生物多样性, 2022, 30(8): 22186 doi: 10.17520/biods.2022186

综述

城市土壤微生物多样性研究进展

闫冰1, 陆晴2, 夏嵩1, 李俊生,3,*

1.江西省科学院能源研究所, 南昌 330096

2.东华理工大学测绘工程学院, 南昌 330013

3.中国地质调查局自然资源综合调查指挥中心, 北京 100055

An overview of advances in soil microbial diversity of urban environment

Bing Yan1, Qing Lu2, Song Xia1, Junsheng Li,3,*

1. Institute of Energy Research, Jiangxi Academy of Sciences, Nanchang 330096

2. Faculty of Geomatics, East China University of Technology, Nanchang 330013

3. China Geological Survey Bureau, Command Center for Comprehensive Survey of Natural Resources, Beijing 100055

通讯作者: * E-mail:lijsh@craes.org.cn

编委: 张丽梅

责任编辑: 李会丽

收稿日期: 2022-04-14   接受日期: 2022-06-23  

基金资助: 调查及评估项目(PXM2021_030102_000008-JH001-XM001)
江西省自然科学基金(20212BAB213042)

Corresponding authors: * E-mail:lijsh@craes.org.cn

Received: 2022-04-14   Accepted: 2022-06-23  

摘要

城市化对生物多样性的影响是当前生态学研究的热点之一, 引起了人们的广泛关注。土壤微生物多样性是城市生物多样性的重要组成部分, 对维持城市生态系统的健康稳定具有重要意义和作用。近年来, 已有研究关注城市土壤微生物群落结构及多样性, 回答了一些关键问题, 但缺乏系统的总结与论述。基于此, 本文分析了城市化对土壤微生物特性、群落组成、功能和多样性的影响, 总结了影响城市土壤微生物多样性的主要因素, 发现城市化改变了土壤微生物组成和功能, 并且对细菌和真菌多样性的影响存在差异, 城市环境因子通过直接和间接作用共同影响土壤微生物多样性。进一步探讨了城市土壤微生物多样性的维持与保护, 并对今后城市土壤微生物研究需要关注的问题进行了展望, 包括: (1)城市化对城市绿地土壤微生物多样性的影响机制; (2)城市土壤微生物多样性变化对生态系统多功能性的影响; (3)土壤微生物多样性与人类健康的关系。以期为城市土壤生物多样性保护研究提供参考。

关键词: 城市化; 土壤微生物; 微生物多样性; 环境因子

Abstract

Background & Aims: The impact of urbanization on biodiversity is one of the hotspot issues of ecology, which has attracted extensive attention. Soil microorganisms are the key driver of ecosystem process, which is very important in the exertion of ecosystem function and the provision of ecosystem services. Soil microbial diversity as an important part of urban biodiversity play vital roles in maintaining the health and stability of urban ecosystem. In recent years, studies have focused on the structure and diversity of urban soil microbial community and addressed some key questions, but the related systematic summary and discussion remains limited.

Progresses: Here we analyzed the impact of urbanization on soil microbial characteristics, community composition, function and diversity. Then we summarized the main factors affecting urban soil microbial diversity. We found that urbanization has changed the community composition and function of soil microorganisms, and had different impacts on bacterial and fungal diversities. Urban environmental factors affected soil microbial diversity through direct and indirect effects.

Prospects: We discussed the maintaining mechanisms and protection of urban soil microbial diversity. Finally we highlighted the questions needing attention in the future research of urban soil microorganisms. We recommend that future researches need focus on (1) influence mechanism of urbanization on soil microbial diversity in urban green space; (2) effects of microbial diversity change in urban soil on ecosystem multi-function; and (3) relationship between soil microbial diversity and human health. This could provide guidance for the protection of urban soil biodiversity.

Keywords: urbanization; soil microorganism; microbial diversity; environment factors

PDF (989KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

闫冰, 陆晴, 夏嵩, 李俊生 (2022) 城市土壤微生物多样性研究进展. 生物多样性, 30, 22186. doi:10.17520/biods.2022186.

Bing Yan, Qing Lu, Song Xia, Junsheng Li (2022) An overview of advances in soil microbial diversity of urban environment. Biodiversity Science, 30, 22186. doi:10.17520/biods.2022186.

土壤微生物在地球化学、生态系统物质循环和能量流动中扮演着重要角色, 它们通过调控土壤肥力与结构影响植物营养与健康, 进而耦合地下、地上生态过程(Curtis & Sloan, 2005)。城市土壤微生物作为城市生态系统的重要组成部分, 在缓解土壤污染、调控碳氮循环、改善土壤环境等方面发挥着不可替代的作用, 是支撑城市生态系统稳定健康的基础(Delgado-Baquerizo et al, 2016; Bond-Lamberty et al, 2018)。同时, 它们也与人体健康密切相关。例如, 有研究认为减少人与自然环境及生物多样性的接触可能会影响人类共生菌群及其免疫调节能力, 并导致免疫功能障碍和慢性炎症性疾病(von Hertzen et al, 2011; Hanski et al, 2012; Ruokolainen et al, 2015), 而增加与土壤微生物多样性接触可以有效降低过敏人群的患病率(von Hertzen et al, 2011; Hanski et al, 2012), 因此, 城市土壤微生物多样性对人类健康也有重要影响。

当前, 生物多样性受到严重威胁, 尤其是人类活动正使生物多样性加速丧失, 物种消亡速度达到了有史以来的最大值(Pimm et al, 1995)。城市化是所有人类活动中较为剧烈的方式, 被认为是威胁生物多样性的主要因素之一, 也是物种灭绝和同质化最主要的驱动力(Savard et al, 2000; McKinney, 2006; Buczkowski & Richmond, 2012)。同时, 城市化过程中城市扩张所引起的生境丧失, 比其他类型造成的生境丧失持续时间更长且更为严重(McKinney, 2002)。土壤微生物对环境敏感, 易受其变化影响, 城市化过程中的环境变化将导致土壤微生物群落结构和多样性发生显著变化(Yan et al, 2016; Novoa et al, 2020)。然而, 已有关于城市生物多样性的研究和保护多集中于城市植物和动物, 对城市土壤微生物及城市化对土壤微生物的影响等方面认识不足。

随着全球城市化快速发展, 解析城市土壤微生物群落特征及其影响机制, 是当前城市生态学所面临的重要科学问题之一, 也是生物多样性保护面临的新挑战。因此, 本文综述了城市化对土壤微生物多样性的影响, 分析了城市土壤微生物群落特征及城市化对土壤微生物的影响, 探讨了城市土壤微生物多样性的维持策略, 并对未来的研究进行了展望, 旨在为城市土壤微生物多样性的保护、生态系统服务功能的维持及城市生态学研究提供参考。

1 城市化对土壤微生物群落组成特征的影响

城市化的快速推进已经成为全球普遍趋势, 据估计到2050年, 在全球范围内约68%的人口将居住在城市(UN DESA, 2018)。城市化给人类社会带来巨大经济发展和生活便利的同时, 也使原生生态系统遭到毁灭性破坏, 更带来了前所未有的生态环境问题, 如: 土壤污染、水体污染、大气沉降、城市热岛、生境破碎化和土地利用方式转变等, 对城市环境中的生物多样性产生了严重威胁(Grimm et al, 2008; McKinney, 2008)。城市化过程沿中心城区向外扩展形成了城市中心区-城市郊区-自然区域的城市化梯度, 也造就了城市化环境梯度(图1)。城市化梯度上环境类型多样、空间异质性较大, 土壤微生物群落组成和分布也存在差异(Yan et al, 2016; Wang et al, 2017)。城市发展过程中的基础设施建设、城市道路交通等对城市土壤产生了强烈的扰动, 造成土壤孔隙度与渗透性减小、土壤污染、土壤养分流失、土壤酸碱度变化、土壤生物群落变化等(张甘霖等, 2003), 引起城市土壤的理化性质、生物特征等方面的改变(Scharenbroch et al, 2005; Kaye et al, 2006), 进而对土壤微生物群落产生影响。

图1

图1   城市化环境梯度 (改编自网络图片)。

箭头表示城市化梯度方向。

Fig. 1   The environmental gradients of urbanization (adapted from the web images).

Arrow indicates the direction of the urbanization gradient.


1.1 城市化对土壤微生物量的影响

一般来说, 城市土壤的微生物生物量低于农村土壤(Zhu & Carreiro, 2004; Rai et al, 2018), 如符方艳和陆宏芳(2015)基于城区-近郊-远郊的城市化梯度, 发现土壤微生物生物量在远郊最高, 而城区土壤微生物量显著低于远郊。还有研究发现城市化导致土壤中微生物个体总数减少(侯颖等, 2014)。对北京城市土壤微生物量研究也得到相似结论, 即沿城市到自然区域的城市化梯度上土壤微生物量呈现出增加的趋势(Zhao et al, 2012)。但也有学者认为, 城市化并没有对土壤微生物量产生严重影响, 相比于自然土壤, 城市土壤微生物量碳、氮都没有呈现出显著的减少, 反而略有升高(王焕华等, 2005)。Wang等(2017)对厦门城市土壤微生物研究发现, 虽然相比于城区和郊区, 自然区域的土壤微生物量仍为最高, 但城区土壤细菌微生物量略高于郊区。这可能是城市土壤受人类活动频繁影响, 土壤有机碳含量升高, 激发了土壤微生物和酶的活性, 最终使土壤微生物量增大(Madejón et al, 2001)。

1.2 城市化对土壤微生物群落组成的影响

土壤微生物群落组成与土壤环境紧密相关, 城市化发展过程造成土壤环境变化进而对城市土壤微生物群落组成及分布特征产生影响。随着高通量测序技术的广泛应用, 当前我们对城市土壤微生物群落组成已有了深刻的认识。基于已有的研究, 我们发现城市土壤细菌的优势菌门是变形菌门、酸杆菌门、拟杆菌门、放线菌门、芽单胞菌门和疣微菌门, 土壤真菌的优势菌门(相对丰度 > 1%)主要包括, 子囊菌门、担子菌门和接合菌门(表1)。同时, 沿城市化梯度(城市-郊区-农村)土壤细菌群落组成呈现显著差异(Wang et al, 2017)。虽然在门分类水平上城市土壤主要细菌、真菌存在较高的相似性(Ramirez et al, 2014; Huot et al, 2017; Tan et al, 2019), 但属、种组成及其相对丰度因城市化水平不同而存在差异(Xu et al, 2014; Yan et al, 2016; Tan et al, 2019)。笔者发现, 虽然土壤微生物群落组成在城市化过程中发生明显变化, 但其在城市化梯度上的分布规律仍不清楚, 还需进一步研究。

