生物多样性, 2022, 30(5): 21515- doi: 10.17520/biods.2021515

研究报告: 动物多样性

广西山地农业化背景下鸟类多样性比较

李家兴, 周丽萍,, 孙家杰, 谭筱彩, 蒋爱伍,,*

广西森林生态与保育重点实验室, 广西大学林学院, 南宁 530005

Bird diversity in different habitats under agriculturalization in Guangxi, China

Jiaxing Li, Christos Mammides,, Liping Zhou,, Jiajie Sun, Xiaocai Tan, Aiwu Jiang,,*

Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530005

通讯作者: * E-mail:aiwuu@163.com

编委: 吴永杰

责任编辑: 周玉荣

收稿日期: 2021-12-12   接受日期: 2022-03-17  

基金资助: 国家自然科学基金(31950410549)
国家自然科学基金(31960235)

Corresponding authors: * E-mail:aiwuu@163.com

Received: 2021-12-12   Accepted: 2022-03-17  

摘要

随着农业用地需求增加, 生物多样性受到严重威胁并急剧下降。为探讨农业化对鸟类多样性的影响, 本文在2020年10月至2021年10月期间, 对广西大瑶山、大明山、十万大山3个国家级自然保护区以及周边农田区域内鸟类进行了调查。研究选取森林、近地农田(距离森林较近的农田)、远地农田(距离森林较远的农田) 3种生境, 布设样点共计180个, 并在不同季节(春、夏、秋、冬)对鸟类多样性进行了调查。结果如下: (1) 3种生境物种累积曲线呈先快速上升, 后变为渐近线或增速放缓趋势, 各生境实际调查鸟类物种数与预测值比例均大于60%, 表明鸟类调查充分; (2)共记录到鸟类196种, 隶属于14目54科, 其中雀形目鸟类占比最高(71.4%)。不同生境记录到鸟类种数从多到少依次为: 森林(103)、近地(101)、远地(94); (3)相似性分析结果表明, 森林与近地农田和远地农田间鸟类相似性差异都较大, 近地与远地间鸟类群落更为相似; (4) 3种生境鸟类群落Shannon-Wiener多样性指数在不同季节里均表现为: 远地 > 近地 > 森林; (5)广义线性混合模型结果显示, 两种农田生境鸟类多样性显著高于森林, 而近地和远地农田生境间鸟类多样性无显著差异。研究结果表明, 虽然森林鸟类多样性较低, 但对其特有种具有较高的保护作用; 尽管鸟类对农田生境表现出更高的喜好, 但农田内人为干扰较为频繁, 缺乏相关的保护措施, 应加强对农田鸟类的保护。

关键词: 农业化; 鸟类多样性; 物种累积曲线; Shannon-Wiener指数; 广义线性混合模型; 鸟类保护

Abstract

Aims: Due to the increasing demand for agricultural land, biodiversity in China has faced increased losses. Our goal in this study is to evaluate how agriculturalization influences bird communities.

Methods We conducted field surveys from October 2020 to October 2021 in three different habitats: (1) forest, (2) agricultural land close to the forest (0‒3 km), and (3) agricultural land far from the forest (6‒9 km). In total, we surveyed bird communities in 180 plots and then repeated the survey for each plot in each season (spring, summer, autumn and winter). All plots were one of three different national nature reserves in Guangxi: Dayaoshan, Damingshan, and Shiwandashan.

Results: (1) The species accumulation curve of each habitat increased at a decreasing rate. The ratio of each habitat’s recorded species richness to the estimated species richness was larger than 60%, indicating that sufficient sampling was conducted; (2) We recorded a total of 196 species belonging to 14 genera and 54 families; passerine birds accounted for the highest proportion of recorded species (71.4%). The total number of species in each habitat type from highest to lowest were: forest (103), agricultural land close to the forest (101), and agricultural land far from the forest (94); (3) Similarity analysis implied that species composition was more similar between the two agricultural habitats, and both were different from forests; (4) Agricultural plots far from the forest had on average the highest Shannon-Wiener diversity index, while forest plots had the lowest in different seasons; (5) The results of the generalized linear mixed model indicated that the bird diversity in each plot per survey in both agricultural land far and close was significantly higher than in forest habitat, but there was no difference between the two agricultural habitats.

Conclusion: Our results suggest that although forests have the lowest species diversity, some species in the forest have very strict habitat requirements. Therefore, protecting forest species and their habitat is vital. Although many species have strong preferences for agricultural habitat, human disturbance in agricultural areas is often extensive and detrimental, so clear protection measures for birds in those areas are necessary as well.

Keywords: agriculturalization; bird diversity; species accumulation curves; Shannon-Wiener index; generalized linear mixed model; bird conservation

PDF (4642KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

李家兴, 周丽萍, 孙家杰, 谭筱彩, 蒋爱伍 (2022) 广西山地农业化背景下鸟类多样性比较. 生物多样性, 30, 21515-. doi:10.17520/biods.2021515.

Jiaxing Li, Christos Mammides, Liping Zhou, Jiajie Sun, Xiaocai Tan, Aiwu Jiang (2022) Bird diversity in different habitats under agriculturalization in Guangxi, China. Biodiversity Science, 30, 21515-. doi:10.17520/biods.2021515.

农业化(即生物自然栖息地转变为农业用地的过程)是生物自然栖息地减少的主要驱动因素之一(Gibbs et al, 2010; Tilman et al, 2011)。研究表明, 人类改造自然景观的过程(如农业化等)影响了全球范围内50%的无冰雪覆盖土地(Brussaard et al, 2010; Hertel, 2011)。随着全球人口不断增加, 对粮食和农业用地的需求日益增长, 影响范围将持续扩大并导致自然生态景观保有量下降, 进一步加剧生物多样性如鸟类多样性等的快速丧失(Kubiszewski et al, 2017; Stanton et al, 2018; 洪咏怡等, 2021)。因此, 深入了解农业化对生物多样性的全面影响在全球范围内具有深远意义。

近年来, 越来越多的研究开始探讨不同农业化背景下的生物多样性变化, 涉及到众多生物类群(Batáry et al, 2011; Gonthier et al, 2014)。鸟类作为生态系统中最常见的脊椎动物类群, 其受农业化的影响倍受生态学家关注。总体来说, 已有的研究表明农业化会对鸟类物种多样性产生负面影响, 但影响程度主要取决于研究区域内鸟类自身生态需求和农业化强度。例如, 森林特有鸟类很容易受到农业化影响, 但农业梯度变化对可适应多种生境的泛性鸟类似乎影响不大(Sekercioglu, 2012)。如果某些鸟类对相对开阔的栖息地表现出更高的喜好, 那么它们可能会受益于农业化(Doxa et al, 2010)。

