山地物种海拔分布对气候变化响应的研究进展
Research progress on the elevational distribution of mountain species in response to climate change
通讯作者: * E-mail:zhiheng.wang@pku.edu.cn
编委: 张健
责任编辑: 黄祥忠
收稿日期: 2021-11-12 接受日期: 2022-02-2
基金资助: |
|
Corresponding authors: * E-mail:zhiheng.wang@pku.edu.cn
Received: 2021-11-12 Accepted: 2022-02-2
过去1个世纪以来, 全球气候变化显著并已成为全球生物多样性面临的重要威胁之一。如何利用有限的资源最有效地保护生物多样性已成为亟待解决的最重要科学问题之一。山地因其具有较高的生境异质性、气候多样性和较低的人类活动干扰, 已成为最重要的生物多样性避难所, 也具有较高的生态服务价值, 在生物多样性保护中扮演着重要角色。但山地更容易受到气候变化的影响, 山地地区较为剧烈的气候变化将对山地生态系统的稳定性及其多样性造成严重威胁。理解山地物种海拔分布对气候变化的响应和潜在机理, 以及气候变化带来的物种海拔分布变化的负面效应, 将为全球气候变化背景下的山地生物多样性保护提供参考依据。本文综述了全球山地地区的气候变化情况, 总结了物种海拔迁移的研究进展, 重点讨论了山地物种分布最适海拔、海拔上下限和海拔分布范围变化的研究进展及不足, 比较了不同地区和不同类群物种海拔迁移的差异性, 以及物种对气候变化响应的滞后性。从生物及非生物因素等多个角度概括了物种海拔迁移响应气候变化的潜在机理, 评估并总结了气候变化引起的物种海拔分布所产生的负面效应, 主要对物种向上迁移对高海拔地区物种多样性的影响、物种迁移带来的分布区改变导致的物种灭绝风险以及物种海拔分布变化导致的种间相互作用改变等方面进行全面探讨。最后, 展望了未来在此领域研究中应注意的问题, 提出了在未来气候变化下山地生物多样性保护需要采取的措施, 强调应重点关注对气候变化较为敏感的类群及生物多样性区域, 加强中国山地物种对气候变化响应的监测网络建设和研究力度, 重点加强监测气候变化对动植物互作关系的影响。
关键词:
Background & Aim: Over the past century, the global climate has changed dramatically and has become a major threat to global biodiversity. How to limit use of resources and power in order to protect biodiversity effectively has become one of the most significant issues concerning researchers. Mountain regions play an important role in biodiversity protection and have high ecological service value. They have become one of the most important biodiversity refuges due to its high habitat heterogeneity, climate diversity, and low human disturbance. However, mountain regions are more vulnerable to climate change, and severe climate change in mountain regions will pose a serious threat to the stability and diversity of mountain species ecosystems. Therefore, understanding the potential mechanisms of climate change and how they affect the elevational distributions of mountain species, and the negative effects of the elevational distribution changes induced by climate change, will provide a direct reference for the future conservation of mountain biodiversity under global climate change. In this paper, we review the research progress of climate change and the elevational range shifts of species in mountain regions around the world.
Summary: We focus on changes of optimum elevation, upper and lower range limits, and range size of species elevational distributions in response to climate change in mountain regions because the elevational range shifts of mountain species have profound impact on mountain biodiversity. We summarize the direction and magnitude of elevational range shifts across species and regions using historical and recent occurrence records of different species, and the lagged effect of climate change on species. Furthermore, we also summarize the potential mechanism of species elevational shifts in response to climate change from biological and abiotic factors and evaluate the negative effects of species elevational distributions caused by climate change. This paper mainly discusses the impact of the upward shifts of species in high-altitude regions, the increase of species extinction risk caused by the elevational shifts of species, and the change of species interactions caused by the elevational shifts of species.
Perspectives: We prospect the problems that should be paid attention to during future research on elevational shifts of species, as well as measures to be taken to protect mountain biodiversity under climate change. We suggest that we should focus on the groups and biodiversity regions that are more sensitive to climate change. Furthermore, we iterate the need to strengthen China’s mountainous species monitoring network and research efforts. Emphasis is placed on strengthening monitoring of the effects of climate change on animal and plant interactions.
Keywords:
本文引用格式
祖奎玲, 王志恒 (2022)
Kuiling Zu, Zhiheng Wang (2022)
19世纪工业革命以来, 大气中温室气体浓度的快速增加导致的全球气候变暖成为人类目前面临的最大挑战之一(李克让, 1996)。气候变化在时刻改变着动植物物种的分布(Lenoir et al, 2008; Crimmins et al, 2011)、物候(Vitasse et al, 2018)及植物与传粉者的关系(Inouye, 2009; 施雨含等, 2020), 造成生物入侵(Hulme, 2017), 引发生物多样性的丧失(Mantyka-Pringle et al, 2015)等。其中, 最基本的变化是物种分布的改变, 特别是山地地区物种海拔分布的变化。山地作为一个独特的生态系统, 包含了地球表面所有的气候类型, 气候和山脉之间的相互作用产生了高度复杂的环境异质性, 保存了较高的生物多样性(Körner, 2004)。虽然山地拥有丰富的生物多样性, 但气候变暖给这些区域的生物多样性造成了更为严重的威胁和不可逆转的变化(陈建国等, 2011)。因此, 研究山地地区物种海拔分布对气候变化的响应, 对生物多样性的保护及其可持续利用具有重要意义。在山地地区, 沿海拔梯度的气候变化非常显著, 例如, 在一些亚热带山地, 在较小的空间内就可出现从热带到温带、从岛屿到大陆等气候特征的更替。同时, 相较平原地区, 山地地区保存着较为完整的生物多样性, 为研究气候变化及其对物种分布的影响提供了天然实验室(McCain & Grytnes, 2010)。
目前, 国内外已开展了一些关于动植物物种海拔分布对气候变化响应的研究, 但在不同山地地区及不同类群的物种中, 这种响应的趋势是否一致尚缺乏系统全面的总结。本文综述了山地地区的气候变化特征以及全球气候变暖对山地物种海拔分布的影响, 概括了影响物种海拔迁移的其他生态因素, 并对物种海拔迁移可能造成的潜在后果进行探究(图1), 最后结合目前的研究成果对该领域的发展方向提出了一点设想, 以期为全球气候变化下的山地生物多样性保护提供参考。
图1
图1
物种海拔分布的变化及其决定因素
Fig. 1
Changes and determinants of the elevational distribution of species
1 山地概况及其气候变化特征
1.1 山地的定义
山地(mountain)被誉为地球上具有显著地貌特征的区域。它们在决定全球和区域气候方面发挥着重要作用, 是物种的摇篮和避难所, 对人类的生存和社会的可持续发展至关重要(Perrigo et al, 2020)。山地通常是指具有海拔高度、一定坡度和相对高度的区域, 也被称为陆地上的“岛屿” (方精云等, 2004)。在长期的地质历史演化过程中, 地壳运动形成了不同的地质地貌类型, 这也决定了山地拥有不同的岩石构成。不同研究对山地相对高度的定义存在差异, 丁锡祉和郑远昌(1986, 1996)认为相对海拔500 m以上的区域为山地, 低于500 m的区域则定义为丘陵; 而江晓波(2008)在量化中国山地范围时采用300 m作为山地的最低海拔且满足相对海拔不低于200 m。目前, 根据被广泛引用的联合国环境规划署(UNEP)的定义, 山脉的确定具有以下4个标准: (1)海拔高于2,500 m的所有区域; (2)海拔不低于1,500 m且坡度在2°以上的区域; (3)海拔不低于1,000 m且具有5°以上坡度的区域; (4)海拔不低于300 m, 但7 km范围内的相对海拔在300 m以上的区域(Blyth et al, 2002; Grover, 2014)。山地一般具有垂直分异性、自然和人文要素的多样性、山地环境的脆弱性、山区环境的多样性、山区经济的滞后性及显著的岛屿效应这6个主要特征, 其中自然和人文要素的多样性主要体现在山地类型, 气候、土壤、生物等类型, 以及人口、经济、民族等要素的多样性, 这是山地特征的主要体现(丁锡祉和郑远昌, 1986)。
1.2 全球山地及其气候变化
世界各大陆上都有山地分布, 覆盖面积近3,600万km2, 大约占全球陆地面积的24%, 为全球12%的人口提供了居住空间(Grover, 2014)。世界各地的山地均蕴含丰富的生物多样性, 由Mittermeier 等(2011)确定的全球35个生物多样性热点区域多位于山地地区。同时, 山地也是数以亿计的人口生存的家园, 并为数十亿在高地或者平原地区生存的人们提供重要的生态系统服务(Payne et al, 2017)。近期, 人们对全球山地的分布范围进行重新界定, 确定了全球1,003个主要山系的范围, 总面积为1,380万km2, 其中高山和冰雪带的面积达330万km2 (Chakraborty, 2021), 这一研究为区域及更大范围的生物多样性评估以及生物地理学、生物气候学、宏观生态学和保护研究提供了基础数据, 为探索山地系统的社会、生态和气候变化等相关问题提供了一个强有力的框架(Körner, 2017)。