表1   城市土壤微生物群落组成

Table 1  Microbial community composition in urban soil

研究区域
Study area
研究对象
Research object
环境梯度
Environmental gradient
微生物类群
Microbial taxa
优势菌门
Dominant phylum
文献来源
References
中国16个城市
16 representative cities, China
公园土壤
Park soil
-细菌 Bacteria变形菌门、放线菌门、酸杆菌门、浮霉菌门、绿弯菌门、拟杆菌门 Proteobacteria, Actinobacteria, Acidobacteria, Planctomycetes, Chloroflexi, and BacteroidetesXu et al, 2014
中国广东东莞
Dongguan, Guangdong, China
公园土壤
Park soil
城市-郊区-农村 Urban-Suburban-Rural细菌 Bacteria变形菌门、酸杆菌门、放线菌门、疣微菌门、WPS-2、浮霉菌门、绿弯菌门、拟杆菌门 Proteobacteria, Acidobacteria, Actinobacteria, Verrucomicrobia, WPS-2, Planctomycetes, Chloroflexi, and BacteroidetesTan et al, 2019
真菌 Fungi子囊菌门、担子菌门、接合菌门
Ascomycota, Basidiomycota, and Zygomycota
美国纽约
New York, USA
绿色基础设施土壤/生长介质 Green infrastructure soil/substrate街边绿地-城市森林 Street green space-Urban forest细菌 Bacteria变形菌门、酸杆菌门、拟杆菌门、放线菌门、疣微菌门、浮霉菌门、绿弯菌门 Proteobacteria, Acidobacteria, Bacteroidetes, Actinobacteria, Verrucomicrobia, Planctomycetes, and ChloroflexiJoyner et al, 2019
西班牙加利西亚 Galicia, Spain海滩沙丘
Coastal dune
城市海滩-自然海滩 Urban beaches-Natural beaches细菌 Bacteria变形菌门、放线菌门、酸杆菌门、拟杆菌门
Proteobacteria, Actinobacteria, Acidobacteria, and Bacteroidetes
Novoa et al, 2020
美国纽瓦克市 Newark, USA树木根际土壤 Tree rhizosphere soil城市-郊区-农村 Urban-Suburban-Rural细菌 Bacteria浮霉菌门、变形菌门、绿弯菌门、酸杆菌门
Planctomycetes, Proteobacteria, Chloroflexi, and Acidobacteria
Rosier et al, 2021
中国北京
Beijing, China
公园土壤
Park soil
现代公园-古典公园 Young park-Old park细菌 Bacteria酸杆菌门、变形菌门、绿弯菌门、放线菌门 Acidobacteria, Proteobacteria, Chloroflexi, and Actinobacteria张骏达等, 2019
中国福建
Fujian, China
草坪土壤 Turfgrass soil城市-郊区-自然区域 Urban-Suburban-Natural细菌 Bacteria变形菌门、酸杆菌门、放线菌门、装甲菌门、厚壁菌门、疣微菌门 Acidobacteria, Acidobacteria, Actinobacteria, Armatimonadetes, Firmicutes, and VerrucomicrobiaZhang et al, 2020
美国芝加哥 Chicago, USA公园/街道/居民区绿地土壤 Park/Street/Resid-ential soil人口密度/绿地类型 Population densities/Greenspace types细菌 Bacteria变形菌门、酸杆菌门、拟杆菌门、疣微菌门、放线菌门 Proteobacteria, Acidobacteria, Bacteroidetes, Verrucomicrobia, and ActinobacteriaWang et al, 2018
芬兰赫尔辛基、拉赫蒂
Helsinki and Lahti, Finland
公园土壤
Park soil
公园年龄: 10, 50, >100 Park age: 10, 50, >100细菌 Bacteria变形菌门、酸杆菌门、放线菌门、绿弯菌门、芽单胞菌门、硝化螺旋菌门 Proteobacteria, Acidobacteria, Actinobacteria, Chloroflexi, Gemmatimonadetes, and NitrospiraeHui et al, 2017
真菌 Fungi子囊菌门、担子菌门、接合菌门、球囊菌门、壶菌门 Ascomycota, Basidiomycota, Zygomycota, Glomeromycota, and Chytridiomycota
中国北京
Beijing, China
公园/街道/居民区绿地土壤
Park/Street/Resid-ential soil
城市环路: 2环、2-3环、3-4环、4-5环、5环 Urban ring road: 2H, 2-3H, 3-4H, 4-5H, 5H细菌 Bacteria变形菌门、酸杆菌门、拟杆菌门、放线菌门、芽单胞菌门、疣微菌门 Proteobacteria, Acidobacteria, Bacteroidetes, Actinobacteria, Gemmatimonadetes, and VerrucomicrobiaYan et al, 2016
中国北京
Beijing, China
公园土壤
Park soil
公园年龄: 10, 30, >100年
Park age: 10, 30, > 100
细菌 Bacteria变形菌门、酸杆菌门、拟杆菌门、放线菌门、芽单胞菌门、疣微菌门、浮霉菌门 Proteobacteria, Acidobacteria, Bacteroidetes, Actinobacteria, Gemmatimonadetes, Verrucomicrobia, and PlanctomycetesYan et al, 2021
美国纽约
New York, USA
绿色基础设施土壤/生长介质 Green infrastructure soil/subtrate绿色屋顶-街旁洼地-非工程化绿色基础设施 Green roof-Bioswale-Non-engineered Green infrastructure细菌 Bacteria变形菌门、放线菌门、酸杆菌门、拟杆菌门、浮霉菌门、疣微菌门、厚壁菌门、绿弯菌门、芽单胞菌门 Proteobacteria, Actinobacteria, Acidobacteria, Bacteroidetes, Planctomycetes, Verrucomicrobia, Firmicutes, Chloroflexi, and GemmatimonadetesGill et al, 2020
真菌 Fungi子囊菌门、担子菌门、被孢霉门、球囊菌门、油壶菌门 Ascomycota, Basidiomycota, Mortierellomycota, Glomeromycota, and Olpidiomycota
研究区域
Location
研究对象
环境梯度
Environmental gradient
微生物类群
Microbial taxa
优势菌门
Dominant phylum
文献来源
References
中国北京
Beijing, China
公园/居民区/街道绿地土壤 Park/Residential/ Street soil公园-街道-居民区-工业区绿地 Park-Street-Residential- Industrial green space细菌 Bacteria变形菌门、酸杆菌门、绿弯菌门、放线菌门、芽单胞菌门、拟杆菌门 Proteobacteria, Acidobacteria, Chloroflexi, Actinobacteria, Gemmatimonadetes, and BacteroidetesZhang et al, 2019
中国北京
Beijing, China
公园土壤
Park soil
公园年龄
Park ages
真菌 Fungi子囊菌门、担子菌门、被孢霉门、壶菌门、隐真菌门 Ascomycota, Basidiomycota, Mortierellomycota, Chytridiomycota, and Cryptomycota于天赫等, 2021

新窗口打开| 下载CSV


城市环境中土地覆盖类型多样, 不同土地覆盖类型承受的城市压力和人类活动干扰强度不同(Reese et al, 2016), 进而引起土壤生境差异, 导致土壤微生物群落组成不同。例如, Hu等(2018)对北京5种典型的土地覆盖类型(不透水的表面、可渗透的路面、灌木、草坪和路边的树木)下土壤细菌群落研究发现, 土地覆盖类型改变了细菌群落组成, 在不透水表面之下的土壤细菌群落组成与其他的土地覆盖类型存在差异。在垂直方向上(即不同土层深度)细菌群落组成也呈现出差异。表现为, 城市土壤剖面不同深度细菌群落组成发生变化, 某些细菌门, 如拟杆菌门、浮霉菌门, 在表层土壤中呈现较为丰富的情况, 而在较深的土层中则有另外的一些菌门, 如绿弯菌门、芽单胞菌门、硝化螺旋菌门、酸杆菌门, 丰度更高(Michel & Williams, 2011; Eilers et al, 2012)。

土壤微生物可调控生物地球化学循环, 其群落结构对生态系统功能发挥起决定性作用(Fuhrman, 2009)。沿城市-郊区-农村梯度, 土地利用方式和人口密度呈现明显差异, 土壤细菌群落结构也显示出显著差异(Wang et al, 2017)。一般来说, 在城市建成区, 土壤微生物群落物种和结构不同于城市边缘及周边农耕区, 建成区的细菌和真菌所占的比例高于郊区和农村, 而放线菌占比则是农村要高于城市建成区和郊区(侯颖等, 2014)。杨元根等(2000)研究发现, 城市建成区和邻近农耕区土壤微生物群落结构发生了改变。闫冰等(2016)对北京城市化梯度下土壤微生物的研究发现, 居民区内绿地和公园内绿地中土壤微生物群落结构具有显著的空间分异特征, 而街道边绿地在城市环路梯度上无明显的土壤微生物群落结构分异, 说明不同类型绿地土壤微生物群落结构受城市化影响不同。现有研究表明, 城市化发展过程中土壤微生物群落结构发生明显变化。基于高通量测序分析也发现, 土壤细菌群落结构在不同城市发展梯度下存在显著差异(Yan et al, 2016), 进一步佐证了上述观点。

对城乡梯度上真菌研究发现, 与周边乡村对照森林相比, 城区森林中植物幼苗的外生菌根真菌的群落结构明显不同(Karpati et al, 2011)。这一结果在荒漠环境下也被证实, 在荒漠地区的城市和乡村环境中丛枝菌根真菌群落结构存在显著差异(Stabler et al, 2001; Cousins et al, 2003)。当前研究发现, 城市化对真菌群落结构产生影响, 然而, 相对于土壤细菌群落结构而言, 关于城市土壤真菌群落结构的认识相对缺乏。

2 城市化对土壤微生物多样性的影响

土壤中蕴藏着巨大的微生物多样性, 对于土壤功能的发挥(包括碳、氮及其他养分转化、温室气体排放等)及整个生态系统恢复力的维持都极为重要(Allison & Martiny, 2008; Gkorezis et al, 2016; Reese et al, 2016; Neilson et al, 2017)。尽管自2000年以来, 有关土壤生物多样性的知识积累呈指数增长, 但迄今为止, 相关研究工作主要集中在自然或农业环境上(De Kimpe & Morel, 2000), 对城市土壤的调查相对较少(仅约1%的土壤研究涉及城市土壤, 2020年2月Web of Science查询结果)。因此, 人们对城市土壤的微生物多样性特征, 及其在城市生态系统服务功能中扮演的角色, 以及在改善城市居民生活质量上发挥的重要作用等方面所知甚少(McDonnell & Hahs, 2008; Pataki et al, 2011; Morel et al, 2015)。

2.1 城市化梯度上土壤微生物多样性分布特征

城市化过程中, 随着建设时间和人类活动强度的不同形成了城市化环境梯度, 对土壤微生物多样性产生了影响。例如, 沿着北京不同城市环路梯度(2环-5环), 土壤细菌多样性呈先下降后升高的趋势(Yan et al, 2016)。此外, 在城市中心区-近郊-远郊的城市化梯度上, 与远郊乡村或自然生态系统相比, 城市环境受高度干扰和破碎化的生态系统, 其草坪土壤细菌多样性低于乡村农田(Wang et al, 2017), 并且城区森林中通常显示出较低的菌根真菌物种丰富度和多样性(Ochimaru & Fukuda, 2007)。Epp Schmidt等(2017)通过对全球5个城市的土壤微生物研究发现, 城市化导致土壤真菌多样性丧失及群落同质性, 但土壤中古菌和细菌的多样性不易受城市化影响。即使在城市内, 不同类型绿地的土壤微生物多样性也不同。城市绿地中, 城市公园被认为是支撑居民福祉的重要绿地类型。尽管城市公园的主要作用是休闲娱乐, 但它们同时也是城市环境中生物多样性的重要避难所。城市公园相对于其他城市绿地而言生境类型多样, 因此, 公园土壤微生物多样性显著高于居民区绿地(Wang et al, 2018)。同时, 城市公园的历史年限也对土壤微生物群落多样性产生影响, 历史年限长的公园土壤微生物群落功能多样性及α多样性都高于历史年限短的公园(闫冰等, 2019; 张骏达等, 2019)。综上, 城市化改变了土壤微生物多样性, 但其对土壤细菌和真菌的影响不同。