鸟类的分布与多种因素相关, 不同生境中鸟类组成和多样性水平会有很大差异, 而环境的变化也会导致鸟类组成和多样性水平的迅速变化(温平等, 2017)。例如, 在土地开发与利用过程中, 原本大片连续的自然森林被分割为许多小斑块, 导致鸟类原有栖息地面积缩小, 鸟类群落之间的信息交流也将受到斑块隔离影响(Verga et al, 2017; Dale, 2019; Valente & Betts, 2019)。然而, 农业活动对物种的影响不尽相同(Mammides et al, 2015a, b)。当一些森林特有物种被农田物种取代时, 不仅森林特有鸟类群落结构和组成会发生显著变化, 同时也导致此两种鸟类的功能属性有所不同。此外, 农业化可能也会对物种间相互作用产生极大影响, 从而影响其群落相似性和生态系统功能(Kay et al, 2018)。

广西多为山地地形, 具有复杂的地理环境条件, 生物多样性资源丰富(王波等, 2018)。由于持续的商业开发和农业土地扩张, 我国西南地区天然森林不仅覆盖面积急剧下降, 其森林生态系统的质量、功能和结构也有所衰退(杨明华等, 1991)。这可能会对当地鸟类多样性及鸟类群落产生显著影响, 并进而影响生态系统功能的可持续发展。因此, 本研究选择在广西境内不同森林及其周边农业区域内开展调查, 分析森林和农业区域鸟类物种组成和多样性差异, 探讨农业化对鸟类多样性及鸟类群落的影响, 旨在为生物多样性保护和土地利用类型转变政策的实施提供参考依据。

1 方法

1.1 样地设置

本研究在广西不同纬度区域开展调查, 包括大瑶山(23°40'‒24°22' N, 109°50'‒110°27' E)、大明山(23°10'‒23°35' N, 108°30'‒108°36' E)和十万大山(21°40'‒22°04' N, 107°29'‒108°13' E) 3个国家级自然保护区及其外围农业种植区域。3个保护区的森林覆盖率均高于95%, 其中大瑶山和大明山属南亚热带湿润山地季风气候, 生境类型主要为亚热带常绿阔叶林、阔叶混交林等森林生态系统; 十万大山属热带北缘季风气候, 生境类型主要为季雨林等森林生态系统。参考Kay等(2018)的方法, 在每个样区选择60个样点: 其中20个森林样点位于样区森林内部, 20个近地农田样点设在距离森林边缘0‒3 km范围内的农田区域, 另20个远地农田样点设在距离森林边缘6‒9 km范围内的农田区域。在3个研究地共设置180个样点, 其中森林生境所有样点海拔高度为884.38 ± 263.72 m (平均值 ± 标准差), 近地农田为223.00 ± 38.82 m, 远地农田为182.43 ± 33.80 m (图1)。为确保样点间彼此独立, 防止外界物理和人为等因素对调查的影响, 所有样点至少远离道路、村落和建筑物等50 m以上, 并且样点之间距离至少达400 m (Barbraud & Gélinaud, 2005)。

图1

图1   广西山地鸟类多样性调查样点分布图。审图号: GS (2019)3333。图中“AG”是“agriculture”的缩写。

Fig. 1   Map of the bird survey sites in forests and two agricultural habitats in Guangxi, China. Map approval number: GS (2019)3333. “AG” in the figure is the abbreviation of “agriculture”.


1.2 鸟类调查

于2020年10月至2021年10月期间采用样点法对森林和农田区域内鸟类多样性展开调查。为最大限度比较不同生境内的鸟类多样性差异, 所有的样点调查都涵盖了4个季节。具体调查时间为: 春季2021.2-2021.4、夏季2021.5-2021.7、秋季2021.8- 2021.10和冬季2020.10-2021.1。上午调查均在日出前30 min开始, 至11:00结束, 下午15:00开始, 至日落前30 min结束。之前的研究表明远距离观测鸟类有可能导致鸟类探测误差增大(Morelli et al, 2018), 因此在本研究的调查中仅记录样点半径50 m范围内的所有鸟类(丁志峰等, 2016)。鸟类观测使用Leica Ultravio (10 × 42) HD双筒望远镜, 在15 min内记录以样点为中心、半径50 m范围内出现的所有鸟类种类及数量。鸟类名称和居留类型分别参考《中国鸟类分类与分布名录》(郑光美, 2017)和《广西鸟类图鉴》(蒋爱伍等, 2021)。

1.3 数据分析

为检验野外调查是否充分可靠, 采用R 4.0.1软件“vegan”程序包中的“specaccum”函数“rarefaction”绘制物种累积曲线, 判断抽样调查的充分程度(李巧, 2011)。利用EstimateS 9.1.0软件计算各生境非参数(基于多度的和盖度的物种估计量、非参数Jackknife1估计量和Jackknife2)物种丰富度, 以进一步定量判断抽样调查的充分性(Chao & Lee, 1992)。

为探究不同生境内鸟类物种多样性的差异程度, 使用R 4.0.1中“lme4”程序包的“glmer”函数进行广义线性混合模型分析, 模型使用泊松分布, 参照Zhou等(2019)分别将每个样点的鸟类物种数和个体数作为响应变量, 将生境类型作为固定变量, 并将样点嵌套于研究样地内作为随机变量。由于农田生境主要位于低海拔区域, 各样点生境与海拔的相关性较高, 故不再将海拔作为一个单独的变量进行模型分析。

研究还对不同生境内鸟类的Shannon-Wiener多样性指数进行了计算, 计算公式为:

$H=-\sum\limits_{i=1}^{s}{{{P}_{i}}Ln{{P}_{i}}}$

其中Pi为各样点第i种个体数占全部个体数的比例, S为每个样点的物种总数(MacArthur & MacArthur, 1961)。为探究不同生境内鸟类群落的异同, 使用相似性系数(S)对3种不同生境内鸟类组成异同进行分析。公式为:

$S=\frac{2c}{a+b}$

其中c为两个群落中共有的种数; a为群落A中的种数; b为群落B中的种数。

2 结果

2.1 物种累积曲线和非参数估计丰富度

物种累积曲线结果显示, 森林和农田生境的曲线均呈先快速上升后变为渐近线或增速放缓趋势(图2)。EstimateS中非参数估计结果表明: 森林内物种估计值为122‒165种, 近地农田119‒160种, 远地农田104‒133种(表1), 实际调查到的物种数分别约为估计值的63%‒85% (森林)、63%‒85% (近地农田)和71%‒91% (远地农田), 3种生境实际物种数与估计值比例均超过60%, 定量分析表明抽样调查充分。

图2

图2   广西森林和两种农田生境内鸟类调查物种累积曲线。阴影部分为经100次自检重复计算的标准差区间。图中“AG”是“agriculture”的缩写。

Fig. 2   Species accumulation curves of bird diversity in forests and two agricultural habitats in Guangxi, China. The shaded region is the standard deviation interval after 100 permutations. “AG” in the figure is the abbreviation of “agriculture”.


