双碳战略背景下城市生态系统的碳汇功能与生物多样性可以兼得
The trade-off between biodiversity and carbon sink of urban ecosystem under the carbon peaking and carbon neutrality strategy
通讯作者: * E-mail:liuwei08@caas.cn
编委: 杨军
责任编辑: 周玉荣
收稿日期: 2022-04-6 接受日期: 2022-07-4
基金资助: |
|
Corresponding authors: * E-mail:liuwei08@caas.cn
Received: 2022-04-6 Accepted: 2022-07-4
“碳达峰、碳中和”是中国对世界的庄严承诺, 也是当前指导我国可持续发展的重要战略。碳排放的空间分布表明, 城市及其周边地区是最主要的碳排放区。随着我国的城市化进程不断推进, 如何有效减少城市碳排放、增加碳汇成为关系着双碳战略成效的关键问题。作为城市空间中唯一的自然碳汇, 城市绿地生态系统的固碳增汇作用日益突出。加强城市绿地的碳汇建设, 如果按照传统的人工营建思路, 只种植在当前情景下碳汇能力强的少数植物种则很可能会减少生物多样性。基于植物分配有限资源时存在权衡关系的生态学一般原理, 不仅选取当前情景下碳汇能力强的植物, 还要考虑适应环境变化、在未来环境下碳汇能力强的植物, 以及遭遇极端环境时有一定碳汇能力的植物。在此框架下, 选取恰当的植物多样性组合有望实现更好的城市绿地碳汇功能, 即环境稳定时碳汇能力更强, 环境变化时碳汇能力更稳, 出现极端事件时碳汇损失更小。具体的做法包括: (1)扩展绿地物种库信息, 纳入植物的碳减排能力、适应环境变化能力、应对极端变化能力等信息; (2)考虑植物在碳汇能力与应对气候变化能力之间的权衡关系, 将植物分成不同类型的组, 比如高碳汇低适应、低碳汇高适应; (3)根据不同城市的环境和未来气候变化特点, 因地制宜地选择恰当植物组合营建城市绿地; (4)开展城市绿地建设的全生命周期碳计量, 以近自然方式营建和管养城市绿地, 减少管护过程的碳排放。这些举措有助于实现城市绿地碳汇能力提升与生物多样性保护的双重目标。城市生态系统的结构与功能共赢, 对落实双碳战略和生态文明建设意义重大。
关键词:
Background & Aims: “Carbon peaking and carbon neutrality” is an important strategy to guide the current development of China. Based on the spatial distribution of carbon emission areas, cities and their surrounding areas are the most carbon emission areas. With the urbanization in China, how to effectively reduce carbon emissions and increase carbon sinks has become a key issue. As the only natural carbon sink in urban space, the role of the urban greenspace system in carbon sequestration and increasing carbon sink is becoming prominent. However, it is unclear whether improving the carbon sequestration capacity of urban greenspace will affect biodiversity. Here we use the general principle of life-history evolution in ecology to analyze the trade-off between the carbon sink capacity and the ability to adapt to climate change in urban greenspace.
Results: This paper proposed that urban greenspace can both have biodiversity and carbon sink according to the following suggestions. First, the species database should incorporate the carbon reduction capacity, the ability to adapt to environmental changes, and the ability to cope with extreme changes. Second, the trade-off relationship between carbon sink capacity and ability to cope with climate change will divide species into different types, such as high carbon sink with low adaptation, and low carbon sink with high adaptation. Third, appropriate species are selected to improve the carbon sink function through diverse combinations. The carbon sink capacity could be stronger when the environment is stable, more stable when the environment is changing, and less loss of carbon sink when the environment is extreme. Finally, native plants should be used to improve biodiversity and reduce carbon emissions in the management process.
Conclusion: Improving the carbon sink capacity and biodiversity conservation will be achieved in the urban greenspace. The structure and function of the urban ecosystem are equally significant for the carbon peaking and carbon neutrality strategy and the construction of ecological civilization.