城市化造成生物同质化并将导致全球生物多样性丧失(McKinney & Lockwood, 1999; McKinney et al, 2006; Baiser et al, 2012), 但有研究发现城市化似乎不影响土壤细菌多样性(Epp Schmidt et al, 2017), 意味着城市化并非必然导致土壤微生物多样性的丧失。实际上, 城市化过程中城市环境被人类不断改变, 这种条件更有利于生态幅更宽的物种生存(van Rensburg et al, 2009; Magle et al, 2012; Russo & Ancillotto, 2015)。这些物种能够应对多种多样的食物资源或极端温度条件, 而且它们通常表现出高度的表型(行为、生理或形态)可塑性。Ramirez等(2014)对纽约城市中央公园土壤微生物多样性研究, 发现即使在人工管理的土壤系统中仍然具有丰富的土壤微生物多样性, 但中央公园土壤中主要的细菌、古菌和真核生物的种系型的相对丰度和全球样品数据非常相似。意味着, 当前对于城市土壤微生物多样性分布格局及其形成机制还未能形成统一认识, 具体研究结果因研究尺度、绿地类型、微生物类群的不同而存在较大差异。

2.2 影响城市绿地土壤微生物多样性的主要因素

土壤微生物多样性是城市生物多样性的重要组成部分, 支撑着城市生态系统的养分循环转化和污染物降解, 为城市生态系统的健康稳定提供基础保障。土壤微生物本身具有极其丰富的多样性, 对环境变化敏感。城市化过程中的大量人类活动和环境变化, 引起地上植物群落、生物量及土壤理化特征、结构及功能发生变化(Pickett & Cadenasso, 2006), 进而影响土壤微生物多样性, 并且不同影响因素的作用方式不同(图2)。

图2

图2   城市绿地土壤微生物多样性影响因素

Fig. 2   Impacting factors of soil microbial diversity in urban green space


2.2.1 土壤理化性质对土壤微生物多样性的影响

土壤微生物与土壤环境特征密切相关(Singh & Walker, 2006), 土壤pH (Fierer & Jackson, 2006)、土壤含水量(Brockett et al, 2012)、土壤类型(Wu et al, 2008)、土壤粒径(Wang et al, 2018)、盐分(Lozupone & Knight, 2007; Rajaniemi & Allison, 2009)、土壤养分有效性(Jesus et al, 2009)、有机碳和碳氮比(Shen et al, 2013)等均被认为是影响微生物群落的重要因子, 其中土壤pH被认为是微生物多样性变化最好的预测因子之一(Chu et al, 2010; Zhalnina et al, 2015)。城市建设过程中, 人为活动(翻动、压实等)将改变城市土壤pH、容重、孔隙度及含水量和养分等, 进而对土壤微生物多样性产生影响(张甘霖等, 2003)。例如, Xu等(2014)对中国有代表性的16个城市土壤细菌群落的研究发现, pH是与土壤细菌群落变化最相关的因子。于天赫等(2021)通过对北京城市公园乔木土壤真菌的研究发现, 土壤pH、土壤养分和水分影响土壤真菌群落多样性, 城市土壤腐生真菌多样性与土壤pH呈正相关关系。对城市绿地土壤微生物多样性的进一步研究发现, 土壤含水量、土壤含砂量也与土壤微生物多样性密切相关(Wang et al, 2018)。就已有研究而言, 土壤理化性质被认为是影响城市绿地土壤微生物多样性的主要环境因子, 且pH是最重要的因子之一。

2.2.2 土地利用对土壤微生物多样性的影响

快速的城市扩张和人类扰动, 通过改变土地利用对未封闭的城市绿地土壤生物化学过程和土壤质量产生强烈的影响(Betts, 2007)。城市发展过程中, 农田、森林、草地等转换为城市用地, 土地利用类型的转变可能造成土壤微生物多样性变化。对比研究发现, 城市残留森林中土壤细菌的多样性指数(物种丰富度和Shannon指数)显着高于城市公园, 而土壤真菌多样性在两种绿地空间类型中相似(Barrico et al, 2018); 并且研究发现与农村土壤相比, 城市土壤中细菌的多样性有所减少(Huot et al, 2017; Wang et al, 2017; Parajuli et al, 2018)。如前所述, 土壤微生物群落的多样性也受到不同城市土地利用类型的影响。例如, Gill等(2017)对布朗克斯区(纽约州, 美国)的生态湿地、公园和树坑中细菌群落的比较研究发现, 与公园和树坑相比, 重建土壤(生态湿地)中细菌群落的多样性增加了。与此同时, 城市内部,不同功能区绿地土壤真菌α多样性指数存在差异(郭大陆等, 2022)。此外, 对城市内部不同类型绿地之间的土壤微生物多样性比较发现, 细菌和真菌物种丰富度在公园和路边绿岛都没有显著差异(Reese et al, 2016), 且对城市中3种土地利用类型的土壤微生物研究也发现, 城市不同土地利用类型似乎不影响细菌多样性(Epp Schmidt et al, 2017)。究其原因, 笔者认为可能是土地利用往往通过间接作用影响土壤微生物多样性。一方面, 土地利用类型的变化通过改变土壤理化特征及生境作用于土壤微生物; 另一方面, 土地利用类型的转变在一定程度上也涉及到植被类型和植物群落的变化, 这也决定了土地利用变化可能耦合植物群落共同影响土壤微生物多样性。

2.2.3 植物对土壤微生物多样性的影响

植物与土壤微生物关系密切, 不同植物物种的生物化学组成不同, 植物多样性的变化可能会改变养分资源的质量和数量, 进而影响土壤微生物群落(Zak et al, 2003; Neilson et al, 2008); 并且植物物种差异影响土壤养分库和凋落物及根系分泌物化学组成, 从而影响土壤细菌群落多样性(Orwin et al, 2006; Berg & Smalla, 2009)。基于实验研究发现, 增加植物物种丰富度能导致微生物群落功能多样性的增加(Zak et al, 2003; Loranger-Merciris et al, 2006)。此外, 植物根系的分泌物是土壤微生物重要的养分来源, 植物通过根系分泌物与土壤微生物相互之间共同进化, 最终引起土壤微生物群落呈现出多样性。例如, 有研究显示, 即使在土壤特征相同的土地上不同植物根际对应的微生物多样性也存在显著差异(Garbeva et al, 2008; Berg & Smalla, 2009)。这说明植物以凋落物和根系分泌物为纽带, 将植物与土壤微生物密切联系在一起, 进而影响土壤微生物多样性。

城市绿地设计和建设过程中, 人为引进了大量的外来植物物种, 例如, 中国北京53%的植物是外来物种(Zhao et al, 2010), 某些外来物种适应环境能力较强, 对养分、水分和空间的利用能力大于本地种, 如果后期管理不当很容易造成入侵。已有调查发现, 城市绿地外来植物的入侵对土壤微生物多样性产生影响(Kourtev et al, 2002; van der Putten et al, 2007), 不同植被类型下外生菌根真菌群落的丰富度和多样性都存在显著差异(Barrico et al, 2012), 意味着城市外来植物的引入造成植物群落变化, 进而对土壤微生物多样性产生影响。

然而, 也有研究持相反观点, 认为植物多样性与土壤微生物多样性间无显著相关关系(Meier & Bowman, 2008; McGuire et al, 2013; Ramirez et al, 2014; Prober et al, 2015), 一方面城市绿地受人为管理影响严重, 地上凋落物经常被清扫, 因此不会对土壤微生物产生影响; 另一方面, 植物多样性与凋落物化学成分多样性无显著相关性, 即使物种组成不同但它们凋落物的化学组成成分可能相同(Meier et al, 2008)。同样, 有研究发现, 无论是在城市公园还是在绿地中, 植物多样性似乎都不是土壤微生物多样性的主要决定因素(McGuire et al, 2013; Ramirez et al, 2014), 进一步证实了上述观点。城市生态系统是典型的人工生态系统, 植物物种主要受人为控制, 这一特殊性导致植物对土壤微生物的影响与已知的其他生态系统的结果可能存在差异, 因此, 城市植物对土壤微生物的影响仍需进一步研究。

2.2.4 城市污染对土壤微生物多样性的影响

城市化过程中人类活动剧烈, 导致城市土壤普遍呈现严重污染的状况(De Miguel et al, 1998), 主要包括重金属、持久性有机污染物(POPs)、持久性有毒污染物(PTS) (Perrodin et al, 2011)和抗生素抗性基因(ARGs) (Yan et al, 2019)。人类活动产生的重金属在土壤中富集, 随之而来的城市土壤重金属污染问题日益突出(McBride et al, 2014), 城市土壤中重金属和有机污染物的累积, 以及生活废弃物和废水中污染物直接或间接进入土壤(李有文等, 2017), 对土壤微生物多样性产生了影响(杭小帅等, 2010)。例如, 有研究发现, 土壤微生物多样性随着重金属浓度的增加而降低(Xie et al, 2016); Zhang等(2015)的研究表明, 土壤重金属污染显著改变土壤细菌多样性; Singh等(2019)研究发现, 城市受污染的土壤中细菌群落对重金属污染敏感, 尤其是与Cu、Zn和Pb关系密切。但不同土壤微生物类群受土壤污染的影响不同, 相比于土壤细菌, 土壤真菌群落更易受重金属污染影响(Rex et al, 2018; Abo Shelbaya et al, 2021)。例如, 于天赫等(2021)研究发现, 土壤真菌丰富度指数与重金属铅含量呈负相关关系; 并且郭大陆等(2022)认为, 随重金属铅污染程度加深土壤真菌多样性降低。与城市重金属污染情况类似, 城市绿地土壤中多环芳烃(PHAs)显著高于周边农村, 城市土壤普遍存在有机污染问题(蒋煜峰, 2009; Peng et al, 2016)。相比于重金属, 持久性有机污染物和持久性有毒污染物具有挥发特性, 对土壤微生物更具危害性, 然而相关研究不足。城市化过程中, ARGs丰度和分布特征也受到显著影响, 例如, 工业因素(Yan et al, 2019)和再生水灌溉(Wang et al, 2014)都引起城市绿地ARGs丰度升高。ARGs通过水平基因转移的方式进入微生物体内, 并在微生物间进行扩散传播。这使得某些微生物类群成为特定抗生素抗性基因的宿主, 进而产生多重耐药性(Wichmann et al, 2014)。因此, 当土壤中存在抗生素输入时, 某些类群可能消失, 而具有抗生素抗性的类群则大量繁殖, 进而可能对土壤微生物多样性产生影响。然而, 相关研究当前多关注于土壤微生物群落结构对抗性基因丰度的影响(Forsberg et al, 2014; Dunivin & Shade, 2018), ARGs如何影响土壤微生物多样性仍需进一步研究。

综上, 以往研究虽然对城市绿地土壤微生物多样性影响因子进行了报道, 但大部分研究侧重于环境因子, 尤其是土壤理化因子, 与微生物群落变化的关系, 量化分析环境因素作用程度的研究相对缺乏, 且已有研究中涉及的环境因子对城市土壤微生物群落空间差异的解释有限(Xu et al, 2014; Yan et al, 2016; Wang et al, 2017), 意味着城市绿地土壤微生物多样性的关键驱动因子仍不明确。

