生物多样性, 2022, 30(7): 21495 doi: 10.17520/biods.2021495

纪念第19届国际植物学大会召开5周年专题

中国苏铁属植物资源和保护

席辉辉,1,2, 王祎晴1,2, 潘跃芝1, 许恬3, 湛青青4, 刘健,1, 冯秀彦,,1,*, 龚洵,,1,*

1.中国科学院昆明植物研究所资源植物与生物技术实验室, 昆明 650201

2.中国科学院大学, 北京 100049

3.南宁植物园(南宁青秀山风景名胜区旅游开发有限公司), 南宁 530029

4.中国科学院华南植物园园艺中心引种保育部, 广州 510650

Resources and protection of Cycas plants in China

Huihui Xi,1,2, Yiqing Wang1,2, Yuezhi Pan1, Tian Xu3, Qingqing Zhan4, Jian Liu,1, Xiuyan Feng,,1,*, Xun Gong,,1,*

1. Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201

2. University of Chinese Academy of Sciences, Beijing 100049

3. Nanning Qingxiushan Scenic and Historic Tourism Development Co., Ltd, Nanning Botanical Garden, Nanning 530029

4. Collection & Conservation Department, Horticulture Center, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650

通讯作者: *E-mail:gongxun@mail.kib.ac.cn;fengxiuyan@mail.kib.ac.cn

编委: 陈又生

责任编辑: 周玉荣

收稿日期: 2021-12-1   接受日期: 2022-03-4  

基金资助: 国家自然科学基金(31970230)

Received: 2021-12-1   Accepted: 2022-03-4  

摘要

苏铁类植物含2科10属, 是现存种子植物最原始的类群之一, 具有重要的科学研究和保护价值。苏铁属(Cycas)是唯一在中国有自然分布的苏铁类植物, 约20种, 多数种类为中国特有。中国的苏铁属植物主要分布于西南地区和东南沿海, 大部分种类为狭域分布的类群, 其生存繁衍受到了严重的威胁, 均被列为国家一级重点保护野生植物。基于文献资料收集整理和野外调查, 本文对中国苏铁属植物的研究和保护进行了阶段性总结。介绍了中国苏铁属植物分类研究、地理分布; 阐述了中国苏铁植物生存面临的主要威胁及相应的保护措施, 提出了保护方案的制定应遵循遗传学特征等科学依据。文中总结了我国苏铁植物保护科研工作中存在的5个主要问题: (1)苏铁植物基础科学问题有待进一步研究, (2)苏铁植物生境破坏较为严重, (3)人为盗采贩卖依然猖獗而苏铁植物园林园艺育种事业却举步不前, (4)苏铁自身生物学特性导致繁殖困难, (5)迁地保护难以保证苏铁种质“纯洁性”等, 同时针对这些问题提出相应建议, 以期为我国苏铁属植物的研究、保护以及可持续利用工作提供参考。

关键词: 苏铁属; 多样性; 保护成效和保护建议; 物种与分布

Abstract

Background & Aim: Cycads include two families and 10 genera, representing one of the most primitive taxa of the extant seed plants, and hold important value to scientific research and conservation. Among cycads, only about 20 species within the genus Cycas have a natural distribution within China, most of which are also endemic to China. These species are primarily found in the southwest and southeast coast of China, with most occupying a narrowly distributed area. All species in this group of Cycas have been classified as first-class national key protected wild plants in China due to the existence of serious threats to their survival and reproduction. In this review, we aim to familiarize members of the public with these important plants while also encouraging their protection.
Methods: This paper summarizes the status of research and protection of cycads in China by aggregating data available from the published literature and our field investigations.
Result: By summarizing the taxonomic research and geographical distribution of cycads in China, we highlight the principal threats to the survival of cycads in China and describe protective measures that can be used to counter these threats. Further, we suggest that certain scientific evidence, such as genetic characteristics, are critical factors when determining effective methods of protection.
Conclusion & Suggestions: We summarize five main issues related to the scientific research and conservation of cycads in China: (1) further research into the basic science of cycads is required, (2) the destruction of natural cycad habitats is a serious concern, (3) illegal harvesting and trafficking of cycads remain rampant, while legitimate cycad gardening and horticultural breeding businesses are in need of expansion, (4) certain biological characteristics of cycads lead to reproductive difficulties, (5) there are inherent difficulties in ex situ conservation for guaranteeing the preservation of germplasm purity among species of cycads. In addition, we propose specific solutions for these issues in order to provide a reference for improving research, protection, and the sustainable legal utilization of cycads in China in the future.

Keywords: Cycas; diversity; conservation effectiveness and recommendations; species and distribution

PDF (3260KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

席辉辉, 王祎晴, 潘跃芝, 许恬, 湛青青, 刘健, 冯秀彦, 龚洵 (2022) 中国苏铁属植物资源和保护. 生物多样性, 30, 21495. doi:10.17520/biods.2021495.

Huihui Xi, Yiqing Wang, Yuezhi Pan, Tian Xu, Qingqing Zhan, Jian Liu, Xiuyan Feng, Xun Gong (2022) Resources and protection of Cycas plants in China. Biodiversity Science, 30, 21495. doi:10.17520/biods.2021495.

苏铁类植物是现存种子植物最原始的类群之一, 其起源可追溯到晚二叠纪(Gao & Thomas, 1989; Spiekermann et al, 2021), 中生代晚三叠纪至早白垩纪最为繁盛, 晚白垩纪时逐渐衰退。现存苏铁类植物有苏铁科和泽米铁科2科10属360余种(Calonje et al, 2021), 斑块状分布在亚洲、非洲、大洋洲和美洲的热带和亚热带局部地区(Osborne, 1995)。从形态上看, 苏铁类植物的生殖结构与孢子植物的最为接近, 对研究种子植物的起源与早期演化具有极为重要的价值; 从其种系起源与演化上看, 苏铁类植物生存繁衍了至少2.8亿年(Spiekermann et al, 2021), 历经了地球环境的沧桑巨变, 蕴藏着丰富的遗传信息, 无疑是研究古植物区系、古地理和古气候变迁的珍贵素材; 在地球环境变迁过程中, 许多植物种类灭绝了, 而苏铁类植物生存繁衍至今, 对其适应环境的机制进行研究, 在保护生物学上亦具有重要价值。此外, 苏铁类植物还具有固氮作用的珊瑚根(coralloid roots), 珊瑚根内共生的蓝细菌能为苏铁植物提供更丰富的氮源(Ahern & Staff, 1994; Lobakova et al, 2003; Gutiérrez-García et al, 2018; Zheng & Gong, 2019)。

苏铁科只有苏铁属(Cycas)一属, 约120种(Calonje et al, 2021)。该属在苏铁类植物中种类最多且分类较为复杂, 也是地理分布范围最广的属, 零散或斑块状分布于南亚、东南亚、澳洲、西太平洋诸岛屿及非洲东部(含马达加斯加岛)等热带、亚热带地区(Jones, 2002; Whitelock, 2002)。最近的生物地理学研究认为苏铁属植物为第三纪东亚起源(Liu et al, 2021)。中国有苏铁属植物约20种, 集中分布在西南地区和东南沿海一带(表1)。中国西南地区很可能是现生苏铁属植物的分化中心和多样化中心, 不仅种类多, 而且特有种多, 如攀枝花苏铁(C. panzhihuaensis)、灰干苏铁(C. hongheensis)、陈氏苏铁(C. chenii)等, 还有一些形态特异的种类, 如多歧苏铁(C. multipinata)、德保苏铁(C. debaoensis)等。部分国内苏铁植物生长于干热河谷地带和石灰岩山地, 在维系当地生态环境的稳定与健康中有着重要作用, 如攀枝花苏铁分布于金沙江及其支流干热河谷, 是干热河谷植被的优势种; 灰干苏铁分布于红河干热河谷, 形成了灰干苏铁和霸王鞭(Euphorbia royleana)群落, 六籽苏铁(C. sexseminifera)和德保苏铁主要生长在石灰岩山地裸露的石缝中, 是维系石灰岩生态恢复或稳定的重要成分。