山地气候的显著特点是较小的海拔梯度就能造成巨大的气候差异。在过去几十年里, 在许多山地都观察到了显著的气候变暖(Diaz & Bradley, 1997; Nogués-Bravo et al, 2007)。有研究表明, 许多高山地区正在经历显著的温度升高及降水格局变化, 以及由此带来的极端气候事件(Beniston, 2007; Dedieu et al, 2014)。全球气候变化将导致较大尺度的气温均值发生改变, 而在山地地区, 由于海拔和地形等引起的温度变化又在一定程度上修正了山地地区的局部气候变化。全球气候变暖已对山地地区的生态系统和生物多样性造成显著影响, 由此引发的一系列环境问题已成为全人类面临的重要难题之一。
气候变化带来的山地降水格局的改变比气温升高造成的后果更为复杂。在气候相对干燥的地区(如地中海地区), 高山是低地的水源(Boithias et al, 2014)。一般情况下, 降水的区域转移方式对预测潜在植被变化、高山地区气候变化等至关重要(McCullough et al, 2016)。有研究通过建立相关预测模型, 发现阿尔卑斯山脉未来在夏季将会变得更加干暖, 而在冬季则会变得更加温暖湿润(Christensen et al, 2002)。因此, 阿尔卑斯山的山地自然保护区可能面临年降水量逐渐减少和干旱事件发生频率不断增加的威胁, 这可能导致与其他生态过程完全不同的相互作用, 如害虫、入侵物种和污染等事件的发生(Beniston et al, 2007)。
此外, 气候变暖将加速高山地带冰川消融, 导致雪线位置向上迁移、冰川和积雪面积呈现退缩趋势、多年冻土区域解冻深度增加且冻土面积减少(IPCC, 2007)。近40年的监测数据显示, 世界许多高山地带冰川上移导致冰川体积逐渐减少。比如, 欧洲阿尔卑斯山的冰川面积减少了30%左右, 位于加拿大的落基山冰川面积也减少25%左右(Dyurgerov, 2003)。研究者推测, 至21世纪末, 有50%以上的冰川将面临消失(Christensen et al, 2002)。与此相似, 冰川减少的同时也伴随着积雪面积的减少, 而冰川和积雪对高山地区的水分循环和高山生态系统的稳定发展有着至关重要的作用。不仅如此, 冰川退缩后的区域能否被冰缘带物种所占据? 这一问题引起了研究者的关注, 目前在高海拔地区植物群落的变化研究发现, 高海拔地区的灌木并不会覆盖冰川消融区域(Liang et al, 2016; Sigdel et al, 2021)。在这些自然灾害的频繁作用下, 山地生态系统的稳定性及其生物多样性将受到更为严重的威胁。可见, 剧烈的气候变化给山地物种的生存和繁殖带来了前所未有的挑战。
2 山地物种的海拔迁移
由于气候变化的影响, 冰川消融和永久冻土的解冻速度均逐渐增加, 物种海拔分布的迁移速率也逐渐增强, 因此, 气候变化将导致生物物种分布的显著改变, 特别是对山地森林生态系统的生物群落组成产生了不同程度的影响(Gobiet et al, 2014)。Carroll等(2017)研究表明, 山地因其特殊的地理环境、多样化的气候和相对较低的人类活动干扰, 可能比平原地区维持着更高的生物多样性; 但山地物种对气候变化的敏感性可能更高, 特别是欧洲南部山地将出现较为严重的物种灭绝风险(Thuiller et al, 2007)。由此可见, 山地对未来生物多样性保护具有重要意义, 有可能成为物种应对未来气候变化的避难所, 而研究山地生态系统中物种对气候变化的响应规律则成为一个关键问题。
目前, 在有关全球山地物种海拔变化的研究中, 主要涉及如下几个指标: 物种最适海拔的变化、物种分布区海拔范围的变化、物种海拔分布上限(冷界限)和下限(暖界限)的变化。这些指标多通过野外长期监测和模型预测两种途径获得, 用以评估物种海拔分布对气候变化的响应。同时, 这些指标也可用于评估物种对气候变化的响应是否存在滞后性。
2.1 物种最适海拔的变化
2.1.1 不同地区物种的垂直迁移趋势不同步
近年来, 越来越多基于物种实际分布数据的研究评估了大量高山植物的海拔分布变化情况, 为这些预测提供了支持。例如, Lenoir等(2008)在欧洲西部阿尔卑斯山高山森林地区选取171种植物, 比较了1905-1985年和1986-2005年两个时间段内物种沿海拔的变化, 发现大量植物向高海拔地区迁移。Steinbauer等(2018)基于对欧洲302座山地近百年植物多样性的观测, 也发现了物种沿海拔向上迁移, 且高海拔地区物种多样性增加的现象。Rumpf等(2018)通过对欧洲阿尔卑斯山1970年前后183种山地植物最适海拔的研究发现, 物种沿海拔向上迁移。Zu等(2021)通过对中国亚热带山地贡嘎山种子植物海拔变化的研究发现, 自20世纪80年代中期以来, 多数物种沿海拔向上迁移。但Crimmins等(2011)对加利福尼亚州植物垂直分布的研究却发现, 在20世纪全球气候变暖背景下, 该地区大量植物沿海拔向下迁移。以上结果说明, 在温带及亚热带地区的不同山地, 由气候变化导致的植物垂直迁移方向并不相同, 这说明在温带及亚热带山地分布的植物物种, 其海拔分布对气候变化的响应存在区域异质性。近年来, 也有研究者对热带地区植物海拔分布的变化开展了相应研究。例如, Freeman和Class Freeman (2014)对巴布亚新几内亚地区Karimui山和Karkar岛的重新调查显示, 热带地区物种对气候变暖的响应更为强烈; 结合其他地区的资料发现, 在热带地区, 气候变化引起的物种分布和生物多样性的变化更剧烈。Morueta-Holme等(2015)通过对热带山地植物海拔分布变化的研究发现, 全球变暖也重塑了热带地区植物的垂直分布格局, 大量热带植物在气候变暖情景下向高海拔地区迁移。以上结果说明, 在热带山地气候变化也会引起山地物种向高海拔迁移。于是, 研究者提出这样的假说: 热带和温带山地的物种对气候变化的响应存在差异(Freeman & Class Freeman, 2014)。综上, 物种的海拔分布变化趋势具有区域差异性, 暗示着物种的海拔分布对气候变化的响应并不一致, 未来应该在不同地区的山地中开展全面研究, 结合不同山地的特性、山地物种的功能特性等, 从多角度去揭示物种海拔分布响应气候变化的区域差异性的潜在机理。
除了全球不同山地的物种响应气候变化的趋势不同, 一个山地不同海拔带(低海拔、中海拔、亚高山和高山)的物种对气候变化的响应也可能不同, 这主要体现在物种海拔迁移的方向及其分布范围变化(Liang et al, 2018)。比如, 在我国贡嘎山低海拔地区分布的种子植物向高海拔迁移的速率比高海拔地区的物种快, 但高海拔地区的物种分布区范围缩小趋势更明显(Zu et al, 2021)。与贡嘎山的发现类似, 在阿尔卑斯山的研究也显示, 低海拔地区的种子植物向上迁移的速度快于高海拔地区(Rumpf et al, 2018)。可见在不同山地中不同海拔分布的物种对气候变化的响应具有不一致性, 是否所有山地低海拔地区物种的迁移速率都要比高海拔地区的物种更快, 还需要深入研究。如果不同海拔分布的物种对气候变化的响应不同, 暗示着山地的生境特性和不同功能属性的物种可能影响物种海拔分布对气候变化的响应, 后期的研究可重点关注不同物种对气候变化的响应情况。
2.1.2 不同类群物种的迁移幅度不同步
研究显示, 气候变暖引起的物种分布沿海拔和纬度梯度的变化在不同类群间具有较大差别。比如, 对欧洲阿尔卑斯山脉植物、动物及真菌的研究发现, 不同类群的迁移幅度存在显著差异, 其中, 陆地昆虫和木本植物的最适海拔每10年分别上升了36.2 m和32.7 m, 而半水生昆虫、蕨类植物、鸟类和木材腐烂真菌的海拔变化多在-1.0至11 m之间(Vitasse et al, 2021)。
对植物的研究发现, 不同功能类群的物种对气候变化的响应模式及机制也不同(Stewart et al, 2010), 主要体现在不同物种的迁移距离上(黎磊和陈家宽, 2014)。首先, 生命周期短的物种(通常指草本植物)比生命周期长的物种(通常指木本植物)垂直迁移的幅度更大(Perry et al, 2005; Lenoir et al, 2008)。比如, 一项基于阿尔卑斯山171种植物垂直迁移的评估显示, 草本植物向上迁移的幅度比木本植物更大(Lenoir et al, 2008); 类似地, 在中国贡嘎山地区的植物海拔迁移研究也发现, 草本植物向上迁移的距离要大于木本植物(Zu et al, 2021), 说明具有不同生活史的物种对气候变化的响应可能不同。其次, 对于同一区域的山地, 低海拔及高海拔分布的物种对气候变化的响应也存在差异性。例如, 分布于高海拔地区的植物可能比低海拔地区的植物迁移的距离更大(Liu & Yin, 2013), 但在阿尔卑斯山的研究发现, 分布于低海拔和中海拔的植物的最适海拔显著向上迁移, 而分布于高海拔的植物最适海拔的变化较小(Menéndez et al, 2014)。最近一项对全球山地物种整合分析的结果也表明, 低海拔地区分布的物种向上迁移的距离要大于高海拔地区分布的物种(Mamantov et al, 2021)。第三, 同一山地本土及非本土物种对气候变化的响应存在差异。有研究者通过对欧洲阿尔卑斯山1,334种植物过去20多年来历史分布的比较研究发现, 该地区非本土物种向上迁移的速度是本土物种的2倍左右, 且比气候变化的速度更快, 这说明气候变化情景下外来物种有可能对高山生态系统产生严重的威胁(Dainese et al, 2017)。综上, 不同生活型、不同海拔分布的物种以及本土/非本土植物的垂直迁移对气候变化的响应不同, 这暗示着气候变化将改变物种间的相互作用, 进而改变整个山地生态系统和群落的平衡(陈建国等, 2011)。但引起这些差异化响应的机制尚存在争议。有些研究提出, 气候变暖是导致不同植物物种海拔迁移的唯一决定因素(Walther et al, 2002; Chen et al, 2011)。与此相反, 最近有研究提出, 物种的迁移取决于物种自身的扩散能力、适应能力、迁移障碍、物种间的相互作用关系等(Paquette & Hargreaves, 2021)。由此可见, 气候变化对不同物种海拔分布的影响尚未形成一致性的结论, 未来工作中应该针对不同类群的物种开展详细研究。
与植物方面的研究相似, 气候变化对动物海拔分布的影响也得到了较多的关注。首先, 气候变化已导致鸟类分布向极地或高海拔地区移动(Hitch & Leberg, 2007; Maggini et al, 2011)。比如, 在气候变化下, 繁殖的雀形目鸟类分布会向极地和高海拔转移(Mizel et al, 2016)。然而, Tsai等(2021)通过对台湾山地鸟类的海拔分布研究发现, 58%的鸟类海拔分布会发生改变, 多数鸟类在冬季时向低海拔地区迁移, 只有少数鸟类向高海拔地区迁移。可见, 鸟类海拔迁移的趋势与方向在不同山地尚未形成一致性的结论, 说明不同山地的鸟类物种对气候变化的响应也是不同的。其次, 在有蹄类动物的研究中, 研究者重点关注了欧洲阿尔卑斯山4种有蹄类物种: 野山羊(Capra ibex)、岩羚羊(Rupicapra rupicapra)、马鹿(Cervus elaphus)和狍(Capreolus capreolus)的海拔分布对气候变化的响应, 通过1991年与2013年调查资料的对比研究发现, 野山羊、岩羚羊和马鹿的平均海拔分布高度显著增加, 而狍类的海拔分布变化不明显(Büntgen et al, 2017)。这项研究不仅提供了动物活动范围在年际和数十年时间尺度上对环境变化响应的独立证据, 而且说明不同有蹄类物种海拔分布变化的幅度存在差异性。美国约塞米蒂国家公园的小型动物在过去1个世纪沿海拔平均向上迁移约500 m (Moritz et al, 2008)。此外, Lenoir等(2020)通过搜集全球研究气候变化对海洋和陆地生物影响的文献数据发现, 在温暖及人类活动干扰程度较低的水域中, 海洋物种能够密切跟踪温度的变化, 而陆生物种对温度的追踪能力受人类活动的限制, 有些物种会向与温度变暖相反的方向移动, 表明陆地物种比海洋物种更滞后于温度的变化。综上, 不同类群物种的海拔分布对气候变化的响应存在较多的差异性和相似性, 未来的研究应该结合类群自身特征, 包括生理适应性等因素来解释物种对气候变化的响应机制。
2.2 物种海拔分布上下限及分布范围的变化
掌握物种海拔分布变化背后的生态过程仍然是全球变化生态学领域的一个重要挑战, 其中, 物种海拔分布上限和下限的变化过程在一定程度上决定着物种最适海拔及分布范围的改变(Pinsky et al, 2013)。目前, 高山树线的变化已受到全球学者的关注, 也就是树木海拔分布上限的变化(Sigdel et al, 2018)。Lu等(2021)通过对1901-2018年北半球不同样点树线变化速率的研究发现, 北半球高山树线的平均爬升速率约为每年0.35 m。但不同树种的树线对气候变化的响应具有差异。例如, 在云南白马雪山地区, 落叶松属(Larix)植物树线在1923-2003年向上移动了67 m (Baker & Moseley, 2007); 在秦岭地区, 太白红杉(Larix chinensis)的海拔分布上限向上迁移了24.7 m, 而非林线木本植物巴山冷杉(Abies fargesii)和红桦(Betula albosinensis)的海拔分布上限仅发生了微弱变化(Shi et al, 2020)。在青藏高原东部地区, 川西云杉(Picea likiangensis var. rubescens)的海拔上限向上迁移了25 m (Lyu et al, 2016), 但急尖长苞冷杉(Abies georgei var. smithii)的海拔上限向上迁移的趋势并不明显(Liang et al, 2011)。而在钦博拉索山, 过去200年间植被平均向上爬升超过了500 m (Morueta-Holme et al, 2015)。以上结果均说明不同树种的海拔分布上限对气候变化的响应是不同的, 其变化速率也不同, 导致的结果可能引起林线树种种群结构及物种种间关系的变化, 进而影响森林生态系统的功能。树线是山地自然带上重要的生态系统分界线, 也是全球变化研究的关键地带, 树线对气候变化的响应对陆地生态系统响应全球变化有重要指示性意义。