3 城市化对土壤微生物群落功能的影响

土壤微生物是凋落物分解、元素循环转化、气候调节和污染物消纳等土壤及生态系统功能发挥的引擎, 因此城市化对土壤微生物群落功能的影响正在成为城市土壤生态学的研究热点。例如, 研究发现, 空间轴上的不同城市土壤特性或时间轴上的同一城市化历史均导致微生物碳、基础呼吸和微生物代谢熵不同(Yang et al, 2006; Ghosh et al, 2016), 即使是同一城市, 土壤剖面深度也影响其微生物特性, 城市化主要对表层土壤微生物产生影响, 而对下层土壤微生物的影响较小, 如Demina等(2018)研究发现, 表层土壤和下层土壤微生物呼吸存在差异, 并发现土地利用历史也导致城市地区表层土壤微生物呼吸存在高度的空间变异。此外, 城市土地利用类型多样, 即使同一土地利用类型也存在不同植被类型, 如公园内的草坪、疏林和近自然林等, 也造成土壤呼吸速率显著不同, 并且具有显著的季节变化特征(张鸽香等, 2010)。

在城市-郊区-农村梯度上, 与城市和郊区的草地土壤相比, 农村农田土壤N2O排放潜力和反硝化活性更高, 这表明由于城市化导致的土地利用变化可能会减少反硝化过程中N2O的排放(Wang et al, 2017)。进一步对城乡环境梯度森林土壤微生物研究发现, 相比远郊林、城市林, 乡村自然林土壤微生物群落碳源代谢能力最高, 城乡梯度上土壤微生物群落碳源利用能力存在差异(何越等, 2021), 并且城市内不同类型绿地土壤微生物群落偏向于利用不同类型碳源, 但对羧酸类碳源的利用能力都较弱(闫冰等, 2016)。此外, 即使城市内的同一土地利用类型, 不同的利用历史也会导致土壤微生物功能变化(Hermans et al, 2020)。例如, 闫冰等(2019)研究发现, 不同历史年限公园土壤微生物利用碳源能力存在差异, 历史年限较短的公园对多聚物类碳源利用能力强。由此可见, 土壤微生物功能在城市不同生境下具有明显的分异特征, 但已有研究停留在单一功能描述上, 对城市土壤微生物功能的认识不足, 下一步需利用多组学技术深入探究城市化对土壤微生物群落功能的影响。

4 保护和维持城市土壤微生物多样性

4.1 保护城市土壤微生物多样性

土壤微生物具有分解、转化和运输并参与生物地球化学循环以及土壤结构的形成和维持等功能, 对于陆地生态系统服务功能的稳定发挥不可或缺, 因此对于人类社会的发展也必不可少。此外, 最近研究表明人们广泛接触环境中因土地利用类型多样而产生的微生物多样性, 可以有效降低过敏症的患病率(von Hertzen et al, 2011; Hanski et al, 2012), 因此, 这可能是一种潜在的更有益于人类健康的途径。与之相反, 减少人与自然环境及生物多样性的接触可能会对人类共生菌群及免疫调节能力产生不利影响, 并导致免疫功能障碍和慢性炎症性疾病(von Hertzen et al, 2011; Hanski et al, 2012; Ruokolainen et al, 2015)。White等(2019)通过大量调研认为, 每周花费至少2 h亲近自然环境将有助于身心健康, 并可能对控制疾病有积极作用。进一步的研究发现, 广泛接触环境中的土壤微生物多样性, 可改善人体微生物多样性增强免疫系统调节能力(Roslund et al, 2020; Selway et al, 2020)。由此可见, 城市绿地土壤微生物多样性与居民健康密切相关, 城市土壤微生物多样性的维持和保护, 不论是对城市可持续发展还是对城市居民健康, 都显得尤为重要。

4.2 维持城市土壤微生物多样性

土壤微生物与地上植物和其他大型生物不同, 人们很少能直接管理土壤微生物, 因此, 维护土壤生物多样性极具挑战性。一般而言, 增加地上生境的复杂性会促进地下生物多样性(Byrne, 2007; Ossola et al, 2015)。例如, Mills等(2020)认为植被重建可以通过创造更多的野生栖息地条件, 进而改善城市土壤微生物群落多样性。McGuire等(2013)对纽约市绿化屋顶网络研究表明, 虽然屋顶绿地基质人工化程度比较高, 但也为微生物群落提供了栖息地。尽管屋顶绿地土壤微生物量低于同一城市公园绿地, 但仍具有较高的微生物量(McGuire et al, 2013)。屋顶绿地基质也是多种真菌种群的栖息地, 这些真菌种群在污染和高度干扰的环境中具有很强的生存能力(McGuire et al, 2013),说明在这些人类活动强烈的环境中也会形成特殊的微生物群落生态。此外, 具有自然残留植被的城市公园, 通常是生物多样性丰富的区域(Shanahan et al, 2015)。不同种类的城市景观提供了不同水平的生物多样性, 因此, 可以针对不同的需求进行城市景观管理以提高土壤微生物多样性。

人们已经认识到, 维持多样化的土壤微生物群落对于维持城市景观中的土壤长期稳定和人居环境健康至关重要。然而, 当前关于城市环境中土壤微生物多样性维持和保护的文献相对较少, 对于如何调控土壤微生物多样性仍是一个需要深入探究的方向。

5 展望

中国正处于并将持续处于快速城市化进程中。城市生物多样性的研究一直受到大量关注, 城市地上生物多样性的研究已经为人们认识城市化对生物多样性的影响提供了基础。对城市生物多样性的研究, 一方面对生物多样性的认识和保护起到积极作用, 另一方面为城市生态学发展提供理论基础。城市化是生物多样性灭绝和同质化的主要原因之一, 但是由于微生物本身的复杂性及城市环境的复杂性等方面的限制, 关于城市化对土壤微生物多样性的影响仍有待进一步研究。基于对已有研究的梳理, 今后相关研究应注重以下3个方面:

(1)城市化对城市绿地土壤微生物多样性的影响机制。当前, 城市化对土壤微生物多样影响的相关研究仍然不足, 仍存在未知的影响因子, 且已有研究多集中于相关分析, 具有很大的局限性。今后的研究需要进一步解决尺度问题, 在根际、不同大小绿地以及城市不同功能区尺度上开展研究, 并结合地理信息系统技术手段揭示城市景观格局下土壤微生物多样性空间格局特征, 通过多学科交叉融合探究城市化对土壤微生物多样性的驱动机制, 为研究城市土壤微生物多样性维持策略提供基础。

(2)城市土壤微生物多样性变化对生态系统多功能性的影响。城市化引起土壤微生物群落结构和多样性变化, 应进一步运用多组学技术结合生物信息学分析手段, 深入探究土壤微生物群落功能变化特征, 明确土壤微生物多样性变化对土壤碳氮循环、污染物降解、养分维持、气候调节等生态系统功能发挥的影响, 对理解城市土壤微生物如何保障城市生态系统服务功能具有重要意义。

(3)土壤微生物多样性与人类健康的关系。城市绿地中耐药菌和ARGs传播对人类健康存在潜在风险。应进一步研究城市土壤中耐药菌和ARGs的空间分布规律和迁移特征, 明确土壤微生物多样性在ARGs流动中的作用, 探索土壤微生物多样性在改善人居环境中的作用, 并通过维护城市土壤微生物多样性保障人类健康。

参考文献

Abo Shelbaya MM, Abd El-Azeim MM, Menesi AM,Abd El-Mageed MM (2021)

Heavy metals and microbial activity in alluvial soils affected by different land-uses

Journal of Soil Sciences and Agricultural Engineering, 12, 165-177.

DOI:10.21608/jssae.2021.158670      URL     [本文引用: 1]

Allison SD, Martiny JBH (2008)

Resistance, resilience, and redundancy in microbial communities

Proceedings of the National Academy of Sciences, USA, 105, 11512-11519.

[本文引用: 1]

Baiser B, Olden JD, Record S, Lockwood JL, McKinney ML (2012) Pattern and process of biotic homogenization in the New Pangaea. Proceedings of the Royal Society B: Biological Sciences, 279, 4772-4777.

[本文引用: 1]

Barrico L, Azul AM, Morais MC, Coutinho AP, Freitas H, Castro P (2012)

Biodiversity in urban ecosystems: Plants and macromycetes as indicators for conservation planning in the city of Coimbra (Portugal)

Landscape and Urban Planning, 106, 88-102.

DOI:10.1016/j.landurbplan.2012.02.011      URL     [本文引用: 1]

Barrico L, Castro H, Coutinho AP, Gonçalves MT, Freitas H, Castro P (2018)

Plant and microbial biodiversity in urban forests and public gardens: Insights for cities’ sustainable development

Urban Forestry & Urban Greening, 29, 19-27.

[本文引用: 1]

Berg G, Smalla K (2009)

Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere

FEMS Microbiology Ecology, 68, 1-13.

DOI:10.1111/j.1574-6941.2009.00654.x      URL     [本文引用: 2]

Betts R (2007)

Implications of land ecosystem‐atmosphere interactions for strategies for climate change adaptation and mitigation

Tellus B: Chemical and Physical Meteorology, 59, 602-615.

DOI:10.1111/j.1600-0889.2007.00284.x      URL     [本文引用: 1]

Bond-Lamberty B, Bailey VL, Chen M, Gough CM, Vargas R (2018)

Globally rising soil heterotrophic respiration over recent decades

Nature, 560, 80-83.

DOI:10.1038/s41586-018-0358-x      URL     [本文引用: 1]

Brockett BFT, Prescott CE, Grayston SJ (2012)

Soil moisture is the major factor influencing microbial community structure and enzyme activities across seven biogeoclimatic zones in western Canada

Soil Biology & Biochemistry, 44, 9-20.

DOI:10.1016/j.soilbio.2011.09.003      URL     [本文引用: 1]

Buczkowski G, Richmond DS (2012)

The effect of urbanization on ant abundance and diversity: A temporal examination of factors affecting biodiversity

PLoS ONE, 7, e41729.

[本文引用: 1]

Byrne LB (2007)

Habitat structure: A fundamental concept and framework for urban soil ecology

Urban Ecosystems, 10, 255-274.

DOI:10.1007/s11252-007-0027-6      URL     [本文引用: 1]

Chu HY, Fierer N, Lauber CL, Caporaso JG, Knight R, Grogan P (2010)

Soil bacterial diversity in the Arctic is not fundamentally different from that found in other biomes

Environmental Microbiology, 12, 2998-3006.

DOI:10.1111/j.1462-2920.2010.02277.x      URL     [本文引用: 1]

Cousins JR, Hope D, Gries C, Stutz JC (2003)

Preliminary assessment of arbuscular mycorrhizal fungal diversity and community structure in an urban ecosystem

Mycorrhiza, 13, 319-326.

DOI:10.1007/s00572-003-0239-4      URL     [本文引用: 1]

Curtis TP, Sloan WT (2005)

Exploring microbial diversity—A vast below

Science, 309, 1331-1333.

PMID:16123290      [本文引用: 1]

de Kimpe CR, Morel JL (2000)

Urban soil management: A growing concern

Soil Science, 165, 31-40.

DOI:10.1097/00010694-200001000-00005      URL     [本文引用: 1]

de Miguel E, de Grado MJ, Llamas JF, Martı́n-Dorado A, Mazadiego LF (1998)

The overlooked contribution of compost application to the trace element load in the urban soil of Madrid (Spain)

Science of the Total Environment, 215, 113-122.

