬山国家森林公园(远郊林)、六安市万佛山(乡村自然林)为样地,分析比较其微生物生物量碳(MBC)、微生物生物量氮(MBN)及微生物群落功能多样性的城乡梯度差异。结果显示: 土壤MBC表现为乡村自然林(115.07 mg·kg<sup>-1</sup>)>远郊林(101.68 mg·kg<sup>-1</sup>)>城市林(82.73 mg·kg<sup>-1</sup>);土壤MBN表现为乡村自然林(57.73 mg·kg<sup>-1</sup>)>城市林(31.57 mg·kg<sup>-1</sup>)>远郊林(29.01 mg·kg<sup>-1</sup>);土壤微生物碳源代谢活性(AWCD)﹑均匀度指数(U)表现为乡村自然林>远郊林>城市林;城乡森林土壤微生物群落利用的主要碳源为羧酸类、氨基酸类、碳水类,其对多胺类、多酚类碳源的利用能力较弱;土壤微生物对氨基酸类、羧酸类、多聚物类及多酚类碳源的代谢能力具体表现为乡村自然林>远郊林>城市林,土壤微生物群落功能特征在城乡环境梯度上存在明显空间分异,其中吐温80、β-甲基-D-葡萄糖苷是影响城乡环境土壤微生物群落空间分异的特征碳源。相关性分析表明,土壤pH与微生物McIntosh指数、AWCD值呈显著正相关,铵态氮(NH<sub>4</sub><sup>+</sup>-N)与微生物Shannon多样性指数、AWCD值呈显著正相关,微生物Simpson指数与土壤硝态氮(NO<sub>3</sub><sup>-</sup>-N)呈显著负相关,土壤pH、NH<sub>4</sub><sup>+</sup>-N、NO<sub>3</sub><sup>-</sup>-N是影响微生物群落多样性指数的主要因素。研究表明,在城乡环境梯度下森林土壤微生物群落特征存在显著差异,城市林土壤微生物群落代谢潜力和功能多样性均弱于自然林。
From pine to pasture: Land use history has long-term impacts on soil bacterial community composition and functional potential
Effects of urbanization on community structure of soil microorganism
城市化对土壤微生物群落结构的影响
Impervious surfaces alter soil bacterial communities in urban areas: A case study in Beijing, China
DOI:10.3389/fmicb.2018.00226 URL [本文引用: 1]
Soil microbial communities are shaped by vegetation type and park age in cities under cold climate
DOI:10.1111/1462-2920.13660 URL [本文引用: 1]
Characterizing urban soils in New York City: Profile properties and bacterial communities
DOI:10.1007/s11368-016-1552-9 URL [本文引用: 2]
Changes in land use alter the structure of bacterial communities in Western Amazon soils
DOI:10.1038/ismej.2009.47 URL [本文引用: 1]
Preliminary Study on Composition, Distribution and Source Identification of Persistent Organic Pollutants in Soil of Shanghai
上海地区土壤中持久性有机污染物污染特征、分布及来源初步研究
Green infrastructure design influences communities of urban soil bacteria
DOI:10.3389/fmicb.2019.00982 URL [本文引用: 1]
Quercus rubra-associated ectomycorrhizal fungal communities of disturbed urban sites and mature forests
DOI:10.1007/s00572-011-0362-6
PMID:21287207
[本文引用: 1]
The presence and quality of the belowground mycorrhizal fungal community could greatly influence plant community structure and host species response. This study tests whether mycorrhizal fungal communities in areas highly impacted by anthropogenic disturbance and urbanization are less species rich or exhibit lower host root colonization rates when compared to those of less disturbed systems. Using a soil bioassay, we sampled the ectomycorrhizal fungal (EMF) communities associating with Quercus rubra (northern red oak) seedlings in soil collected from seven sites: two mature forest reference sites and five urban sites of varying levels of disturbance. Morphological and polymerase chain reaction-restriction fragment length polymorphism analyses of fungi colonizing root tips revealed that colonization rates and fungal species richness were significantly lower on root systems of seedlings grown in disturbed site soils. Analysis of similarity showed that EMF community composition was not significantly different among several urban site soils but did differ significantly between mature forest sites and all but one urban site. We identified a suite of fungal species that occurred across several urban sites. Lack of a diverse community of belowground mutualists could be a constraint on urban plant community development, especially of late-successional woodlands. Analysis of urban EMF communities can add to our understanding of urban plant community structure and should be addressed during ecological assessment before pragmatic decisions to restore habitats are framed.