以上研究多关注木本植物海拔分布上限的变化, 但受气候变化的影响, 物种海拔分布的上下限均会随着气候变化而发生迁移。物种海拔分布范围的扩张或者收缩在一定程度上是由物种分布的海拔上限和下限的变化决定的(Lenoir & Svenning, 2015), 而物种分布范围的变化直接影响物种的灭绝风险(Manne et al, 1999)。因此, 对不同物种海拔分布上下限迁移幅度的研究显得尤为重要。只有综合评价物种垂直梯度上的变化情况, 才能真实反映物种是从气候变化中受益还是受到威胁(Lenoir & Svenning, 2015)。根据Darwin-MacArthur假说, 如果物种海拔分布上限的向上迁移幅度远高于下限的向上迁移幅度, 则物种的分布范围将增加, 这样物种在垂直梯度上拥有更大面积的生存空间, 反之, 如果气候变化使得物种海拔分布下限向上迁移的幅度远大于上限向上迁移的幅度, 则物种的分布区将会变小(Darwin, 1859; MacArthur, 1972)。因此, 理解气候变化对物种分布界限及其范围变化的潜在影响也日渐成为全球变化生态学研究的重点。例如, Freeman等(2018a)通过整合全球32个山地975种植物分布范围变化的研究发现, 物种海拔分布上限对温度变化的响应并不比下限更为敏感; 随着物种向上迁移, 高海拔物种的分布范围正在显著缩小, 说明高海拔地区的物种面临气候变化的威胁。在有关鸟类海拔分布对气候变化响应的研究中, 研究者发现秘鲁山地低海拔地区分布的鸟类海拔上限上移, 导致其分布区变小, 而高海拔地区的鸟类分布区变小尤为明显, 面临较高的灭绝风险(Freeman et al, 2018b)。可见, 对不同海拔分布的物种海拔分布上下限变化的研究对理解物种在海拔梯度上的分布变化及灭绝风险的评估具有重要意义。但值得注意的是, 以上研究中较少涉及中国山地物种海拔分布上下限的变化, 未来应该综合开展不同山地物种海拔分布上下限及分布范围大小变化的研究, 特别是对气候变化较为敏感的青藏高原地区。
需要指出的是, 近期的综述研究发现, 鸟类分布对气候变化的响应也是不同的, 一些物种的移动方向与预期相反, 另一些物种的分布范围则非常稳定, 不随气候变化而变化, 这可能是因为鸟类(特别是雀形目鸟类)对特定的植被结构特征表现出强烈的偏好。比如, 研究者评估了1995-2013年阿拉斯加州德纳里国家公园(Denali National Park) 17种雀形目物种的海拔分布的变化, 结果显示在灌丛-苔原分布的鸟类, 其海拔分布普遍向上转移, 而森林鸟类的海拔分布范围变化呈现收缩、扩张及稳定不变的趋势(Mizel et al, 2016)。这意味着气候长期变化可通过影响植被的变化间接影响鸟类分布, 雀形目鸟类海拔范围的动态变化可能与不同植被群落的构成及其群落物种变化有关。因此, 在研究气候变化对物种分布的影响时, 应重点关注气候变化对不同类群间相互作用关系的影响。
物种海拔分布上、下限变化对气候变化的响应机制研究是全球变化生态学研究的另一个主要课题。研究者通过整合同一时间段内在相同地点观察到的1,026种物种(植物、脊椎动物和无脊椎动物)的海拔分布上下限的迁移及变化速率, 并比较了两者与温度变化的关系后发现, 山地物种海拔分布下限的变化与上限的变化趋势相似, 但上下限的变化与温度变化的关系较弱, 说明除气候变暖外, 其他因素也起着重要作用(Rumpf et al, 2018)。最近一项研究指出, 生物间的相互作用(包括竞争、捕食和寄生等)对物种分布界限变化的贡献高达60%, 且对物种海拔分布下限变化的影响比上限更大, 而非生物因素主要作用于物种海拔分布上限的变化(Paquette & Hargreaves, 2021)。物种海拔分布下限的变化更容易受到人类活动的强烈干扰(O’Sullivan et al, 2021; Zu et al, 2021), 现在更多研究关注物种海拔分布上限和下限对气候敏感性的差异, 如何区分气候变化和人类活动对物种分布变化的相对影响是当前研究的难点之一。未来应从生态环境、物种自身功能属性、物种间相互作用、人类干扰等多个方面分析物种海拔分布变化对气候变化响应的差异, 从而更准确地理解物种海拔分布上下限变化差异性的原因及潜在机制。
2.3 物种海拔分布对气候变化响应的滞后性
全球气候的快速变化和人类活动对物种海拔分布的影响将加速山地生物多样性丧失, 山地植物向上迁移的速度有可能滞后于气候变暖的速度, 理解导致物种对环境变化响应滞后的过程, 可为更准确地预测本世纪山地动植物物种群落组成的变化情况提供参考(Bertrand et al, 2016)。植物响应气候变化而发生迁移, 主要体现在传播、定殖和生存/灭绝3个方面, 凡是影响扩散、建立和灭绝过程的因素, 都可能造成物种对气候变化响应的滞后性, 从而影响山地生态系统随环境变化的群落更替率(Alexander et al, 2018)。影响扩散、建立和灭绝过程的因素主要有物种自身的性状特征(包括果实类型和种子形态等)、物种间的相互作用及物种生存的环境, 尤其是人类活动造成物种的适宜生境被破坏时, 即使是具有高传播潜力的物种到达它们适宜分布区的可能性也很低。比如, 基于欧洲阿尔卑斯山地区183种高山植物的研究显示, 在所选取的植物中, 有近一半的物种无法迁移到其适宜的分布区, 这表明自第四纪以来的气候变暖已经缩小了物种的适宜分布区范围(Dullinger et al, 2012)。到目前为止, 许多研究已经证实了物种的迁移速度远低于气候变化速度(Devictor et al, 2012; Lenoir et al, 2020; Duchenne et al, 2021), 换言之, 气候的变异速率要高于物种在空间分布上的转移速率, 这样就造成了物种响应气候变化的滞后性。不仅如此, 在植被群落组成对气候变化响应的研究中, 也存在一定的气候滞后性。例如, 对法国山地历经44年(1965-2008年)的温度变化及物种群落组成变化的研究发现, 低海拔地区分布的物种比高海拔地区物种的海拔变化速度更加滞后于气候变暖的速度(Bertrand et al, 2011)。在未来气候变暖情景下, 欧洲树木位于分布区边缘的种群表现出较高的气候滞后性(Fréjaville et al, 2020)。随着快速的气候变化, 这些滞后现象可能会增加, 从而威胁到那些没有能力扩散到新地点或在当地适应的物种的生存, 这些威胁的程度可能取决于物种所处的生存环境的变化和影响物种间相互作用的其他驱动力。要想全面理解物种海拔迁移对气候变化的响应及物种对气候变化的滞后性, 需要从多种生态因素角度去掌握物种响应气候变化的潜在机制。
3 影响物种海拔迁移的生态因素
物种海拔迁移对气候变化的响应机理较为复杂, 分析哪些生态因素限制了物种的海拔分布是一个基本的生态学问题, 这对预测物种的海拔分布对全球变化的响应至关重要。理解物种如何应对气候变化对于预测未来生物多样性的动态及分布至关重要, 近年来, 随着野外控制实验技术的发展, 多数研究基于野外控制实验探究了气候变化对物种海拔分布的影响, 比如, Alexander等(2015)通过对瑞士阿尔卑斯山高山植物的移栽实验发现, 高山植物的向上迁移可能是受到低海拔地区物种的竞争作用。Brown和Vellend (2014)为了验证非气候因子对物种海拔分布的影响, 沿着海拔梯度设计了控制实验, 结果显示非气候因素可能会影响物种分布范围扩大的速度, 因此在预测未来物种的分布时需要给予更多的关注。综上, 研究者一致认为, 影响物种海拔分布变化的生态因素主要包括非生物因素和生物因素, 下面将详细介绍有关这些生态因素对生态过程影响的研究进展。
首先, 气候变暖是影响物种海拔迁移的主要因素。因为海拔与许多直接影响生物体表型的因素相关, 特别是与气候因素关系紧密, 如年均温及温度季节性的变化, 这些可能直接影响决定物种分布动态的关键过程(Lenoir et al, 2008)。上文所述的物种海拔分布变化的区域性差异, 可能在很大程度上是因为不同区域气候变暖的差异所致。比如, 在欧洲主要山脉维管植物多样性的研究中发现, 整体而言, 过去气候变暖使得多数植物向上迁移, 但欧洲北部地区山地的植物多样性增加而地中海山地的植物多样性降低, 这种差异可能主要是因为欧洲南部在升温的同时降水减少所致(Pauli et al, 2012)。也有研究指出温度越低, 有性繁殖失败的风险越大, 这可能会减缓物种海拔分布上限的扩张(Körner, 2007)。虽然物种最适海拔的变化和气候变暖之间的关系被广泛发现(Chen et al, 2011), 但物种之间这种变化的驱动因素在很大程度上仍然不清楚。
其次, 干扰对物种海拔分布变化也有重要影响, 自然干扰(如极端气候、虫害、火灾、火山喷发等)或人为干扰(如森林砍伐、放牧、农耕、旅游等)均可显著影响物种的海拔分布变化(Améztegui et al, 2010; Guo et al, 2018)。一般而言, 物种海拔分布的动态变化由两个过程决定: 新地区的定殖与局部灭绝(Eriksson, 2000; Angert et al, 2011)。这两个过程与自然干扰紧密联系, 比如, 森林生态系统中林窗事件的发生, 优势树种因火灾、干旱、虫害等干扰因素造成的衰老、死亡, 以及新的树种发生迁移而占据了优势种的生态位(夏冰等, 1997)。人为因素也已对森林生态系统造成了强烈的干扰。比如, 在低海拔地区, 特别是在人口稠密的地区(如欧洲), 人为因素也可能导致物种向高海拔迁移(Gehrig-Fasel et al, 2007; Czerepko, 2008)。而在台湾山地中高海拔地区因农耕、旅游业的发展等人为干扰, 导致中海拔植物物种有向下迁移的趋势(O’Sullivan et al, 2021)。研究干扰对物种海拔分布的影响对森林生态系统保护政策的制定具有重要参考价值, 因自然干扰的不可控性及人为干扰的可控性, 有效控制人为干扰是森林生态系统保护的重要目标。
此外, 其他一些非生物因素也可能引起物种分布的改变, 如氮沉降(Greaver et al, 2016)、微避难所对气候变暖的缓冲作用(Scherrer & Körner, 2011), 或者这些驱动因素通过生物相互作用产生的间接连锁效应(Lenoir et al, 2010)。有研究指出, 在欧洲山地地区, 降水、土地利用或环境污染等因素对同一物种的低海拔分布与高海拔分布可能有不同的影响(Lenoir et al, 2010)。森林覆盖和气候变化共同作用于物种分布的改变, 在温暖地区森林覆盖度的减少增加了物种向上迁移的幅度(Guo et al, 2018)。相比而言, 中国山地物种海拔变化的研究较少关注多种非生物因素相互作用对物种生态过程的影响。
除非生物因素外, 生物因素, 特别是物种间的相互作用可能影响不同海拔分布物种对气候变化响应的差异。早期达尔文已提出, 非生物因素通常影响物种海拔分布上限的变化, 而生物相互作用更多地对物种海拔分布的下限起主导作用(Darwin, 1859)。也有研究指出, 植物之间的相互作用随着海拔梯度的变化而变化, 在低海拔处物种间的竞争占优势, 在高海拔处物种间的相互促进作用占主导(Callaway et al, 2002)。在低海拔地区, 气温升高对物种的影响可能会因为物种间的竞争加剧而增强(Alexander et al, 2015), 而高海拔地区物种分布的扩张可能会因缺乏适当的种间正相互作用而受阻(Cavieres et al, 2014), 这说明气候变化可通过影响物种间相互作用进而间接作用于物种海拔分布的变化。然而, 研究者通过实验验证了物种海拔分布上限变化的非生物和生物机制对物种的作用, 最终证明了物种间的相互作用对于物种海拔分布上限的变化非常重要(Shepard et al, 2021)。Paquette和Hargreaves (2021)通过对885个物种海拔分布上下限的文献综述发现, 生物间的相互作用对物种海拔分布下限的影响大于上限。由此可见, 物种海拔分布的上下限及物种海拔分布范围的变化均可能受到物种间相互作用的影响, 但在物种相互作用对上下限影响的程度上还没有形成一致性的结论, 这可能与不同研究中的区域效应有关。
物种海拔分布的改变可能还涉及到其他生物因素, 如物种的寿命、生活型、体型、传播能力、性别等。有研究表明, 物种分布范围的改变与物种自身的特征有关, 在气候条件不适宜的地区, 短命物种的种群适宜性更强, 而对于寿命较长、活动范围有限和分布海拔较低的物种而言, 其滞后于气候变暖的程度更大(Grenouillet & Comte, 2014)。温带地区蝙蝠的海拔迁移表现出强烈的性别偏差, 雌性蝙蝠在繁殖期间往往向低海拔地区迁移, 而雄性栖息在海拔较高的区域(McGuire & Boyle, 2013)。对热带地区8个研究地点的421种鸟类海拔迁移的最新综合评估中, 研究者提出体型较小的鸟类向高海拔迁移的速率较快, 而体型较大的物种更有可能沿海拔梯度向下移动; 扩散能力强、觅食层低及海拔分布范围广的物种移动速率最快(Neate-Clegg et al, 2021)。这说明不同功能属性的物种迁移速率不同, 暗示着气候变化会改变物种的种间关系及群落组成, 从而对生态系统服务及功能造成重要的影响。