DOI:10.1016/S0048-9697(98)00112-0      URL     [本文引用: 1]

Delgado-Baquerizo M, Maestre FT, Reich PB, Jeffries TC, Gaitan JJ, Encinar D, Berdugo M, Campbell CD, Singh BK (2016)

Microbial diversity drives multifunctionality in terrestrial ecosystems

Nature Communications, 7, 10541.

DOI:10.1038/ncomms10541      PMID:26817514      [本文引用: 1]

Despite the importance of microbial communities for ecosystem services and human welfare, the relationship between microbial diversity and multiple ecosystem functions and services (that is, multifunctionality) at the global scale has yet to be evaluated. Here we use two independent, large-scale databases with contrasting geographic coverage (from 78 global drylands and from 179 locations across Scotland, respectively), and report that soil microbial diversity positively relates to multifunctionality in terrestrial ecosystems. The direct positive effects of microbial diversity were maintained even when accounting simultaneously for multiple multifunctionality drivers (climate, soil abiotic factors and spatial predictors). Our findings provide empirical evidence that any loss in microbial diversity will likely reduce multifunctionality, negatively impacting the provision of services such as climate regulation, soil fertility and food and fibre production by terrestrial ecosystems.

Demina S, Vasenev V, Ivashchenko K, Ananyeva N, Plyushchikov V, Hajiaghayeva R, Dovletyarova E (2018)

Microbial properties of urban soils with different land-use history in New Moscow

Soil Science, 183, 132-140.

DOI:10.1097/SS.0000000000000240      URL     [本文引用: 1]

Dunivin TK, Shade A (2018)

Community structure explains antibiotic resistance gene dynamics over a temperature gradient in soil

FEMS Microbiology Ecology, 94, fiy016.

[本文引用: 1]

Eilers KG, Debenport S, Anderson S, Fierer N (2012)

Digging deeper to find unique microbial communities: The strong effect of depth on the structure of bacterial and archaeal communities in soil

Soil Biology & Biochemistry, 50, 58-65.

DOI:10.1016/j.soilbio.2012.03.011      URL     [本文引用: 1]

Epp Schmidt DJ, Pouyat R, Szlavecz K, Setälä H, Kotze DJ, Yesilonis I, Cilliers S, Hornung E, Dombos M, Yarwood SA (2017)

Urbanization erodes ectomycorrhizal fungal diversity and may cause microbial communities to converge

Nature Ecology & Evolution, 1, 123.

[本文引用: 3]

Fierer N, Jackson RB (2006)

The diversity and biogeography of soil bacterial communities

Proceedings of the National Academy of Sciences, USA, 103, 626-631.

[本文引用: 1]

Forsberg KJ, Patel S, Gibson MK, Lauber CL, Knight R, Fierer N, Dantas G (2014)

Bacterial phylogeny structures soil resistomes across habitats

Nature, 509, 612-616.

DOI:10.1038/nature13377      URL     [本文引用: 1]

Fu FY, Lu HF (2015)

Effects of urbanization on soil community structure under subtropical evergreen broad-leaved forests

Ecology and Environmental Sciences, 24, 938-946. (in Chinese with English abstract)

[本文引用: 1]

[符方艳, 陆宏芳 (2015)

城市化对南亚热带常绿阔叶林土壤生物群落结构的影响

生态环境学报, 24, 938-946.]

[本文引用: 1]

Fuhrman JA (2009)

Microbial community structure and its functional implications

Nature, 459, 193-199.

DOI:10.1038/nature08058      URL     [本文引用: 1]

Garbeva P, Elsas JD, Veen JA (2008)

Rhizosphere microbial community and its response to plant species and soil history

Plant and Soil, 302, 19-32.

DOI:10.1007/s11104-007-9432-0      URL     [本文引用: 1]

Ghosh S, Scharenbroch BC, Ow LF (2016)

Soil organic carbon distribution in roadside soils of Singapore

Chemosphere, 165, 163-172.

DOI:10.1016/j.chemosphere.2016.09.028      URL     [本文引用: 1]

Gill AS, Lee A, McGuire KL (2017)

Phylogenetic and functional diversity of total (DNA) and expressed (RNA) bacterial communities in urban green infrastructure bioswale soils

Applied and Environmental Microbiology, 83, e00287.

[本文引用: 1]

Gill AS, Purnell K, Palmer MI, Stein J, McGuire KL (2020)

Microbial composition and functional diversity differ across urban green infrastructure types

Frontiers in Microbiology, 11, 912.

DOI:10.3389/fmicb.2020.00912      URL     [本文引用: 1]

Gkorezis P, Daghio M, Franzetti A, van Hamme JD, Sillen W, Vangronsveld J (2016)

The interaction between plants and bacteria in the remediation of petroleum hydrocarbons: An environmental perspective

Frontiers in Microbiology, 7, 1836.

[本文引用: 1]

Grimm NB, Faeth SH, Golubiewski NE, Redman CL, Wu JG, Bai XM, Briggs JM (2008)

Global change and the ecology of cities

Science, 319, 756-760.

DOI:10.1126/science.1150195      URL     [本文引用: 1]

Guo DL, Zhang J, Shen S, Yu ZJ, Yang JS, Luo HY (2022)

Effects of heavy metal content on fungal community structure in urban soil

Environmental Science, 43, 510-520. (in Chinese with English abstract)

[本文引用: 2]

[郭大陆, 张建, 申思, 余子洁, 杨军顺, 罗红燕 (2022)

重金属含量对城市土壤真菌群落结构的影响

环境科学, 43, 510-520.]

[本文引用: 2]

Hang XS, Wang HY, Zhou JM, Du CW, Chen XQ (2010)

Heavy metal contamination characteristics and its impacts on microbial and enzymatic activities in the soil surrounding an electroplating factory

Journal of Agro-Environment Science, 29, 2133-2138. (in Chinese with English abstract)

[本文引用: 1]

[杭小帅, 王火焰, 周健民, 杜昌文, 陈小琴 (2010)

电镀厂附近土壤重金属污染特征及其对微生物与酶活性的影响

农业环境科学学报, 29, 2133-2138.]

[本文引用: 1]

Hanski I, von Hertzen L, Fyhrquist N, Koskinen K, Torppa K, Laatikainen T, Karisola P, Auvinen P, Paulin L, Mäkelä MJ, Vartiainen E, Kosunen TU, Alenius H, Haahtela T (2012)

Environmental biodiversity, human microbiota, and allergy are interrelated

Proceedings of the National Academy of Sciences, USA, 109, 8334-8339.

[本文引用: 4]

He Y, Li CT, Yu YC, He HP, Tao X (2021)

Variation of subtropical forest soil microbial biomass and soil microbial community functional characteristics along an urban-rural gradient

Chinese Journal of Applied Ecology, 32, 93-102. (in Chinese with English abstract)

[本文引用: 1]

[何越, 李春涛, 俞元春, 何黄盼, 陶晓 (2021)

亚热带森林土壤微生物生物量及群落功能特征的城乡梯度变化

应用生态学报, 32, 93-102.]

DOI:10.13287/j.1001-9332.202101.034      [本文引用: 1]

土壤微生物在土壤养分循环以及生物地球化学循环中起着重要作用,土壤微生物对环境变化响应灵敏。为研究城乡梯度环境变化对亚热带森林土壤微生物的影响,本研究选取合肥市大蜀山国家森林公园(城市林)、紫蓬山国家森林公园(远郊林)、六安市万佛山(乡村自然林)为样地,分析比较其微生物生物量碳(MBC)、微生物生物量氮(MBN)及微生物群落功能多样性的城乡梯度差异。结果显示: 土壤MBC表现为乡村自然林(115.07 mg·kg<sup>-1</sup>)&gt;远郊林(101.68 mg·kg<sup>-1</sup>)&gt;城市林(82.73 mg·kg<sup>-1</sup>);土壤MBN表现为乡村自然林(57.73 mg·kg<sup>-1</sup>)&gt;城市林(31.57 mg·kg<sup>-1</sup>)&gt;远郊林(29.01 mg·kg<sup>-1</sup>);土壤微生物碳源代谢活性(AWCD)﹑均匀度指数(U)表现为乡村自然林&gt;远郊林&gt;城市林;城乡森林土壤微生物群落利用的主要碳源为羧酸类、氨基酸类、碳水类,其对多胺类、多酚类碳源的利用能力较弱;土壤微生物对氨基酸类、羧酸类、多聚物类及多酚类碳源的代谢能力具体表现为乡村自然林&gt;远郊林&gt;城市林,土壤微生物群落功能特征在城乡环境梯度上存在明显空间分异,其中吐温80、β-甲基-D-葡萄糖苷是影响城乡环境土壤微生物群落空间分异的特征碳源。相关性分析表明,土壤pH与微生物McIntosh指数、AWCD值呈显著正相关,铵态氮(NH<sub>4</sub><sup>+</sup>-N)与微生物Shannon多样性指数、AWCD值呈显著正相关,微生物Simpson指数与土壤硝态氮(NO<sub>3</sub><sup>-</sup>-N)呈显著负相关,土壤pH、NH<sub>4</sub><sup>+</sup>-N、NO<sub>3</sub><sup>-</sup>-N是影响微生物群落多样性指数的主要因素。研究表明,在城乡环境梯度下森林土壤微生物群落特征存在显著差异,城市林土壤微生物群落代谢潜力和功能多样性均弱于自然林。

Hermans SM, Taylor M, Grelet G, Curran-Cournane F, Buckley HL, Handley KM, Lear G (2020)

From pine to pasture: Land use history has long-term impacts on soil bacterial community composition and functional potential

FEMS Microbiology Ecology, 96, fiaa041.

[本文引用: 1]

Hou Y, Zhou HP, Zhang C (2014)

Effects of urbanization on community structure of soil microorganism

Ecology and Environmental Sciences, 23, 1108-1112. (in Chinese with English abstract)

[本文引用: 2]

[侯颖, 周会萍, 张超 (2014)

城市化对土壤微生物群落结构的影响

生态环境学报, 23, 1108-1112.]

[本文引用: 2]

Hu YH, Dou XL, Li JY, Li F (2018)

Impervious surfaces alter soil bacterial communities in urban areas: A case study in Beijing, China

Frontiers in Microbiology, 9, 226.

DOI:10.3389/fmicb.2018.00226      URL     [本文引用: 1]

Hui N, Jumpponen A, Francini G, Kotze DJ, Liu XX, Romantschuk M, Strömmer R, Setälä H (2017)

Soil microbial communities are shaped by vegetation type and park age in cities under cold climate

Environmental Microbiology, 19, 1281-1295.

DOI:10.1111/1462-2920.13660      URL     [本文引用: 1]

Huot H, Joyner J, Córdoba A, Shaw RK, Wilson MA, Walker R, Muth TR, Cheng ZQ (2017)

Characterizing urban soils in New York City: Profile properties and bacterial communities

Journal of Soils and Sediments, 17, 393-407.

DOI:10.1007/s11368-016-1552-9      URL     [本文引用: 2]

Jesus ED, Marsh TL, Tiedje JM, Moreira FMD (2009)

Changes in land use alter the structure of bacterial communities in Western Amazon soils

The ISME Journal, 3, 1004-1011.