表1   广西森林和两种农田生境内实际调查和非参数估计丰富度

Table 1  Non-parametric estimated and recorded species richness in forests and two agricultural habitats in Guangxi, China

生境
Habitat
实际物种数
Recorded species
richness
基于多度的物种估计量
Abundance-based
coverage estimator
基于盖度的物种估计量
Incidence-based coverage
estimator
非参数估计丰富度
Richness with nonparametric estimation
Jackknife1Jackknife2
森林 Forest103121.56152.64142.83164.72
近地 AG-close101118.46142.11136.85159.71
远地 AG-far94103.21119.54119.89132.84

“AG”: “agriculture”的缩写

“AG” in the table is the abbreviation of “agriculture”.

新窗口打开| 下载CSV


2.2 物种组成

在森林和农田生境共记录到鸟类196种, 隶属于14目54科(附录1)。其中, 森林生境记录鸟类103种, 隶属于8目34科; 近地农田生境记录鸟类101种, 隶属于12目41科; 远地农田生境记录鸟类94种, 隶属于11目37科。雀形目鸟类种数最多, 占研究样地内鸟类总种数的71.4%。国家II级重点保护野生动物有白眉山鹧鸪(Arborophila gingica)、白鹇(Lophura nycthemera)、栗树鸭(Dendrocygna javanica)等29种。列入IUCN红色物种名录易危(VU)级别的有仙八色鸫(Pitta nympha)和白颈鸦(Corvus pectoralis), 近危(NT)级别的有白眉山鹧鸪。

2.3 不同生境内的鸟类多样性

综合所有季节调查结果, 森林内鸟类物种总数在调查期间波动最大, 为51.75 ± 5.07 (平均值 ± 标准差), 远地农田次之(53.50 ± 4.50), 近地农田内波动最小(52.00 ± 2.55); 鸟类总个体数在不同的生境中波动最大的是远地农田(575.50 ± 129.60), 其次为近地农田(585.00 ± 96.27), 最小是森林(315.75 ± 51.10) (表2)。

表2   广西森林和两种农田生境鸟类群落多样性比较

Table 2  Comparison of bird communities in forests and two agricultural habitats in Guangxi, China

季节
Season
鸟类种数
Species
鸟类个体数
Individuals
Shannon-Wiener 多样性指数
Shannon-Wiener index
森林
Forest
近地
AG-close
远地
AG-far
森林
Forest
近地
AG-close
远地
AG-far
森林
Forest
近地
AG-close
远地
AG-far
春季 Spring4556553606126500.480.930.97
夏季 Summer5952552776484890.851.031.07
秋季 Autumn5049462544214170.691.131.20
冬季 Winter5351583726597460.530.930.98

表中鸟类种数表示在不同季节不同生境中记录到的鸟类物种总数, 不涉及某一物种出现的次数和个体数量。

The number of bird species in the table represents the total number of species recorded in different habitats in different seasons, and does not represent the number of individuals and frequency of occurrence of a certain species.

新窗口打开| 下载CSV


3种生境间的鸟类物种数差异极其显著(χ2 = 51.41, df = 2, P < 0.001)。其中, 森林内鸟类物种数显著低于近地农田和远地农田(所有生境Z ≤ ‒5.99, 所有生境P < 0.001), 而近地和远地农田之间鸟类物种数差异不显著(Z = 0.60, P = 0.830, 图3)。 同样, 3种生境之间每个季节调查的鸟类个体数差异也极其显著(χ2 = 39.77, df = 2, P < 0.001)。其中, 森林内鸟类个体总数显著低于近地农田和远地农田(所有生境Z ≤ ‒5.36, 所有生境P < 0.001), 而近地和远地农田之间鸟类物种个体数差异不显著(Z = ‒0.25, P = 0.965, 图3)。3种生境鸟类群落Shannon-Wiener多样性指数在所有季节均表现为: 远地农田 > 近地农田 > 森林, 其中最高的生境为秋季的远地农田, 最低为春季的森林(表2)。

图3

图3   基于广义线性混合模型的广西山地鸟类多样性比较。每个箱体表示该生境在一个样点单次调查所见的种类和数量, 箱线图外围相同字母表示两种生境差异不显著, 不同则表示差异显著。箱体中间黑线表示中位数, 箱体的上下底分别表示上四分位数及下四分位数, 箱体上下虚线连接的黑色实线分别代表数据最大值及最小值, 空心圆表示离群点。图中“AG”是“agriculture”的缩写。

Fig. 3   Comparison of bird diversity based on generalized linear mixed model in Guangxi. Each box represents the species and individual number of one plot in one survey time in the habitat. The same letters on the periphery of the boxplot indicate that there is no significant difference between the two habitats; different letters represent a significant difference. The black line in the middle of the box represents the median. The upper and lower lines of the box represent the upper and lower quartiles. The solid line represents the maximum and minimum values of data, while the dotted line connects the upper and lower quartiles of the box, and the hollow circle represents the outlier. “AG” in the figure is the abbreviation of “agriculture”.


2.4 群落相似性

在不同季节森林与农田生境鸟类群落相似性系数在0.000‒0.250之间, 近地农田与远地农田生境在0.560‒0.781之间。鸟类群落相似性系数均值在秋季森林和近地农田生境之间最小, 为0.078; 在冬季近地农田生境和远地农田生境之间最大, 为0.678 (表3)。白眉山鹧鸪、白鹇、斑姬啄木鸟(Picummus innominatus)等73种鸟类只分布于森林生境; 灰胸山鹪莺(Prinia hodgsonii)、丝光椋鸟(Spodiopsar sericeus)、小鸦鹃(Centropus bengalensis)等93种鸟类仅分布于农田生境; 山斑鸠(Streptopelia orientalis)、大山雀(Parus cinereus)、红耳鹎(Pycnonotus jocosus)等30种鸟类可见于森林和至少1种农田生境。

表3   广西森林和两种农田生境鸟类群落相似性比较

Table 3  Similarity of bird communities among forests and two agricultural habitats in Guangxi, China

季节 Season样区 Sampling area森林-近地 Forest-AG-close森林-远地 Forest-AG-far近地-远地 AG-close-AG-far
春季 Spring大瑶山 DYS0.2500.1600.560
大明山 DMS0.0850.0440.781
十万大山 SWDS0.1380.1850.613
均值 Mean0.1570.1300.651
夏季 Summer大瑶山 DYS0.0420.0410.745
大明山 DMS0.1330.1400.571
十万大山 SWDS0.1000.0650.576
均值 Mean0.0920.0820.630
秋季 Autumn大瑶山 DYS0.0000.0440.739
大明山 DMS0.1360.1050.679
十万大山 SWDS0.0980.0980.606
均值 Mean0.0780.0820.675
冬季 Winter大瑶山 DYS0.0910.1220.679
大明山 DMS0.1690.1450.754
十万大山 SWDS0.1360.1740.600
均值 Mean0.1320.1470.678

表中“AG”是“agriculture”的缩写。

“AG” in the table is the abbreviation of “agriculture”, DYS, DMS, and SWDS represent Dayaoshan National Nature Reserve, Damingshan National Nature Reserve, and Shiwandashan National Nature Reserve, respectively.

