生物多样性, 2022, 30(4): 22071- doi: 10.17520/biods.2022071

数据论文

中国蜥蜴类生活史和生态学特征数据集

钟雨茜, 陈传武,, 王彦平,,*

南京师范大学生命科学学院, 南京 210023

A dataset on the life-history and ecological traits of Chinese lizards

Yuxi Zhong, Chuanwu Chen,, Yanping Wang,,*

College of Life Sciences, Nanjing Normal University, Nanjing 210023

通讯作者: *E-mail:wangyanping@njnu.edu.cn

编委: 江建平

责任编辑: 闫文杰

收稿日期: 2022-02-9   接受日期: 2022-04-18  

基金资助: 国家自然科学基金(31971545)
国家自然科学基金(32001226)

Corresponding authors: *E-mail:wangyanping@njnu.edu.cn

Received: 2022-02-9   Accepted: 2022-04-18  

摘要

截至2020年底, 中国共有226种蜥蜴类(不包括外来入侵种), 是世界上蜥蜴类多样性最丰富的国家之一。系统整理中国现有蜥蜴类的特征数据在物种起源与进化、形成与灭绝、保护生物学等研究中具有重要意义。但是, 目前还没有关于我国蜥蜴类生活史、生态学和地理分布等物种特征的完整数据库。本文通过系统查阅文献和数据资料, 共收集整理了中国现有226种本土蜥蜴类19个特征数据: 描述年份、中国受威胁等级、全球受威胁等级、是否中国特有种、是否岛屿特有种、平均体长、平均体重、食性、窝卵数、繁殖模式、四肢发育、活动时间、栖息生境、栖息地类型、栖息地宽度、海拔分布范围、地理分布范围、动物地理界和分布省份。在上述特征中, 除了四肢发育、描述年份、是否中国特有种、是否岛屿特有种和分布省份外, 其余特征数据均存在不同程度的缺失, 数据完整度为47.14%-100%。本数据集是目前关于中国蜥蜴类最新和最全的物种特征数据库, 可为我国蜥蜴类生态学、进化生物学、生物地理学和保护生物学等研究领域提供数据支持。

数据库(集)基本信息简介

数据库(集)名称 中国蜥蜴类生活史和生态学特征数据集
作者 钟雨茜, 陈传武, 王彦平
通讯作者 王彦平(wangyanping@njnu.edu.cn)
时间范围 截止到2020年底
地理区域 中国全域
文件大小 247 kb
数据格式 *.xlsx
数据链接 http://dataopen.info/home/datafile/index/id/250
http://doi.org/10.24899/do.202204003
https://www.biodiversity-science.net/fileup/1005-0094/DATA/2022071.zip
数据库(集)组成 数据集共包括1个数据文件和2个数据描述文件, 包括中国226种本土蜥蜴的19个物种特征

关键词: 中国蜥蜴; 生活史特征; 形态特征; 地理分布; 数据共享

Abstract

China has a total of 226 native lizard species as of 2020 and is one of the countries with the richest lizard diversity in the world. Systematically gathering the trait data of Chinese lizards is of great importance in studying their origin, evolution, extinction, and conservation. However, there is no complete database on the life-history, ecological traits, and geographic distribution of Chinese lizards. The aim of this study is to provide a comprehensive dataset of species traits for Chinese lizards. Through extensive retrieval and collection, we systematically collated data on 19 characteristic traits for all the 226 native species of Chinese lizards: year of description, China Red List status, IUCN Red List status, Chinese endemism, insular endemism, mean snout-vent length, mean body mass, diet, clutch size, reproductive mode, leg development, activity time, substrate, habitat type, habitat width, elevation range, geographic range size, biogeographic realm, and domestic distribution. Nevertheless, data completeness varied from 47.14% to 100% among traits. Leg development, year of description, Chinese endemism, insular endemism, and domestic distribution were the only traits with a complete dataset. Our database is the latest and most complete one on species traits of Chinese lizards. This dataset can provide support for the research fields of ecology, evolution, biogeography, and conservation biology of Chinese lizards.