A distinct urban biogeochemistry?
DOI:10.1016/j.tree.2005.12.006 URL [本文引用: 1]
Exotic plant species alter the microbial community structure and function in the soil
DOI:10.1890/0012-9658(2002)083[3152:EPSATM]2.0.CO;2 URL [本文引用: 1]
Heavy metal pollution characteristics and human health risk assessment in soils from different functional areas of Baiyin, Gansu, China
白银市不同功能区土壤重金属污染特征及其健康风险评价
Rapid effects of plant species diversity and identity on soil microbial communities in experimental grassland ecosystems
DOI:10.1016/j.soilbio.2006.02.009 URL [本文引用: 1]
Global patterns in bacterial diversity
Soil enzymatic response to addition of heavy metals with organic residues
DOI:10.1007/s003740100379 URL [本文引用: 1]
Urban wildlife research: Past, present, and future
DOI:10.1016/j.biocon.2012.06.018 URL [本文引用: 1]
Concentrations of lead, cadmium and barium in urban garden-grown vegetables: The impact of soil variables
DOI:S0269-7491(14)00343-1
PMID:25163429
[本文引用: 1]
Paired vegetable/soil samples from New York City and Buffalo, NY, gardens were analyzed for lead (Pb), cadmium (Cd) and barium (Ba). Vegetable aluminum (Al) was measured to assess soil adherence. Soil and vegetable metal concentrations did not correlate; vegetable concentrations varied by crop type. Pb was below health-based guidance values (EU standards) in virtually all fruits. 47% of root crops and 9% of leafy greens exceeded guidance values; over half the vegetables exceeded the 95th percentile of market-basket concentrations for Pb. Vegetable Pb correlated with Al; soil particle adherence/incorporation was more important than Pb uptake via roots. Cd was similar to market-basket concentrations and below guidance values in nearly all samples. Vegetable Ba was much higher than Pb or Cd, although soil Ba was lower than soil Pb. The poor relationship between vegetable and soil metal concentrations is attributable to particulate contamination of vegetables and soil characteristics that influence phytoavailability. Copyright © 2014 Elsevier Ltd. All rights reserved.
The use of gradient analysis studies in advancing our understanding of the ecology of urbanizing landscapes: Current status and future directions
DOI:10.1007/s10980-008-9253-4 URL [本文引用: 1]
Digging the New York City Skyline:Soil fungal communities in green roofs and city parks
Urbanization, biodiversity, and conservation
DOI:10.1641/0006-3568(2002)052[0883:UBAC]2.0.CO;2 URL [本文引用: 1]
Urbanization as a major cause of biotic homogenization
DOI:10.1016/j.biocon.2005.09.005 URL [本文引用: 2]
Effects of urbanization on species richness: A review of plants and animals
DOI:10.1007/s11252-007-0045-4 URL [本文引用: 1]
Biotic homogenization: A few winners replacing many losers in the next mass extinction
DOI:10.1016/S0169-5347(99)01679-1 URL [本文引用: 1]
Links between plant litter chemistry, species diversity, and below-ground ecosystem function
Soil habitat and horizon properties impact bacterial diversity and composition
DOI:10.2136/sssaj2010.0171 URL [本文引用: 1]
Revegetation of urban green space rewilds soil microbiotas with implications for human health and urban design
Ecosystem services provided by soils of urban, industrial, traffic, mining, and military areas (SUITMAs)
DOI:10.1007/s11368-014-0926-0 URL [本文引用: 1]
Significant impacts of increasing aridity on the arid soil microbiome
Urbanization and Carpobrotus edulis invasion alter the diversity and composition of soil bacterial communities in coastal areas
Changes in fungal communities in evergreen broad-leaved forests across
DOI:10.1139/X06-293 URL [本文引用: 1]
Ecological consequences of carbon substrate identity and diversity in a laboratory study
Plants return a wide range of carbon (C) substrates to the soil system. The decomposition rate of these substrates is determined by their chemical nature, yet few studies have examined the relative ecological role of specific substrates (i.e., substrate identity) or mixtures of substrates. Carbon substrate identity and diversity may alter soil chemistry and soil community composition, resulting in changes in belowground ecosystem functions such as decomposition and nutrient transfer, creating feedbacks that may affect plant growth and the aboveground community. A laboratory experiment was set up in which eight C substrates of varying chemical complexity were added to a base soil singly, in pairs, fours, or with all eight together every four days over a 92-day period. After 92 days these soils were analyzed for changes in chemistry, microbial community structure, and components of ecosystem functioning. The identity of the added C substrates significantly affected soil chemistry, microbial basal and substrate-induced respiration, and soil microbial community structure measured by either the catabolic response profile (CRP) technique or phospholipid fatty acid composition. These belowground changes strongly affected the ability of the soil microflora to decompose cellulose paper, probably because of differential effects of the C substrates on soil energy supplies and enzyme activities. The addition of C substrates to soils also reduced plant growth compared to the unamended control soil, but less so in soils amended with a tannin than those amended with other substrates. Carbon substrate diversity effects saturated at low diversity levels, tended to have neutral or negative effects on ecosystem functions, and depended strongly on which C substrates were added. It increased CRP compound use but had little effect on other measures of the soil microbial community. Overall, results showed that the chemical nature of C substrates added to soil, and sometimes their diversity, can affect the soil microbial community and soil chemistry, which subsequently affect other ecosystem processes such as decomposition and plant growth. The identity and diversity of substrates that plants add to soil may therefore have important consequences for both above- and belowground ecosystem functions.