DOI:10.1038/ismej.2009.47      URL     [本文引用: 1]

Jiang YF (2009)

Preliminary Study on Composition, Distribution and Source Identification of Persistent Organic Pollutants in Soil of Shanghai

PhD dissertation, Shanghai University, Shanghai. (in Chinese with English abstract)

[本文引用: 1]

[蒋煜峰 (2009)

上海地区土壤中持久性有机污染物污染特征、分布及来源初步研究

上海大学, 上海.]

[本文引用: 1]

Joyner JL, Kerwin J, Deeb M, Lozefski G, Prithiviraj B, Paltseva A, McLaughlin J, Groffman P, Cheng ZQ, Muth TR (2019)

Green infrastructure design influences communities of urban soil bacteria

Frontiers in Microbiology, 10, 982.

DOI:10.3389/fmicb.2019.00982      URL     [本文引用: 1]

Karpati AS, Handel SN, Dighton J, Horton TR (2011)

Quercus rubra-associated ectomycorrhizal fungal communities of disturbed urban sites and mature forests

Mycorrhiza, 21, 537-547.

DOI:10.1007/s00572-011-0362-6      PMID:21287207      [本文引用: 1]

The presence and quality of the belowground mycorrhizal fungal community could greatly influence plant community structure and host species response. This study tests whether mycorrhizal fungal communities in areas highly impacted by anthropogenic disturbance and urbanization are less species rich or exhibit lower host root colonization rates when compared to those of less disturbed systems. Using a soil bioassay, we sampled the ectomycorrhizal fungal (EMF) communities associating with Quercus rubra (northern red oak) seedlings in soil collected from seven sites: two mature forest reference sites and five urban sites of varying levels of disturbance. Morphological and polymerase chain reaction-restriction fragment length polymorphism analyses of fungi colonizing root tips revealed that colonization rates and fungal species richness were significantly lower on root systems of seedlings grown in disturbed site soils. Analysis of similarity showed that EMF community composition was not significantly different among several urban site soils but did differ significantly between mature forest sites and all but one urban site. We identified a suite of fungal species that occurred across several urban sites. Lack of a diverse community of belowground mutualists could be a constraint on urban plant community development, especially of late-successional woodlands. Analysis of urban EMF communities can add to our understanding of urban plant community structure and should be addressed during ecological assessment before pragmatic decisions to restore habitats are framed.

Kaye JP, Groffman M, Grimm NB, Baker LA, Pouyat RV (2006)

A distinct urban biogeochemistry?

Trends in Ecology & Evolution, 21, 192-199.

DOI:10.1016/j.tree.2005.12.006      URL     [本文引用: 1]

Kourtev PS, Ehrenfeld JG, Häggblom M (2002)

Exotic plant species alter the microbial community structure and function in the soil

Ecology, 83, 3152-3166.

DOI:10.1890/0012-9658(2002)083[3152:EPSATM]2.0.CO;2      URL     [本文引用: 1]

Li YW, Wang J, Ju TZ, Wang L, Lin N, Zhang SN, Zha XH (2017)

Heavy metal pollution characteristics and human health risk assessment in soils from different functional areas of Baiyin, Gansu, China

Chinese Journal of Ecology, 36, 1408-1418. (in Chinese with English abstract)

[本文引用: 1]

[李有文, 王晶, 巨天珍, 王莉, 林宁, 张胜楠, 查向浩 (2017)

白银市不同功能区土壤重金属污染特征及其健康风险评价

生态学杂志, 36, 1408-1418.]

[本文引用: 1]

Loranger-Merciris G, Barthes L, Gastine A, Leadley P (2006)

Rapid effects of plant species diversity and identity on soil microbial communities in experimental grassland ecosystems

Soil Biology & Biochemistry, 38, 2336-2343.

DOI:10.1016/j.soilbio.2006.02.009      URL     [本文引用: 1]

Lozupone CA, Knight R (2007)

Global patterns in bacterial diversity

Proceedings of the National Academy of Sciences, USA, 104, 11436-11440.

[本文引用: 1]

Madejón E, Burgos P, López R, Cabrera F (2001)

Soil enzymatic response to addition of heavy metals with organic residues

Biology and Fertility of Soils, 34, 144-150.

DOI:10.1007/s003740100379      URL     [本文引用: 1]

Magle SB, Hunt VM, Vernon M, Crooks KR (2012)

Urban wildlife research: Past, present, and future

Biological Conservation, 155, 23-32.

DOI:10.1016/j.biocon.2012.06.018      URL     [本文引用: 1]

McBride MB, Shayler HA, Spliethoff HM, Mitchell RG, Marquez-Bravo LG, Ferenz GS, Russell-Anelli JM, Casey L, Bachman S (2014)

Concentrations of lead, cadmium and barium in urban garden-grown vegetables: The impact of soil variables

Environmental Pollution, 194, 254-261.

DOI:S0269-7491(14)00343-1      PMID:25163429      [本文引用: 1]

Paired vegetable/soil samples from New York City and Buffalo, NY, gardens were analyzed for lead (Pb), cadmium (Cd) and barium (Ba). Vegetable aluminum (Al) was measured to assess soil adherence. Soil and vegetable metal concentrations did not correlate; vegetable concentrations varied by crop type. Pb was below health-based guidance values (EU standards) in virtually all fruits. 47% of root crops and 9% of leafy greens exceeded guidance values; over half the vegetables exceeded the 95th percentile of market-basket concentrations for Pb. Vegetable Pb correlated with Al; soil particle adherence/incorporation was more important than Pb uptake via roots. Cd was similar to market-basket concentrations and below guidance values in nearly all samples. Vegetable Ba was much higher than Pb or Cd, although soil Ba was lower than soil Pb. The poor relationship between vegetable and soil metal concentrations is attributable to particulate contamination of vegetables and soil characteristics that influence phytoavailability. Copyright © 2014 Elsevier Ltd. All rights reserved.

McDonnell MJ, Hahs AK (2008)

The use of gradient analysis studies in advancing our understanding of the ecology of urbanizing landscapes: Current status and future directions

Landscape Ecology, 23, 1143-1155.

DOI:10.1007/s10980-008-9253-4      URL     [本文引用: 1]

McGuire KL, Payne SG, Palmer MI, Gillikin CM, Keefe D, Kim SJ, Gedallovich SM, Discenza J, Rangamannar R, Koshner JA, Massmann AL, Orazi G, Essene A, Leff JW, Fierer N (2013)

Digging the New York City Skyline:Soil fungal communities in green roofs and city parks

PLoS ONE, 8, e58020.

[本文引用: 5]

McKinney ML (2002)

Urbanization, biodiversity, and conservation

BioScience, 52, 883-890.

DOI:10.1641/0006-3568(2002)052[0883:UBAC]2.0.CO;2      URL     [本文引用: 1]

McKinney ML (2006)

Urbanization as a major cause of biotic homogenization

Biological Conservation, 127, 247-260.

DOI:10.1016/j.biocon.2005.09.005      URL     [本文引用: 2]

McKinney ML (2008)

Effects of urbanization on species richness: A review of plants and animals

Urban Ecosystems, 11, 161-176.

DOI:10.1007/s11252-007-0045-4      URL     [本文引用: 1]

McKinney ML, Lockwood JL (1999)

Biotic homogenization: A few winners replacing many losers in the next mass extinction

Trends in Ecology & Evolution, 14, 450-453.

DOI:10.1016/S0169-5347(99)01679-1      URL     [本文引用: 1]

Meier CL, Bowman WD (2008)

Links between plant litter chemistry, species diversity, and below-ground ecosystem function

Proceedings of the National Academy of Sciences, USA, 105, 19780-19785.

[本文引用: 2]

Michel HM, Williams MA (2011)

Soil habitat and horizon properties impact bacterial diversity and composition

Soil Science Society of America Journal, 75, 1440-1448.

DOI:10.2136/sssaj2010.0171      URL     [本文引用: 1]

Mills JG, Bissett A, Gellie NJC, Lowe AJ, Selway CA, Thomas T, Weinstein P, Weyrich LS, Breed MF (2020)

Revegetation of urban green space rewilds soil microbiotas with implications for human health and urban design

Restoration Ecology, 28, S322-S334.

[本文引用: 1]

Morel JL, Chenu C, Lorenz K (2015)

Ecosystem services provided by soils of urban, industrial, traffic, mining, and military areas (SUITMAs)

Journal of Soils and Sediments, 15, 1659-1666.

DOI:10.1007/s11368-014-0926-0      URL     [本文引用: 1]

Neilson JW, Califf K, Cardona C, Copeland A, van Treuren W, Josephson KL, Knight R, Gilbert JA, Quade J, Caporaso JG, Maier RM (2017)

Significant impacts of increasing aridity on the arid soil microbiome

mSystems, 2, e00195-16.

[本文引用: 1]

Novoa A, Keet JH, Lechuga-Lago Y, Pyšek P, Roux JJL (2020)

Urbanization and Carpobrotus edulis invasion alter the diversity and composition of soil bacterial communities in coastal areas

FEMS Microbiology Ecology, 96, fiaa106.

[本文引用: 2]

Ochimaru TO, Fukuda KF (2007)

Changes in fungal communities in evergreen broad-leaved forests across

Canadian Journal of Forest Research, 37, 247-258.

DOI:10.1139/X06-293      URL     [本文引用: 1]

Orwin KH, Wardle DA, Greenfield LG (2006)

Ecological consequences of carbon substrate identity and diversity in a laboratory study

Ecology, 87, 580-593.

PMID:16602288      [本文引用: 1]

Plants return a wide range of carbon (C) substrates to the soil system. The decomposition rate of these substrates is determined by their chemical nature, yet few studies have examined the relative ecological role of specific substrates (i.e., substrate identity) or mixtures of substrates. Carbon substrate identity and diversity may alter soil chemistry and soil community composition, resulting in changes in belowground ecosystem functions such as decomposition and nutrient transfer, creating feedbacks that may affect plant growth and the aboveground community. A laboratory experiment was set up in which eight C substrates of varying chemical complexity were added to a base soil singly, in pairs, fours, or with all eight together every four days over a 92-day period. After 92 days these soils were analyzed for changes in chemistry, microbial community structure, and components of ecosystem functioning. The identity of the added C substrates significantly affected soil chemistry, microbial basal and substrate-induced respiration, and soil microbial community structure measured by either the catabolic response profile (CRP) technique or phospholipid fatty acid composition. These belowground changes strongly affected the ability of the soil microflora to decompose cellulose paper, probably because of differential effects of the C substrates on soil energy supplies and enzyme activities. The addition of C substrates to soils also reduced plant growth compared to the unamended control soil, but less so in soils amended with a tannin than those amended with other substrates. Carbon substrate diversity effects saturated at low diversity levels, tended to have neutral or negative effects on ecosystem functions, and depended strongly on which C substrates were added. It increased CRP compound use but had little effect on other measures of the soil microbial community. Overall, results showed that the chemical nature of C substrates added to soil, and sometimes their diversity, can affect the soil microbial community and soil chemistry, which subsequently affect other ecosystem processes such as decomposition and plant growth. The identity and diversity of substrates that plants add to soil may therefore have important consequences for both above- and belowground ecosystem functions.

Ossola A, Hahs AK, Livesley SJ (2015)

Habitat complexity influences fine scale hydrological processes and the incidence of stormwater runoff in managed urban ecosystems

Journal of Environmental Management, 159, 1-10.