Database/Dataset Profile

Title A dataset on the life-history and ecological traits of Chinese lizards
Authors Yuxi Zhong, Chuanwu Chen, Yanping Wang
Corresponding author Yanping Wang (wangyanping@njnu.edu.cn)
Time range Until the end of 2020
Geographical scope The People’s Republic of China
File size 247 kb
Data format *.xlsx
Data link http://dataopen.info/home/datafile/index/id/250
http://doi.org/10.24899/do.202204003
https://www.biodiversity-science.net/fileup/1005-0094/DATA/2022071.zip
Database/Dataset composition The dataset consists of one subset and two descriptive files in total. It comprises 19 life-history and ecological traits of all the 226 native species of Chinese lizards.

Keywords: Chinese lizards; life-history traits; morphological traits; geographic distribution; data sharing

PDF (333KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

钟雨茜, 陈传武, 王彦平 (2022) 中国蜥蜴类生活史和生态学特征数据集. 生物多样性, 30, 22071-. doi:10.17520/biods.2022071.

Yuxi Zhong, Chuanwu Chen, Yanping Wang (2022) A dataset on the life-history and ecological traits of Chinese lizards. Biodiversity Science, 30, 22071-. doi:10.17520/biods.2022071.

中国是世界上蜥蜴类多样性最丰富的国家之一。根据赵尔宓等(1999)主编的《中国动物志•爬行纲(第二卷): 有鳞目•蜥蜴亚目》, 中国共有156种蜥蜴和13个蜥蜴亚种。2016年公布的《中国脊椎动物红色名录》共记录了中国188种蜥蜴(蒋志刚等, 2016), 并首次对其受威胁状况进行了综合评估(蔡波等, 2016)。2020年, 王剀等(2020)更新了中国爬行动物名录, 将中国蜥蜴类物种数增至211种, 其中包括1个外来入侵物种。随后, 王斌等(2021)汇总了2020年1月1日至12月31日新增的16种蜥蜴类。最近, Cai等(2022)对我国所有蜥蜴类的物种名录进行了汇总更新, 发现截至2020年12月31日, 我国共有230种蜥蜴类, 其中4种为外来入侵物种。因此, 截至2020年底, 除去外来入侵物种, 中国共有226种蜥蜴类。但是, 迄今为止, 还没有一个关于我国226种本土蜥蜴类生活史、生态学和地理分布等物种特征的完整数据库。鉴于物种特征在生态学、进化生物学、生物地理学和保护生物学研究中的重要性(Gallagher et al, 2021; 王彦平等, 2021; 宋云枫等, 2022), 很有必要系统整理一个完整的包含中国所有蜥蜴类的物种特征数据库。

本文通过查阅书籍、文献和数据资料, 系统整理了中国226种本土蜥蜴类19个与生活史、生态学和地理分布有关的物种特征。这些特征包括描述年份、中国受威胁等级、全球受威胁等级、是否中国特有种、是否岛屿特有种、平均体长、平均体重、食性、窝卵数、繁殖模式、四肢发育、活动时间、栖息生境、栖息地类型、栖息地宽度、海拔分布范围、地理分布范围、动物地理界和分布省份。

1 数据采集和处理方法

1.1 数据来源

数据主要来源于可靠的专业文献和数据库, 包括: (1)动物志, 比如《中国动物志•爬行纲(第二卷): 有鳞目•蜥蜴亚目》(赵尔宓等, 1999); (2)相关书籍, 如《西藏两栖爬行动物: 多样性与进化》(车静等, 2020), Lizards of the World: Natural History and Taxon Accounts (Rodda, 2020)等; (3)期刊论文, 以截至2021年底发表在学术期刊中的有关中国蜥蜴新类群和新记录的文献为重要核实材料; (4)学术网站, 比如IUCN网站(https://www.iucnredlist.org/)、全球爬行类数据网站(https://reptile-database.reptarium.cz/); (5)国外蜥蜴类特征数据库, 比如Meiri (2018)和Meiri等(2020)整理的全球蜥蜴类特征数据库。

1.2 数据收集和整理

本数据集的具体数据收集方法和步骤如下:

(1)根据《中国两栖、爬行动物更新名录》(王剀等, 2020)、《中国脊椎动物2020年新增物种》(王斌等, 2021)以及Cai等(2022)发表的有关中国蜥蜴名录的文献, 首先确定了中国226种本土蜥蜴类的名录(中文名、英文名、拉丁学名)。然后, 参照《中国脊椎动物红色名录》(蒋志刚等, 2016)和IUCN红色名录(2021) (https://www.iucnredlist.org/), 查阅并核对每种蜥蜴的描述年份、在中国和全球的受威胁等级、是否中国特有种和岛屿特有种等5个特征数据。

(2)对于4个地理分布特征数据, 首先查阅《中国动物志•爬行纲(第二卷): 有鳞目•蜥蜴亚目》(赵尔宓等, 1999), 确定每种蜥蜴的分布省份和海拔分布范围。然后, 根据张荣祖(1999)和Meiri (2018)的研究, 确定每种蜥蜴分布的动物地理界。随后, 参照Roll等(2017)发表的全球蜥蜴类分布地图, 在ArcGIS 10.2软件中将中国地图与世界地图图层进行叠加, 通过“叠加分析”和“空间连接”等方法截取交集部分, 得到一个包含属性表信息的新图层, 进而获取每种蜥蜴在中国的地理分布范围。

(3)对于其他10个物种特征, 除查阅蜥蜴类专著外, 比如《中国动物志•爬行纲(第二卷): 有鳞目•蜥蜴亚目》(赵尔宓等, 1999)、Lizards of the World: Natural History and Taxon Accounts (Rodda, 2020)、《西藏两栖爬行动物: 多样性与进化》(车静等, 2020), 还参考了涉及蜥蜴类研究的国内外相关学术论文及其附录数据。

(4)为了进一步对缺失数据进行补充, 我们还以数据缺失物种的中文名、英文名和拉丁学名为关键词, 对中国知网(https://www.cnki.net/)、谷歌学术(https://scholar.google.com/)、IUCN网站(https://www.iucnredlist.org/)、全球爬行类数据网站(https://reptile-database.reptarium.cz/)等进行了搜索。

(5)如果经过上述程序和步骤, 某个特征数据还是无法获得, 那么该数据将被确定为目前缺失(not available, NA, 见数据集链接)。

2 数据描述

在这19个特征数据中, 地理分布范围、海拔分布范围、动物地理界、分布省份、是否中国特有种和是否岛屿特有种等反映了蜥蜴类的地理分布特征; 栖息生境、栖息地类型、栖息地宽度反映了蜥蜴类的生境特征; 中国受威胁等级和全球受威胁等级反映了蜥蜴类的濒危程度; 其余特征则反映了蜥蜴类的形态特征、繁殖特征、活动节律等。在上述特征中, 除了四肢发育、描述年份、是否中国特有种、是否岛屿特有种和分布省份外, 其余特征数据均存在不同程度的缺失, 数据完整度为47.14%- 100% (图1)。不同科水平的特征数据完整度以及各变量的定义和描述详见数据集链接(http://dataopen.info/home/datafile/index/id/250)。

图1

图1   中国226种本土蜥蜴类19个特征数据的完整度

Fig. 1   Data completeness of the 19 traits for the 226 native species of Chinese lizards


3 数据质量控制和评估

本数据集的收集整理主要包括前期准备、数据收集、汇总处理和数据录入4个阶段。(1)在前期准备阶段, 对两位参与数据收集的人员进行集中培训, 明确数据来源和收集任务, 确定数据收集的方法和步骤。(2)在数据收集阶段, 两位数据收集人员严格按照前期准备阶段的既定方法和程序进行操作。(3)在汇总处理阶段, 针对缺失的物种特征数据, 定期在研究组开展讨论, 确定缺失数据的处理原则和方法。(4)在数据录入阶段, 由同一位研究人员输入数据, 并进行两次仔细核对和检查, 以避免可能出现的错误。最后, 录入的数据通过质量控制方法进行评估, 确保准确无误后入库。

4 数据使用方法和建议

本数据集是目前关于中国蜥蜴类最新和最全的物种特征数据库, 对于推动我国蜥蜴类在生态学、生物地理学、保护生物学等方面的研究将有重要作用。下面给出几个可以利用本数据集的研究方向和研究案例。