Keywords:
本文引用格式
牛铜钢, 刘为 (2022)
Tonggang Niu, Wei Liu (2022)
1 城市是碳排放的重点地区, 城市绿地是城市唯一自然碳汇
工业革命以来, 人类活动造成地球大气中的CO2浓度不断升高。所导致的“温室效应”引发了一系列剧烈的全球变化, 特别是气候变化已给人类带来了巨大影响, 危及到人类社会的可持续发展(IPCC, 2021)。在2020年9月的联合国大会上, 中国政府庄严承诺: “中国将秉持人类命运共同体理念, 继续作出艰苦卓绝努力, 提高国家自主贡献力度, 采取更加有力的政策和措施, 二氧化碳排放力争于2030年前达到峰值, 努力争取2060年前实现碳中和, 为实现应对气候变化《巴黎协定》确定的目标作出更大努力和贡献”。自此, 碳达峰、碳中和正式成为中国的国家战略, 既是构建人类命运共同体, 也是我国自身可持续发展的重大需求。
要按时实现碳达峰、碳中和的国家战略目标, 必须做到有效减排、增汇, 其首要任务是确定碳排放的重点地区。而碳排放量的空间分布表明, 城市的碳排放量十分突出。人口密集所致的大规模生产生活、城市建筑、交通、工业生产等能源消费, 使全球范围内城市区域排放的CO2占到排放总量的75% (Seto et al, 2014)。而中国的比例更高, 达到85% (Cai et al, 2017)。城市作为人类文明的核心区,对整个社会经济和文明日益重要(Zhou et al, 2019)。中国更是将城市化作为国策, 在“十四五”乃至更长时期持续推进。因此, 以城市为代表的人类文明要可持续发展, 减排增汇势在必行。
城市是碳达峰、碳中和的主战场, 需要做好碳减排和碳增汇两方面工作。碳减排措施主要包括节能、新能源、低碳建筑、绿色交通等。而碳增汇的重点是强化城市生态和绿色空间建设和保护, 比如植树种草等城市绿地碳汇建设(Yang et al, 2022)。在整个城市空间中, 城市绿地湿地生态系统是唯一的自然碳汇。随着城市化的发展, 城市绿地面积大幅快速增加。建设城市绿地系统, 以前主要考虑游憩娱乐、环境美化、文化教育、防灾避险等功能。而伴随生态文明理念深入人心, 绿地的生态系统功能日益受到关注, 如防风固沙、固碳释氧、减缓热岛效应、净化环境以及生物多样性保护等。当前, 在双碳战略背景下, 如何建设、提升城市绿地以实现碳汇功能呢?
2 城市绿地碳汇建设可能减少生物多样性
要实现可观的碳汇功能, 需要一定规模的绿地面积。根据中华人民共和国住房和城乡建设部2017年公布的《城市绿地分类标准》(CJJ/T85-2017), 城市绿地包括公园绿地、防护绿地、广场用地、附属绿地和区域绿地等五大类。以北京为例, 以上这些绿地面积占到城区和近郊面积的1/3。2012年以来的百万亩造林绿化工程进一步增加了北京的绿地面积(Yao et al, 2019), 全市森林覆盖率接近45%。不难看出, 碳汇造林将成为城市绿地的重点实施措施之一。国家林业和草原局从2013年起推出了一系列碳汇林标准, 如2013年发布并在发改委备案的《碳汇造林项目方法学》(AR-CM-001-V01) (
对于碳汇林, 国家林业和草原局所发布的两个指导文件给出了清晰的定义: 碳汇造林特指“以增加森林碳汇为主要目标之一, 对造林和林木生长全过程实施碳汇计量和监测而进行的有特殊要求的项目活动”; 造林(afforestation) “特指碳汇造林, 即在确定了基线的土地上, 以增加碳汇为主要目的、并对造林及其林分(木)生长过程实施碳汇计量和监测而开展的有特殊要求的营造林活动”。
只种植在当前环境下碳汇能力强的少数植物, 不仅降低物种多样性, 还没有考虑气候变化对碳汇功能的影响。通过种植植物实现碳汇功能不会立竿见影, 而需要一定时间。因为营建过程中的各种施工措施往往改变现有土地利用状态, 并造成碳排放, 被称为碳债(carbon debt) (Fargione et al, 2008)。营建的植被逐渐生长, 固碳减排, 直到偿还完最初种植时造成的碳债后才有碳汇正收益。世界不同地区的碳债偿还时间长短不一, 例如在热带地区需要几十年时间。当前地球的气候变化剧烈, 极端气候事件频发(朴世龙等, 2019)。现在选出来的高碳汇植物或“碳中和植物”是基于原有气候条件的观测结果(周启星等, 2022), 一旦这些植物遇到气候变化, 特别是遭遇极端天气时, 其碳汇表现又如何呢? 研究发现, 原本认为是巨大碳汇的天然林遭遇极端天气时可能成为碳源。比如, 当亚马逊热带雨林遭遇极端干旱时, 碳汇能力没有增加, 而是大幅减少, 甚至反转成碳源(Gatti et al, 2021)。又如, 高纬度森林中常绿针叶林在未来相对优势会下降, 而落叶阔叶林的相对优势会增加(Mekonnen et al, 2019), 这也将抑制高纬度森林在气候变化下的碳汇功能(Wang et al, 2021)。相比天然林, 人工林更容易受到气候变化干扰(Yan & Yang, 2018)。一旦遭遇极端天气或者大规模病虫害, 更容易成为碳源, 将难以实现或需要更长时间才能发挥最初设计的碳汇功能。