新窗口打开| 下载CSV


3 讨论

不同生境内鸟类多样性差异是地理区域(Hořák et al, 2019; Hanle et al, 2020)、食物资源(Hanz et al, 2019)以及人类干扰强度(Verma & Murmu, 2015; Ciach & Fröhlich, 2017)等多种环境因子综合作用的结果。本研究在更大的尺度上显示, 无论农田生境距离森林边缘多远, 在同样的取样强度下, 农田内的鸟类多样性以及个体数均显著高于森林。这与之前在吉林黄泥河自然保护区(刘佳琪等, 2019)和皖南山区(王雪等, 2021)的研究结果相似。农田生境的生物多样性与生境异质性有关(Zhou et al, 2018)。农作物具有不同的生命周期(一年生、二年生等)和季节更替, 可持续不断地为鸟类提供植物嫩芽、果实和花蜜等食物。在本研究中, 农田区域内以甘蔗、玉米、果树、水稻和蔬菜等为主要农作物, 不仅招引了众多的昆虫, 同时也为食虫鸟等不同取食集团鸟类提供了多样化食物来源(王雪等, 2021)。水稻田以及相关灌溉设施形成的微生境为水鸟提供了良好的栖息环境(Batáry et al, 2011; Morelli et al, 2018)。虽然之前更多的研究表明森林生境鸟类多样性高于农田(梁健超等, 2017; 宋景舒等, 2020; 罗祖奎等, 2021), 但这些研究中样地的农作物组成相对单一, 且取样强度也有所不同。

尽管本研究中农田生境不同季节的鸟类个体数量和多样性指数均高于森林生境, 但森林内鸟类种数在夏季较两种农田生境为高, 且夏季森林内鸟类多样性指数比其他季节稍高, 说明森林可为更多的鸟类提供多样的繁殖生境。虽然部分人工林镶嵌在农田中形成的马赛克农田景观也可为鸟类提供更多的栖息地(Morelli et al, 2018), 但干扰较为频繁的农田生境相对而言不适合鸟类繁殖。相比之下, 迁徙鸟类在农田生境的分布更为广泛, 也具有较高的多样性。一般来说, 不在本地繁殖的迁徙鸟类(包括冬候鸟和旅鸟)优先选择有空余生态位的生境, 以避免与当地留鸟的竞争(Martin, 1987)。因此, 迁徙鸟类可能是导致鸟类多样性变化的重要因素。此外, 在农田生态系统中, 农作物的季节性差异可为更多的鸟类类群提供食物, 也是导致鸟类物种多样性变化的原因之一(Zhou et al, 2018)。

以往有研究显示海拔是影响鸟类多样性的重要因素之一(如蒋爱伍等, 2017)。但在本研究中, 由于低海拔的森林大多都已经被开垦为农田, 很难在同一海拔梯度对森林和农田鸟类进行比较。在调查样点中, 海拔梯度又与生境具有较强的相关性, 因此本研究中海拔可能也是影响鸟类多样性的原因之一。一般来说, 海拔越低的地方鸟类多样性越高, 其原因可能也与该区域的面积和生物量较大有关(MacArthur, 1984)。实际上, 由于人为活动的加剧, 低海拔生境受到破坏, 鸟类多样性的海拔格局也会出现中海拔最高的现象(Rahbek, 1995)。本研究的样区之一大明山的鸟类多样性就以海拔500 m左右为最高(蒋爱伍等, 2017)。综上所述, 海拔对鸟类多样性的影响较为复杂。由于低海拔的地区适合居住和农耕, 导致低海拔区域很难找到较原始的生境, 目前保留的原始生境大多位于山区, 因此本研究未能在同一海拔梯度对农田和森林鸟类进行比较, 在实验设计上略有不足。虽然本研究的森林样点与农田样点海拔有所不同, 但自然植被在3个样区的海拔梯度范围内大致相同, 均属于同一海拔植被带(温远光等, 2004)。另外, 本研究在不同生境之间的取样面积和调查强度一致, 且调查人员固定, 物种累积曲线也接近平缓, 因此农业化应该为这一区域鸟类多样性差异的主要原因。

虽然本研究结果表明农田生态系统的鸟类多样性相对较高, 但森林里的优势种主要为灰眶雀鹛(Alcippe morrisonia)、栗背短脚鹎(Hemixos castanonotus)、栗耳凤鹛(Staphida castaniceps)等对食性相对专一的鸟类。农田生境里的优势种主要为白头鹎(Pycnonotus sinensis)、红耳鹎和家燕(Hirundo rustica)等食性相对广泛的鸟类。这说明森林和农田这两种土地利用类型可为不同的鸟类提供多样的生存条件和食物资源, 从而影响着鸟类多样性分布和群落结构(MacArthur & MacArthur, 1961)。例如, 农田生境内的农用堤道、水塘等为喜好开阔生境的水鸟提供了栖息地及鱼虾蚯蚓等食物(阮得孟等, 2015), 而森林能提供的是与之不同的食物及栖息地。森林内植被组成较为复杂, 能为鸟类提供更为隐蔽的栖息地及活动环境, 例如白鹇等森林地栖性鸟类(康祖杰等, 2021)。

本研究发现近地农田与远地农田之间鸟类组成虽然存在重叠, 但也存在差异。相比于远地农田, 近地农田与森林间的鸟类群落相似性更高, 原因可能是一些泛性林鸟虽然会在开阔区域活动, 但也高度依赖森林生境。说明近地农田中的一些鸟类事实上还是高度依赖森林, 并不喜好纯农田生境。同时也有部分鸟类突破生境限制, 在所有样区均有记录, 其中94%是雀形目鸟种。主要原因是大多数雀形目鸟类环境适应性高、食性广泛、种群扩散能力强(徐雪怡等, 2018; 赵文海, 2018)。可见环境可以通过影响鸟类食物资源种类和组成, 进而对鸟类群落产生影响(周放, 2006)。