表1   中国产苏铁属植物的分布

Table 1  Distribution of Cycas species in China

物种 Species分布 Distribution
宽叶苏铁 C. balansae云南(河口、金平、马关、屏边) Yunnan (Hekou, Jinping, Maguan and Pingbian)
叉叶苏铁 C. bifida广西(江州、龙州、凭祥、右江); 云南(富宁、个旧、河口、金平) Guangxi (Jiangzhou, Longzhou, Pingxiang and Youjiang); Yunnan (Funing, Gejiu, Hekou and Jinping)
陈氏苏铁 C. chenii云南(峨山、红河、石屏、双柏、新平、元江) Yunnan (Eshan, Honghe, Shiping, Shuangbai, Xinping and Yuanjiang)
德保苏铁 C. debaoensis 广西(德保、靖西、那坡、右江); 云南(富宁) Guangxi (Debao, Jingxi, Napo and Youjiang); Yunnan (Funing)
滇南苏铁 C. diannanensis 云南(楚雄、个旧、河口、红河、南华、双柏、新平、元江、元阳) Yunnan (Chuxiong, Gejiu, Hekou, Honghe, Nanhua, Shuangbai, Xinping, Yuanjiang and Yuanyang)
长叶苏铁C. dolichophylla 长叶苏铁云南(河口、金平、麻栗坡、马关、勐海、勐腊、屏边) Yunnan (Hekou, Jinping, Malipo, Maguan, Menghai, Mengla and Pingbian )
锈毛苏铁 C. ferruginea 广西(大化、龙州、马山、平果、田东、田阳、宜州) Guangxi (Dahua, Longzhou, Mashan, Pingguo, Tiandong, Tianyang and Yizhou)
贵州苏铁 C. guizhouensis 广西(西林); 云南(开远、泸西、蒙自、弥勒、丘北、师宗); 贵州(兴义、安龙) Guangxi (Xilin); Yunnan (Kaiyuan, Luxi, Mengzi, Mile, Qiubei and Shizong); Guizhou (Xingyi and Anlong)
灰干苏铁 C. hongheensis 云南(个旧) Yunnan (Gejiu)
长柄叉叶苏铁 C. longipetiolula 云南(河口、金平) Yunnan (Hekou and Jinping)
多羽叉叶苏铁 C. multifrondis 云南(河口) Yunnan (Hekou)
多歧苏铁 C. multipinnata 云南(个旧、河口、金平) Yunnan (Gejiu, Hekou and Jinping)
攀枝花苏铁 C. panzhihuaensis 四川(德昌、会理、雷波、宁南、攀枝花); 云南(华坪、禄劝、牟定、元谋) Sichuan (Dechang, Huili, Leibo, Ningnan and Panzhihua); Yunnan (Huaping, Luquan, Mouding and Yuanmou)
篦齿苏铁 C. pectinata 云南(澜沧、勐海、勐腊、思茅、盈江) Yunnan (Lancang, Menghai, Mengla, Simao and Yingjiang)
苏铁C. revoluta 福建(连江、罗源、宁德、霞浦) Fujian (Lianjiang, Luoyuan, Ningde and Xiapu)
叉孢苏铁 C. segmentifida 广西(德保、乐业、凌云、隆安、隆林、平果、天等、天峨、田东、田林、田阳、西林、右江); 贵州(册亨、望谟); 云南(富宁、广南、麻栗坡) Guangxi (Debao, Leye, Lingyun, Longan, Longlin, Pingguo, Tiandeng, Tiane, Tiandong, Tianlin, Tianyang, Xilin and Youjiang); Guizhou (Ceheng and Wangmo); Yunnan (Funing, Guangnan and Malipo)
六籽苏铁 C. sexseminifera广西(大新、都安、扶绥、江南、江州、靖西、龙州、隆安、宁明、平果、凭祥、天等、田东、武鸣) Guangxi (Daxin, Duan, Fusui, Jiangnan, Jiangzhou, Jingxi, Longzhou, Longan, Ningming, Pingguo, Pingxiang, Tiandeng, Tiandong and Wuming)
单羽苏铁 C. simplicipinna 云南(景谷、景洪、澜沧、勐海、勐腊、双江、思茅) Yunnan (Jinggu, Jinghong, Lancang, Menghai, Mengla, Shuangjiang and Simao)
四川苏铁 C. szechuanensis 福建(诏安); 广东(福田、广州、乐昌、清远、曲江); 广西(八步) Fujian (Zhaoan); Guangdong (Futian, Guangzhou, Lechang, Qingyuan and Qujiang); Guangxi (Babu)
台东苏铁 C. taitungensis 台湾(台东) Taiwan (Taidong)
台湾苏铁 C. taiwaniana 福建(厦门、芗城、云霄、漳州); 广东(和平); 海南(昌江、陵水、琼中、三亚) Fujian (Xiamen, Xiangcheng, Yunxiao and Zhangzhou); Guangdong (Heping); Hai Nan (Changjiang, Lingshui, Qiongzhong and Sanya)
谭清苏铁 C. tanqingii 云南(绿春) Yunnan (Lüchun)

新窗口打开| 下载CSV


中国本土植物学家开展苏铁属植物研究始于20世纪30年代(陈嵘, 1937), 70年代首次发表苏铁植物新种(郑万钧等, 1975), 90年代达到苏铁新类群数量发表高峰(Shen et al, 1994; 韦发南, 1996; 王发祥等, 1996; 张宏达等, 1998), 但这些类群多数是根据微小的形态变异发表, 且部分种类仅基于植物园栽培个体发表, 并未找到野生群体, 因此, 这类名称通常不能得到业界认可并采用。近些年, 有不少研究采用形态和分子相结合的方法, 对滇南苏铁(Liu et al, 2015)、叉孢苏铁(Feng et al, 2016a)等复合群做了综合研究, 并进行了分类修订。

中国的苏铁属植物多为狭域分布, 居群数量少, 居群也较小, 且遭受到了严重的破坏, 因此, 国内的苏铁属所有种均被列为国家重点保护野生植物(国家林业局和农业部, 1999; 国家林业和草原局和农业农村部, 2021)。研究中国苏铁属植物的濒危原因和保护已迫在眉睫, 不仅要保护现存的种群及其生境, 而且要研究其繁殖生物学特性, 培育苗木, 回归引种, 增加其种群数量。本文对中国苏铁属植物的分类、地理分布、保护现状等进行了阶段性总结, 并展望了今后的研究方向, 以期为中国苏铁属植物研究和保护提供参考资料和指导。

1 中国苏铁属植物的分类和分布

1.1 中国苏铁的分类进展

苏铁属植物由于性成熟时间较长, 且野外调查到的居群规模通常较小, 少见开花植株, 难以对其形态特征进行全面观察; 再加上生境的异质性导致同一苏铁各居群的形态特征存在较大差异(邓朝义, 1999), 不同物种间可能存在的自然杂交现象(Tao et al, 2021)等因素, 导致中国苏铁属植物的部分物种在分类上存在一定困难和争议。

Hill (1995, 2004)基于长期野外工作对苏铁植物的观察, 并综合胚珠被毛、大孢子叶形和种子解剖结构等生殖特征, 提出将苏铁属划分为6个组: 东方苏铁组(Section Asiorientales)、蕨叶苏铁组(Section Strangeriodes)、暹罗苏铁组(Section Indosinenses)、苏铁组(Section Cycas)、攀枝花苏铁组(Section Panzhihuaenses)和韦德苏铁组(Section Wadeae)。随着分子测序技术的发展, Xiao和Möller (2015)基于nrDNA ITS基因对31个苏铁属物种进行了系统发育分析, Liu等(2018)基于4个叶绿体基因和3个核基因对苏铁属下的104种5个亚种进行系统发育关系分析, 两者的结果都支持Hill苏铁属下等级分类结果。

中国苏铁属植物研究起步较晚, 在1978年出版的《中国植物志》第七卷中, 仅记载了篦齿苏铁(C. pectinata)、四川苏铁(C. szechuanensis)、苏铁(C. revoluta)、台湾苏铁(C. taiwaniana)、海南苏铁(C. hainanensis)、云南苏铁(C. siamensis)和华南苏铁(C. rumphii)等8种(郑万钧和傅立国, 1978), 其中华南苏铁为引种栽培, 标本和文献中出现的“云南苏铁” (C. siamensis)这一名称为错误鉴定, 中文名为“暹罗苏铁”, 中国无该种分布。周林等(1981)、韦发南等(1996, 1996, 1997)、陈家瑞和钟业聪(1997)、陈家瑞和李楠(1997)、王发祥等(1996)、张宏达和钟业聪(1997)、张宏达等(1998)、Zhang等(1999)等先后研究过我国的苏铁属植物, 发表了不少新种, 并出版了《中国苏铁》(王发祥等, 1996)、《中国苏铁植物》(管中天和周林, 1996)、《中国苏铁科植物的系统分类与演化研究》(黄玉源, 2001)等专著。至今, 中国苏铁属植物总共出现过52个名称记录, 但是, Flora of China仅记录16种(Wu & Raven, 1999), 第9届国际苏铁生物学会议论文集中The World List of Cycads认可中国苏铁属植物25种(Stevenson et al, 2018)。

对形态上相似、难以分类的苏铁植物复合群, 采用分子鉴定与形态性状相结合的方法进行了物种界定, 得到较可靠的结果。研究发现滇南苏铁复合群(C. diannanensis complex)的元江苏铁和多胚苏铁应归并到滇南苏铁中(Liu et al, 2015); 叉孢苏铁复合群仅包含叉孢苏铁和贵州苏铁两个种, 将尖尾苏铁(C. acuminatissima)、长球果苏铁(C. longiconifera)、西林苏铁(C. xilingensis)、厚柄苏铁(C. crassipes)和多裂苏铁(C. multifda)归并到叉孢苏铁, 隆林苏铁(C. longlinensis)归并到贵州苏铁(Feng et al, 2016a), 这些研究结果已被IUCN苏铁名录The World List of Cycads采纳。基于多基因片段和SSR分子标记对台湾苏铁复合群(C. taiwaniana complex)的物种鉴定结果表明: 台湾苏铁复合群仅有台湾苏铁(C. taiwanina)和四川苏铁(C. szechuanensis)两个种, 海南苏铁(C. hainanensis)、葫芦苏铁(C. changjiangensis)和念珠苏铁(C. lingshuigensis)归并到台湾苏铁, 仙湖苏铁(C. fairylakea)归并到四川苏铁(Feng et al, 2021)。四川苏铁的模式标本于1975年采自四川峨眉山伏虎寺的栽培植株, 但一直未发现该种雄株, 推测极可能引自广东; 台湾苏铁的模式标本是1867年从中国厦门寄到英国的, 标本记录“Ex insula Formosa”没有提及具体采集地, 一直被认为原产台湾, 然而该字迹并非采集人Rbert Swinhoe亲笔书写, 根据调查、文献考证以及遗传学研究得知, 台湾苏铁原产海南, 其模式标本应为厦门的栽培植株(王定跃, 2000; Feng et al, 2021)。

综上, 到目前为止, 中国苏铁属植物约有20种, 仍有一些类群需进一步研究(附录1)。这些存疑类群集中分布在广西石灰岩地区, 该地区先后发表了七籽苏铁(C. septemsperma)、短叶苏铁(C. brevipinnata)、掌裂苏铁(C. palmatifida)、长孢苏铁(C. longisporophylla)、刺孢苏铁(C. spiniformis)等19个新种, 加上巴兰萨苏铁和叉叶苏铁以及可能有分布的长柄叉叶苏铁和多羽叉叶苏铁, 广西石灰岩地区有记载的苏铁属植物达24种, 仅以百色市发表的名称就多达14种(张国革等, 2008)。黄玉源(2001)根据叶片解剖结构、孢粉学等证据认为短叶苏铁、七籽苏铁、掌裂苏铁等广西苏铁均为独立物种。钱丹(2009) ( 钱丹 (2009) 广西石山苏铁复合体的资源调查和分类学研究. 硕士学位论文, 中山大学, 广州.)首次提出石山苏铁复合群(C. sexseminifera complex), 利用形态数据和叶绿体片段(trnL-trnF基因非编码区、trnS-trnG基因非编码区、rpl32-ccsA基因)聚类并建立系统发育树进行了分类处理, 但并未发表该结果, 然而, 叶绿体DNA片段为母系遗传, 无法反映全部的群体遗传现状, 且其采样遗漏了部分较为关键的居群。因此, 后续需要基于更全面的样品采集及数据集对广西石灰岩地区的苏铁植物进行分类学研究。