DOI:10.1016/j.jenvman.2015.05.002      URL     [本文引用: 1]

Parajuli A, Grönroos M, Siter N, Puhakka R, Vari HK, Roslund MI, Jumpponen A, Nurminen N, Laitinen OH, Hyöty H, Rajaniemi J, Sinkkonen A (2018)

Urbanization reduces transfer of diverse environmental microbiota indoors

Frontiers in Microbiology, 9, 84.

DOI:10.3389/fmicb.2018.00084      URL     [本文引用: 1]

Pataki DE, Carreiro MM, Cherrier J, Grulke NE, Jennings V, Pincetl S, Pouyat RV, Whitlow TH, Zipperer WC (2011)

Coupling biogeochemical cycles in urban environments: Ecosystem services, green solutions, and misconceptions

Frontiers in Ecology and the Environment, 9, 27-36.

DOI:10.1890/090220      URL     [本文引用: 1]

Peng C, Wang ME, Zhao Y, Chen WP (2016)

Distribution and risks of polycyclic aromatic hydrocarbons in suburban and rural soils of Beijing with various land uses

Environmental Monitoring and Assessment, 188, 162.

DOI:10.1007/s10661-016-5156-z      PMID:26879983      [本文引用: 1]

We investigated the sources, distribution, and health risks of polycyclic aromatic hydrocarbons (PAHs) in soils of peri-urban Beijing. The mean concentrations of total 16 PAHs in suburban and rural soils of Beijing were 321.8 ± 408.2 and 219.2 ± 233.5 ng/g, respectively. The PAH concentrations decreased along the urban-suburban-rural gradient and varied with land use categories. The industrial areas had the highest soil PAH concentrations followed by the living areas, roadsides, green areas, and agricultural areas. The major sources of PAHs in these soils were coal and biomass combustion. Traffic emission was not the dominant source of PAHs in peri-urban Beijing. At a few sites, high soil PAH contents were caused by point sources such as iron and steel plants and a wood preservative factory. The incremental lifetime cancer risks (ILCRs) of adults and children exposed to PAHs in the soils were acceptable. However, cautions should be paid to the abandoned industrial sites, which might be converted to residential area during the urbanization process.

Perrodin Y, Boillot C, Angerville R, Donguy G, Emmanuel E (2011)

Ecological risk assessment of urban and industrial systems: A review

Science of the Total Environment, 409, 5162-5176.

DOI:10.1016/j.scitotenv.2011.08.053      URL     [本文引用: 1]

Pickett STA, Cadenasso ML (2006)

Advancing urban ecological studies: Frameworks, concepts, and results from the Baltimore Ecosystem Study

Austral Ecology, 31, 114-125.

DOI:10.1111/j.1442-9993.2006.01586.x      URL     [本文引用: 1]

Pimm SL, Russell GJ, Gittleman JL, Brooks TM (1995)

The future of biodiversity

Science, 269, 347-350.

PMID:17841251      [本文引用: 1]

Recent extinction rates are 100 to 1000 times their pre-human levels in well-known, but taxonomically diverse groups from widely different environments. If all species currently deemed "threatened" become extinct in the next century, then future extinction rates will be 10 times recent rates. Some threatened species will survive the century, but many species not now threatened will succumb. Regions rich in species found only within them (endemics) dominate the global patterns of extinction. Although new technology provides details of habitat losses, estimates of future extinctions are hampered by our limited knowledge of which areas are rich in endemics.

Prober SM, Leff JW, Bates ST, Borer ET, Firn J, Harpole WS, Lind EM, Seabloom EW, Adler PB, Bakker JD, Cleland EE, DeCrappeo NM, DeLorenze E, Hagenah N, Hautier Y, Hofmockel KS, Kirkman KP, Knops JMH, La Pierre KJ, MacDougall AS, McCulley RL, Mitchell CE, Risch AC, Schuetz M, Stevens CJ, Williams RJ, Fierer N (2015)

Plant diversity predicts beta but not alpha diversity of soil microbes across grasslands worldwide

Ecology Letters, 18, 85-95.

DOI:10.1111/ele.12381      URL     [本文引用: 1]

Rai PK, Rai A, Singh S (2018)

Change in soil microbial biomass along a rural-urban gradient in Varanasi (U.P., India)

Geology, Ecology, and Landscapes, 2, 15-21.

DOI:10.1080/24749508.2018.1438743      URL     [本文引用: 1]

Rajaniemi TK, Allison VJ (2009)

Abiotic conditions and plant cover differentially affect microbial biomass and community composition on dune gradients

Soil Biology & Biochemistry, 41, 102-109.

DOI:10.1016/j.soilbio.2008.10.001      URL     [本文引用: 1]

Ramirez KS, Leff JW, Barberán A, Bates ST, Betley J, Crowther TW, Kelly EF, Oldfield EE, Shaw EA, Steenbock C, Bradford MA, Wall DH, Fierer N (2014) Biogeographic patterns in below-ground diversity in New York City’s Central Park are similar to those observed globally. Proceedings of the Royal Society of London B: Biological Sciences, 281, 20141988.

[本文引用: 4]

Reese AT, Savage A, Youngsteadt E, McGuire KL, Koling A, Watkins O, Frank SD, Dunn RR (2016)

Urban stress is associated with variation in microbial species composition—but not richness—in Manhattan

The ISME Journal, 10, 751-760.

DOI:10.1038/ismej.2015.152      URL     [本文引用: 3]

Rex D, Clough TJ, Richards KG, Klein C, Morales SE, Samad MS, Grant J, Lanigan GJ (2018)

Fungal and bacterial contributions to codenitrification emissions of N2O and N2 following urea deposition to soil

Nutrient Cycling in Agroecosystems, 110, 135-149.

DOI:10.1007/s10705-017-9901-7      URL     [本文引用: 1]

Rosier CL, Polson SW, D’Amico V, Kan JJ, Trammell TLE (2021)

Urbanization pressures alter tree rhizosphere microbiomes

Scientific Reports, 11, 9447.

DOI:10.1038/s41598-021-88839-8      PMID:33941814      [本文引用: 1]

The soil microbial community (SMC) provides critical ecosystem services including organic matter decomposition, soil structural formation, and nutrient cycling. Studies suggest plants, specifically trees, act as soil keystone species controlling SMC structure via multiple mechanisms (e.g., litter chemistry, root exudates, and canopy alteration of precipitation). Tree influence on SMC is shaped by local/regional climate effects on forested environments and the connection of forests to surrounding landscapes (e.g., urbanization). Urban soils offer an ideal analog to assess the influence of environmental conditions versus plant species-specific controls on SMC. We used next generation high throughput sequencing to characterize the SMC of specific tree species (Fagus grandifolia [beech] vs Liriodendron tulipifera [yellow poplar]) across an urban-rural gradient. Results indicate SMC dissimilarity within rural forests suggests the SMC is unique to individual tree species. However, greater urbanization pressure increased SMC similarity between tree species. Relative abundance, species richness, and evenness suggest that increases in similarity within urban forests is not the result of biodiversity loss, but rather due to greater overlap of shared taxa. Evaluation of soil chemistry across the rural-urban gradient indicate pH, Ca, and organic matter are largely responsible for driving relative abundance of specific SMC members.

Roslund MI, Puhakka R, Grönroos M, Nurminen N, Oikarinen S, Gazali AM, Cinek O, Kramná L, Siter N, Vari HK, Soininen L, Parajuli A, Rajaniemi J, Kinnunen T, Laitinen OH, Hyöty H, Sinkkonen A,ADELE Research Group (2020)

Biodiversity intervention enhances immune regulation and health-associated commensal microbiota among daycare children

Science Advances, 6, eaba2578.

[本文引用: 1]

Ruokolainen L, von Hertzen L, Fyhrquist N, Laatikainen T, Lehtomäki J, Auvinen P, Karvonen AM, Hyvärinen A, Tillmann V, Niemelä O, Knip M, Haahtela T, Pekkanen J, Hanski I (2015)

Green areas around homes reduce atopic sensitization in children

Allergy, 70, 195-202.

DOI:10.1111/all.12545      PMID:25388016      [本文引用: 2]

Western lifestyle is associated with high prevalence of allergy, asthma and other chronic inflammatory disorders. To explain this association, we tested the 'biodiversity hypothesis', which posits that reduced contact of children with environmental biodiversity, including environmental microbiota in natural habitats, has adverse consequences on the assembly of human commensal microbiota and its contribution to immune tolerance.We analysed four study cohorts from Finland and Estonia (n = 1044) comprising children and adolescents aged 0.5-20 years. The prevalence of atopic sensitization was assessed by measuring serum IgE specific to inhalant allergens. We calculated the proportion of five land-use types--forest, agricultural land, built areas, wetlands and water bodies--in the landscape around the homes using the CORINE2006 classification.The cover of forest and agricultural land within 2-5 km from the home was inversely and significantly associated with atopic sensitization. This relationship was observed for children 6 years of age and older. Land-use pattern explained 20% of the variation in the relative abundance of Proteobacteria on the skin of healthy individuals, supporting the hypothesis of a strong environmental effect on the commensal microbiota.The amount of green environment (forest and agricultural land) around homes was inversely associated with the risk of atopic sensitization in children. The results indicate that early-life exposure to green environments is especially important. The environmental effect may be mediated via the effect of environmental microbiota on the commensal microbiota influencing immunotolerance.© 2014 The Authors. Allergy Published by John Wiley & Sons Ltd.

Russo D, Ancillotto L (2015)

Sensitivity of bats to urbanization: A review

Mammalian Biology, 80, 205-212.

DOI:10.1016/j.mambio.2014.10.003      URL     [本文引用: 1]

Savard JPL, Clergeau P, Mennechez G (2000)

Biodiversity concepts and urban ecosystems

Landscape and Urban Planning, 48, 131-142.

DOI:10.1016/S0169-2046(00)00037-2      URL     [本文引用: 1]

Scharenbroch BC, Lloyd JE, Johnson-Maynard JL (2005)

Distinguishing urban soils with physical, chemical, and biological properties

Pedobiologia, 49, 283-296.

DOI:10.1016/j.pedobi.2004.12.002      URL     [本文引用: 1]

Selway CA, Mills JG, Weinstein P, Skelly C, Yadav S, Lowe A, Breed MF, Weyrich LS (2020)

Transfer of environmental microbes to the skin and respiratory tract of humans after urban green space exposure

Environment International, 145, 106084.

DOI:10.1016/j.envint.2020.106084      URL     [本文引用: 1]

Shanahan DF, Lin BB, Gaston KJ, Bush R, Fuller RA (2015)

What is the role of trees and remnant vegetation in attracting people to urban parks?

Landscape Ecology, 30, 153-165.

DOI:10.1007/s10980-014-0113-0      URL     [本文引用: 1]

Shen CC, Xiong JB, Zhang HY, Feng YZ, Lin XG, Li XY, Liang WJ, Chu HY (2013)

Soil pH drives the spatial distribution of bacterial communities along elevation on Changbai Mountain

Soil Biology & Biochemistry, 57, 204-211.

DOI:10.1016/j.soilbio.2012.07.013      URL     [本文引用: 1]

Singh BK, Walker A (2006)

Microbial degradation of organophosphorus compounds

FEMS Microbiology Reviews, 30, 428-471.

DOI:10.1111/j.1574-6976.2006.00018.x      URL     [本文引用: 1]

Singh JP, Vaidya BP, Goodey NM, Krumins JA (2019)

Soil microbial response to metal contamination in a vegetated and urban brownfield

Journal of Environmental Management, 244, 313-319.