综上所述, 森林与农田鸟类群落相似性低, 互相难以取代, 在制定鸟类保护计划时不能厚此薄彼。首先, 森林内栖息的主要是一些高度依赖于森林的特有种, 在本研究中, 有近37%的鸟类仅生存于森林内, 它们主要喜好的生境是成熟度高、生态系统完善的森林并且仅在其内部活动, 具有较高的保护价值, 如白眉山鹧鸪、仙八色鸫、长尾阔嘴鸟(Psarisomus dalhousiae)等, 因此需要优先对森林鸟类加强保护, 以维持其稀有性。农田区域相对开阔, 食物资源丰富且可获得性高, 为泛性鸟类和喜好开阔生境的鸟种栖息创造了有利条件, 但是人为干扰较为频繁, 缺乏有效的保护措施(王雪等, 2021)。建议在农田土地利用过程中, 尽可能多地保留原始植被环境, 特别是非农作物种植区, 比如道路和村庄周围, 为农田鸟类多样性的维持创造条件。此外, 生物多样性包括不同维度, 不同物种在生理、生态和形态特征等方面存在极大差异(Lepš et al, 2001)。所以, 今后还需要从功能及系统发育多样性等方面进一步展开研究, 以便全面地了解农业化对鸟类多样性的潜在影响, 为制定不同土地利用类型转变下的生物多样性保护策略提供科学依据。

致谢

感谢广西大瑶山、大明山、十万大山国家级自然保护区对本研究给予的支持和帮助。同时, 感谢广西大学林学院Eben Goodale教授和研究生刘士龙、Moses Elleason、徐佳苹、周相贝在结果分析以及论文写作中的建议和帮助。

附录 Supplementary Material

附录1 广西森林与两种农田生境鸟类名录

Appendix 1 Checklist of birds in forests and two agricultural habitats in Guangxi, China

参考文献

Barbraud C, Gélinaud G (2005)

Estimating the sizes of large gull colonies taking into account nest detection probability

Waterbirds, 28, 53-60.

DOI:10.1675/1524-4695(2005)028[0053:ETSOLG]2.0.CO;2      URL     [本文引用: 1]

Batáry P, Báldi A, Kleijn D, Tscharntke T (2011)

Landscape-moderated biodiversity effects of agri-environmental management:A meta-analysis

Proceedings of the Royal Society B: Biological Sciences, 278, 1894-1902.

[本文引用: 2]

Brussaard L, Caron P, Campbell B, Lipper L, Mainka S, Rabbinge R, Babin D, Pulleman M (2010)

Reconciling biodiversity conservation and food security: Scientific challenges for a new agriculture

Current Opinion in Environmental Sustainability, 2, 34-42.

DOI:10.1016/j.cosust.2010.03.007      URL     [本文引用: 1]

Chao A, Lee SM (1992)

Estimating the number of classes via sample coverage

Journal of the American Statistical Association, 87, 210-217.

DOI:10.1080/01621459.1992.10475194      URL     [本文引用: 1]

Ciach M, Fröhlich A (2017)

Habitat type, food resources, noise and light pollution explain the species composition, abundance and stability of a winter bird assemblage in an urban environment

Urban Ecosystems, 20, 547-559.

DOI:10.1007/s11252-016-0613-6      URL     [本文引用: 1]

Dale S (2019)

Islands in the forest: Effects of patch size and isolation on farmland bird species richness and community composition of farmland patches in forest landscapes

Landscape Ecology, 34, 2823-2836.

DOI:10.1007/s10980-019-00920-w      URL     [本文引用: 1]

Ding ZF, Liang JC, Chen BL, Feng YJ, Hu HJ (2016)

Changes of bird species and functional diversity in urban woodlots of Guangzhou, China

Sichuan Journal of Zoology, 35, 759-764. (in Chinese with English abstract)

[本文引用: 1]

[丁志锋, 梁健超, 陈本亮, 冯永军, 胡慧建 (2016)

广州市园林鸟类物种和功能多样性的变化

四川动物, 35, 759-764.]

[本文引用: 1]

Doxa A, Bas Y, Paracchini ML, Pointereau P, Terres JM, Jiguet F (2010)

Low-intensity agriculture increases farmland bird abundances in France

Journal of Applied Ecology, 47, 1348-1356.

DOI:10.1111/j.1365-2664.2010.01869.x      URL     [本文引用: 1]

Gibbs HK, Ruesch AS, Achard F, Clayton MK, Holmgren P, Ramankutty N, Foley JA (2010)

Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s

Proceedings of the National Academy of Sciences, USA, 107, 16732-16737.

[本文引用: 1]

Gonthier DJ, Ennis KK, Farinas S, Hsieh HY, Iverson AL, Batáry P, Rudolphi J, Tscharntke T, Cardinale BJ, Perfecto I (2014) Biodiversity conservation in agriculture requires a multi-scale approach. Proceedings of the Royal Society B: Biological Sciences, 281, 20141358.

[本文引用: 1]

Hanle J, Duguid MC, Ashton MS (2020)

Legacy forest structure increases bird diversity and abundance in aging young forests

Ecology and Evolution, 10, 1193-1208.

DOI:10.1002/ece3.5967      URL     [本文引用: 1]

Hanz DM, Böhning-Gaese K, Ferger SW, Fritz SA, Neuschulz EL, Quitián M, Santillán V, Töpfer T, Schleuning M (2019)

Functional and phylogenetic diversity of bird assemblages are filtered by different biotic factors on tropical mountains

Journal of Biogeography, 46, 291-303.

[本文引用: 1]

Hertel TW (2011)

The global supply and demand for agricultural land in 2050: A perfect storm in the making

American Journal of Agricultural Economics, 93, 259-275.

DOI:10.1093/ajae/aaq189      URL     [本文引用: 1]

Hong YY, Lu XL, Zhao HP (2021)

Bird diversity and interannual dynamics in different habitats of agricultural landscape in Huanghuai Plain

Acta Ecologica Sinica, 41, 2045-2055. (in Chinese with English abstract)

[本文引用: 1]

[洪咏怡, 卢训令, 赵海鹏 (2021)

黄淮平原农业景观不同生境鸟类多样性特征及年际动态

生态学报, 41, 2045-2055.]

[本文引用: 1]

Hořák D, Ferenc M, Sedláček O, Motombi FN, Svoboda M, Altman J, Albrecht T, Djomo Nana E, Janeček Š, Dančák M, Majeský L, Lltonga EN, Doležal J (2019)

Forest structure determines spatial changes in avian communities along an elevational gradient in tropical Africa

Journal of Biogeography, 46, 2466-2478.