Habitat complexity influences fine scale hydrological processes and the incidence of stormwater runoff in managed urban ecosystems
DOI:10.1016/j.jenvman.2015.05.002 URL [本文引用: 1]
Urbanization reduces transfer of diverse environmental microbiota indoors
DOI:10.3389/fmicb.2018.00084 URL [本文引用: 1]
Coupling biogeochemical cycles in urban environments: Ecosystem services, green solutions, and misconceptions
DOI:10.1890/090220 URL [本文引用: 1]
Distribution and risks of polycyclic aromatic hydrocarbons in suburban and rural soils of Beijing with various land uses
DOI:10.1007/s10661-016-5156-z
PMID:26879983
[本文引用: 1]
We investigated the sources, distribution, and health risks of polycyclic aromatic hydrocarbons (PAHs) in soils of peri-urban Beijing. The mean concentrations of total 16 PAHs in suburban and rural soils of Beijing were 321.8 ± 408.2 and 219.2 ± 233.5 ng/g, respectively. The PAH concentrations decreased along the urban-suburban-rural gradient and varied with land use categories. The industrial areas had the highest soil PAH concentrations followed by the living areas, roadsides, green areas, and agricultural areas. The major sources of PAHs in these soils were coal and biomass combustion. Traffic emission was not the dominant source of PAHs in peri-urban Beijing. At a few sites, high soil PAH contents were caused by point sources such as iron and steel plants and a wood preservative factory. The incremental lifetime cancer risks (ILCRs) of adults and children exposed to PAHs in the soils were acceptable. However, cautions should be paid to the abandoned industrial sites, which might be converted to residential area during the urbanization process.
Ecological risk assessment of urban and industrial systems: A review
DOI:10.1016/j.scitotenv.2011.08.053 URL [本文引用: 1]
Advancing urban ecological studies: Frameworks, concepts, and results from the Baltimore Ecosystem Study
DOI:10.1111/j.1442-9993.2006.01586.x URL [本文引用: 1]
The future of biodiversity
Recent extinction rates are 100 to 1000 times their pre-human levels in well-known, but taxonomically diverse groups from widely different environments. If all species currently deemed "threatened" become extinct in the next century, then future extinction rates will be 10 times recent rates. Some threatened species will survive the century, but many species not now threatened will succumb. Regions rich in species found only within them (endemics) dominate the global patterns of extinction. Although new technology provides details of habitat losses, estimates of future extinctions are hampered by our limited knowledge of which areas are rich in endemics.