DOI:10.1016/j.jenvman.2019.04.111      URL     [本文引用: 1]

Stabler LB, Martin CA, Stutz JC (2001)

Effect of urban expansion on arbuscular mycorrhizal fungal mediation of landscape tree growth

Journal of Arboriculture, 27, 193-202.

[本文引用: 1]

Tan X, Kan L, Su Z, Liu X, Zhang L (2019)

The composition and diversity of soil bacterial and fungal communities along an urban-to-rural gradient in South China

Forests, 10, 797.

DOI:10.3390/f10090797      URL     [本文引用: 3]

UN DESA (2018)

World Population Prospects 2018:Highlights

United Nations Department for Economic and Social Affairs, New York (US).

[本文引用: 1]

van der Putten WH, Klironomos JN, Wardle DA (2007)

Microbial ecology of biological invasions

The ISME Journal, 1, 28-37.

DOI:10.1038/ismej.2007.9      URL     [本文引用: 1]

van Rensburg BJ, Peacock DS, Robertson MP (2009)

Biotic homogenization and alien bird species along an urban gradient in South Africa

Landscape and Urban Planning, 92, 233-241.

DOI:10.1016/j.landurbplan.2009.05.002      URL     [本文引用: 1]

von Hertzen L, Hanski I, Haahtela T (2011)

Natural immunity: Biodiversity loss and inflammatory diseases are two global megatrends that might be related

EMBO Reports, 12, 1089-1093.

DOI:10.1038/embor.2011.195      PMID:21979814      [本文引用: 4]

Wang FH, Qiao M, Su JQ, Chen Z, Zhou X, Zhu YG (2014)

High throughput profiling of antibiotic resistance genes in urban park soils with reclaimed water irrigation

Environmental Science & Technology, 48, 9079-9085.

DOI:10.1021/es502615e      URL     [本文引用: 1]

Wang HH, Li LQ, Pan GX, Wu XM (2005)

Topsoil microbial carbon and nitrogen and enzyme activity of different city zones in Nanjing, China

Chinese Journal of Ecology, 24, 273-277. (in Chinese with English abstract)

[本文引用: 1]

[王焕华, 李恋卿, 潘根兴, 吴新民 (2005)

南京市不同功能城区表土微生物碳氮与酶活性分析

生态学杂志, 24, 273-277.]

[本文引用: 1]

Wang HT, Cheng MY, Dsouza M, Weisenhorn P, Zheng TL, Gilbert JA (2018)

Soil bacterial diversity is associated with human population density in urban greenspaces

Environmental Science & Technology, 52, 5115-5124.

DOI:10.1021/acs.est.7b06417      URL     [本文引用: 4]

Wang HT, Marshall CW, Cheng MY, Xu HJ, Li H, Yang XR, Zheng TL (2017)

Changes in land use driven by urbanization impact nitrogen cycling and the microbial community composition in soils

Scientific Reports, 7, 44049.

DOI:10.1038/srep44049      URL     [本文引用: 8]

White MP, Alcock I, Grellier J, Wheeler BW, Hartig T, Warber SL, Bone A, Depledge MH, Fleming LE (2019)

Spending at least 120 minutes a week in nature is associated with good health and wellbeing

Scientific Reports, 9, 7730.

[本文引用: 1]

Wichmann F, Udikovic-Kolic N, Andrew S, Handelsman J (2014)

Diverse antibiotic resistance genes in dairy cow manure

MBio, 5, e01017.

[本文引用: 1]

Wu TH, Chellemi DO, Graham JH, Martin KJ, Rosskopf EN (2008)

Comparison of soil bacterial communities under diverse agricultural land management and crop production practices

Microbial Ecology, 55, 293-310.

DOI:10.1007/s00248-007-9276-4      URL     [本文引用: 1]

Xie Y, Fan JB, Zhu WX, Amombo E, Lou YH, Chen L, Fu JM (2016)

Effect of heavy metals pollution on soil microbial diversity and bermudagrass genetic variation

Frontiers in Plant Science, 7, 755.

[本文引用: 1]

Xu HJ, Li S, Su JQ, Nie SA, Gibson V, Li H, Zhu YG (2014)

Does urbanization shape bacterial community composition in urban park soils? A case study in 16 representative Chinese cities based on the pyrosequencing method

FEMS Microbiology Ecology, 87, 182-192.

DOI:10.1111/1574-6941.12215      URL     [本文引用: 4]

Yan B, Li JS, Lu Q, Xiong JH, Xiao NW, Fu G (2019)

Soil microbial carbon metabolic activity of green-land of urban park in Beijing

Research of Environmental Sciences, 32, 1567-1574. (in Chinese with English abstract)

[本文引用: 4]

[闫冰, 李俊生, 陆晴, 熊继海, 肖能文, 付刚 (2019)

北京城市公园绿地土壤微生物群落碳源代谢活性特征

环境科学研究, 32, 1567-1574.]

[本文引用: 4]

Yan B, Li JS, Xiao NW, Qi Y, Fu G, Liu GH, Qiao MP (2016)

Urban-development-induced changes in the diversity and composition of the soil bacterial community in Beijing

Scientific Reports, 6, 38811.

DOI:10.1038/srep38811      URL     [本文引用: 7]

Yan B, Lu Q, He J, Qi Y, Fu G, Xiao NW, Li JS (2021)

Composition and interaction frequencies in soil bacterial communities change in association with urban park age in Beijing

Pedobiologia, 84, 150699.

DOI:10.1016/j.pedobi.2020.150699      URL     [本文引用: 1]

Yan B, Xiao NW, Qi Y, Fu G, Gao XQ, Liu GH, Li JS (2016)

Effects of urban development on soil microbial functional diversity in Beijing

Research of Environmental Sciences, 29, 1325-1335. (in Chinese with English abstract)

[本文引用: 2]

[闫冰, 肖能文, 齐月, 付刚, 高晓琦, 刘高慧, 李俊生 (2016)

北京城市发展对土壤微生物群落功能多样性的影响

环境科学研究, 29, 1325-1335.]

[本文引用: 2]

Yan ZZ, Chen QL, Zhang YJ, He JZ, Hu HW (2019)

Antibiotic resistance in urban green spaces mirrors the pattern of industrial distribution

Environment International, 132, 105106.

DOI:10.1016/j.envint.2019.105106      URL    

Yang YG, Campbell CD, Clark L, Cameron CM, Paterson E (2006)

Microbial indicators of heavy metal contamination in urban and rural soils

Chemosphere, 63, 1942-1952.

DOI:10.1016/j.chemosphere.2005.10.009      URL     [本文引用: 1]

Yang YG, Paterson E, Campbell C (2000)

Study on microbial properties of urban soils in Aberdeen City, Scotland, UK

Acta Mineralogica Sinica, 20, 342-348. (in Chinese with English abstract)

[本文引用: 1]

[杨元根, Paterson E, Campbell C (2000)

苏格兰阿伯丁城市土壤的微生物特性研究

矿物学报, 20, 342-348.]

[本文引用: 1]

Yu TH, Zhang NL, Yu S, Qu LY (2021)

The characteristics of soil fungal community and effect factors under common tree species in urban parks of Beijing

Acta Ecologica Sinica, 41, 1835-1845. (in Chinese with English abstract)

[本文引用: 3]

[于天赫, 张乃莉, 于爽, 曲来叶 (2021)

北京城市公园常见乔木土壤真菌群落特征及影响因素

生态学报, 41, 1835-1845.]

[本文引用: 3]

Zak DR, Holmes WE, White DC, Peacock AD, Tilman D (2003)

Plant diversity, soil microbial communities, and ecosystem function: Are there any links?

Ecology, 84, 2042-2050.

DOI:10.1890/02-0433      URL     [本文引用: 2]

Zhalnina K, Dias R, de Quadros PD, Davis-Richardson A, Camargo FAO, Clark IM, McGrath SP, Hirsch PR, Triplett EW (2015)

Soil pH determines microbial diversity and composition in the park grass experiment

Microbial Ecology, 69, 395-406.

DOI:10.1007/s00248-014-0530-2      URL     [本文引用: 1]

Zhang GL, Zhu YG, Fu BJ (2003)

Quality changes of soils in urban and suburban areas and its eco-environmental impacts—A review

Acta Ecologica Sinica, 23, 539-546. (in Chinese with English abstract)

[本文引用: 2]

[张甘霖, 朱永官, 傅伯杰 (2003)

城市土壤质量演变及其生态环境效应

生态学报, 23, 539-546.]

[本文引用: 2]

Zhang GX, Xu J, Wang GB, Wu SS, Ruan HH (2010)

Soil respiration under different vegetation types in Nanjing urban green space

Chinese Journal of Ecology, 29, 274-280. (in Chinese with English abstract)

[本文引用: 1]

[张鸽香, 徐娇, 王国兵, 武珊珊, 阮宏华 (2010)

南京城市公园绿地不同植被类型土壤呼吸的变化

生态学杂志, 29, 274-280.]

[本文引用: 1]

Zhang J, Wang LH, Yang JC, Liu H, Dai JL (2015)

Health risk to residents and stimulation to inherent bacteria of various heavy metals in soil

Science of the Total Environment, 508, 29-36.

DOI:10.1016/j.scitotenv.2014.11.064      URL     [本文引用: 1]

Zhang JD, Li SY, Sun XY, Tong J, Fu Z, Li J (2019)

Sustainability of urban soil management: Analysis of soil physicochemical properties and bacterial community structure under different green space types

Sustainability, 11, 1395.

DOI:10.3390/su11051395      URL     [本文引用: 1]

Zhang JD, Li SY, Sun XY, Zhang H, Hu N, Fu Z, Guo ZT (2019)

Analysis of soil bacterial diversity in urban parks with different ages by high throughput sequencing

Microbiology China, 46, 65-74. (in Chinese with English abstract)

[本文引用: 2]

[张骏达, 李素艳, 孙向阳, 张骅, 呼诺, 傅振, 郭子腾 (2019)

基于高通量测序技术的不同年代公园绿地土壤细菌多样性

微生物学通报, 46, 65-74.]

[本文引用: 2]

Zhang Y, Ji GD, Wu T, Qiu JX (2020)

Urbanization significantly impacts the connectivity of soil microbes involved in nitrogen dynamics at a watershed scale

Environmental Pollution, 258, 113708.

DOI:10.1016/j.envpol.2019.113708      URL     [本文引用: 1]

Zhao D, Li F, Wang RS, Yang QR, Ni HS (2012)

Effect of soil sealing on the microbial biomass, N transformation and related enzyme activities at various depths of soils in urban area of Beijing, China

Journal of Soils and Sediments, 12, 519-530.

DOI:10.1007/s11368-012-0472-6      URL     [本文引用: 1]

Zhao JJ, Ouyang ZY, Xu WH, Zheng H, Meng XS (2010)

Sampling adequacy estimation for plant species composition by accumulation curves: A case study of urban vegetation in Beijing, China

Landscape and Urban Planning, 95, 113-121.

DOI:10.1016/j.landurbplan.2009.12.008      URL     [本文引用: 1]

Zhu WX, Carreiro MM (2004)

Variations of soluble organic nitrogen and microbial nitrogen in deciduous forest soils along an urban-rural gradient

Soil Biology & Biochemistry, 36, 279-288.

DOI:10.1016/j.soilbio.2003.09.011      URL     [本文引用: 1]

/