DOI:10.1111/jbi.13688      URL     [本文引用: 1]

Jiang AW, Qin C, Huang LC (2021) Field Guide to the Birds of Guangxi. Guangxi Science and Technology Press, Nanning. (in Chinese)

[本文引用: 1]

[蒋爱伍, 覃春, 黄立春 (2021) 广西鸟类图鉴. 广西科学技术出版社, 南宁.]

[本文引用: 1]

Jiang AW, Zhou PN, Jiang DM, He C, Yu MJ, Zeng Q (2017)

Species composition, fauna and elevational gradient pattern of birds in Damingshan, southern central Guangxi

Chinese Journal of Zoology, 52, 177-193. (in Chinese with English abstract)

[本文引用: 2]

[蒋爱伍, 周丕宁, 蒋德梦, 何超, 于明娟, 曾倩 (2017)

广西大明山鸟类群落组成、区系成分和垂直分布

动物学杂志, 52, 177-193.]

[本文引用: 2]

Kang ZJ, He CR, Kang YX, Zhang ZQ (2021)

Avian community structure and species diversity in Jiashan National Forest Park of Hunan Province

Forest Inventory and Planning, 46, 184-190, 196. (in Chinese with English abstract)

[本文引用: 1]

[康祖杰, 贺春容, 康艺馨, 张志强 (2021)

湖南夹山国家森林公园鸟类群落结构与物种多样性研究

林业调查规划, 46, 184-190, 196.]

[本文引用: 1]

Kay GM, Tulloch A, Barton PS, Cunningham SA, Driscoll DA, Lindenmayer DB (2018)

Species co-occurrence networks show reptile community reorganization under agricultural transformation

Ecography, 41, 113-125.

[本文引用: 2]

Kubiszewski I, Costanza R, Anderson S, Sutton P (2017)

The future value of ecosystem services: Global scenarios and national implications

Ecosystem Services, 26, 289-301.

DOI:10.1016/j.ecoser.2017.05.004      URL     [本文引用: 1]

Lepš J, Brown VK, Diaz Len TA, Gormsen D, Hedlund K, Kailová J, Korthals GW, Mortimer SR, Rodriguez-Barrueco C, Roy J, Santa Regina I, van Dijk C, van der Putten WH (2001)

Separating the chance effect from other diversity effects in the functioning of plant communities

Oikos, 92, 123-134.

DOI:10.1034/j.1600-0706.2001.920115.x      URL     [本文引用: 1]

Li Q (2011)

Species accumulation curves and its application

Chinese Journal of Applied Entomology, 48, 1882-1888. (in Chinese with English abstract)

[本文引用: 1]

[李巧 (2011)

物种累积曲线及其应用

应用昆虫学报, 48, 1882-1888.]

[本文引用: 1]

Liang JC, Ding ZF, Zhang CL, Hu HJ, Duo HR, Tang H (2017)

Bird diversity spatial distribution patterns and hotspots in Maixiu Area of Sanjiangyuan National Nature Reserve, Qinghai Province

Biodiversity Science, 25, 294-303. (in Chinese with English abstract)

DOI:10.17520/biods.2016252      URL     [本文引用: 1]

[梁健超, 丁志锋, 张春兰, 胡慧建, 朵海瑞, 唐虹 (2017)

青海三江源国家级自然保护区麦秀分区鸟类多样性空间格局及热点区域研究

生物多样性, 25, 294-303.]

DOI:10.17520/biods.2016252      [本文引用: 1]

生物多样性分布格局与热点区域的评估与确定是生物多样性保护规划的基础。三江源地区位于青藏高原腹地的长江、黄河、澜沧江源头汇水区, 是世界上高原物种最丰富、最集中的区域之一。本文在对三江源国家级自然保护区麦秀分区鸟类资源全面调查的基础上, 利用GAP分析和空间自相关分析对鸟类丰富度的空间分布格局与热点区域进行了探讨, 并对当前功能区划下的保护空缺进行了分析。结果表明: (1)调查期间共记录鸟类89种, 隶属10目29科57属, 其中列入《国家重点保护野生动物名录》的12种, 列入《濒危野生动植物种国际贸易公约(CITES)》附录I、II 的11种; (2)不同环境梯度间鸟类群落组成差异显著, 低海拔的森林生境物种多样性要明显高于高海拔的草原草甸生境; (3)鸟类丰富度的空间格局表现为从东北部的峡谷林区分别往西北、东南部冰川雪山递减; 濒危保护鸟类的热点区域集中分布在西南部高山草甸, 与全部鸟类的热点区域之间存在明显差异; (4)麦秀分区核心区范围与全部鸟类的多样性热点区域的分布一致, 但未能覆盖濒危保护鸟类的热点区域, 可能不利于濒危鸟类的保护。本研究结果有助于保护区划的修订与完善, 同时亦能为小尺度下生物多样性保护规划的研究提供有益参考。

Liu JQ, Zhu HQ, Li LB, Li Y, Cheng L (2019)

Study on the community structure of birds in Huangnihe Nature Reserve in winter

Journal of Anhui Agricultural Sciences, 47(15), 93-96. (in Chinese with English abstract)

[本文引用: 1]

[刘佳琪, 朱洪强, 李灵贝, 李义, 程龙 (2019)

黄泥河自然保护区冬季鸟类群落结构研究

安徽农业科学, 47(15), 93-96.]

[本文引用: 1]

Luo ZK, Li Y, Xu X (2021)

Study on the bird community structure and distribution in Guanshanhu District of Guiyang City

Journal of Henan Normal University (Natural Science Edition), 49, 104-111. (in Chinese with English abstract)

[本文引用: 1]

[罗祖奎, 李扬, 徐曦 (2021)

鸟类群落结构及分布研究: 以贵阳市观山湖区为例

河南师范大学学报(自然科学版), 49, 104-111.]

[本文引用: 1]

MacArthur RH (1984) Geographical Ecology:Patterns in the Distribution of Species. Princeton University Press, Oxfordshire.

[本文引用: 1]

MacArthur RH, MacArthur JW (1961)

On bird species diversity

Ecology, 42, 594-598.

DOI:10.2307/1932254      URL     [本文引用: 2]

Mammides C, Kadis C, Coulson T (2015a)

The effects of road networks and habitat heterogeneity on the species richness of birds in Natura 2000 sites in Cyprus

Landscape Ecology, 30, 67-75.

DOI:10.1007/s10980-014-0100-5      URL     [本文引用: 1]

Mammides C, Schleuning M, Böhning-Gaese K, Schaab G, Farwig N, Kadis C, Coulson T (2015b)

The indirect effects of habitat disturbance on the bird communities in a tropical African forest

Biodiversity and Conservation, 24, 3083- 3107.