首先, 蜥蜴类的物种特征与功能多样性和群落构建紧密相连(Fenker et al, 2020)。功能多样性能够解释物种特征的差异, 是理解生态系统功能的关键因素(Naeem et al, 2012)。功能独特性的物种消失可能与其他具有共同功能特征物种的消失有完全不同的后果(Mouillot et al, 2013)。针对蜥蜴类的功能多样性和物种特征在群落构建中的作用, 国外已有大量研究(Ernst et al, 2006; Vidan et al, 2019; Fenker et al, 2020; Peña-Joya et al, 2020)。但是, 目前国内这些研究内容还几乎未有涉及。因此, 本数据集对于推动全国尺度和局域尺度我国蜥蜴类的功能多样性和群落构建格局及其影响因素研究将有重要作用。

其次, 由于栖息地丧失和退化、人为利用、外来种入侵等因素的影响, 我国到2015年共有38种蜥蜴濒临灭绝(蒋志刚等, 2016)。分析哪些特征会使蜥蜴类容易濒危灭绝, 对其生物多样性保护具有重要意义。国外已有大量研究来分析和探讨哪些物种特征会使蜥蜴类更容易濒危灭绝(Siliceo & Díaz, 2010; Tingley et al, 2013; Böhm et al, 2016a, b; Senior et al, 2021)。Zhong等(2021)首次对我国蜥蜴类的濒危格局和易灭绝特征进行了研究, 发现体型大、分布范围小、栖息地宽度小和生活在降水量高区域的蜥蜴类更容易濒危灭绝。但是, 该研究只包含了中国156种蜥蜴(Zhong et al, 2021)。鉴于近年来我国蜥蜴类新物种的不断发现和更新, 有必要利用本数据集来重新分析我国所有226种蜥蜴类的物种特征与濒危等级的关系。

最后, 蜥蜴类的许多物种特征, 比如身体大小、窝卵数、性成熟年龄、地理分布范围等, 往往会随纬度或其他环境梯度发生有规律的变化(Meiri, 2018; Barter et al, 2022)。目前, 国际上已有大量针对全球蜥蜴类的相关研究, 比如Meiri等(2020)系统研究了全球蜥蜴类窝卵数与纬度的关系及其驱动因素, Barter等(2022)系统分析了澳洲石龙子地理分布范围的变化及其影响因素。然而, 目前国内相关研究才刚刚开始, 比如Liang等(2021)研究了我国211种蜥蜴类身体大小的空间变化及其影响因素。本数据集对促进我国蜥蜴类物种特征的变化规律及影响因素研究将有重要作用。

作者分工

钟雨茜主要承担蜥蜴类物种特征数据收集、数据核对和初稿写作; 陈传武承担了部分数据收集与核对工作; 王彦平主要承担数据收集的整体安排协调与论文修改。

参考文献

Barter M, Bonifacio LR, Duran A, Goulet CT, Tingley R, Shea GM, Meiri S, Chapple DG (2022)

Predictors of geographic range size in Australian skinks

Global Ecology and Biogeography, 31, 113-122.

DOI:10.1111/geb.13419      URL     [本文引用: 2]

Böhm M, Cook D, Ma H, Davidson AD, García A, Tapley B, Pearce-Kelly P, Carre J (2016a)

Hot and bothered: Using trait-based approaches to assess climate change vulnerability in reptiles

Biological Conservation, 204, 32-41.

DOI:10.1016/j.biocon.2016.06.002      URL     [本文引用: 1]

Böhm M, Williams R, Bramhall HR, McMillan KM, Davidson AD, Garcia A, Bland LM, Bielby J, Collen B (2016b)

Correlates of extinction risk in squamate reptiles: The relative importance of biology, geography, threat and range size

Global Ecology and Biogeography, 25, 391-405.