3 城市绿地的碳汇功能与生物多样性可以兼得
城市绿地作为自然-人工复合系统, 既有自然过程, 也有人工过程; 既受到自然选择, 也受到人工选择。在两种不同选择压力下, 植物的碳汇表现存在潜在冲突。自然选择关注植物在变化环境下的生存能力, 而人工选择关注植物现有的碳汇能力。现在所谓的碳汇植物是由人类种植, 但并不为固碳而存在。相比经过长期驯化的农作物, 碳汇林木还远远达不到农作物的人工选择程度。碳汇植物驯化问题不在本文讨论范围。因此, 城市绿地建设仅仅考虑植物在当前环境下的碳汇能力不够全面, 还应考虑植物适应环境变化、在未来环境下的碳汇能力, 以及在极端环境下的碳汇能力。这种更全面的考虑是否具有理论依据呢? 又如何解决碳汇功能与生物多样性兼得的问题呢?
根据生活史进化的一般原理, 即不可兼得 (trade-off) (Grime, 1977), 植物拥有的资源总量一定, 在不同环境下需要在生长、繁殖、防御等不同能力间分配, 以达到自身适合度最大。具体而言, 植物碳汇能力和适应气候变化能力之间可能存在一些权衡关系。其中的碳汇能力往往和植物生长速度有关, 能在短时间内积累大量生物质用以生长的属于C-S-R策略(competitor, stress-tolerator & ruderal plant functional strategy)中的C策略者(competitor); 而能更好地适应气候变化, 特别是极端气候, 更多体现在胁迫耐受上的多是S策略者(stress-tolerator)。由于有潜在的权衡关系, 城市绿地建设时如果能够充分考虑持不同策略的植物, 加以因地制宜地组合, 那么碳汇功能与生物多样性有望兼得。
按以上思路, 建议: (1)通过实地观测以及文献梳理, 扩展已有的城市绿地物种库信息, 即植物在当前环境下的碳汇能力(郭雪艳等, 2013)、适应环境变化、在未来环境下的碳汇能力(Yan & Yang, 2018), 以及植物遭遇极端环境变化时的碳汇能力; (2)考虑不同植物的碳汇能力与应对气候变化能力的权衡关系, 将植物分成不同类型的组, 比如高碳汇低适应类型、低碳汇高适应类型; (3)根据不同城市未来气候变化的趋势和易发的极端事件, 如干旱、湿润、台风等, 因地制宜筛选出恰当物种组合营建城市绿地; (4)绿地建设应开展全生命周期的碳计量, 尽量减少施工中的碳排放, 并控制绿地建成后管护的碳排放。主要包括灌溉、施肥、喷药及运输中的能源消耗, 比如, 采取近自然方式营建和管养城市绿地植被。这样, 多样性组合有望更好地实现城市绿地的碳汇功能, 环境稳定时碳汇能力更强, 环境变化时碳汇能力更稳, 出现极端事件时碳汇损失更小。
值得注意的是, 落实上述观点关键在于合理的植物物种组配。一方面, 相比现有绿化物种配置, 本文提出的新筛选标准, 扩展了城市绿地植物的选取范围。另一方面, 由于乔木、灌木、草本在城市绿化中的作用不同, 彼此不能相互替代, 所以碳汇能力与多样性的权衡是在乔灌草各自的内部。未来还有两个问题应开展进一步研究: (1)城市绿地整体碳汇不等于植物个体碳汇的简单加和。由于植物群落内相互作用复杂, 单种时碳汇能力优异的植物在组配时是否有同样的表现? (2)相比自然生境, 城市绿地所在的环境有其特殊性, 比如空气污染, 那么在自然生境下碳汇能力优异的植物在城市环境能否有同样的表现? 至于具体的建设模式, 需要针对具体城市和工程场景, 对各种可能的植物物种组配开展详细分析。
随着土壤有机碳概念不断发展(Lehmann & Kleber, 2015), 目前普遍认为土壤微生物在土壤有机碳库的转化和稳定过程中起核心调控作用(Schmidt et al, 2011; Kallenbach et al, 2016; Trivedi et al, 2016)。土壤微生物将土壤有机碳由易分解形态转化为难分解形态, 延长了储碳时间,从而实现碳固持和碳汇功能。尽管如此, 土壤微生物在城市绿地土壤有机碳库的关键调控机制还所知甚少。而全球城市绿地微生物组研究也只是刚刚兴起(Delgado-Baquerizo et al, 2021), 在不同城市各类绿地的土壤固碳、持碳能力, 以及土壤微生物调控过程和关键影响因素还少有研究(罗上华等, 2012; 黄鑫榕等, 2021; 王小涵等, 2022)。希望这些土壤碳汇知识随着具体工作成果, 正如植物碳汇知识一样, 不断纳入城市绿地设计与营建过程, 从而更好地发挥城市绿地的碳汇功能。