1.2 中国苏铁的分布

中国苏铁属植物自然分布于西南(云南、广西、贵州、四川)和东南部(台湾、广东、福建、海南) (表1)。多样化的生境为我国苏铁属植物生存、演化提供了有利的条件。苏铁属多数物种为狭域分布, 例如, 灰干苏铁分布于红河流域干热河谷, 生长在石灰岩山地的石缝中, 仅有2个毗邻的种群; 多歧苏铁局限分布于云南红河流域的个旧县绿水河和河口县的莲花滩; 攀枝花苏铁仅分布于川滇交界的金沙江干热河谷地区; 台东苏铁(C. taitungensis)分布于台湾台东县沿海海拔300‒950 m的海岸和山涧两侧(Shen, 1994)。有少数种类分布范围较广, 例如, 篦齿苏铁虽零散分布于我国云南西双版纳州、普洱市澜沧县以及德宏傣族景颇族自治州盈江县, 但广泛分布于印度、泰国、缅甸、老挝、柬埔寨、越南等南亚地区(杨志松等, 2014)。另外, 单羽苏铁较广地分布于我国澜沧江流域以及泰国、老挝、缅甸等地。

中国苏铁属植物呈零散状或聚团状分布, 且多沿江河流域分布, 其中红河流域、南盘江流域、澜沧江流域的种类较多。红河流域分布有多歧苏铁、灰干苏铁、滇南苏铁、陈氏苏铁、长叶苏铁、叉叶苏铁等, 南盘江流域分布有贵州苏铁、叉孢苏铁、德保苏铁、叉叶苏铁、六籽苏铁等, 澜沧江流域分布有篦齿苏铁、单羽苏铁、长叶苏铁等种类, 而金沙江流域只有攀枝花苏铁1种。多歧苏铁、篦齿苏铁、单羽苏铁、长叶苏铁、宽叶苏铁、谭清苏铁等种类主要分布在热带季雨林下, 攀枝花苏铁、灰干苏铁、贵州苏铁、叉孢苏铁、德保苏铁、叉叶苏铁、六籽苏铁主要分布在石灰岩山地灌丛、草坡中和常绿阔叶林下。

2 中国苏铁属植物的保护

当今社会经济的快速发展以及全球气候变化, 使得苏铁属植物遭受破坏愈加剧烈, IUCN红色名录(IUCN, 2021)显示苏铁属植物约58%的种类生存受到威胁, 约2%的种类生存情况尚不明确, 中国苏铁属植物情况类似。我国原生苏铁属植物生存面临濒危灭绝威胁的主要因素有: 人为因素(外因: 栖息地丧失和人为采挖收购贩卖)与自身因素(内因: 种群小, 更新能力弱等生物学特征)。其中, 栖息地丧失主要是农耕开垦(如云南绿春县的橡胶林导致单羽苏铁的生境破碎丧失)、采矿采石(如广西百色等地开矿采石导致石山苏铁等苏铁植物的生境丧失)、筑路(如云南双柏县修路、广西西林县修路分别导致陈氏苏铁和贵州苏铁生境破碎)、筑建水电站(澜沧江流域的糯扎渡水电站淹没了单羽苏铁和篦齿苏铁的栖息地, 云南富宁县古拉乡水电站淹没了云南分布的德保苏铁的主要生境)等。20世纪中叶饥荒年代, 苏铁原产地居民以苏铁植物茎干、嫩叶、种子为食, 缓解饥饿, 一定程度上破坏了苏铁植物(王发祥等, 1996; 何永华和李朝銮, 1999; 郑芳勤等, 1999; 张国革等, 2008), 部分地区至今仍保留食用苏铁植物的习惯(文云燕, 2021); 20世纪70、80年代到21世纪初, 我国园林景观行业的发展以及园艺博览会等的宣传带来“苏铁热” “园艺热”, 导致我国原生苏铁植物被大量采挖贩卖(何永华和李朝銮, 1999; 陈家瑞和李楠, 2003; 周洁敏, 2003; 黎德丘, 2004)。其次, 苏铁属植物雌雄异株, 通常居群较小, 开花植株较少, 花粉传播距离有限, 形成传粉障碍, 结实率降低, 从而导致苏铁居群自我更新困难。另外, 据调查(覃永华, 个人通讯, 广西壮族自治区林业勘测设计院), 广西贺州一带曾有野生苏铁分布(疑似四川苏铁C. szechuanensis), 但2021年实际调查过程中却只调查到3处栽培植株, 并未发现野生植株, 而当地野生苏铁曾遭受采挖收购(陈鹏, 个人通讯, 广西贺州市滑水冲自治区级自然保护区), 由此可见国内部分苏铁居群极可能尚未得到充分调查和研究就被采挖殆尽。

苏铁类植物得到了广泛的关注。IUCN将苏铁类列为重点保护对象, 并设立了苏铁专家组, 开展苏铁类植物研究与保护, 有关专家也曾到我国开展苏铁属植物考察。所有苏铁类植物都被列入《濒危野生动植物种国际贸易公约》附录(CITES, 2021), 禁止贸易和野外采集。中国政府及学者同样高度重视苏铁属植物的保护和研究: 在1999年和2021年出台的国家重点保护野生植物名录中, 苏铁属所有种都被列为国家一级重点保护野生植物(国家林业局和农业部, 1999; 国家林业和草原局和农业农村部, 2021)。此外, 国内苏铁植物实施严格管理, 禁止非法进出口, 且大多数苏铁属种类被列入《中国极小种群野生植物拯救保护工程规划(2011-2015年)》(杨志松等, 2014)。覃海宁等(2017)依据IUCN濒危物种红色名录标准将所有中国苏铁属植物评估为受威胁物种。这些举措对苏铁属植物的保护起到了至关重要的作用(附录2)

2.1 就地保护

1983年原渡口市(现四川攀枝花市)建立了中国第一个以苏铁植物(攀枝花苏铁)为主要保护对象的自然保护区, 即“攀枝花苏铁自然保护区”, 该保护区于1996年晋升为国家级自然保护区。此后, 一些苏铁属植物的保护小区和保护点陆续建立。例如, 深圳市梅林水库的仙湖苏铁保护小区(即四川苏铁; Feng et al, 2021); 或者将一些苏铁属植物的分布区纳入邻近的自然保护区, 例如, 将云南普渡河的攀枝花苏铁分布区纳入云南轿子雪山国家级自然保护区。目前, 国内所有苏铁属物种的种群或部分种群都在保护区里得到了一定程度保护(附录2、附录3)。如: 云南大围山国家级自然保护区分布的多歧苏铁、灰干苏铁、滇南苏铁、叉叶苏铁等; 云南绿春黄连山国家级自然保护区分布的谭清苏铁; 广西弄岗国家级自然保护区分布的叉叶苏铁、六籽苏铁; 海南昌江县霸王岭国家级自然保护区分布的葫芦苏铁(即台湾苏铁(Feng et al, 2021); 海南乐东县尖峰岭国家森林公园分布的海南苏铁即台湾苏铁(Feng et al, 2021)。自然保护区的建立不仅保护了分布在其范围内的苏铁属种群, 而且保护了其赖以生存繁衍的生境。

2.2 迁地保护和回归引种

自原国家林业局(现国家林业和草原局) 2001年将苏铁列为“全国野生动植物保护及自然保护区建设工程”15个重点保护物种后, 有关专家组织编制了《全国苏铁保护工程专项规划》, 自此全面开展苏铁种质资源收集和保存。深圳仙湖植物园在2002年建立了“国家苏铁种质资源保护中心”, 并在2009年进行了升级改造。该中心目前已收集、保存全球苏铁类植物2科10属240余种, 包括中国苏铁属多数种类, 且部分种类在这里可以完成生活周期(陈谭清和李楠, 1999)。

除此之外, 国内其他植物园、树木园等有关单位也引种保存了一些苏铁植物(附录4), 其中, 中国科学院昆明植物园、华南植物园苏铁园、西双版纳热带植物园苏铁园、桂林植物园, 以及南宁植物园(青秀山苏铁园)、攀枝花苏铁园迁地保护的种类较多。几乎所有中国苏铁植物迁地保存的复种指数都大于2, 有些甚至大于5, 在种水平上增加了迁地保存种类抗极端事件(低温、病虫害等)的能力。

近年来, 随着苏铁属植物栽培和繁殖技术的发展, 一些单位通过人工授粉获得种子, 培育苗木, 再回归到原生境, 或在与原生境相似的地点重建种群, 开展了引种、回归或新建种群的试验(例如: 骆文华等, 2014)。国家苏铁种质资源保护中心在2008年率先回归500株德保苏铁到其模式产地附近的广西黄连山自然保护区, 回归5年后的调查表明, 德保苏铁回归种群生长良好, 统计的507株中有89株长出了大、小孢子叶球, 其中70株为雄株, 19株为雌株, 且大、小孢子叶球几乎同时开放, 2012‒2017年之间利用回归居群产生的种子培育苗木约5,300株, 表明德保苏铁回归获得成功(甘金佳等, 2013; 陆燕兆, 2017; 王运华等, 2018)。中国科学院昆明植物研究所于2018年回归了1,000多株攀枝花苏铁到云南轿子雪山国家级自然保护区的普渡河片区的试验区, 还回归了滇南苏铁和长叶苏铁到云南省红河州国营芷村林场, 目前长势良好。云南双柏县恐龙河州级自然保护区管护局在自然保护区试验区重建了滇南苏铁种群, 云南大围山国家级自然保护区回归了灰干苏铁和滇南苏铁(附录5)。

2.3 保护遗传学研究

近20年来, 国内研究者已采用多种分子方法, 如等位酶、扩增片段长度多态(amplified fragment length polymorphism, AFLP)、微卫星(simple sequence repeats, SSR)、单核苷酸多态性(single nucleotide polymorphism, SNP)、基于酶切的简化基因组测序(restriction-site associated DNA sequencing, RAD-seq)等, 对大多数中国苏铁属物种的遗传多样性和分化进行了研究。基于SSR的研究结果(表2)表明, 中国苏铁属植物的遗传多样性较高: 多态性位点比例(PPL)在66.67%-98.61%之间, 平均为85.45%, 期望杂合度(He)位于0.2470-0.7030, 平均期望杂合度为0.4416, 显著高于其他木本植物(aver. PPL = 51.30%, He = 0.150, Hamrick et al, 1992)。叶绿体DNA片段分析同样显示出苏铁属植物具较高的遗传多样性(表3): 单倍型多样性(Hd)在0.492-0.998之间, 平均0.746; 中国苏铁属植物曾经历了居群缩减的历史, 居群间存在较大遗传差异, 平均遗传分化系数(Fst)达到0.7385, 显著的群体遗传结构分化和居群间较大的遗传差异说明我国苏铁属植物多数经历了居群缩减事件。值得关注的是, 沿海分布的苏铁(C. revoluta)和台东苏铁(C. taitungensis)的核苷酸多样性比其他内陆物种要大一个级别。