DOI:10.1111/geb.12419      URL     [本文引用: 1]

Cai B, Li JT, Chen YY, Wang YZ (2016)

Exploring the status and causes of China’s threatened reptiles through the red list assessment

Biodiversity Science, 24, 578-587. (in Chinese with English abstract)

DOI:10.17520/biods.2015354      [本文引用: 1]

This study investigated the living status of reptile species in China. Based on surveys and revised IUCN criterion (Version 3.1), we evaluated the endangerment status and completed China’s Biodiversity Red List, Volume of Vertebrates. The reptiles assessed included 3 orders, 32 families, 133 genera and 461 species, in which Crocodylia contains 3 families, 3 genera and 3 species, Testudines contains 6 families, 18 genera and 34 species, Lacertilia in Squamata contains 10 families, 41 genera and 188 species, and Serpentes in Squamata contains 13 families, 71 genera and 236 species. The study identified 2 species as Regionally Extinction (RE), 34 species as Critically Endangered (CR), 37 species as Endangered (EN), 66 species as Vulnerable (VU), 78 species as Near Threatened (NT), 175 species were identified as of Least Concern (LC) and 69 species as Data Deficient (DD). The threatened species (including CR, EN and VU) in reptile taxa are listed as follows: Testudines contained 31 species, Lacertilia in Squamata contained 38 species, Serpentes in Squamata contained 67 species, and Crocodylia contained 1 species. In China, threatened reptiles totaled 137 species, which accounted for 29.72% of reptiles in China (461 species), which is higher than that of the global assessment of the 2014 IUCN Red List of Threatened Species (13.61%). Of the 137 threatened species, Crocodylia and Testudines were the two most endangered groups (covering 100% and 91.18%, respectively), followed by Serpentes in Squamata with 28.39%, and Lacertilia in Squamata (20.21%) was the least endangered. There were 39 species of endemic reptiles in China identified as endangered, which were 27.27% and 28.47% of the total number of reptiles endemic to China (143) and endangered species (137), respectively. The most endangered species were distributed in the southwestern and southern regions of China. The main threats to species survival: habitat destruction and fragmentation, overuse and the heavy pollution, and climate change. Given the uniqueness and diversity of Chinese reptile fauna, the complexity of topography and geomorphology, and the imbalance of the development of social economy, we suggest that the whole society should act to protect endangered reptiles, especially endemic and critically endangered species, which is one of the most important tasks of biodiversity conservation in China.

[ 蔡波, 李家堂, 陈跃英, 王跃招 (2016)

通过红色名录评估探讨中国爬行动物受威胁现状及原因

生物多样性, 24, 578-587.]

DOI:10.17520/biods.2015354      [本文引用: 1]

为了评估中国爬行动物红色名录, 我们按照爬行动物生物学特性, 适当修改了IUCN濒危物种红色名录标准Version 3.1。在此基础上, 评估了中国爬行动物生存现状, 参与编制了《中国生物多样性红色名录——脊椎动物卷》。此次评估的中国爬行动物有3目32科133属461种, 结果为: 区域灭绝(RE) 2种、极危(CR) 34种、濒危(EN) 37种、易危(VU) 66种、近危(NT) 78种、无危(LC) 175种以及数据缺乏(DD) 69种。中国受威胁(包括极危、濒危、易危)的爬行动物共计137种, 约占总数的29.72%, 包括龟鳖目31种、有鳞目蛇亚目67种、蜥蜴亚目38种和鳄形目1种, 高于2014年《IUCN濒危物种红色名录》评估的世界爬行动物受威胁比例(13.61%)。在所有受威胁物种中, 受威胁比例最高的类群是鳄形目(100%)和龟鳖目(91.18%), 其次是有鳞目蛇亚目(28.39%), 第三是有鳞目蜥蜴亚目(20.21%)。中国爬行动物特有种受威胁物种有39种, 占特有种总数(143种)的27.27%, 占受威胁物种总数(137)的28.47%。长江以南的华南和西南地区受威胁的物种最多。爬行动物受人类干扰严重, 主要表现为: 栖息地质量退化及生境破碎化、过度利用及污染和气候变化等。尽管自1989年《中华人民共和国野生动物保护法》实施以来, 一些中国濒危爬行动物的生存状况得到改善。但鉴于中国爬行动物区系的独特性和多样性、地形地貌的复杂性及社会经济发展的不均衡性, 为了维持区域生态安全和资源可持续利用, 拯救中国濒危爬行动物, 尤其是中国特有爬行动物中的极危物种, 是中国动物保护工作最迫切的任务之一。

Cai B, Ji X, Wang YY, Rao DQ, Huang S, Wang YZ, Song ZB, Guo XG, Jiang JP (2022)

An annotated list of lizards (Sauria: Squamata) recorded from the People’s Republic of China

Asian Herpetological Research, 13, 64-74.