Plant diversity predicts beta but not alpha diversity of soil microbes across grasslands worldwide
DOI:10.1111/ele.12381 URL [本文引用: 1]
Change in soil microbial biomass along a rural-urban gradient in Varanasi (U.P., India)
DOI:10.1080/24749508.2018.1438743 URL [本文引用: 1]
Abiotic conditions and plant cover differentially affect microbial biomass and community composition on dune gradients
DOI:10.1016/j.soilbio.2008.10.001 URL [本文引用: 1]
Urban stress is associated with variation in microbial species composition—but not richness—in Manhattan
DOI:10.1038/ismej.2015.152 URL [本文引用: 3]
Fungal and bacterial contributions to codenitrification emissions of N2O and N2 following urea deposition to soil
DOI:10.1007/s10705-017-9901-7 URL [本文引用: 1]
Urbanization pressures alter tree rhizosphere microbiomes
DOI:10.1038/s41598-021-88839-8
PMID:33941814
[本文引用: 1]
The soil microbial community (SMC) provides critical ecosystem services including organic matter decomposition, soil structural formation, and nutrient cycling. Studies suggest plants, specifically trees, act as soil keystone species controlling SMC structure via multiple mechanisms (e.g., litter chemistry, root exudates, and canopy alteration of precipitation). Tree influence on SMC is shaped by local/regional climate effects on forested environments and the connection of forests to surrounding landscapes (e.g., urbanization). Urban soils offer an ideal analog to assess the influence of environmental conditions versus plant species-specific controls on SMC. We used next generation high throughput sequencing to characterize the SMC of specific tree species (Fagus grandifolia [beech] vs Liriodendron tulipifera [yellow poplar]) across an urban-rural gradient. Results indicate SMC dissimilarity within rural forests suggests the SMC is unique to individual tree species. However, greater urbanization pressure increased SMC similarity between tree species. Relative abundance, species richness, and evenness suggest that increases in similarity within urban forests is not the result of biodiversity loss, but rather due to greater overlap of shared taxa. Evaluation of soil chemistry across the rural-urban gradient indicate pH, Ca, and organic matter are largely responsible for driving relative abundance of specific SMC members.
Biodiversity intervention enhances immune regulation and health-associated commensal microbiota among daycare children
Green areas around homes reduce atopic sensitization in children
DOI:10.1111/all.12545
PMID:25388016
[本文引用: 2]
Western lifestyle is associated with high prevalence of allergy, asthma and other chronic inflammatory disorders. To explain this association, we tested the 'biodiversity hypothesis', which posits that reduced contact of children with environmental biodiversity, including environmental microbiota in natural habitats, has adverse consequences on the assembly of human commensal microbiota and its contribution to immune tolerance.We analysed four study cohorts from Finland and Estonia (n = 1044) comprising children and adolescents aged 0.5-20 years. The prevalence of atopic sensitization was assessed by measuring serum IgE specific to inhalant allergens. We calculated the proportion of five land-use types--forest, agricultural land, built areas, wetlands and water bodies--in the landscape around the homes using the CORINE2006 classification.The cover of forest and agricultural land within 2-5 km from the home was inversely and significantly associated with atopic sensitization. This relationship was observed for children 6 years of age and older. Land-use pattern explained 20% of the variation in the relative abundance of Proteobacteria on the skin of healthy individuals, supporting the hypothesis of a strong environmental effect on the commensal microbiota.The amount of green environment (forest and agricultural land) around homes was inversely associated with the risk of atopic sensitization in children. The results indicate that early-life exposure to green environments is especially important. The environmental effect may be mediated via the effect of environmental microbiota on the commensal microbiota influencing immunotolerance.© 2014 The Authors. Allergy Published by John Wiley & Sons Ltd.
Sensitivity of bats to urbanization: A review
DOI:10.1016/j.mambio.2014.10.003 URL [本文引用: 1]
Biodiversity concepts and urban ecosystems
DOI:10.1016/S0169-2046(00)00037-2 URL [本文引用: 1]
Distinguishing urban soils with physical, chemical, and biological properties
DOI:10.1016/j.pedobi.2004.12.002 URL [本文引用: 1]
Transfer of environmental microbes to the skin and respiratory tract of humans after urban green space exposure
DOI:10.1016/j.envint.2020.106084 URL [本文引用: 1]
What is the role of trees and remnant vegetation in attracting people to urban parks?