DOI:10.1007/s10531-015-1001-x      URL     [本文引用: 1]

Martin LC (1987) Habitat Selection in Birds. Academic Press, Orlando.

[本文引用: 1]

Morelli F, Benedetti Y, Šímová P (2018)

Landscape metrics as indicators of avian diversity and community measures

Ecological Indicators, 90, 132-141.

DOI:10.1016/j.ecolind.2018.03.011      URL     [本文引用: 3]

Rahbek C (1995)

The elevational gradient of species richness: A uniform pattern

Ecography, 18, 200-205.

DOI:10.1111/j.1600-0587.1995.tb00341.x      URL     [本文引用: 1]

Ruan DM, Sun Y, Cheng JW, Liu DW, Lu CH (2015)

Winter bird community structure and gradient change in different habitats at Xinyanggang Estuary, Yancheng Nature Reserve

Acta Ecologica Sinica, 35, 5437-5448. (in Chinese with English abstract)

[本文引用: 1]

[阮得孟, 孙勇, 程嘉伟, 刘大伟, 鲁长虎 (2015)

盐城自然保护区新洋港河口不同生境冬季鸟类群落组成及其梯度变化

生态学报, 35, 5437-5448.]

[本文引用: 1]

Sekercioglu CH (2012)

Bird functional diversity and ecosystem services in tropical forests, agroforests and agricultural areas

Journal of Ornithology, 153, 153-161.

DOI:10.1007/s10336-012-0869-4      [本文引用: 1]

Although most bird species avoid agricultural areas, nearly a third of all birds regularly to occasionally use such habitats, often providing important ecosystem services like pest control, pollination, and seed dispersal. Combining literature review with large-scale analyses of the ecological characteristics of the world's birds, I compared tropical bird species that prefer forests, agricultural areas or both, with respect to body mass, diet, range and population size, frequency, conservation status, habitat and resource specialization. Compared to primary forests, species richness of large frugivorous and insectivorous birds (especially terrestrial and understorey species) often declines in agroforests. In contrast, nectarivores, small-to-medium insectivores (especially migrants and canopy species), omnivores, and sometimes granivores and small frugivores do better, frequently by tracking seasonal resources. However, changes in guild species numbers do not necessarily translate to changes in relative abundance, biomass or function, and more studies are needed to quantify these important measures. These findings indicate that the replacement of forests and agroforests with simplified agricultural systems can result in shifts towards less specialized bird communities with altered proportions of functional groups. These shifts can reduce avian ecosystem function and affect the ecosystem services provided by birds in agroforests and other agricultural landscapes.

Song JS, Hu J, Jiang B, Luo JJ, Song S (2020)

Investigation on summer bird diversity in Xiama Forest Farm, Tianzhu County, Gansu Province

Journal of Ecology and Rural Environment, 36, 606-611. (in Chinese with English abstract)

[本文引用: 1]

[宋景舒, 胡洁, 江波, 罗娟娟, 宋森 (2020)

天祝夏玛林场不同生境夏季鸟类多样性

生态与农村环境学报, 36, 606-611.]

[本文引用: 1]

Stanton RL, Morrissey CA, Clark RG (2018)

Analysis of trends and agricultural drivers of farmland bird declines in North America: A review

Agriculture, Ecosystems & Environment, 254, 244-254.

DOI:10.1016/j.agee.2017.11.028      URL     [本文引用: 1]

Tilman D, Balzer C, Hill J, Befort BL (2011)

Global food demand and the sustainable intensification of agriculture

Proceedings of the National Academy of Sciences, USA, 108, 20260-20264.

[本文引用: 1]

Valente JJ, Betts MG (2019)

Response to fragmentation by avian communities is mediated by species traits

Diversity and Distributions, 25, 48-60.

DOI:10.1111/ddi.12837      URL     [本文引用: 1]

Verga EG, Sánchez Hümöller HL, Peluc SI, Galetto L (2017)

Forest fragmentation negatively affects common bird species in subtropical fragmented forests

Emu-Austral Ornithology, 117, 359-369.

DOI:10.1080/01584197.2017.1361789      URL     [本文引用: 1]

Verma SK, Murmu TD (2015)

Impact of environmental and disturbance variables on avian community structure along a gradient of urbanization in Jamshedpur, India

PLoS ONE, 10, e0133383.

DOI:10.1371/journal.pone.0133383      URL     [本文引用: 1]

Wang B, Huang Y, Li JT, Dai Q, Wang YZ, Yang DD (2018)

Amphibian species richness patterns in karst regions in Southwest China and its environmental associations

Biodiversity Science, 26, 941-950. (in Chinese with English abstract)

DOI:10.17520/biods.2018125      [本文引用: 1]

Patterns in the distribution of species richness have always been a central theme in macroecology. The karst landforms in Southwest China (mainly Guangxi, Yunnan and Guizhou provinces) are among the largest of the global biodiversity hotspots. In this study, we sought to understand spatial patterns of amphibian species richness and its relationship with environmental factors. We compiled a large dataset of 18,246 records of point location data for 219 amphibian species occurring in China. We retrieved this data from published literature, Herpetology museums of Chengdu Institute of Biology and Kunming Institute of Zoology, Chinese Academy of Sciences, Guangxi Zhuang Autonomous Region Museum of Nature and the Central South University of Forestry and Technology, and published sources. We used this data to generate the potential distributions of each species using ecological niche modeling. We combined the potential distributions maps of all species into a composite map to describe species richness patterns on the grid cell of 10 km × 10 km, and then conducted multivariate regression and model selection. Our results showed that 12 species were distributed only in karst area, accounting for 5.48% of the total species pool, 104 species were found in non-karst area (47.49% of total species), and 103 species were found in both karst area and non-karst area (47.03% of total species). Based on the raw data of museum collections data and MaxEnt species distribution modeling, we found that amphibian species richness in the study area decreased at higher latitudes. Karst landforms and non-karst landforms differed in their distribution patterns of amphibian species richness (χ2 = 36.47, P < 0.0001), but the model was a poor fit to the data (McFadden’s Rho square = 0.0037). The most significant environmental predictors of species richness were mean annual rainfall (R2 = 0.232, P < 0.001) and precipitation of driest Month (R2 = 0.221, P < 0.001). The results based on model selection showed that underlying mechanisms related to landforms and different ecological hypotheses might simultaneously explain patterns of amphibian species richness in the study area. Future research should examine other biological factors such as interference, predation, and competition to understand the mechanisms controlling patterns of amphibian species richness.