表2   基于SSR的中国苏铁属植物的遗传多样性和遗传分化

Table 2  Genetic diversity and genetic differentiation of Cycas plants in China based on SSR

物种 Species多态性位点百分比 PPL (%)期望杂合度 He遗传分化系数 Gst/Fst参考文献 References
叉叶苏铁 C. bifida89.060.54300.1156Gong, 2015
德保苏铁 C. debaoensis93.580.48400.1144Gong & Gong, 2016
长叶苏铁 C. dolichophylla87.980.46600.2600*Zheng et al, 2016
贵州苏铁 C. guizhouensis88.110.41900.1380*Feng et al, 2016b
灰干苏铁 C. hongheensis90.000.43500.0658Guan et al, 2018
多歧苏铁 C. multipinnata94.120.49700.2957*Gong et al, 2015
攀枝花苏铁 C. panzhihuaensis72.730.32800.3310Xiao, 2020( 肖斯悦(2019) 攀枝花苏铁和陈氏苏铁的保护遗传学研究. 硕士学位论文, 中国科学院昆明植物研究所, 昆明. )
叉孢苏铁 C. segmentifida84.520.43600.2290*Feng et al, 2017
单羽苏铁 C. simplicipinna90.630.44700.2610Feng et al, 2014
四川苏铁 C. szechuanensis66.670.2470-Gong, 2012κ(κ 龚奕青 (2012>) 四川苏铁的资源调查和遗传多样性研究及其保育策略. 硕士学位论文, 中山大学, 广州.)
四川苏铁 C. szechuanensis69.440.28800.3860Wang, 2019
台湾苏铁 C. taiwaniana98.610.7030-Wang et al, 2019
平均值 Mean85.450.44160.220-

本表在Zheng等(2017)表2基础上有所改编, 表中粗体部分表示增加的数据或信息有所变更。如果Gst与Fst同时存在, 优先用Fst。-表示数据缺失或无需填写。*表示P < 0.05, 代表Fst值显著。

This table is adapted from Table 2 in Zheng et al. (2017), data in bold in the table indicate the added newly or changed information. PPL, Percentage of polymorphic loci; He, Expected heterozygosity; Gst/Fst, Genetic differentiation. If both Gst and Fst both were available, chose Fst in priority. - means data are not available or no need to fill. * means P < 0.05, significant value was detected in Fst.

新窗口打开| 下载CSV


表3   基于cpDNA的中国苏铁属植物的遗传多样性和遗传分化

Table 3  Genetic diversity and genetic differentiation of Cycas plants in China based on cpDNA

物种 Species单倍型多样性 Hd核苷酸多样性 π遗传分化系数 Gst/Fst参考文献 References
叉叶苏铁 C. bifida0.7180.00190.8328Gong, 2015
陈氏苏铁 C. chenii0.6210.00140.9540Yang et al, 2017
德保苏铁 C. debaoensis0.4920.00130.8010Gong & Gong, 2016
滇南苏铁 C. diannanensis 0.5640.00090.8185Liu et al, 2015
长叶苏铁 C. dolichophylla0.9400.00250.8400*Zheng et al, 2016
贵州苏铁 C. guizhouensis0.7940.00090.6982*Feng et al, 2016b
多歧苏铁 C. multipinnata0.7720.00150.9230Gong et al, 2015
攀枝花苏铁 C. panzhihuaensis0.5710.00380.7903Zhang, 2012λ(λ 张芳铭 (2012) 攀枝花苏铁的保护遗传学研究. 硕士学位论文, 中国科学院昆明植物研究所, 昆明.)
攀枝花苏铁 C. panzhihuaensis0.8030.00260.8660Xiao, 2019φ( 肖斯悦 (2019) 攀枝花苏铁和陈氏苏铁的保护遗传学研究. 硕士学位论文, 中国科学院昆明植物研究所, 昆明.)
苏铁 C. revoluta0.9590.05810.0864Chiang et al, 2009
叉孢苏铁 C. segmentifida0.6020.00230.9980*Feng et al, 2016a
单羽苏铁 C. simplicipinna0.8640.00260.9867Feng et al, 2014
台东苏铁 C. taitungensis0.9980.01270.0056Huang et al, 2001
平均值 Mean0.7460.00710.7385-

本表在Zheng等(2017)表2基础上有所改编, 表中粗体部分表示增加的数据或信息有所变更。如果Gst与Fst同时存在, 优先用Fst。-表示数据缺失或无须填写。*表示P < 0.05, 代表Fst值显著。

This table is adapted from Table 2 in Zheng et al (2017), data in bold in the table indicate the added newly or changed information. Hd, Haplotype diversity;π, Nucleotide diversity; Gst/Fst, Genetic differentiation. If both Gst and Fst both were available, chose Fst in priority. - means data are not available or no need to fill. * means P < 0.05, significant value was detected in Fst.

新窗口打开| 下载CSV


已有研究为中国苏铁属植物的有效保护提供了重要的可靠的科学依据。Feng等(2017)对叉孢苏铁的保护遗传学研究表明: 叉孢苏铁多数居群的有效群体大小小于50; 野外调查显示云南坝美居群生境未受破坏、年龄结构合理, 种群密度大, 对该居群的哈迪-温伯格平衡检测显示该居群符合哈迪-温伯格平衡, 由此推断叉孢苏铁遗传多样性丧失并非自身因素造成, 而是因为人类干扰下栖息地丧失和非法盗挖引起, 由此提出的保护建议是建立保护小区或保护区, 提高当地居民和公众的保护意识。Xiao等(2020)对攀枝花苏铁的保护遗传学研究显示:

受保护的大居群的遗传多样性没有预期的高, 保护区外未受保护的小居群的遗传多样性也没预期的低; 相反, 小居群的单倍型多样性甚至高于较大居群的; 微卫星聚类定义了5个攀枝花苏铁进化显著单元和管理单元; 这些结果暗示攀枝花苏铁的保护应以就地保护为主, 同时收集种子进行近地或迁地保护, 对小居群的进化显著单元进行生境恢复和重建。此外, 多歧苏铁(Gong et al, 2015)、德保苏铁(Gong & Gong, 2016)、贵州苏铁(Feng et al, 2016b)、长叶苏铁(Zheng et al, 2017)等的保护遗传学研究为其保护提供了理论依据。

综上, 同一物种具有不同遗传学特征的居群应分别进行重点保护和保育, 优先保护遗传多样性较高、单倍型独特的居群。保护遗传学研究为苏铁植物的科学有效保护提供了重要参考。

3 中国苏铁属植物研究和保护中存在的问题和建议

尽管我国十分重视苏铁植物的保护, 这些年投入了大量人力和物力进行保护区的建设, 使得苏铁属植物的濒危状况有了很大程度的缓解, 但仍存在一些亟待解决的问题。

3.1 苏铁植物基础科学问题有待进一步研究

多数中国濒危物种的科学研究不足(顾垒等, 2015)。目前, 中国苏铁属种类不清, 亟待加强分类与系统发育的研究。近年来, 已采用分子标记解决了一些复杂类群的分类问题, 例如, 滇南苏铁复合群(Liu et al, 2015)、叉孢苏铁复合群(Feng et al, 2016a)和台湾苏铁复合群(Feng et al, 2021)等, 澄清了相应的分类问题, 明确了保护对象。但是, 仍有不少类群的分类有待研究, 如分布于广西石灰岩山地的石山苏铁复合群(钱丹, 2009( 钱丹 (2009) 广西石山苏铁复合体的资源调查和分类学研究. 硕士学位论文, 中山大学, 广州.))、长柄叉叶苏铁、多羽叉叶苏铁以及宽叶苏铁这类地下茎习性的苏铁等。因此, 采用多学科交叉的研究方法对中国苏铁属植物的分类进行研究迫在眉睫。

中国苏铁属物种不同种群的遗传多样性尚待研究, 以便制定更为精细高效的就地保护、迁地保育和种质收集方案。基于苏铁各物种的遗传多样性及各居群的遗传结构、居群动态及成因等特征提出相应保护策略在苏铁保护工作中十分必要。而目前国内苏铁保护主要关注分布在保护区范围内的居群, 部分具有特殊遗传特征的居群未得到重视和有效保护, 相反个别居群被大肆收购、采挖、贩卖或因工程建设而遭破坏。人类世(Anthropocene)时期物种灭绝的首要因素当属人为因素(Lande, 1994), 因此, 我国苏铁植物保护的首要工作还是解决那些直接危害野外苏铁植物生存的确定性威胁(张大勇和姜新华, 1999), 如电商等平台非法售卖苏铁等重点保护物种(https://www.bjnews.com.cn/, accessed on 2021-11-18), 若不加制止管理, 势必对我国野生苏铁资源造成毁灭性破坏。

3.2 苏铁植物生境破坏较为严重

苏铁属植物赖以生存的环境遭受到了严重破坏, 一些种类几乎丧失生境。攀枝花苏铁(何永华和李朝銮, 1999)与六籽苏铁分布地中石矿、铝矿等资源丰富, 矿石的开采往往导致苏铁在内的所有动植物消失或丧失生境; 多歧苏铁、谭清苏铁的分布地常被毁林开荒, 导致生境破碎化; 水电站和筑路等工程严重威胁着陈氏苏铁、贵州苏铁等的生存。因此, 必须保护好其残存的生境, 并尽可能恢复其原生境, 还给苏铁属植物一个生存繁衍之地。

总体上, 分布在自然保护区的苏铁大多得到了较好的保护, 而自然保护区外的苏铁通常遭到了严重的人为破坏, 例如, 攀枝花苏铁国家级自然保护区里的苏铁得到了很好的保护, 能正常生存繁殖、更新, 而自然保护区外多个县市分布的攀枝花苏铁几乎破坏殆尽。原分布在云南巧家和华宁以及四川宁南的攀枝花苏铁已无野外分布, 仅有少量栽培个体, 这些栽培个体拥有较高的遗传多样性, 可划分为不同的进化显著单元, 在保护上具有重要的意义(Xiao et al, 2020)。