4 物种海拔分布变化的生态效应
4.1 高海拔地区物种受到威胁
在气候变化情景下, 山地植物海拔分布的变化会产生一些不良的后果。首先, 低海拔地区物种向高海拔地区迁移往往会改变高海拔地区物种的种间关系及群落组成, 特别是高山地区物种的竞争优势降低, 使得高山特有种减少甚至消失, 造成高海拔生态系统内生物多样性的丧失(Hughes & Eastwood, 2006; Fadrique et al, 2018)。比如, 热带山地低海拔地区的植物群落组成更偏向于对温度耐受性较强的物种, 低海拔地区的物种在气候变化情景下沿海拔向上迁移(Colwell et al, 2008), 而原本在高海拔地区分布的高山特有植物的生境有可能被低海拔迁移上来的物种所占据, 导致高山地区物种多样性的丧失(Raxworthy et al, 2008; Freeman et al, 2018b), 进而影响生态系统的功能。也有研究指出, 气候变化对高海拔物种的影响在热带地区比温带地区更为强烈(Sheldon et al, 2011; Gibson-Reinemer et al, 2015)。因此, 我们需要深入了解不同地区物种分布对气候变化的响应情况, 揭示物种分布变化响应气候变化的潜在机制, 从而为气候变化情景下的山地生物多样性管理和生态安全提供支撑。此外, 在高海拔山地, 气候变暖可能导致山地冰川的融化和消失, 这些消融的冰川所空出来的地方可能会被冰缘带物种所占据, 研究者对冰缘带植物种群变化的研究发现, 高海拔地区的植物并不会占据冰川消融之后腾空的区域。比如, Liang等(2016)对青藏高原高山树线迁移的研究发现, 虽然气候变暖了, 但由于灌木的阻挡, 树木无法向上迁移, 所以也无法占据空出来的地区。Sigdel等(2021)对喜马拉雅山区高山冰缘两种灌木刺柏(Juniperus indica)和鳞柏(J. squamata)分布变化的研究显示, 从1980s到2010s, 这两种灌木并未在冰川消融区域大量建立种群。这一结果显示, 虽然冰川融化可能增加了高海拔物种的生存空间, 但喜马拉雅山区高山冰缘植物并未从变暖中获益, 这可能是因为降水减少及较高的蒸散率降低了种子萌发率并增加了幼苗死亡率。与植物相比, 有关冰川退缩区域对动物物种分布影响的研究尚较少, 亟待开展。
4.2 物种分布区变化增加其灭绝风险
物种海拔分布的变化有可能引起物种分布区的改变, 使其收缩或者扩张(Rumpf et al, 2018)。例如, 有研究指出, 在局域尺度上, 物种分布区在响应过去几十年气候变化时呈现收缩现象, 特别是高海拔地区的植物(Parmesan, 2006)。物种分布区的收缩意味着物种种群的密度降低或增长速度减缓, 进而增加了这些物种的灭绝风险(Memmott et al, 2007)。物种分布区收缩的原因主要有以下两点: 第一, 多数物种对气候变化耐受性的进化速率要低于该物种分布区范围内的气候变化速率。在气候变化情景下, 当物种的海拔或者纬度分布发生变化时, 可能因为自然地理障碍而面临灭绝风险, 也可能是高海拔地区山顶面积较小的缘故, 使得物种适宜分布区范围变小。第二, 本地物种也可能面临适应性更强的外来物种的竞争, 使得竞争力较弱的本地种面临灭绝风险。例如, Ahmad等(2021)在对喜马拉雅山地非本土和本土植物物种的生态位分布和多样性格局的研究中发现, 非本地种的生态位宽度随海拔升高而减小, 但少数非本地种的生态位宽度较宽(生境通用型), 这种生境通用种可能导致特有或本地生境特有种(生态位宽度狭窄)的迁移。由于受气候变化及非本地物种加速传播的影响, 本地物种群落更容易面临灭绝风险。我们强调, 特别是在山地保护区中, 必须采取措施控制外来物种, 进一步加强不同海拔及生境类型下物种组成变化的研究, 并有效识别和保护高灭绝风险的本地物种。同时, 应加强气候变化对物种分布影响的研究, 特别关注物种分布区范围的变化。
4.3 物种间相互作用关系发生改变
由于不同类群动植物对气候变化的响应不一致, 某些特征类群物种海拔分布的改变可能打破营养级的相互作用关系。在全球气候变暖情景下, 当植物向高海拔地区迁移时, 传粉昆虫或鸟类并不一定以相同的速度向高海拔地区迁移, 这就造成了植物与传粉动物之间出现空间错配(施雨含等, 2021), 从而对生态系统的食物网或者食物链产生较为严重的影响(陈建国等, 2011)。比如, 研究者通过对两种兰科植物及其传粉昆虫的分布进行研究发现, 当考虑传粉昆虫的分布时, 两种兰花的潜在适宜分布区面积减少约52%-73% (Tsiftsis & Djordjević, 2020), 这充分说明了依赖于昆虫传粉完成繁殖的植物, 它们的分布、生存和繁殖依赖于传粉动物的分布、生存和繁殖。然而, 目前关于此类的研究多是基于模型预测, 缺乏基于动植物的实际分布和观测数据来研究气候变暖对物种相互作用变化影响的研究(Gérard et al, 2020)。未来可重点关注气候变化对动植物物种相互作用关系网络的影响, 这对于生物多样性保护及生态系统稳定性具有重要意义。
5 展望
土地利用变化、气候变化、氮沉降及生物入侵等已成为影响全球生物多样性丧失的重要因素(Sala et al, 2000), 其中, 土地利用变化和气候变化被认为是生物多样性面临的最主要威胁(García- Valdés et al, 2015; Powers & Jetz, 2019), 但本文暂没有考虑土地利用变化对物种海拔分布变化的影响, 而是重点关注了气候变化对物种海拔分布变化的影响。目前, 气候变化对生物多样性丧失的影响已经引起国际社会的普遍关注和重视(Thuiller, 2007), 通过研究物种响应过去气候变化的趋势有助于进一步了解物种对气候变化的响应, 量化气候变化对生物多样性威胁的区域差异与类群差异, 这不仅有助于了解未来人类世的生态变化过程, 也有助于制定和实施物种应对气候变化所作出的保护与适应策略(Ordonez, 2020)。然而, 将脆弱性评估转化为生物多样性保护计划是十分困难的, 因为所观察到的环境压力对生物多样性影响的驱动机制是多种多样的。
为了更好理解气候变化对生态系统结构及功能产生的影响, 以及物种分布对气候变化响应的潜在机理, 仍有许多问题亟待解决, 比如: 气候变化造成的不同地区物种分布的改变是否同步进行? 不同地区物种海拔分布变化的潜在机理是什么? 不同功能属性的物种其海拔分布对气候变化的响应是否具有一致性? 这些问题的解决需要综合长期的气候和生态环境数据, 尤其是高山和极地等气候敏感性较强的区域, 也要关注林草交错带等区域的物种分布变化情况。在未来全球气候变化情景下, 要加强野生动植物等生物资源的保护与管理, 可从以下几点进行: (1)确定对气候变化敏感的动植物类群。通过对物种分布、分布区范围的变化情况及其对气候的适应性等方面的全面分析, 确定对气候变化响应较为敏感的类群作为优先保护的物种, 特别需要重点关注面临威胁的旗舰物种、建群种及特有种。(2)重点关注生物多样性变化较为显著的区域。通过物种分布的改变掌握不同区域生物多样性的变化情况, 对生物多样性响应全球气候变化的敏感性和脆弱性进行综合评估, 确定未来重点保护的关键区域。(3)重点监测野外动植物互作关系的变化情况。动植物个体和群体分布的改变都将会对其他物种的生存和繁衍造成影响, 比如植物物候与传粉者关系的改变可能受到未来气候变化的影响, 应加强物种相互作用关系的研究, 从而定量理解群落结构及生态系统的功能。(4)建立中国山地物种对气候变化响应的监测网络, 比如在横断山脉、喜马拉雅山脉、青藏高原、天山、秦岭、长白山等这些高大而又典型的山脉建设长期物种监测站点, 只有积累长期而持续性的监测数据才能弥补我国在这方面研究的不足。
此外, 在掌握物种响应气候变化空间格局差异研究的基础上, 可深入对个体生理生态特性对气候的响应和适应性研究, 以及在种群水平上掌握物种遗传结构对气候变化的响应。气候变化通过对物种适宜生境的改变来影响物种群体的分化, 一般而言, 在较为适宜生境中, 物种分布范围扩大, 促进其传播扩散, 如果气候变化造成物种生境减小, 其迁移受到障碍, 群体之间就会因缺乏基因交流出现分化。目前, 因气候变化引起物种遗传结构及多样性改变的研究多集中于第四纪的气候变化(Hewitt, 2000), 冰期时物种向低纬度或低海拔的避难所区域迁移, 这些区域往往具有较高的遗传多样性, 但不同避难所的同一个物种因缺乏基因交流, 可能存在遗传上的分歧, 另外, 间冰期的升温使得幸存的物种扩张繁衍, 新近扩张的种群遗传多样性可能较低(Zhou et al, 2012)。可综合利用物种分布模型及基因测序的手段, 深入认识气候变化对物种遗传结构及多样性的影响。
致谢
责任编委和审稿专家在论文修改过程中提出了诸多宝贵意见, 在此表示感谢!
参考文献
Niche width analyses facilitate identification of high-risk endemic species at high altitudes in western Himalayas
DOI:10.1016/j.ecolind.2021.107653 URL [本文引用: 1]
Lags in the response of mountain plant communities to climate change
DOI:10.1111/gcb.13976
PMID:29112781
[本文引用: 1]
Rapid climatic changes and increasing human influence at high elevations around the world will have profound impacts on mountain biodiversity. However, forecasts from statistical models (e.g. species distribution models) rarely consider that plant community changes could substantially lag behind climatic changes, hindering our ability to make temporally realistic projections for the coming century. Indeed, the magnitudes of lags, and the relative importance of the different factors giving rise to them, remain poorly understood. We review evidence for three types of lag: "dispersal lags" affecting plant species' spread along elevational gradients, "establishment lags" following their arrival in recipient communities, and "extinction lags" of resident species. Variation in lags is explained by variation among species in physiological and demographic responses, by effects of altered biotic interactions, and by aspects of the physical environment. Of these, altered biotic interactions could contribute substantially to establishment and extinction lags, yet impacts of biotic interactions on range dynamics are poorly understood. We develop a mechanistic community model to illustrate how species turnover in future communities might lag behind simple expectations based on species' range shifts with unlimited dispersal. The model shows a combined contribution of altered biotic interactions and dispersal lags to plant community turnover along an elevational gradient following climate warming. Our review and simulation support the view that accounting for disequilibrium range dynamics will be essential for realistic forecasts of patterns of biodiversity under climate change, with implications for the conservation of mountain species and the ecosystem functions they provide.© 2017 John Wiley & Sons Ltd.