[本文引用: 2]

Che J, Jiang K, Yan F, Zhang YP (2020) Amphibians and Reptiles in Tibet:Diversity and Evolution. Science Press, Beijing. (in Chinese)

[本文引用: 2]

[ 车静, 蒋珂, 颜芳, 张亚平 (2020) 西藏两栖爬行动物:多样性与进化. 科学出版社, 北京.]

[本文引用: 2]

Ernst R, Linsenmair KE, Rödel MO (2006)

Diversity erosion beyond the species level: Dramatic loss of functional diversity after selective logging in two tropical amphibian communities

Biological Conservation, 133, 143-155.

DOI:10.1016/j.biocon.2006.05.028      URL     [本文引用: 1]

Fenker J, Domingos FMCB, Tedeschi LG, Rosauer DF, Werneck FP, Colli GR, Ledo RMD, Fonseca EM, Garda AA, Tucker D, Sites JW Jr, Breitman MF, Soares F, Giugliano LG, Moritz C (2020)

Evolutionary history of Neotropical savannas geographically concentrates species, phylogenetic and functional diversity of lizards

Journal of Biogeography, 47, 1130-1142.

DOI:10.1111/jbi.13800      URL     [本文引用: 2]

Gallagher RV, Butt N, Carthey AJR, Tulloch A, Bland L, Clulow S, Newsome T, Dudaniec RY, Adams VM (2021)

A guide to using species trait data in conservation

One Earth, 4, 927-936.

DOI:10.1016/j.oneear.2021.06.013      URL     [本文引用: 1]

Jiang ZG, Jiang JP, Wang YZ, Zhang E, Zhang YY, Li LL, Xie F, Cai B, Cao L, Zheng GM, Dong L, Zhang ZW, Ding P, Luo ZH, Ding CQ, Ma ZJ, Tang SH, Cao WX, Li CW, Hu HJ, Ma Y, Wu Y, Wang YX, Zhou KY, Liu SY, Chen YY, Li JT, Feng ZJ, Wang Y, Wang B, Li C, Song XL, Cai L, Zang CX, Zeng Y, Meng ZB, Fang HX, Ping XG (2016)

Red List of China’s Vertebrates

Biodiversity Science, 24, 500-551. (in Chinese and in English)

DOI:10.17520/biods.2016076      URL     [本文引用: 3]

[ 蒋志刚, 江建平, 王跃招, 张鹗, 张雁云, 李立立, 谢锋, 蔡波, 曹亮, 郑光美, 董路, 张正旺, 丁平, 罗振华, 丁长青, 马志军, 汤宋华, 曹文宣, 李春旺, 胡慧建, 马勇, 吴毅, 王应祥, 周开亚, 刘少英, 陈跃英, 李家堂, 冯祚建, 王燕, 王斌, 李成, 宋雪琳, 蔡蕾, 臧春鑫, 曾岩, 孟智斌, 方红霞, 平晓鸽 (2016)

中国脊椎动物红色名录

生物多样性, 24, 500-551.]

DOI:10.17520/biods.2016076      [本文引用: 3]

Liang T, Zhang Z, Dai WY, Shi L, Lu CH (2021)

Spatial patterns in the size of Chinese lizards are driven by multiple factors

Ecology and Evolution, 11, 9621-9630.

DOI:10.1002/ece3.7784      PMID:34306648      [本文引用: 1]