3.3 人为盗采贩卖依然猖獗, 苏铁植物园林园艺育种事业却举步不前

人为盗采收购野生苏铁植物的情况时有发生, 特别是多歧苏铁、石山苏铁(六籽苏铁)、德保苏铁等形态独特、观赏价值较高的种类。目前在一些互联网平台上仍能搜索到大量兜售野生苏铁的信息, 主要涉及的是广西的石山苏铁和德保苏铁等种类。因此, 必须加强各部门联合监管和执法, 严厉打击盗采和贩卖(https://www.bjnews.com.cn/, 2021-11-18)。

近几十年, 除国内已宣布野外灭绝(王发祥等, 1996; 郑芳勤等, 1999)的苏铁(C. revoluta)的开发利用之外, 我国原生苏铁植物的园艺开发工作几乎停滞不前; 相反, 该种在日本分布的野生居群却得到较好保护, 在冲绳岛(Okinawa)、鹿儿岛(Kagoshima)等海岸石山坡地可见较大苏铁居群(Kono & Tobe, 2007), 已长成高大的苏铁森林(https://botanyboy.org/, 2021-11-18); 也有调查认为, 我国福建罗源县部分地区野外尚存野生苏铁(张克昌, 2013), 但这并非国内主流观点。至今, 我国苏铁植物培育的新品种仅有李楠博士等培育的‘剑苏铁’ (品种权号: 20070080; ‘剑苏铁’, http://forest.ckcest.cn/d/sqpzsjk/fac27c6bc3c681d93e85dfd2d791d4f6.html, huayejie inki, 2021-11-18)一种。据悉, 欧洲苏铁植物资深爱好者Simon Lavaud等利用原产我国的耐性和观赏特征优良的苏铁植物, 如攀枝花苏铁、多歧苏铁、德保苏铁、石山苏铁、苏铁等, 与其他苏铁植物进行杂交、嫁接等育种工作。因此, 苏铁植物的科学可持续且依法依规的开发应用将是一种能达到双赢甚至多赢局面的保护措施。在此, 期望有关部门在坚决依法打击并严惩非法盗采、买卖野生苏铁植物的行为, 保护好国内野生苏铁植物资源的前提下, 适当允许具有相应资质的育种单位和企业个人等办理相关合法证件, 鼓励国内有关单位和育种从业人员主动依法依规对原产我国的苏铁植物开展园艺育种相关工作, 适当简化科研工作者苏铁植物科学考察申请流程, 以此支持我国苏铁植物科研和开发应用工作; 至今, 我国网民数量已超过10亿, 积极展开苏铁植物保护的紧迫性以及相关法规法条的网络宣传, 鼓励公众对非法采挖、买卖苏铁植物的违法犯罪行为进行监督举报, 将对野生苏铁资源的保护起到至关重要的作用。从而, 实现我国野生苏铁资源的科研、保护、应用等的多赢局面, 最终让中国苏铁走向公众、走向世界。

3.4 苏铁自身生物学特性导致的繁殖困难

苏铁属植物存在种群数量少、繁殖能力差、更新困难等问题。苏铁属植物为雌雄异株, 且雄株的小孢子叶球要比大孢子叶球早成熟5-7天; 传粉媒介主要是迁徙能力弱而不能远距离传粉的甲虫, 如象鼻虫(Rhopalotria spp.) (Norstog & Fawcett, 1989; 杨泉光等, 2010; Salzman et al, 2020); 苏铁遭到破坏后, 种群数量减少, 个体间距离增大, 减少了自然传粉的机会, 导致结实率低, 甚至不结实。因此, 实施有效的人工授粉以提高其结实率是增强其繁殖、更新能力的有效手段。苏铁植物种子属顽拗型种子, 在自然环境中容易脱水而失去生命力, 实时采收、低温湿藏才能保持其萌发能力。

3.5 迁地保护难以保证苏铁种质纯度

苏铁属植物没有严格的生殖隔离, 种间能发生杂交(郑慧贤, 1991; 潘爱芳等, 2014); 它们拥有风媒和虫媒(Kono & Tobe, 2007; 杨泉光等, 2012; Salzman et al, 2020)两种自然传粉方式, 一般所用的防止杂交的隔离罩有可能无法阻止甲虫等昆虫对苏铁植物传粉; 迁地保护实践中场地有限, 不同苏铁植物通常栽培距离较近, 因而极可能无法保证种质纯度; 种内不同基因型个体间也会产生基因流, 从而导致遗传多样性的降低和部分稀有基因的丢失, 进而致使进化显著单元(evolutionary significant units, ESUs)丧失。苏铁植物迁地保护工作中的重点和难点之一就是防止杂交, 充分保证种质纯度。因此, 在迁地保护时, 必须采取有效措施以保证种的“纯洁性”, 即保持物种的遗传多样性; 明确迁地保护中收集的种子来源; 及时清除自然传粉结实的种子; 需要种子时, 应通过人工授粉、套袋隔离来获得。

附录 Supplementary Material

附录1 中国苏铁属植物名录(含异名)

Appendix 1 List of Cycas in China (including synonyms)

附录2 中国野生苏铁物种生存现状

Appendix 2 Survival status of wild Cycas species in China

附录3 中国苏铁就地保护及其在保护区分布

Appendix 3 In-situ conservation of Cycas in China and their distribution in nature reserves

附录4 中国原生苏铁迁地保护

Appendix 4 Ex-situ conservation of Cycas in China

附录5 中国原生苏铁回归引种

Appendix 5 The re-introduction to field of Cycas in China

参考文献

Ahern CP, Staff IA (1994)

Symbiosis in cycads: The origin and development of coralloid roots in Macrozamia communis (Cycadaceae)

American Journal of Botany, 81, 1559-1570.

DOI:10.1002/j.1537-2197.1994.tb11467.x      URL     [本文引用: 1]

Calonje M, Stevenson DW, Stanberg L (2021)

The world list of cycads, online edition

https://www.cycadlist.org (accessed on 2021-11-18)

URL     [本文引用: 2]

Chen JR, Li N (2003)

The cycad resources position of China in the world and its protection countermeasures

Forestry of China, (22), 22-24. (in Chinese)

[本文引用: 1]

[ 陈家瑞, 李楠 (2003)

我国苏铁资源在世界上的地位及其保护对策

中国林业, (22), 22-23.]

[本文引用: 1]

Chen JR, Zhong YC (1997)

Cycas debaoensis Y.C. Zhong et C.J. Chen-a new cycad from China

Acta Phytotaxonomica Sinica, 35, 571. (in Chinese)

[本文引用: 2]

陈家瑞, 钟业聪 (1997)

德保苏铁--中国苏铁一新种

植物分类学报, 35, 571.]

[本文引用: 2]

Chen R (1937) f Agriculture Science Societies, Nanjing. (in Chinese)

[本文引用: 1]

[ 陈嵘 (1937) 中国树木分类学, pp. 1-2. 中华农学会, 南京.]

[本文引用: 1]

Chen TQ, Li N (1999) Ex-situ Conservation of Cycads in Shenzhen Fairy Lake Botonical Garden. China Forestry Publishing House, Beijing.

[本文引用: 1]

[ 陈谭清, 李楠 (1999) 深圳仙湖植物园苏铁类植物迁地保护. 中国林业出版社, 北京.]

[本文引用: 1]

Chiang YC, Hung KH, Moore SJ, Ge XJ, Huang S, Hsu TW, Schaal BA, Chiang TY (2009)

Paraphyly of organelle DNAs in Cycas Sect. Asiorientales due to ancient ancestral polymorphisms

BMC Evolutionary Biology, 9, 161.

DOI:10.1186/1471-2148-9-161      URL     [本文引用: 1]

CITES (2021) Appendices of Convention on International Trade of Endangered Species of Wild Fauna and Flora. https://cites.org/eng/app/appendices.php. (accessed on 2021-11-18)

URL     [本文引用: 1]

Deng CY (1999) Study on diversity variation of two wild Cycas spp. Guizhou Forestry Science and Technology, 27(2), 48-49. (in Chinese)

[本文引用: 1]

[ 邓朝义 (1999)

两种野生苏铁多样性变异研究

贵州林业科技, 27(2), 48-49.]

[本文引用: 1]

Feng XY, Liu J, Chiang YC, Gong X (2017)

Investigating the genetic diversity, population differentiation and population dynamics of Cycas segmentifida (Cycadaceae) endemic to southwest China by multiple molecular markers

Frontiers in Plant Science, 8, 839.

DOI:10.3389/fpls.2017.00839      URL     [本文引用: 2]

Feng XY, Liu J, Gong X (2016a)

Species delimitation of the Cycas segmentifida complex (Cycadaceae) resolved by phylogenetic and distance analyses of molecular data

Frontiers in Plant Science, 7, 134.

[本文引用: 4]

Feng XY, Wang XH, Chiang YC, Jian SG, Gong X (2021)

Species delimitation with distinct methods based on molecular data to elucidate species boundaries in the Cycas taiwaniana complex (Cycadaceae)

Taxon, 70, 477-491.

DOI:10.1002/tax.12457      URL     [本文引用: 6]

Feng XY, Wang YH, Gong X (2014)

Genetic diversity, genetic structure and demographic history of Cycas simplicipinna (Cycadaceae) assessed by DNA sequences and SSR markers

BMC Plant Biology, 14, 187.

DOI:10.1186/1471-2229-14-187      URL     [本文引用: 2]

Feng XY, Zheng Y, Gong X (2016b)

Middle-Upper Pleistocene climate changes shaped the divergence and demography of Cycas guizhouensis (Cycadaceae): Evidence from DNA sequences and microsatellite markers

Scientific Reports, 6, 27368.

DOI:10.1038/srep27368      URL     [本文引用: 3]

Gan JJ, Li N, Liang FF, Li ZG, Lu YZ, Sun J (2013)

The investigation of Cycas debaoensis in Fuping population and “Reintroduction Program” population

Journal of Guangxi Agriculture, 28(2), 31-37. (in Chinese with English abstract)

[本文引用: 1]

[ 甘金佳, 李楠, 梁飞飞, 李志刚, 陆燕兆, 孙键 (2013)

德保苏铁扶平居群与“回归项目”居群的调查

广西农学报, 28(2), 31-37.]