Novel competitors shape species’ responses to climate change
DOI:10.1038/nature14952 URL [本文引用: 2]
Land-use changes as major drivers of mountain pine (Pinus uncinata Ram.) expansion in the Pyrenees
Do species’ traits predict recent shifts at expanding range edges
DOI:10.1111/j.1461-0248.2011.01620.x
PMID:21535340
[本文引用: 1]
Although some organisms have moved to higher elevations and latitudes in response to recent climate change, there is little consensus regarding the capacity of different species to track rapid climate change via range shifts. Understanding species' abilities to shift ranges has important implications for assessing extinction risk and predicting future community structure. At an expanding front, colonization rates are determined jointly by rates of reproduction and dispersal. In addition, establishment of viable populations requires that individuals find suitable resources in novel habitats. Thus, species with greater dispersal ability, reproductive rate and ecological generalization should be more likely to expand into new regions under climate change. Here, we assess current evidence for the relationship between leading-edge range shifts and species' traits. We found expected relationships for several datasets, including diet breadth in North American Passeriformes and egg-laying habitat in British Odonata. However, models generally had low explanatory power. Thus, even statistically and biologically meaningful relationships are unlikely to be of predictive utility for conservation and management. Trait-based range shift forecasts face several challenges, including quantifying relevant natural history variation across large numbers of species and coupling these data with extrinsic factors such as habitat fragmentation and availability.© 2011 Blackwell Publishing Ltd/CNRS.
Advancing treeline and retreating glaciers: Implications for conservation in Yunnan, P.R. China
DOI:10.1657/1523-0430(2007)39[200:ATARGI]2.0.CO;2 URL [本文引用: 1]
Future extreme events in European climate: An exploration of regional climate model projections
Changes in plant community composition lag behind climate warming in lowland forests
DOI:10.1038/nature10548 URL [本文引用: 1]
Ecological constraints increase the climatic debt in forests
DOI:10.1038/ncomms12643
PMID:27561410
[本文引用: 1]
Biodiversity changes are lagging behind current climate warming. The underlying determinants of this climatic debt are unknown and yet critical to understand the impacts of climate change on the present biota and improve forecasts of biodiversity changes. Here we assess determinants of climatic debt accumulated in French forest herbaceous plant communities between 1987 and 2008 (that is, a 1.05 degrees C mean difference between the observed and bioindicated temperatures). We show that warmer baseline conditions predispose plant communities to larger climatic debts, and that climate warming exacerbates this response. Forest plant communities, however, are absorbing part of the temperature increase mainly through the species' ability to tolerate changing climate. As climate warming is expected to accelerate during the twenty-first century, plant migration and tolerance to climatic stresses probably will be insufficient to absorb this impact posing threats to the sustainability of forest plant communities.
Mountain Watch
Assessment of the water supply: Demand ratios in a Mediterranean basin under different global change scenarios and mitigation alternatives
Elevational range shifts in four mountain ungulate species from the Swiss Alps
Positive interactions among alpine plants increase with stress
DOI:10.1038/nature00812 URL [本文引用: 1]
Scale-dependent complementarity of climatic velocity and environmental diversity for identifying priority areas for conservation under climate change
DOI:10.1111/gcb.13679
PMID:28267245
[本文引用: 1]
As most regions of the earth transition to altered climatic conditions, new methods are needed to identify refugia and other areas whose conservation would facilitate persistence of biodiversity under climate change. We compared several common approaches to conservation planning focused on climate resilience over a broad range of ecological settings across North America and evaluated how commonalities in the priority areas identified by different methods varied with regional context and spatial scale. Our results indicate that priority areas based on different environmental diversity metrics differed substantially from each other and from priorities based on spatiotemporal metrics such as climatic velocity. Refugia identified by diversity or velocity metrics were not strongly associated with the current protected area system, suggesting the need for additional conservation measures including protection of refugia. Despite the inherent uncertainties in predicting future climate, we found that variation among climatic velocities derived from different general circulation models and emissions pathways was less than the variation among the suite of environmental diversity metrics. To address uncertainty created by this variation, planners can combine priorities identified by alternative metrics at a single resolution and downweight areas of high variation between metrics. Alternately, coarse-resolution velocity metrics can be combined with fine-resolution diversity metrics in order to leverage the respective strengths of the two groups of metrics as tools for identification of potential macro- and microrefugia that in combination maximize both transient and long-term resilience to climate change. Planners should compare and integrate approaches that span a range of model complexity and spatial scale to match the range of ecological and physical processes influencing persistence of biodiversity and identify a conservation network resilient to threats operating at multiple scales.© 2017 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.