4 结论
通过以上分析, 我们看到城市绿地系统对城市实现“碳达峰、碳中和”的国家战略将起到重要作用。如果想避免碳汇林等措施可能带给城市生态系统生物多样性的副作用, 需要运用生态学一般原理, 综合考虑植物在当前环境、未来环境和极端环境下的碳汇能力, 通过恰当组合营建, 则有望得到生物多样性高、固碳能力强、应对气候变化稳健的城市绿地系统。在具体工程实践中, 宜开展全生命周期的碳计量, 减少施工和管护的碳排放和能源消耗。如能有效落实以上举措, 那么城市绿地生态系统将不仅具有较高的生物多样性, 更能够有效提升碳汇功能, 实现结构和功能共赢。这对落实双碳战略和生态文明建设都具重要意义。
致谢
感谢审稿人和责任编委提出的宝贵意见。
参考文献
Carbon dioxide emissions from cities in China based on high resolution emission gridded data
DOI:10.1080/10042857.2017.1286143 URL [本文引用: 1]
Global homogenization of the structure and function in the soil microbiome of urban greenspaces
Ecological perspectives of carbon neutrality
DOI:10.17521/cjpe.2021.0394 URL [本文引用: 1]
碳中和的生态学透视
DOI:10.17521/cjpe.2021.0394
[本文引用: 1]
在简述碳中和概念的基础上, 重点对碳中和的实现途径及生态系统碳汇的重要性进行了评述, 认为碳减排和碳增汇是实现“碳中和”的两个决定因素; 碳减排的核心是节能、调结构、增效和发展清洁能源, 碳增汇的核心是生态保护、建设和管理。由于植被自然生长和生态建设等因素, 中国陆地生态系统发挥了, 并将在未来继续发挥着重要的碳汇作用。为增强生态系统的固碳能力, 作者提出“三优”生态建设和管理原则, 即“最优的生态系统布局、最优的物种配置、最优的生态系统管理”。此外, 文章还对“后碳中和”时代可能出现的问题和挑战进行了展望, 认为碳中和后, 由于气候变化, 特别是大气CO<sub>2</sub>浓度增速减缓甚至下降等因素, 可能导致全球性的植被生产力下降, 对此可能带来的新的环境问题需要提前谋划和应对。
Land clearing and the biofuel carbon debt
DOI:10.1126/science.1152747
PMID:18258862
[本文引用: 1]
Increasing energy use, climate change, and carbon dioxide (CO2) emissions from fossil fuels make switching to low-carbon fuels a high priority. Biofuels are a potential low-carbon energy source, but whether biofuels offer carbon savings depends on how they are produced. Converting rainforests, peatlands, savannas, or grasslands to produce food crop-based biofuels in Brazil, Southeast Asia, and the United States creates a "biofuel carbon debt" by releasing 17 to 420 times more CO2 than the annual greenhouse gas (GHG) reductions that these biofuels would provide by displacing fossil fuels. In contrast, biofuels made from waste biomass or from biomass grown on degraded and abandoned agricultural lands planted with perennials incur little or no carbon debt and can offer immediate and sustained GHG advantages.