[王波, 黄勇, 李家堂, 戴强, 王跃招, 杨道德 (2018)

西南喀斯特地貌区两栖动物丰富度分布格局与环境因子的关系

生物多样性, 26, 941-950.]

DOI:10.17520/biods.2018125      [本文引用: 1]

物种丰富度分布格局的成因机制一直是宏观生态学研究的热点问题之一。中国西南地区喀斯特地貌区(以广西、云南和贵州为主)是世界上面积最大的喀斯特地貌区, 也是全球范围内34个生物多样性热点地区之一。为了解该区域两栖动物物种丰富度分布格局及其与环境因子之间的关系, 本研究根据中国科学院成都生物研究所标本馆、中国科学院昆明动物研究所标本馆、广西壮族自治区自然博物馆和中南林业科技大学动物标本室收藏的标本数据, 以及公开发表的文献数据, 共获得18,246条两栖动物记录(219个物种), 然后运用生态位模型估测每个物种的潜在分布区, 并把每个物种的潜在分布区叠加起来, 最终得到该区域在10 km &#x000b4;10 km生态位模型空间尺度上的两栖物种丰富度地理分布格局图, 最后进行多元回归和模型选择分析。结果表明: 有12种两栖动物仅在喀斯特地貌区分布, 占物种总数的5.48%; 有104种两栖动物仅在非喀斯特地貌区分布, 占物种总数的47.49%; 有103种两栖动物在喀斯特地貌区和非喀斯特地貌区均有分布, 占物种总数的47.03%; 两栖动物物种丰富度随纬度的增高而降低; 地貌类型(喀斯特地貌和非喀斯特地貌)对两栖动物物种丰富度的分布格局有显著影响(&#x003c7;<sup>2</sup> = 36.47, P &#x0003C; 0.0001), 但模型拟合效果差(McFadden&#x02019;s Rho square = 0.0037)。影响该区域两栖动物物种丰富度分布格局最大的环境因子是年均降雨量(R<sup>2 </sup>= 0.232, P &#x0003C; 0.001), 其次是最干月平均降雨量(R<sup>2 </sup>= 0.221, P &#x0003C; 0.001)。该区域两栖动物物种丰富度的格局主要是由地貌和不同的环境因子共同相互作用的结果, 不过仍有相当一部分物种丰富度的分布格局未被解释。因此, 要更全面地认识该区域两栖动物物种丰富度格局的形成机制, 有必要加强干扰、捕食、竞争等其他生物因子的影响研究。

Wang X, Zhu G, Cui P, Ma HH, Li CL (2021)

Effects of artificial landscapes on summer bird communities in the mountainous area of southern Anhui Province

Chinese Journal of Ecology, 40, 3691-3700. (in Chinese with English abstract)

[本文引用: 3]

[王雪, 朱光, 崔鹏, 马号号, 李春林 (2021)

皖南山区人工景观对夏季鸟类群落的影响

生态学杂志, 40, 3691-3700.]

[本文引用: 3]

Wen P, Yue CH, Xu WS, Zhang W, Qing Q, Dai Q (2017)

The effects of agroforestry on diversity of birds-taking Ganjiabao of Lixian County in Sichuan as an example

Journal of Sichuan Forestry Science and Technology, 38(5), 136-140. (in Chinese with English abstract)

[本文引用: 1]

[温平, 岳春红, 徐万苏, 张文, 青菁, 戴强 (2017)

混农林业对鸟类多样性的影响——以四川理县甘家堡为例

四川林业科技, 38(5), 136-140.]

[本文引用: 1]

Wen YG, He TP, Tan WF (2004)

Plant Diversity and Community Characteristics in Tropical and Subtropical Mountainous Areas of Guangxi

China Meteorological Press, Beijing. (in Chinese)

[本文引用: 1]

[温远光, 和太平, 谭伟福 (2004)

广西热带和亚热带山地的植物多样性及群落特征

气象出版社, 北京.]

[本文引用: 1]

Xu XY, Lin Y, Yi JF, Zhou F, Yu LJ (2018)

Distribution change of red-whiskered bulbul (Pycnonotus jocosus) in China over past 40 years

Chinese Journal of Zoology, 53, 17-25. (in Chinese with English abstract)

[本文引用: 1]

[徐雪怡, 林源, 伊剑锋, 周放, 余丽江 (2018)

40年间红耳鹎在中国的分布变化探讨

动物学杂志, 53, 17-25.]

[本文引用: 1]

Yang MH, Chen DM, Gao L, Liu CX, Pu HX, Wang X (1991)

Ecological crisis in Southwest China

Chinese Journal of Ecology, 10(6), 53-57. (in Chinese with English abstract)

[本文引用: 1]

[杨明华, 陈定茂, 高林, 刘朝玺, 浦汉晰, 王旭 (1991)

中国西南地区的生态危机

生态学杂志, 10(6), 53-57.]

[本文引用: 1]

Zhao WH, Liu FQ, Wen LY (2018)

Continental island effect in Sichuan Basin, based on morphological variation of Passer montanus

Sichuan Journal of Zoology, 37, 172-178. (in Chinese with English abstract)

[本文引用: 1]

[赵文海, 刘方庆, 文陇英 (2018)

四川盆地的陆地岛屿效应: 基于树麻雀的形态变异

四川动物, 37, 172-178.]

[本文引用: 1]

Zheng GM (2017) A Checklist on the Classification and Distribution of the Birds of China, 3rd edn. Science Press, Beijing. (in Chinese)

[郑光美 (2017) 中国鸟类分类与分布名录, 第三版. 科学出版社, 北京.]

Zhou F, Han XJ, Jiang AW, Huang CL, Yu LJ, Sun RJ, Li XL (2006)

Primary research of bird diversity in Jinzhongshan of Guangxi

Sichuan Journal of Zoology, 25, 765-770. (in Chinese with English abstract)

[本文引用: 1]

[周放, 韩小静, 蒋爱伍, 黄成亮, 余丽江, 孙仁杰, 李相林 (2006)

广西金钟山鸟类保护区鸟类多样性初步研究

四川动物, 25, 765-770.]

[本文引用: 1]

Zhou LP, Peabotuwage I, Gu H, Jiang DM, Hu GH, Jiang AW, Mammides C, Zhang MX, Quan RC, Goodale E (2019)

The response of mixed-species bird flocks to anthropogenic disturbance and elevational variation in southwest China

Ornithological Applications, 121, 1-13.

[本文引用: 1]

Zhou WJ, Lee MB, Goodale E (2018)

The relationship between the diversity of herbaceous plants and the extent and heterogeneity of croplands in noncrop vegetation in an agricultural landscape of South China

Global Ecology and Conservation, 14, e00399.

DOI:10.1016/j.gecco.2018.e00399      URL     [本文引用: 2]

/