Facilitative plant interactions and climate simultaneously drive alpine plant diversity
DOI:10.1111/ele.12217 URL [本文引用: 1]
Mountains as vulnerable places: A global synthesis of changing mountain systems in the Anthropocene
DOI:10.1007/s10708-019-10079-1 URL [本文引用: 1]
Rapid range shifts of species associated with high levels of climate warming
Advances in the studies of responses of alpine plants to global warming
高山植物对全球气候变暖的响应研究进展
PRUDENCE employs new methods to assess European climate change
DOI:10.1029/2002EO000094 URL [本文引用: 2]
Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics
DOI:10.1126/science.1162547
PMID:18845754
[本文引用: 1]
Many studies suggest that global warming is driving species ranges poleward and toward higher elevations at temperate latitudes, but evidence for range shifts is scarce for the tropics, where the shallow latitudinal temperature gradient makes upslope shifts more likely than poleward shifts. Based on new data for plants and insects on an elevational transect in Costa Rica, we assess the potential for lowland biotic attrition, range-shift gaps, and mountaintop extinctions under projected warming. We conclude that tropical lowland biotas may face a level of net lowland biotic attrition without parallel at higher latitudes (where range shifts may be compensated for by species from lower latitudes) and that a high proportion of tropical species soon faces gaps between current and projected elevational ranges.
Changes in climatic water balance drive downhill shifts in plant species’ optimum elevations
DOI:10.1126/science.1199040
PMID:21252344
[本文引用: 2]
Uphill shifts of species' distributions in response to historical warming are well documented, which leads to widespread expectations of continued uphill shifts under future warming. Conversely, downhill shifts are often considered anomalous and unrelated to climate change. By comparing the altitudinal distributions of 64 plant species between the 1930s and the present day within California, we show that climate changes have resulted in a significant downward shift in species' optimum elevations. This downhill shift is counter to what would be expected given 20th-century warming but is readily explained by species' niche tracking of regional changes in climatic water balance rather than temperature. Similar downhill shifts can be expected to occur where future climate change scenarios project increases in water availability that outpace evaporative demand.
A long-term study of successional dynamics in the forest wetlands
DOI:10.1016/j.foreco.2007.09.039 URL [本文引用: 1]
Human disturbance and upward expansion of plants in a warming climate
DOI:10.1038/nclimate3337 URL [本文引用: 1]
On the Origin of Species by Means of Natural Selection
Shifting mountain snow patterns in a changing climate from remote sensing retrieval
DOI:10.1016/j.scitotenv.2014.04.078 URL [本文引用: 1]
Differences in the climatic debts of birds and butterflies at a continental scale
Temperature variations during the last century at high elevation sites
DOI:10.1023/A:1005335731187 URL [本文引用: 1]
A preliminary discussion on montology
初论山地学
The second discussion on montology
再论山地学
A regional impact assessment of climate and land-use change on alpine vegetation
DOI:10.1046/j.1365-2699.2003.00839.x URL [本文引用: 1]
European plants lagging behind climate change pay a climatic debt in the North, but are favoured in the South
DOI:10.1111/ele.13730 URL [本文引用: 1]
Extinction debt of high-mountain plants under twenty-first-century climate change
DOI:10.1038/nclimate1514 URL [本文引用: 1]
Mountain and subpolar glaciers show an increase in sensitivity to climate warming and intensification of the water cycle
DOI:10.1016/S0022-1694(03)00254-3 URL [本文引用: 1]
Functional roles of remnant plant populations in communities and ecosystems
DOI:10.1046/j.1365-2699.2000.00215.x URL [本文引用: 1]
Widespread but heterogeneous responses of Andean forests to climate change
DOI:10.1038/s41586-018-0715-9 URL [本文引用: 1]
Ecological characteristics of mountains and research issues of mountain ecology
DOI:10.17520/biods.2004003 URL [本文引用: 1]
试论山地的生态特征及山地生态学的研究内容
DOI:10.17520/biods.2004003
[本文引用: 1]
山地是一个生态复杂系统,它具有特定的结构和功能,拥有丰富的生物多样性资源、水资源、矿产资源和旅游资源。开展山地生态学研究对阐明山地系统的结构与功能、山地的生态现象与过程,以及合理开发利用和保护山地资源都有极为重要的意义。本文在简要分析山地地形的主要要素对生态因子影响的基础上,对山地的生态效应进行了归纳,探讨了山地生态学应包含的主要研究内容。作者认为,在山区,地形地貌是形成山地结构和功能以及各种生态现象和过程的最根本因素,它通过改变地表的光、热、水、土、肥等生态因子而发生作用。因此,山地生态学应把地形地貌与各种生态现象和过程的相互作用作为其核心的研究内容。作者提出,山地生态学研究主要包括: 山地生态复杂性与生物多样性、山地气候变化、山地生态工程、山区可持续发展综合研究以及山地生态学研究技术与方法论等内容。
Rapid upslope shifts in New Guinean birds illustrate strong distributional responses of tropical montane species to global warming
Expanding, shifting and shrinking: The impact of global warming on species’ elevational distributions
DOI:10.1111/geb.12774 URL [本文引用: 1]
Climate change causes upslope shifts and mountaintop extirpations in a tropical bird community
Range margin populations show high climate adaptation lags in European trees
DOI:10.1111/gcb.14881
PMID:31642570
[本文引用: 1]
How populations of long-living species respond to climate change depends on phenotypic plasticity and local adaptation processes. Marginal populations are expected to have lags in adaptation (i.e. differences between the climatic optimum that maximizes population fitness and the local climate) because they receive pre-adapted alleles from core populations preventing them from reaching a local optimum in their climatically marginal habitat. Yet, whether adaptation lags in marginal populations are a common feature across phylogenetically and ecologically different species and how lags can change with climate change remain unexplored. To test for range-wide patterns of phenotypic variation and adaptation lags of populations to climate, we (a) built model ensembles of tree height accounting for the climate of population origin and the climate of the site for 706 populations monitored in 97 common garden experiments covering the range of six European forest tree species; (b) estimated populations' adaptation lags as the differences between the climatic optimum that maximizes tree height and the climate of the origin of each population; (c) identified adaptation lag patterns for populations coming from the warm/dry and cold/wet margins and from the distribution core of each species range. We found that (a) phenotypic variation is driven by either temperature or precipitation; (b) adaptation lags are consistently higher in climatic margin populations (cold/warm, dry/wet) than in core populations; (c) predictions for future warmer climates suggest adaptation lags would decrease in cold margin populations, slightly increasing tree height, while adaptation lags would increase in core and warm margin populations, sharply decreasing tree height. Our results suggest that warm margin populations are the most vulnerable to climate change, but understanding how these populations can cope with future climates depend on whether other fitness-related traits could show similar adaptation lag patterns.© 2019 John Wiley & Sons Ltd.
Evaluating the combined effects of climate and land-use change on tree species distributions
DOI:10.1111/1365-2664.12453 URL [本文引用: 1]
Tree line shifts in the Swiss Alps: Climate change or land abandonment
DOI:10.1111/j.1654-1103.2007.tb02571.x URL [本文引用: 1]
Global warming and plant-pollinator mismatches
DOI:10.1042/ETLS20190139 URL [本文引用: 1]
Climate change creates rapid species turnover in montane communities
DOI:10.1002/ece3.1518
PMID:26120424
[本文引用: 1]
Recent decades have seen substantial changes in patterns of biodiversity worldwide. Simultaneously, climate change is producing a widespread pattern of species' range shifts to higher latitudes and higher elevations, potentially creating novel assemblages as species shift at different rates. However, the direct link between species' turnover as a result of climate-induced range shifts has not yet been empirically evaluated. We measured rates of species turnover associated with species' range shifts in relatively undisturbed montane areas in Asia, Europe, North America, South America, and the Indo-Pacific. We show that species turnover is rapidly creating novel assemblages, and this can be explained by variable changes in species' range limits following warming. Across all the areas we analyzed, mean species' turnover was 12% per decade, which was nearly balanced between the loss of existing co-occurrences and the gain of novel co-occurrences. Turnover appears to be more rapid among ectothermic assemblages, and some evidence suggests tropical assemblages may be responding at more rapid rates than temperate assemblages.
21st century climate change in the European Alps—A review
DOI:10.1016/j.scitotenv.2013.07.050 URL [本文引用: 1]
Key ecological responses to nitrogen are altered by climate change
DOI:10.1038/nclimate3088 URL [本文引用: 1]
Illuminating geographical patterns in species’ range shifts
DOI:10.1111/gcb.12570
PMID:24616088
[本文引用: 1]
Species' range shifts in response to ongoing climate change have been widely documented, but although complex spatial patterns in species' responses are expected to be common, comprehensive comparisons of species' ranges over time have undergone little investigation. Here, we outline a modeling framework based on historical and current species distribution records for disentangling different drivers (i.e. climatic vs. nonclimatic) and assessing distinct facets (i.e. colonization, extirpation, persistence, and lags) of species' range shifts. We used extensive monitoring data for stream fish assemblages throughout France to assess range shifts for 32 fish species between an initial period (1980-1992) and a contemporary one (2003-2009). Our results provide strong evidence that the responses of individual species varied considerably and exhibited complex mosaics of spatial rearrangements. By dissociating range shifts in climatically suitable and unsuitable habitats, we demonstrated that patterns in climate-driven colonization and extirpation were less marked than those attributed to nonclimatic drivers, although this situation could rapidly shift in the near future. We also found evidence that range shifts could be related to some species' traits and that the traits involved varied depending on the facet of range shift considered. The persistence of populations in climatically unsuitable areas was greater for short-lived species, whereas the extent of the lag behind climate change was greater for long-lived, restricted-range, and low-elevation species. We further demonstrated that nonclimatic extirpations were primarily related to the size of the species' range, whereas climate-driven extirpations were better explained by thermal tolerance. Thus, the proposed framework demonstrated its potential for markedly improving our understanding of the key processes involved in range shifting and also offers a template for informing management decisions. Conservation strategies would greatly benefit from identifying both the geographical patterns and the species' traits associated with complex modifications of species' distributions in response to global changes. © 2014 John Wiley & Sons Ltd.