[本文引用: 1]

Gao ZF, Thomas BA (1989)

A review of fossil cycad megasporophylls, with new evidence of Crossozamia Pomel and its associated leaves from the Lower Permian of Taiyuan, China

Review of Palaeobotany and Palynology, 60, 205-223.

DOI:10.1016/0034-6667(89)90044-4      URL     [本文引用: 1]

Gong YQ (2015) Genetic Differentiation and Phylogeographic of Four Bipinnata Cycas Species. PhD dissertation, Yunnan University, Kunming. (in Chinese with English abstract)

[本文引用: 2]

[ 龚奕青 (2015) 叉叶类苏铁的遗传分化和谱系地理研究. 博士学位论文, 云南大学, 昆明y.]

[本文引用: 2]

Gong YQ, Gong X (2016)

Pollen-mediated gene flow promotes low nuclear genetic differentiation among populations of Cycas debaoensis (Cycadaceae)

Tree Genetics & Genomes, 12, 1-15.

[本文引用: 3]

Gong YQ, Zhan QQ, Nguyen KS, Nguyen HT, Wang YH, Gong X (2015)

The historical demography and genetic variation of the endangered Cycas multipinnata (Cycadaceae) in the Red River region, examined by chloroplast DNA sequences and microsatellite markers

PLoS ONE, 10, e0117719.

DOI:10.1371/journal.pone.0117719      URL     [本文引用: 3]

Gu L, Wen C, Luo M, Wang H, Z (2015)

A rapid approach for assessing the conservation effectiveness of the most concerned endangered species in China

Biodiversity Science, 23, 583-590. (in Chinese with English abstract)

DOI:10.17520/biods.2015115      URL     [本文引用: 1]

[ 顾垒, 闻丞, 罗玫, 王昊, 吕植 (2015)

中国最受关注濒危物种保护现状快速评价的新方法探讨

生物多样性, 23, 583-590.]

DOI:10.17520/biods.2015115      [本文引用: 1]

本文尝试制订了一套评分标准, 对中国174个国家I级保护动植物物种和IUCN物种红色名录中极危(CR)、濒危(EN)级别的鸟类的保护成效进行了快速评价。选取种群数量和趋势、信息完善程度、模拟分布区中适宜生境面积变化趋势和模拟分布区被保护区覆盖程度等4个指标进行评分。数据来源包括公开发表的研究文献、遥感数据、实地调查和公众收集。结果表明, 174个物种的保护状况整体呈变差趋势, 4项指标平均值均为负值。单个物种保护状况改善的有26种, 维持原状的有32种, 变差的有116种。本文还对2000-2013年间发表的涉及746个受威胁物种的9,338篇研究文献进行了梳理, 结果表明被研究物种数和文献数都逐年上升, 但每年被研究的物种不到1/3。研究集中于明星物种和有经济价值的物种, 如大熊猫(Ailuropoda melanoleuca)的文献占了全部的11.33%, 大多数物种研究不足。分析表明即使是集中了最多保护资源的濒危物种, 其保护状况仍然是变差的。

Guan ZT, Zhou L (1996) Cycads of China. Sichuan Science and Technology Press, Chengdu.

[本文引用: 1]

[ 管中天, 周林 (1996) 中国苏铁植物. 四川科学技术出版社, 成都.]

[本文引用: 1]

Gutiérrez-García K, Bustos-Díaz ED, Corona-Gómez JA, Ramos-Aboites HE, Sélem-Mojica N, Cruz-Morales P, Pérez-Farrera MA, Barona-Gómez F, Cibrián-Jaramillo A (2018)

Cycad coralloid roots contain bacterial communities including cyanobacteria and Caulobacter spp. that encode niche-specific biosynthetic gene clusters

Genome Biology and Evolution, 11, 319-334.

DOI:10.1093/gbe/evy266      URL     [本文引用: 1]

Hamrick JL, Godt MJW, Sherman-Broyles SL (1992)

Factors influencing levels of genetic diversity in woody plant species

In: Population Genetics of Forest Trees (eds Adams WT, Strauss SH, Copes DL, Griffin AR), pp. 95-124. Springer, Dordrecht.

[本文引用: 1]

He YH, Li CL (1999)

The ecological geographic distribution, spatial pattern and collecting history of Cycas panzhihuaensis populations

Acta Phytoecologica Sinica, 23, 23-30. (in Chinese with English abstract)

[本文引用: 3]

[ 何永华, 李朝銮 (1999)

攀枝花苏铁种群生态地理分布、分布格局及采挖历史的研究

植物生态学报, 23, 23-30.]

[本文引用: 3]

对攀枝花苏铁(Cycas panzhihuaensis)种群的地理分布、数量特征、空间分布格局和毁坏历史进行了野外调查和研究。结果表明:攀枝花苏铁种群的自然栖息地是相互隔离和片断化的。已发现的13个自然种群中,8个分布在金沙江河谷,5个种群分布在金沙江支流河谷;最大的种群位于攀枝花市郊,占有面积约3.80km2。79年以来的商业采挖使8个种群灭绝,种群分布区从30700km2减少到8800km2,种群占有面积从11.50km2减少到6.30km2。3个被研究种群的分布格局为集群分布,以幼苗聚集程度最大,随着年龄的增加,聚集程度逐渐下降。

Hill KD (1995)

Infrageneric relationships, phylogeny, and biogeography of the genus Cycas (Cycadaeceae)

In: Proceedings of the Third International Conference on Cycad Biology (ed. Vorster PJ), pp. 139-175. Cycad Society of South Africa, Stellenbosch, South Africa.

[本文引用: 1]

Hill KD (2004)

Character evolution, species recognition and classification concepts in the Cycadaceae

In: Cycad Classification, Concepts and Recommendations (eds Walters T, Osborne R), pp. 23-44. CABI Publishing, Wallingford.

[本文引用: 1]

Huang S, Chiang YC, Schaal BA, Chou CH, Chiang TY (2001)

Organelle DNA phylogeography of Cycas taitungensis, a relict species in Taiwan

Molecular Ecology, 10, 2669-2681.

DOI:10.1046/j.0962-1083.2001.01395.x      URL     [本文引用: 1]

Huang YY (2001) Systematics and Evolution of Cycadaceae in China. China Meteorological Press, Beijing. (in Chinese)

[本文引用: 2]

[ 黄玉源 (2001) 中国苏铁科植物的系统分类与演化研究. 气象出版社, 北京.]

[本文引用: 2]

IUCN International Union for Conservation of Nature(2021)

The IUCN Red List of Threatened Species

https://www.iucnredlist.org. (accessed on 2021-11-18)

URL     [本文引用: 1]

Jones DL (2002)

Cycads of the World: Ancient Plants in Today’s Landscape, 2nd edn

Smithsonian Institution Press, Washington, DC.

[本文引用: 1]

Kono M, Tobe H (2007)

Is Cycas revoluta (Cycadaceae) wind- or insect-pollinated

American Journal of Botany, 94, 847-855.

DOI:10.3732/ajb.94.5.847      URL     [本文引用: 2]

Lande R (1994)

Risk of population extinction from fixation of new deleterious mutations

Evolution, 48, 1460-1469.

DOI:10.1111/j.1558-5646.1994.tb02188.x      URL     [本文引用: 1]

Li DQ (2004)

Status quo & protection countermeasure on Guangxi wild sago plam resources

Central South Forest Inventory and Planning, 23(3), 33-36. (in Chinese with English abstract)

[本文引用: 1]

[ 黎德丘 (2004)

广西野生苏铁资源现状与保护对策

中南林业调查规划, 23(3), 33-36.]

[本文引用: 1]

Liu J, Lindstrom AJ, Chen YS, Nathan R, Gong X (2021)

Congruence between ocean-dispersal modelling and phylogeography explains recent evolutionary history of Cycas species with buoyant seeds

New Phytologist, 232, 1863-1875.

DOI:10.1111/nph.17663      URL     [本文引用: 1]

Liu J, Zhang SZ, Nagalingum NS, Chiang YC, Lindstrom AJ, Gong X (2018)

Phylogeny of the gymnosperm genus Cycas L. (Cycadaceae) as inferred from plastid and nuclear loci based on a large-scale sampling: Evolutionary relationships and taxonomical implications

Molecular Phylogenetics and Evolution, 127, 87-97.

DOI:10.1016/j.ympev.2018.05.019      URL     [本文引用: 1]

Liu J, Zhou W, Gong X (2015)

Species delimitation, genetic diversity and population historical dynamics of Cycas diannanensis (Cycadaceae) occurring sympatrically in the Red River region of China

Frontiers in Plant Science, 6, 696.

[本文引用: 4]

Lobakova ES, Orazova MK, Dobrovol'skaya TG (2003)

The structure of cyanobacterial communities formed during the degradation of apogeotropic roots of cycads

Microbiology, 72, 634-637.

DOI:10.1023/A:1026067906000      URL     [本文引用: 1]

Lu YZ (2017)

Exploration and practice of Cycas debaoensis protection

Agriculture and Technology, 37, 196. (in Chinese)

[本文引用: 1]

[ 陆燕兆 (2017)

德保苏铁保护的探索与实践

农业与技术, 37, 196.]

[本文引用: 1]

Luo WH, Tang WX, Huang SX, Liang HL, Zhao B (2014)

Ex situ conservation of Cycas debaoensis: A rare and endangered plant

Journal of Zhejiang A&F University, 31, 812-816. (in Chinese with English abstract)

[本文引用: 1]

[ 骆文华, 唐文秀, 黄仕训, 梁惠凌, 赵博 (2014)

珍稀濒危植物德保苏铁迁地保护研究

浙江农林大学学报, 31, 812-816.]

[本文引用: 1]

Norstog KJ, Fawcett PKS (1989)

Insect-cycad symbiosis and its relation to the pollination of Zamia furfuracea (Zamiaceae) by Rhopalotria mollis (Curculionidae)

American Journal of Botany, 76, 1380-1394.

DOI:10.1002/j.1537-2197.1989.tb15117.x      URL     [本文引用: 1]

Osborne R (1995)

The world cycad census and a proposed revision of the threatened species status for cycad taxa

Biological Conservation, 71, 1-12.