Amazonia as a carbon source linked to deforestation and climate change
DOI:10.1038/s41586-021-03629-6 URL [本文引用: 1]
Carbon storage and distribution pattern in main economic fruit forest ecosystems in Shanghai, East China
上海主要经果林生态系统碳储量及其分布格局
Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory
DOI:10.1086/283244 URL [本文引用: 1]
The biodiversity and ecosystem service contributions and trade-offs of forest restoration approaches
Review on the microorganisms in urban green space and their response to urbanization
城市绿地微生物及其对城市化的响应
Climate Change 2021:The Physical Science Basis
Carbon fixation and sequestration in the ocean, with special reference to the microbial carbon pump
DOI:10.1360/zd-2012-42-10-1473 URL [本文引用: 1]
海洋固碳与储碳——并论微型生物在其中的重要作用
Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls
DOI:10.1038/ncomms13630
PMID:27892466
[本文引用: 1]
Soil organic matter (SOM) and the carbon and nutrients therein drive fundamental submicron- to global-scale biogeochemical processes and influence carbon-climate feedbacks. Consensus is emerging that microbial materials are an important constituent of stable SOM, and new conceptual and quantitative SOM models are rapidly incorporating this view. However, direct evidence demonstrating that microbial residues account for the chemistry, stability and abundance of SOM is still lacking. Further, emerging models emphasize the stabilization of microbial-derived SOM by abiotic mechanisms, while the effects of microbial physiology on microbial residue production remain unclear. Here we provide the first direct evidence that soil microbes produce chemically diverse, stable SOM. We show that SOM accumulation is driven by distinct microbial communities more so than clay mineralogy, where microbial-derived SOM accumulation is greatest in soils with higher fungal abundances and more efficient microbial biomass production.