DOI:10.1007/s10980-014-0113-0 URL [本文引用: 1]
Soil pH drives the spatial distribution of bacterial communities along elevation on Changbai Mountain
DOI:10.1016/j.soilbio.2012.07.013 URL [本文引用: 1]
Microbial degradation of organophosphorus compounds
DOI:10.1111/j.1574-6976.2006.00018.x URL [本文引用: 1]
Soil microbial response to metal contamination in a vegetated and urban brownfield
DOI:10.1016/j.jenvman.2019.04.111 URL [本文引用: 1]
Effect of urban expansion on arbuscular mycorrhizal fungal mediation of landscape tree growth
The composition and diversity of soil bacterial and fungal communities along an urban-to-rural gradient in South China
DOI:10.3390/f10090797 URL [本文引用: 3]
World Population Prospects 2018:Highlights
Microbial ecology of biological invasions
DOI:10.1038/ismej.2007.9 URL [本文引用: 1]
Biotic homogenization and alien bird species along an urban gradient in South Africa
DOI:10.1016/j.landurbplan.2009.05.002 URL [本文引用: 1]
Natural immunity: Biodiversity loss and inflammatory diseases are two global megatrends that might be related
DOI:10.1038/embor.2011.195 PMID:21979814 [本文引用: 4]
High throughput profiling of antibiotic resistance genes in urban park soils with reclaimed water irrigation
DOI:10.1021/es502615e URL [本文引用: 1]
Topsoil microbial carbon and nitrogen and enzyme activity of different city zones in Nanjing, China
南京市不同功能城区表土微生物碳氮与酶活性分析
Soil bacterial diversity is associated with human population density in urban greenspaces
DOI:10.1021/acs.est.7b06417 URL [本文引用: 4]
Changes in land use driven by urbanization impact nitrogen cycling and the microbial community composition in soils
DOI:10.1038/srep44049 URL [本文引用: 8]
Spending at least 120 minutes a week in nature is associated with good health and wellbeing
Diverse antibiotic resistance genes in dairy cow manure
Comparison of soil bacterial communities under diverse agricultural land management and crop production practices
DOI:10.1007/s00248-007-9276-4 URL [本文引用: 1]
Effect of heavy metals pollution on soil microbial diversity and bermudagrass genetic variation
Does urbanization shape bacterial community composition in urban park soils? A case study in 16 representative Chinese cities based on the pyrosequencing method
DOI:10.1111/1574-6941.12215 URL [本文引用: 4]
Soil microbial carbon metabolic activity of green-land of urban park in Beijing
北京城市公园绿地土壤微生物群落碳源代谢活性特征
Urban-development-induced changes in the diversity and composition of the soil bacterial community in Beijing
DOI:10.1038/srep38811 URL [本文引用: 7]
Composition and interaction frequencies in soil bacterial communities change in association with urban park age in Beijing
DOI:10.1016/j.pedobi.2020.150699 URL [本文引用: 1]
Effects of urban development on soil microbial functional diversity in Beijing
北京城市发展对土壤微生物群落功能多样性的影响
Antibiotic resistance in urban green spaces mirrors the pattern of industrial distribution
DOI:10.1016/j.envint.2019.105106 URL
Microbial indicators of heavy metal contamination in urban and rural soils
DOI:10.1016/j.chemosphere.2005.10.009 URL [本文引用: 1]
Study on microbial properties of urban soils in Aberdeen City, Scotland, UK
苏格兰阿伯丁城市土壤的微生物特性研究
The characteristics of soil fungal community and effect factors under common tree species in urban parks of Beijing
北京城市公园常见乔木土壤真菌群落特征及影响因素
Plant diversity, soil microbial communities, and ecosystem function: Are there any links?
DOI:10.1890/02-0433 URL [本文引用: 2]
Soil pH determines microbial diversity and composition in the park grass experiment
DOI:10.1007/s00248-014-0530-2 URL [本文引用: 1]
Quality changes of soils in urban and suburban areas and its eco-environmental impacts—A review
城市土壤质量演变及其生态环境效应
Soil respiration under different vegetation types in Nanjing urban green space
南京城市公园绿地不同植被类型土壤呼吸的变化
Health risk to residents and stimulation to inherent bacteria of various heavy metals in soil
DOI:10.1016/j.scitotenv.2014.11.064 URL [本文引用: 1]
Sustainability of urban soil management: Analysis of soil physicochemical properties and bacterial community structure under different green space types
DOI:10.3390/su11051395 URL [本文引用: 1]
Analysis of soil bacterial diversity in urban parks with different ages by high throughput sequencing
基于高通量测序技术的不同年代公园绿地土壤细菌多样性
Urbanization significantly impacts the connectivity of soil microbes involved in nitrogen dynamics at a watershed scale
DOI:10.1016/j.envpol.2019.113708 URL [本文引用: 1]
Effect of soil sealing on the microbial biomass, N transformation and related enzyme activities at various depths of soils in urban area of Beijing, China
DOI:10.1007/s11368-012-0472-6 URL [本文引用: 1]
Sampling adequacy estimation for plant species composition by accumulation curves: A case study of urban vegetation in Beijing, China
DOI:10.1016/j.landurbplan.2009.12.008 URL [本文引用: 1]
Variations of soluble organic nitrogen and microbial nitrogen in deciduous forest soils along an urban-rural gradient
DOI:10.1016/j.soilbio.2003.09.011 URL [本文引用: 1]
/
〈 |
|
〉 |