For almost two centuries, ecologists have examined geographical patterns in the evolution of body size and the associated determinants. During that time, one of the most common patterns to have emerged is the increase in body size with increasing latitude (referred to as Bergmann's rule). Typically, this pattern is explained in terms of an evolutionary response that serves to minimize heat loss in colder climates, mostly in endotherms. In contrast, however, this rule rarely explains geographical patterns in the evolution of body size among ectotherms (e.g., reptiles).China.In this study, we assembled a dataset comprising the maximum sizes of 211 lizard species in China and examined the geographical patterns in body size evolution and its determinants. Specifically, we assessed the relationship between body size and climate among all lizard species and within four major groups at both assemblage and interspecific levels.Although we found that the body size of Chinese lizards was larger in warmer regions, we established that at the assemblage level, size was correlated with multiple climatic factors, and that body size-climate correlations differed within the four major groups. Phylogenetic analysis at the species level revealed that no single climatic factor was associated with body size, with the exception of agamids, for which size was found to be positively correlated with temperature.Geographical patterns in Chinese lizard body size are driven by multiple factors, and overall patterns are probably influenced by those of the major groups. We suggest that our analyses at two different levels may have contributed to the inconsistent results obtained in this study. Further studies investigating the effects of altitude and ecological factors are needed to gain a more comprehensive understanding of the evolution of ectotherm body size.© 2021 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.

Meiri S (2018)

Traits of lizards of the world: Variation around a successful evolutionary design

Global Ecology and Biogeography, 27, 1168-1172.

DOI:10.1111/geb.12773      URL     [本文引用: 3]

Meiri S, Avila L, Bauer AM, Chapple DG, Das I, Doan TM, Doughty P, Ellis R, Grismer L, Kraus F, Morando M, Oliver P, Pincheira-Donoso D, Ribeiro-Junior MA, Shea G, Torres-Carvajal O, Slavenko A, Roll U (2020)

The global diversity and distribution of lizard clutch sizes

Global Ecology and Biogeography, 29, 1515-1530.

DOI:10.1111/geb.13124      URL     [本文引用: 2]

Mouillot D, Graham NAJ, Villéger S, Mason NWH, Bellwood DR (2013)

A functional approach reveals community responses to disturbances

Trends in Ecology & Evolution, 28, 167-177.

DOI:10.1016/j.tree.2012.10.004      URL     [本文引用: 1]

Naeem S, Duffy JE, Zavaleta ES (2012)

The functions of biological diversity in an age of extinction

Science, 336, 1401-1406.

DOI:10.1126/science.1215855      URL     [本文引用: 1]

Peña-Joya KE, Cupul-Magaña FG, Rodríguez-Zaragoza FA, Moreno CE, Téllez-López J (2020)

Spatio-temporal discrepancies in lizard species and functional diversity

Community Ecology, 21, 1-12.

DOI:10.1007/s42974-020-00005-8      URL     [本文引用: 1]

Rodda GH (2020) Lizards of the World:Natural History and Taxon Accounts. Johns Hopkins University Press, Baltimore.

[本文引用: 2]

Roll U, Feldman A, Novosolov M, Allison A, Bauer AM, Bernard R, Böhm M, Castro-Herrera F, Chirio L, Collen B, Colli GR, Dabool L, Das I, Doan TM, Grismer LL, Hoogmoed M, Itescu Y, Kraus F, LeBreton M, Lewin A, Martins M, Maza E, Meirte D, Nagy ZT, Nogueira CDC, Pauwels OSG, Pincheira-Donoso D, Powney GD, Sindaco R, Tallowin OJS, Torres-Carvajal O, Trape JF, Vidan E, Uetz P, Wagner P, Wang YZ, Orme CDL, Grenyer R, Meiri S (2017)

The global distribution of tetrapods reveals a need for targeted reptile conservation

Nature Ecology & Evolution, 1, 1677-1682.

[本文引用: 1]

Senior AF, Böhm M, Johnstone CP, McGee MD, Meiri S, Chapple DG, Tingley R (2021)

Correlates of extinction risk in Australian squamate reptiles

Journal of Biogeography, 48, 2144-2152.

DOI:10.1111/jbi.14140      URL     [本文引用: 1]

Siliceo I, Díaz JA (2010)

A comparative study of clutch size, range size, and the conservation status of island vs. mainland lacertid lizards

Biological Conservation, 143, 2601-2608.

DOI:10.1016/j.biocon.2010.07.002      URL     [本文引用: 1]

Song YF, Chen CW, Wang YP (2022)

A dataset on the life-history and ecological traits of Chinese amphibians

Biodiversity Science, 30, 22053. (in Chinese with English abstract)

DOI:10.17520/biods.2022053      URL     [本文引用: 1]

[ 宋云枫, 陈传武, 王彦平 (2022)

中国两栖类生活史和生态学特征数据集

生物多样性, 30, 22053.]