DOI:10.1016/0006-3207(95)91086-D      URL     [本文引用: 1]

Pan AF (2014)

Cross beeding test of Cycas sexseminifera and C. panzhihuaensis

Subtropical Plant Science, 43, 264-265. (in Chinese with English abstract)

[本文引用: 1]

[ 潘爱芳 (2014)

石山苏铁和攀枝花苏铁杂交育种试验(简报)

亚热带植物科学, 43, 264-265.]

[本文引用: 1]

Qin HN, Yang Y, Dong SY, He Q, Jia Y, Zhao LN, Yu SX, Liu HY, Liu B, Yan YH, Xiang JY, Xia NH, Peng H, Li ZY, Zhang ZX, He XJ, Yin LK, Lin YL, Liu QR, Hou YT, Liu Y, Liu QX, Cao W, Li JQ, Chen SL, Jin XH, Gao TG, Chen WL, Ma HY, Geng YY, Jin XF, Chang CY, Jiang H, Cai L, Zang CX, Wu JY, Ye JF, Lai YJ, Liu B, Lin QW, Xue NX (2017)

Threatened species list of China’s higher plants

Biodiversity Science, 25, 696-744. (in Chinese and in English)

DOI:10.17520/biods.2017144      URL     [本文引用: 1]

[ 覃海宁, 杨永, 董仕勇, 何强, 贾渝, 赵莉娜, 于胜祥, 刘慧圆, 刘博, 严岳鸿, 向建英, 夏念和, 彭华, 李振宇, 张志翔, 何兴金, 尹林克, 林余霖, 刘全儒, 侯元同, 刘演, 刘启新, 曹伟, 李建强, 陈世龙, 金效华, 高天刚, 陈文俐, 马海英, 耿玉英, 金孝锋, 常朝阳, 蒋宏, 蔡蕾, 臧春鑫, 武建勇, 叶建飞, 赖阳均, 刘冰, 林秦文, 薛纳新 (2017)

中国高等植物受威胁物种名录

生物多样性, 25, 696-744.]

DOI:10.17520/biods.2017144      [本文引用: 1]

Salzman S, Crook D, Crall JD, Hopkins R, Pierce NE (2020)

An ancient push-pull pollination mechanism in cycads

Science Advances, 6, eaay6169.

DOI:10.1126/sciadv.aay6169      URL     [本文引用: 2]

Shen CF, Hill KD, Tsou CH, Chen CJ (1994)

Cycas taitungensis CF Shen, KD Hill, CH Tsou & CJ Chen, sp. nov. (Cycadaceae), a new name for the widely known cycad species endemic in Taiwan

Botanical Bulletin of Academia Sinica, 35, 133-140.

[本文引用: 2]

Spiekermann R, Jasper A, Siegloch AM, Guerra-Sommer M, Uhl D (2021)

Not a lycopsid but a cycad-like plant: Iratinia australis gen. ov. et sp. nov. from the Irati Formation, Kungurian of the Paraná Basin, Brazin

Review of Palaeobotany and Palynology, 289, 104415.

DOI:10.1016/j.revpalbo.2021.104415      URL     [本文引用: 2]

State Forestry Administration and the Ministry of Agriculture P. R. China(1999) List of National Key Protected Wild Plants (First Batch). Decree No. 4. (in Chinese)

[本文引用: 2]

[国家林业局和农业部第四号令(1999) 国家重点保护野生植物名录(第一批).]

[本文引用: 2]

State Forestry and Grassland Administration and the Ministry of Agriculture and Rural Affairs, P. R. China (2021) List of National Key Protected Wild Plants. Decree No. 15. (in Chinese)

[本文引用: 2]

国家林业和草原局和农业农村部 2021年第15号公告(2021) 国家重点保护野生植物名录. https://www.forestry.gov.cn/main/3954/20210908/163949170374051.html.] (accessed on 2021-11-18)

URL     [本文引用: 2]

Stevenson DW, Stanberg L, Calonje MA (2018)

The world list of cycads

In: Cycad Biology and Conservation (The 9th International Conference on Cycad Biology) (eds Li N, Stevenson WM, Griffith MP), pp. 540-576. New York Botanical Garden Press, New York.

[本文引用: 1]

Tao YQ, Chen B, Kang M, Liu YB, Wang J (2021)

Genome-wide evidence for complex hybridization and demographic history in a group of Cycas from China

Frontiers in Genetics, 12, 717200.

DOI:10.3389/fgene.2021.717200      URL     [本文引用: 1]

Wang DY (2000)

Study on the Morphological Structure, System Classification and Evolution of Cycadaceae

PhD dissertation, Nanjing Forestry University, Nanjing, (in Chinese with English abstract)

[本文引用: 1]

[ 王定跃 (2000)

苏铁科形态结构、系统分类与演化研究

博士学位论文, 南京林业大学, 南京.]

[本文引用: 1]

Wang FX, Liang HB, Chen TQ, Wang DY (1996) Cycads in China. Guangdong Science and Technology Press, Guangzhou. (in Chinese and in English)

[本文引用: 5]

[ 王发祥, 梁惠波, 陈谭清, 王定跃 (1996) 中国苏铁. 广东科技出版社, 广州.]

[本文引用: 5]

Wang XH (2019)

Population Genetics of the Cycas taiwaniana Complex

PhD dissertation, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou. (in Chinese with English abstract)

[本文引用: 1]

[ 王馨慧 (2019)

台湾苏铁复合体的群体遗传学研究

博士学位论文, 中国科学院华南植物园, 广州.]

[本文引用: 1]

Wang XH, Li J, Zhang LM, He ZW, Mei QM, Gong X, Jian SG (2019)

Population differentiation and demographic history of the Cycas taiwaniana complex (Cycadaceae) endemic to South China as indicated by DNA sequences and microsatellite markers

Frontiers in Genetics, 10, 1238.

DOI:10.3389/fgene.2019.01238      URL     [本文引用: 1]

Wang YH, Gan JJ, Chen T, Gong YQ, Lu YZ, Li N (2018)

Preliminary study on reproductive features of reintroduction population of Cycas debaoensis

Subtropical Plant Science, 47, 134-139. (in Chinese with English abstract)

[本文引用: 1]

[ 王运华, 甘金佳, 陈庭, 龚奕青, 陆燕兆, 李楠 (2018)

德保苏铁回归种群繁殖特征的初步研究

亚热带植物科学, 47, 134-139.]

[本文引用: 1]

Wei FN (1996)

Studies on the resources and classification of the wild cycads from Guangxi (I)

Guihaia, 16(1), 1-2. (in Chinese with English abstract)

[本文引用: 3]

[ 韦发南 (1996)

广西野生苏铁资源极其分类研究(一)

广西植物, 16(1), 1-2.]

[本文引用: 3]

Wei FN, Liang JY, He SQ (1997) Studies on the resources and classification of the wild cycads from Guangxi (II). Guihaia, 17, 206-212. (in Chinese with English abstract)

[本文引用: 1]

[ 韦发南, 梁建英, 何顺清 (1997)

广西野生苏铁资源及其分类研究(二)

广西植物, 17, 206-212.]

[本文引用: 1]

Wen YY (2021)

Phenological monitoring of Cycas diannanensis in Shuangbai Konglonghe Nature Reserve of Yunnan Province

Forest Inventory and Planning, 46(5), 25-28, 35. (in Chinese with English abstract)

[本文引用: 1]

[ 文云燕 (2021)

云南双柏恐龙河自然保护区滇南苏铁物候监测

林业调查规划, 46(5), 25-28, 35.]

[本文引用: 1]

Whitelock LM (2002) The Cycads. Timber Press, Portland, Oregon.

[本文引用: 1]

Wu P, Zhang KP (2008)

Status of Cycas spp. plants in Yunnan and measures for their protection

Forest Inventory and Planning, 33, 116-119. (in Chinese with English abstract)

[ 吴萍, 张开平 (2008)

云南苏铁植物的现状及保护对策

林业调查规划, 33, 116-119.]

Wu ZY, Raven PH (1999) Flora of China. Science Press, Beijing & Missouri Botanical Garden Press, LSt.ouis.

[本文引用: 1]

Xiao LQ, Möller M (2015)

Nuclear ribosomal ITS functional paralogs resolve the phylogenetic relationships of a late-Miocene radiation cycad Cycas (Cycadaceae)

PLoS ONE, 10, e0117971.

DOI:10.1371/journal.pone.0117971      URL     [本文引用: 1]

Xiao SY, Ji YH, Liu J, Gong X (2020)

Genetic characterization of the entire range of Cycas panzhihuaensis (Cycadaceae)

Plant Diversity, 42, 7-18.

DOI:10.1016/j.pld.2019.10.001      URL     [本文引用: 3]

Yang QG, Li N, Li ZG, Lin PY, Yu HQ (2010)

Studies on the pollination vectors of Cycas enlongata

Journal of Tropical and Subtropical Botany, 18, 129-132. (in Chinese with English abstract)

[本文引用: 1]

[ 杨泉光, 李楠, 李志刚, 林平义, 禹海群 (2010)

越南篦齿苏铁传粉媒介的研究

热带亚热带植物学报, 18, 129-132.]

[本文引用: 1]

Yang QG, Song HT, Yang HJ, Zhang H (2012)

Advances in the study on pollination biology of cycads

Subtropical Plant Science, 41, 83-88. (in Chinese with English abstract)

[本文引用: 1]

[ 杨泉光, 宋洪涛, 杨海娟, 张洪 (2012)

苏铁类植物传粉生物学研究进展

亚热带植物科学, 41, 83-88.]

[本文引用: 1]

Yang R, Feng XY, Gong X (2017)

Genetic structure and demographic history of Cycas chenii (Cycadaceae), an endangered species with extremely small populations

Plant Diversity, 39, 44-51.

DOI:10.1016/j.pld.2016.11.003      [本文引用: 1]

Geological activities and climate oscillations during the Quaternary period profoundly impacted the distribution of species in Southwest China. Some plant species may be harbored in refugia, such as the dry-hot valleys of Southwest China. <i>Cycas chenii</i> X. Gong &amp; W. Zhou, a critically endangered cycad species, which grows under the canopy in subtropical evergreen broad-leaved forests along the upstream drainage area of the Red River, is endemic to this refugium. In this study, 60 individuals of <i>C. chenii</i> collected from six populations were analyzed by sequencing two chloroplast intergenic spacers (cpDNA: <i>psb</i>A-<i>trn</i>H and <i>trn</i>L-<i>trn</i>F) and two nuclear genes (<i>PHYP</i> and <i>RBP-1</i>). Results showed high genetic diversity at the species level, but low within-population genetic diversity and high interpopulation genetic differentiation. A Bayesian phylogenetic tree based on cpDNA showed that five chloroplast haplotypes were clustered into two clades, which corresponds to the division of the western and eastern bank of the Red River. These data indicate a possible role for the Red River as a geographic barrier to gene flow in <i>C. chenii</i>. Based on our findings, we propose appropriate <i>in situ</i> and <i>ex situ</i> conservation strategies for <i>C. chenii</i>.