Introduction and road map for global changes on high mountains
In: Impact of Global Changes on Mountains, Responses and Adaptation (eds Grover VI, Borsdorf A, Breutse JH, Tiwari PC, Frangetto FW), pp. 15-32. CRC Press, New York.
Land-use change interacts with climate to determine elevational species redistribution
DOI:10.1038/s41467-018-03786-9 URL [本文引用: 2]
Distributional responses to climate change for alpine species of Cyananthus and Primula endemic to the Himalaya-Hengduan Mountains
DOI:10.1016/j.pld.2019.01.004 URL [本文引用: 1]
The genetic legacy of the quaternary ice ages
DOI:10.1038/35016000 URL [本文引用: 1]
Breeding distributions of North American bird species moving north as a result of climate change
Geographic changes in species distributions toward traditionally cooler climes is one hypothesized indicator of recent global climate change. We examined distribution data on 56 bird species. If global warming is affecting species distributions across the temperate northern hemisphere, these data should show the same northward range expansions of birds that have been reported for Great Britain. Because a northward shift of distributions might be due to multidirectional range expansions for multiple species, we also examined the possibility that birds with northern distributions may be expanding their ranges southward. There was no southward expansion of birds with a northern distribution, indicating that there is no evidence of overall range expansion of insectivorous and granivorous birds in North America. As predicted, the northern limit of birds with a southern distribution showed a significant shift northward (2.35 km/year). This northward shift is similar to that observed in previous work conducted in Great Britain: the widespread nature of this shift in species distributions over two distinct geographical regions and its coincidence with a period of global warming suggests a connection with global climate change.
Climate change and biological invasions: Evidence, expectations, and response options
DOI:10.1111/brv.12282 URL [本文引用: 1]
The effects of climate change on the phenological interactions of plants and pollinators
Preliminary study on computing the area of mountain regions in China based on geographic information system
中国山地范围界定的初步意见
Mountain biodiversity, its causes and function
DOI:10.1007/0044-7447-33.sp13.11 URL [本文引用: 1]
The use of ‘altitude’ in ecological research
DOI:10.1016/j.tree.2007.09.006 URL [本文引用: 2]
Species better track climate warming in the oceans than on land
Going against the flow, potential mechanisms for unexpected downslope range shifts in a warming climate
A significant upward shift in plant species optimum elevation during the 20th century
DOI:10.1126/science.1156831
PMID:18583610
[本文引用: 5]
Spatial fingerprints of climate change on biotic communities are usually associated with changes in the distribution of species at their latitudinal or altitudinal extremes. By comparing the altitudinal distribution of 171 forest plant species between 1905 and 1985 and 1986 and 2005 along the entire elevation range (0 to 2600 meters above sea level) in west Europe, we show that climate warming has resulted in a significant upward shift in species optimum elevation averaging 29 meters per decade. The shift is larger for species restricted to mountain habitats and for grassy species, which are characterized by faster population turnover. Our study shows that climate change affects the spatial core of the distributional range of plant species, in addition to their distributional margins, as previously reported.
Climate-related range shifts—A global multidimensional synthesis and new research directions
DOI:10.1111/ecog.00967 URL [本文引用: 2]
Influence of climate change on wild plants and the conservation strategies
DOI:10.3724/SP.J.1003.2014.14124 URL [本文引用: 1]
气候变化对野生植物的影响及保护对策
DOI:10.3724/SP.J.1003.2014.14124
[本文引用: 1]
以温室气体浓度持续上升、全球气候变暖为主要特征的全球气候变化对野生植物及生物多样性造成的潜在影响, 已经引起了国际学者的高度关注。本文总结了全球气候变化的现状与未来趋势, 概述了中国野生植物的保护及管理现状, 从不同侧面综述了国内外关于全球气候变暖对野生植物影响的研究进展和动态, 包括气候带北移、两极冰山退缩、高海拔山地变暖、海平面上升、早春温度提前升高、荒漠草原土壤增温、旱涝急转弯等对野生植物造成的影响以及气候变暖对种间关系和敏感植物类群的影响, 并从气候变化背景下全球生态系统敏感度、植物多样性、物种迁移与气候槽(sink areas)、物种适应与灭绝以及物候节律5个方面分析了未来全球变暖影响野生植物的总体趋势。在以后的野生植物保护与管理中, 应确定全球气候变化的植物多样性敏感区, 重点关注对气候变化敏感的植物类群以及气候要素改变植物-动物互作关系中的野生植物, 自然保护区的建设要重点考虑全球气候变化的影响, 通过在全球范围内对野生植物分布和种群变化进行长期、系统的追踪监测, 建立有效的数据库, 发展野生植物迁地保护的保育技术及信息网络, 发展有关野生植物对全球气候变化响应的量化指标及相应的模型。最后提出应将全球气候变化下野生植物保护与管理列入相关基金会的研究重点。
Research progress of global climate change and its impact and future prospect
全球气候变化及其影响研究进展和未来展望
DOI:10.11821/xb1996S1001
[本文引用: 1]
本文根据1995年IPCC的评估报告、世界气做计划政府间会议──气候议程的报告等,概要介绍了全球气似变化及其影响的最新进展,其中也包括了近年来我国开展的全球气候变化国家研究项目中的部分新成果。最后介绍了由7个国际组织在气候议程中为响应联合国环境与发展大会的建议及联合国气候变化框架公约的需求共同讨论提出的未来4个方面的主攻方向和行动计划。
Little change in the fir tree-line position on the southeastern Tibetan Plateau after 200 years of warming
DOI:10.1111/j.1469-8137.2010.03623.x URL [本文引用: 1]
Species interactions slow warming-induced upward shifts of treelines on the Tibetan Plateau
Shifts in plant distributions in response to climate warming in a biodiversity hotspot, the Hengduan Mountains
DOI:10.1111/jbi.13229 URL [本文引用: 1]
Response of forest distribution to past climate change: An insight into future predictions
DOI:10.1007/s11434-013-6032-7 URL [本文引用: 1]
Mountain treelines climb slowly despite rapid climate warming
DOI:10.1111/geb.13214 URL [本文引用: 1]
Fine-scale distribution of treeline trees and the nurse plant facilitation on the eastern Tibetan Plateau
DOI:10.1016/j.ecolind.2016.01.041 URL [本文引用: 1]
Are Swiss birds tracking climate change? Detecting elevational shifts using response curve shapes
DOI:10.1016/j.ecolmodel.2010.09.010 URL [本文引用: 1]
Climate-driven range shifts of montane species vary with elevation
Relative risk of extinction of passerine birds on continents and islands
DOI:10.1038/20436 URL [本文引用: 1]
Climate change modifies risk of global biodiversity loss due to land-cover change
DOI:10.1016/j.biocon.2015.04.016 URL [本文引用: 1]
High and dry: High elevations disproportionately exposed to regional climate change in Mediterranean-climate landscapes
DOI:10.1007/s10980-015-0318-x URL [本文引用: 1]
Altitudinal migration in bats: Evidence, patterns, and drivers
DOI:10.1111/brv.12024
PMID:23480862
[本文引用: 1]
Altitudinal migrations are common in all major vertebrate and some invertebrate lineages. Such migrations have important implications for the basic and applied ecology of animals making these movements. The idea that bats make altitudinal migrations has been suggested for nearly a century. However, studies documenting the existence and causes of altitudinal bat migrations are scarce, and are frequently published in the 'grey' literature. For the first time, we comprehensively review the evidence supporting the existence of altitudinal bat migrations worldwide, describe basic patterns of migration in temperate and tropical regions, and articulate and propose tests of hypotheses potentially explaining these migrations. We compiled a list of 50 studies indicative of altitudinal bat migration in 61 species (five families) from 21 countries (four continents). The temporal and spatial patterns of these migrations grouped biogeographically. Temperate bats generally exhibit sex-biased migrations with females inhabiting lower elevations than males during reproductive periods. Although there is less information on tropical bat migration, few studies report sex-biased migration. We compiled hypotheses proposed in the bat and (more extensive) avian literature to provide a list of hypotheses potentially explaining altitudinal bat migrations. These hypotheses rely upon temporal availability of (and competition for) food resources, spatial distribution of geomorphological features suitable for hibernation, sex-related differences in the use of torpor, mating opportunities, and climatic factors that impose direct physiological challenges to survival or that restrict the ability to forage. A more thorough description of the migration patterns of most species will be required to distinguish effectively among these hypotheses. We identify research avenues that would broaden our understanding of bat migration patterns and provide critical information required for effective conservation. © 2013 The Authors. Biological Reviews © 2013 Cambridge Philosophical Society.
Global warming and the disruption of plant-pollinator interactions
Anthropogenic climate change is widely expected to drive species extinct by hampering individual survival and reproduction, by reducing the amount and accessibility of suitable habitat, or by eliminating other organisms that are essential to the species in question. Less well appreciated is the likelihood that climate change will directly disrupt or eliminate mutually beneficial (mutualistic) ecological interactions between species even before extinctions occur. We explored the potential disruption of a ubiquitous mutualistic interaction of terrestrial habitats, that between plants and their animal pollinators, via climate change. We used a highly resolved empirical network of interactions between 1420 pollinator and 429 plant species to simulate consequences of the phenological shifts that can be expected with a doubling of atmospheric CO(2). Depending on model assumptions, phenological shifts reduced the floral resources available to 17-50% of all pollinator species, causing as much as half of the ancestral activity period of the animals to fall at times when no food plants were available. Reduced overlap between plants and pollinators also decreased diet breadth of the pollinators. The predicted result of these disruptions is the extinction of pollinators, plants and their crucial interactions.
Climate change and elevational range shifts: Evidence from dung beetles in two European mountain ranges
DOI:10.1111/geb.12142 URL [本文引用: 1]
Rapidly shifting elevational distributions of passerine species parallel vegetation change in the subarctic
Impact of a century of climate change on small-mammal communities in Yosemite National Park, USA
DOI:10.1126/science.1163428
PMID:18845755
[本文引用: 1]
We provide a century-scale view of small-mammal responses to global warming, without confounding effects of land-use change, by repeating Grinnell's early-20th century survey across a 3000-meter-elevation gradient that spans Yosemite National Park, California, USA. Using occupancy modeling to control for variation in detectability, we show substantial ( approximately 500 meters on average) upward changes in elevational limits for half of 28 species monitored, consistent with the observed approximately 3 degrees C increase in minimum temperatures. Formerly low-elevation species expanded their ranges and high-elevation species contracted theirs, leading to changed community composition at mid- and high elevations. Elevational replacement among congeners changed because species' responses were idiosyncratic. Though some high-elevation species are threatened, protection of elevation gradients allows other species to respond via migration.