Soil carbon sequestration impacts on global climate change and food security
DOI:10.1126/science.1097396
PMID:15192216
[本文引用: 1]
The carbon sink capacity of the world's agricultural and degraded soils is 50 to 66% of the historic carbon loss of 42 to 78 gigatons of carbon. The rate of soil organic carbon sequestration with adoption of recommended technologies depends on soil texture and structure, rainfall, temperature, farming system, and soil management. Strategies to increase the soil carbon pool include soil restoration and woodland regeneration, no-till farming, cover crops, nutrient management, manuring and sludge application, improved grazing, water conservation and harvesting, efficient irrigation, agroforestry practices, and growing energy crops on spare lands. An increase of 1 ton of soil carbon pool of degraded cropland soils may increase crop yield by 20 to 40 kilograms per hectare (kg/ha) for wheat, 10 to 20 kg/ha for maize, and 0.5 to 1 kg/ha for cowpeas. As well as enhancing food security, carbon sequestration has the potential to offset fossil fuel emissions by 0.4 to 1.2 gigatons of carbon per year, or 5 to 15% of the global fossil-fuel emissions.
The contentious nature of soil organic matter
DOI:10.1038/nature16069 URL [本文引用: 1]
A review of carbon cycling and sequestration in urban soils
DOI:10.5846/stxb201110091478 URL [本文引用: 1]
城市土壤碳循环与碳固持研究综述
Expansion of high-latitude deciduous forests driven by interactions between climate warming and fire
DOI:10.1038/s41477-019-0495-8
PMID:31451797
[本文引用: 1]
High-latitude regions have experienced rapid warming in recent decades, and this trend is projected to continue over the twenty-first century. Fire is also projected to increase with warming. We show here, consistent with changes during the Holocene, that changes in twenty-first century climate and fire are likely to alter the composition of Alaskan boreal forests. We hypothesize that competition for nutrients after fire in early succession and for light in late succession in a warmer climate will cause shifts in plant functional type. Consistent with observations, our ecosystem model predicts evergreen conifers to be the current dominant tree type in Alaska. However, under future climate and fire, our analysis suggests the relative dominance of deciduous broadleaf trees nearly doubles, accounting for 58% of the Alaska ecosystem's net primary productivity by 2100, with commensurate declines in contributions from evergreen conifer trees and herbaceous plants. Post-fire deciduous broadleaf tree growth under a future climate is sustained from enhanced microbial nitrogen mineralization caused by warmer soils and deeper active layers, resulting in taller trees that compete more effectively for light. The expansion of deciduous broadleaf forests will affect the carbon cycle, surface energy fluxes and ecosystem function, thereby modifying important feedbacks with the climate system.
The impacts of climate extremes on the terrestrial carbon cycle: A review
DOI:10.1360/N072018-00316 URL [本文引用: 1]
极端气候事件对陆地生态系统碳循环的影响
Soil carbon debt of 12,000 years of human land use
Human settlements, infrastructure and spatial planning
Persistence of soil organic matter as an ecosystem property
DOI:10.1038/nature10386 URL [本文引用: 1]
Microbial regulation of the soil carbon cycle: Evidence from gene-enzyme relationships
DOI:10.1038/ismej.2016.65 URL [本文引用: 1]
Disturbance suppresses the aboveground carbon sink in North American boreal forests
DOI:10.1038/s41558-021-01027-4 URL [本文引用: 1]
Research progress on soil carbon sequestration in urban green space
城市绿地土壤固碳研究进展
Performances of urban tree species under disturbances in 120 cities in China
DOI:10.3390/f9020050 URL [本文引用: 2]
Terrestrial carbon sinks in China and around the world and their contribution to carbon neutrality
DOI:10.1007/s11427-021-2045-5 URL [本文引用: 1]
Beijing’s 50 million new urban trees: Strategic governance for large-scale urban afforestation
Carbon-neutral organisms as the new concept in environmental sciences and research prospects
关于“碳中和生物”环境科学的新概念与研究展望
Cities are hungry for actionable ecological knowledge
DOI:10.1002/fee.2021 URL [本文引用: 1]
/
〈 |
|
〉 |