Yang ZS, Yang YQ, Yang Y (2014) Comprehensive investigation report of Sichuan Cycas panzhihuaensis National Nature Reserve. China Forestry Publishing House, Beijing. (in Chinese)

[本文引用: 2]

[ 杨志松, 杨永琼, 杨永 (2014) 四川攀枝花苏铁国家级自然保护区综合科学考察报告. 中国林业出版社, 北京.]

[本文引用: 2]

Zhang DY, Jiang XH (1999)

Progress in studies of genetic diversity and conservation biology of endangered species

Chinese Biodiversity, 7, 31-37.

[本文引用: 2]

[ 张大勇, 姜新华 (1999)

遗传多样性与濒危植物保护生物学研究进展

生物多样性, 7, 31-37.]

[本文引用: 2]

Zhang GG, Li DQ, Luo B, Chen DW, He TP, Peng DR, Wen XF, Chen BZ (2008)

Plant resource and it’s conservational countermeasure of wild Cycas in Baise City of Guangxi

Journal of Guangxi Agricultural and Biological Science, 27, 230-234. (in Chinese with English abstract)

[本文引用: 2]

[ 张国革, 黎德丘, 罗保, 陈德文, 和太平, 彭定人, 文祥凤, 陈碧珍 (2008)

广西百色市野生苏铁植物资源及其保育

广西农业生物科学, 27, 230-234.]

[本文引用: 2]

Zhang HD, Zhong YC (1997)

New Cycas from Guangxi

Acta Scientiarum Naturalium Universitatis Sunyatseni, 36(3), 67-71. (in English with Chinese abstract)

[本文引用: 1]

[ 张宏达, 钟业聪 (1997)

广西苏铁植物新种

中山大学学报(自然科学版), 36(3), 67-71.]

[本文引用: 1]

Zhang HD, Zhong YC, Huang YY, Zheng HX, Lu ZF (1998)

Additions to the Cycadaceous Flora of China

Acta Scientiarum Naturalium Universitatis Sunyatseni, 37(4), 6-8. (in English with Chinese abstract)

[本文引用: 2]

[ 张宏达, 钟业聪, 黄玉源, 郑慧贤, 陆照甫 (1998)

中国苏铁科植物增补

中山大学学报(自然科学版), 37(4), 6-8. ]

[本文引用: 2]

Zhang HD, Zhong YC, Lu ZF (1999)

A new species of Cycas from Guangxi

Acta Scientiarum Naturalium Universitatis Sunyatseni, 38(3), 121-122.

Zhang KC (2013)

Study on the wild distribution habitat and protection status of cycads in Fujian

Forestry Prospect and Design, (1), 103-106. (in Chinese)

[本文引用: 1]

[ 张克昌 (2013)

福建省苏铁属植物野生分布生境及保护现状研究

林业勘察设计, (1), 103-106.]

[本文引用: 1]

Zheng FQ, Zhang XP, Pan AF (1999)

A preliminary report on investigations of the main cycads in Fujian

Journal of Fujian Forestry Science and Technology, 26(2), 73-76. (in Chinese with English abstract)

[本文引用: 2]

[ 郑芳勤, 张晓萍, 潘爱芳 (1999)

福建主要苏铁调查研究初报

福建林业科技, 26(2), 73-76.]

[本文引用: 2]

Zheng HX (1991)

Cycad hybridization is successful

Plants, (4), 21. (in Chinese)

[本文引用: 1]

[ 郑惠贤 (1991)

苏铁杂交获成功

植物杂志, (4), 21.]

[本文引用: 1]

Zheng WJ, Fu LG, Cheng JR (1975)

Gymnospermae Sinicae

Acta Phytotaxonomica Sinica, 13, 56-123. (in Chinese)

[本文引用: 1]

[ 郑万钧, 傅立国, 诚静容 (1975)

中国裸子植物

植物分类学报, 13, 56-123. ]

[本文引用: 1]

Zheng WJ, Fu LK (1978) Flora Reipublicae Popularis Sinicae (Tomus 7): Science Press, Beijing. (in Chinese)

[本文引用: 1]

[ 郑万钧, 傅立国 (1978) 中国植物志 (第7卷): 裸子植物门. 科学出版社, 北京.]

[本文引用: 1]

Zheng Y, Gong X (2019)

Niche differentiation rather than biogeography shapes the diversity and composition of microbiome of Cycas panzhihuaensis

Microbiome, 7, 152.

DOI:10.1186/s40168-019-0770-y      PMID:31791400      [本文引用: 1]

Given their adaptation to nutrient-poor and drought environments, cycads are vital models for plant-microbiome interaction research because they are likely to host an important reservoir of beneficial microbes that may support cycad survival. However, a comprehensive understanding of the diversity and community composition of microbiome associated with different plant compartments as well as bulk soils of cycad species remains elusive.An extensive investigation of species diversity and community composition of bacterial and fungal microbiome in roots, seeds, unfertilized seeds, ovules, pollens, and soils of Cycas panzhihuaensis L. Zhou & S. Y. Yang has been conducted by high-through sequencing technology. Moreover, principal component analysis (PCA), hierarchical cluster analysis (HCA), and heatmap analysis were applied to test the niche-specific effect and biogeography factor among different sample types of this cycad species.Highly diverse microbiota and significant variation of community structure were found among different compartments of C. panzhihuaensis. Soils exhibited a remarkable differentiation of bacterial community composition compared to the other five plant organs as revealed by PCA, HCA, and heatmap analyses. Different compartments possessed unique core microbial taxa with Pseudomonadaceae and Nectriaceae shared among them. According to the indicator species analysis, there was almost no differentiation of dominant microbiomes with regard to the geography of the host cycad. Two main transmission models existed in the C. panzhihuaensis.Each sample type represented a unique niche and hosted a niche-specific core microbial taxa. Contrary to previous surveys, biogeography hardly exerted impact on microbial community variation in this study. The majority of the cycad-associated microbes were horizontally derived from soils and/or air environments with the rest vertically inherited from maternal plants via seeds. This study offers a robust knowledge of plant-microbiome interaction across various plant compartments and soils and lends guidelines to the investigation of adaptation mechanism of cycads in arid and nutrient-poor environments as well as their evolutionary conservation.

Zheng Y, Liu J, Feng XY, Gong X (2017)

The distribution, diversity, and conservation status of Cycas in China

Ecology and Evolution, 7, 3212-3224.

DOI:10.1002/ece3.2910      PMID:28480020      [本文引用: 5]

As ancient gymnosperm and woody plants, cycads have survived through dramatic tectonic activities, climate fluctuation, and environmental variations making them of great significance in studying the origin and evolution of flora biodiversity. However, they are among the most threatened plant groups in the world. The principal aim of this review is to outline the distribution, diversity, and conservation status of in China and provide suggestions for conservation practices. In this review, we describe the taxonomy, distribution, and conservation status of in China. By comparing Chinese species with its relatives worldwide, we then discuss the current genetic diversity, genetic differentiation of and try to disentangle the potential effects of Quaternary climate changes and topographical events on. We review conservation practices from both researchers and practitioners for these rare and endangered species. High genetic diversity at the species level and strong genetic differentiation within have been observed. Most species in southwest China have experienced population retreats in contrast to the coastal 's expansion during the Quaternary glaciation. Additionally, human activities and habitat fragmentation have pushed these endangered taxa to the brink of extinction. Although numerous efforts have been made to mitigate threats to survival, implementation and compliance monitoring in protection zones are currently inadequate. We outline six proposals to strengthen conservation measures for in China and anticipate that these measures will provide guidelines for further research on population genetics as well as conservation biology of not only cycads but also other endangered species worldwide.

Zheng Y, Liu J, Gong X (2016)

Tectonic and climatic impacts on the biota within the Red River fault, evidence from phylogeography of Cycas dolichophylla (Cycadaceae)

Scientific Reports, 6, 33540.

DOI:10.1038/srep33540      PMID:27629063      [本文引用: 2]

Dramatic crustal deformation and river incision in Southwest China induced by the Indo-Asian collision have long been argued to contribute to the complicated landscapes, heterogeneous environment and abundant biodiversity in this region. However, biological impacts in promoting intraspecific phylogeographical subdivision and divergence along the Red River Fault zone (RRF) remain poorly understood. To investigate the possible biological effects of tectonic movements and environment variations within the RRF, the phylogeography of Cycas dolichophylla-an endemic but widely distributed Cycas in Southwest China and North Vietnam along the RRF were carried out based on four chloroplast DNA intergenic spacers (cpDNA), three nuclear DNA sequences (nDNA) and 16 simple sequence repeat variations (SSR). Two different phylogeographical patterns were detected: a Southwest-Northeast break across the RRF disclosed by chlorotypes and a China-Vietnam separation revealed by SSR. A Bayesian skyline plot from cpDNA data demonstrated a historical increasing, but a recent declining, dynamic in population size during the Pleistocene. Consequently, we infer it is the local environmental variation during Cenozoic that contributed to the complex landscape and microclimate mosaics, facilitating speciation and divergence of C. dolichophylla. Subsequently, the Quaternary climatic fluctuations coupled with human activities profoundly influenced the genetic structure and demographic history of this species.

Zhou JM (2003)

On the status quo and conservation of Cycas revoluta in China

Forest Resources Management, (1), 48-51. (in Chinese with English abstract)

[本文引用: 1]

[ 周洁敏 (2003)

论中国苏铁的现状及保护

林业资源管理, (1), 48-51.]

[本文引用: 1]

Zhou L, Yang SY, Fu LG, Cheng SZ (1981)

Two new species of Cycas from Sichuan

Acta Phytotaxonomica Sinica, 19, 335-338. (in Chinese with English abstract)

[本文引用: 1]

[ 周林, 杨思源, 傅立国, 程树志 (1981)

在四川发现两种新苏铁

植物分类学报, 19, 335-338.]

[本文引用: 1]

/