Strong upslope shifts in Chimborazo’s vegetation over two centuries since Humboldt
Ecological correlates of elevational range shifts in tropical birds
DOI:10.3389/fevo.2021.621749 URL [本文引用: 1]
Exposure of global mountain systems to climate warming during the 21st century
DOI:10.1016/j.gloenvcha.2006.11.007 URL [本文引用: 1]
Points of view matter when assessing biodiversity vulnerability to environmental changes
DOI:10.1111/gcb.15054 URL [本文引用: 1]
Onward but not always upward: Individualistic elevational shifts of tree species in subtropical montane forests
DOI:10.1111/ecog.05334 URL [本文引用: 2]
Biotic interactions are more often important at species’ warm versus cool range edges
DOI:10.1111/ele.13864 URL [本文引用: 3]
Ecological and evolutionary responses to recent climate change
DOI:10.1146/annurev.ecolsys.37.091305.110100 URL [本文引用: 1]
Recent plant diversity changes on Europe’s mountain summits
DOI:10.1126/science.1219033 URL [本文引用: 1]
Opportunities for research on mountain biodiversity under global change
DOI:10.1016/j.cosust.2017.11.001 URL [本文引用: 1]
Why mountains matter for biodiversity
DOI:10.1111/jbi.13731 URL [本文引用: 1]
Climate change and distribution shifts in marine fishes
DOI:10.1126/science.1111322 URL [本文引用: 1]
Marine taxa track local climate velocities
DOI:10.1126/science.1239352
PMID:24031017
[本文引用: 1]
Organisms are expected to adapt or move in response to climate change, but observed distribution shifts span a wide range of directions and rates. Explanations often emphasize biological distinctions among species, but general mechanisms have been elusive. We tested an alternative hypothesis: that differences in climate velocity-the rate and direction that climate shifts across the landscape-can explain observed species shifts. We compiled a database of coastal surveys around North America from 1968 to 2011, sampling 128 million individuals across 360 marine taxa. Climate velocity explained the magnitude and direction of shifts in latitude and depth much more effectively than did species characteristics. Our results demonstrate that marine species shift at different rates and directions because they closely track the complex mosaic of local climate velocities.
Global habitat loss and extinction risk of terrestrial vertebrates under future land-use-change scenarios
DOI:10.1038/s41558-019-0406-z
[本文引用: 1]
Habitat transformations caused by human land-use change are considered major drivers of ongoing biodiversity loss(1-3), and their impact on biodiversity is expected to increase further this century(4-6). Here, we used global decadal land-use projections to year 2070 for a range of shared socioeconomic pathways, which are linked to particular representative concentration pathways, to evaluate potential losses in range-wide suitable habitat and extinction risks for approximately 19,400 species of amphibians, birds and mammals. Substantial declines in suitable habitat are identified for species worldwide, with approximately 1,700 species expected to become imperilled due to land-use change alone. National stewardship for species highlights certain South American, Southeast Asian and African countries that are in particular need of proactive conservation planning. These geographically explicit projections and model workflows embedded in the Map of Life infrastructure are provided to facilitate the scrutiny, improvements and future updates needed for an ongoing and readily updated assessment of changing biodiversity. These forward-looking assessments and informatics tools are intended to support national conservation action and policies for addressing climate change and land-use change impacts on biodiversity.
Extinction vulnerability of tropical montane endemism from warming and upslope displacement: A preliminary appraisal for the highest massif in Madagascar
DOI:10.1111/j.1365-2486.2008.01596.x URL [本文引用: 1]
Range dynamics of mountain plants decrease with elevation
Global biodiversity scenarios for the year 2100
Scenarios of changes in biodiversity for the year 2100 can now be developed based on scenarios of changes in atmospheric carbon dioxide, climate, vegetation, and land use and the known sensitivity of biodiversity to these changes. This study identified a ranking of the importance of drivers of change, a ranking of the biomes with respect to expected changes, and the major sources of uncertainties. For terrestrial ecosystems, land-use change probably will have the largest effect, followed by climate change, nitrogen deposition, biotic exchange, and elevated carbon dioxide concentration. For freshwater ecosystems, biotic exchange is much more important. Mediterranean climate and grassland ecosystems likely will experience the greatest proportional change in biodiversity because of the substantial influence of all drivers of biodiversity change. Northern temperate ecosystems are estimated to experience the least biodiversity change because major land-use change has already occurred. Plausible changes in biodiversity in other biomes depend on interactions among the causes of biodiversity change. These interactions represent one of the largest uncertainties in projections of future biodiversity change.
Topographically controlled thermal-habitat differentiation buffers alpine plant diversity against climate warming
DOI:10.1111/j.1365-2699.2010.02407.x URL [本文引用: 1]
Climate change and community disassembly: Impacts of warming on tropical and temperate montane community structure
DOI:10.1111/j.1461-0248.2011.01689.x URL [本文引用: 1]
Elevation alters outcome of competition between resident and range-shifting species
DOI:10.1111/gcb.15401
PMID:33064868
[本文引用: 1]
Species' geographic range shifts toward higher latitudes and elevations are among the most frequently reported consequences of climate change. However, the role of species interactions in setting range margins remains poorly understood. We used cage experiments in ponds to test competing hypotheses about the role of abiotic and biotic mechanisms for structuring range boundaries of an upslope range-shifting caddisfly Limnephilus picturatus. We found that competition with a ubiquitous species Limnephilus externus significantly decreased L. picturatus survival and emergence at subalpine elevations supporting the notion that species interactions play a critical role in determining upslope range limits. However, without competitors, L. picturatus survival was greater at high-elevation than low-elevation sites. This was contrary to decreases in body mass (a proxy for fecundity) with elevation regardless of the presence of competitors. We ultimately show that species interactions can be important for setting upslope range margins. Yet, our results also highlight the complications in defining what may be abiotically stressful for this species and the importance of considering multiple demographic variables. Understanding how species ranges will respond in a changing climate will require quantifying species interactions and how they are influenced by the abiotic context in which they play out.© 2020 John Wiley & Sons Ltd.
Disparity in elevational shifts of upper species limits in response to recent climate warming in the Qinling Mountains, North-central China
DOI:10.1016/j.scitotenv.2019.135718 URL [本文引用: 1]
Effect of climate change on the distribution and phenology of plants, insect pollinators, and their interactions
DOI:10.17520/biods.2020196 URL [本文引用: 2]
气候变化对植物-传粉昆虫的分布区和物候及其互作关系的影响
DOI:10.17520/biods.2020196
[本文引用: 2]
全球气候变化对生态系统的影响是人类社会面临的紧迫而又严峻的挑战。气候变化带来的极端气候事件的增多, 直接影响到生态系统生产力和服务功能。本文总结了气候变化对植物-传粉昆虫互作的研究进展, 强调植物-传粉昆虫互作网络结构和其时空演变的解析, 以及互作关系和功能性状重组研究的重要性。近年来在气温持续上升背景下对植物-传粉昆虫互作关系影响的研究也受到了更多关注, 这些研究主要集中在两方面: 一是植物和传粉昆虫分布区的变化, 包括部分种群可能灭绝; 二是物候的变化, 即植物花期和传粉昆虫活动期的改变。植物与传粉昆虫任何一方在空间或时间上的改变, 都会导致传粉关系的错配或丢失。此外, 也可能导致植物-传粉昆虫双方的功能性状及其耦合的改变, 从而影响其互作关系的稳定。建议在今后的研究中关注: (1)覆盖生物多样性的多个尺度的研究; (2)对植物-传粉者互作网络的长期监测; (3)重要指示物种繁殖适合度评价; (4)植物-传粉昆虫互作双方功能性状在时间和空间尺度上的变化, 及其互作关系的重组; (5)关键植物和传粉昆虫类群的评估和保护。
No benefits from warming even for subnival vegetation in the central Himalayas
DOI:10.1016/j.scib.2021.06.005 URL [本文引用: 2]
Moisture-mediated responsiveness of treeline shifts to global warming in the Himalayas
DOI:10.1111/gcb.14428 URL [本文引用: 1]
Accelerated increase in plant species richness on mountain summits is linked to warming
DOI:10.1038/s41586-018-0005-6 URL [本文引用: 1]
Refugia revisited:Individualistic responses of species in space and time
Biodiversity: Climate change and the ecologist
DOI:10.1038/448550a URL [本文引用: 2]
New insights into the patterns and drivers of avian altitudinal migration from a growing crowdsourcing data source
DOI:10.1111/ecog.05196 URL [本文引用: 1]
Modelling sexually deceptive orchid species distributions under future climates: The importance of plant-pollinator interactions
DOI:10.1038/s41598-020-67491-8
PMID:32606363
[本文引用: 1]
Biotic interactions play an important role in species distribution models, whose ignorance may cause an overestimation of species' potential distributions. Species of the family Orchidaceae are almost totally dependent on mycorrhizal symbionts and pollinators, with sexually deceptive orchids being often highly specialized, and thus the interactions with their pollinators are expected to strongly affect distribution predictions. We used Maxent algorithm to explore the extent of current and future habitat suitability for two Greek endemic sexually deceptive orchids (Ophrys argolica and Ophrys delphinensis) in relation to the potential distribution of their unique pollinator (Anthophora plagiata). Twelve climate change scenarios were used to predict future distributions. Results indicated that the most important factors determining potential distribution were precipitation seasonality for O. argolica and geological substrate for O. delphinensis. The current potential distribution of the two orchids was almost of the same extent but spatially different, without accounting for their interaction with A. plagiata. When the interaction was included in the models, their potentially suitable area decreased for both species. Under future climatic conditions, the effects of the orchid-pollinator interaction were more intense. Specifically, O. argolica was restricted in specific areas of southern Greece, whereas O. delphinensis was expected to become extinct. Our findings highlighted the significant role of plant-pollinator interactions in species distribution models. Failing to study such interactions might expose plant species to serious conservation issues.
Global warming leads to more uniform spring phenology across elevations
Phenological and elevational shifts of plants, animals and fungi under climate change in the European Alps
DOI:10.1111/brv.12727 URL [本文引用: 1]
Ecological responses to recent climate change
DOI:10.1038/416389a URL [本文引用: 1]
Advances on the forest gap studies
林窗研究进展
River islands, refugia and genetic structuring in the endemic brown frog Rana kukunoris (Anura, Ranidae) of the Qinghai-Tibetan Plateau
DOI:10.1111/mec.12087 URL [本文引用: 1]
Upward shift and elevational range contractions of subtropical mountain plants in response to climate change
DOI:10.1016/j.scitotenv.2021.146896 URL [本文引用: 4]
/
〈 |
|
〉 |