DOI:10.17520/biods.2022053      [本文引用: 1]

截至2021年底, 中国共记载591种两栖类(不包括外来入侵种), 是世界上两栖类物种数最多的国家之一。物种特征影响和决定了物种在环境中的生存能力, 在进化生物学、生态学和保护生物学研究中具有重要作用。目前, 中国两栖类在线数据库(https://www.amphibiachina.org)已经整理了我国两栖类的形态特征、生物学信息和地理分布等部分物种特征, 但仍缺乏一个完整的、可自由检索的数据集。通过系统查阅文献和数据检索, 本文收集整理了中国全部591种本土两栖类的22个特征数据, 包括物种发现时间(最早发现和描述新物种文章的发表时间)、模式产地、中国受威胁等级、全球受威胁等级、致危因子、是否中国特有种、是否岛屿特有种、雄性体长、雌性体长、窝卵数、卵径、产卵地点、幼体主要生境、成体微生境、活动模式、生殖周期、繁殖时间、是否有亲本照顾、受精方式、海拔范围、分布地区、分布省份数。除了物种发现时间、是否岛屿特有种、分布地区、分布省份数外, 其余特征数据都有不同程度的缺失, 数据完整度为27.92%-100%, 平均完整度为71.72%, 标准差为24%。本数据集是目前我国两栖类最新和最全的物种特征数据库, 希望可以为我国两栖类生态学、保护生物学、生物地理学等研究提供数据支持。 数据库(集)基本信息简介 数据库(集)名称 中国两栖类生活史和生态学特征数据集 作者 宋云枫, 陈传武, 王彦平 通讯作者 王彦平(wangyanping@njnu.edu.cn) 时间范围 截止到2021年底 地理区域 中国全域 文件大小 180 kb 数据格式 *.xlsx 数据链接 http://dataopen.info/home/datafile/index/id/240 http://doi.org/10.24899/do.202203002 https://www.biodiversity-science.net/fileup/1005-0094/DATA/2022053.zip 数据库(集)组成 数据集共包括1个数据文件和2个数据描述文件, 包括中国全部591种本土两栖类的22个物种特征

Tingley R, Hitchmough RA, Chapple DG (2013)

Life-history traits and extrinsic threats determine extinction risk in New Zealand lizards

Biological Conservation, 165, 62-68.

DOI:10.1016/j.biocon.2013.05.028      URL     [本文引用: 1]

Vidan E, Novosolov M, Bauer AM, Herrera FC, Chirio L, Nogueira CDC, Doan TM, Lewin A, Meirte D, Nagy ZT, Pincheira-Donoso D, Tallowin OJS, Carvajal OT, Uetz P, Wagner P, Wang YZ, Belmaker J, Meiri S (2019)

The global biogeography of lizard functional groups

Journal of Biogeography, 46, 2147-2158.

DOI:10.1111/jbi.13667      [本文引用: 1]

Aim Understanding the mechanisms determining species richness is a primary goal of biogeography. Richness patterns of sub-groups within a taxon are usually assumed to be driven by similar processes. However, if richness of distinct ecological strategies respond differently to the same processes, inferences made for an entire taxon may be misleading. We deconstruct the global lizard assemblage into functional groups and examine the congruence among richness patterns between them. We further examine the species richness - functional richness relationship to elucidate the way functional diversity contributes to the overall species richness patterns. Location Global. Methods Using comprehensive biological trait databases we classified the global lizard assemblage into ecological strategies based on body size, diet, activity times and microhabitat preferences, using Archetypal Analysis. We then examined spatial gradients in the richness of each strategy at the one-degree grid cell, biome, and realm scales. Results We found that lizards can best be characterized by seven "ecological strategies": scansorial, terrestrial, nocturnal, herbivorous, fossorial, large, and semi-aquatic. There are large differences among the global richness patterns of these strategies. While the major richness hotspot for lizards in general is in Australia, several strategies exhibit highest richness in the Amazon Basin. Importantly, the global maximum in lizard species richness is achieved at intermediate values of functional diversity and increasing functional diversity further result in a slow decline of species richness. Main conclusions The deconstruction of the global lizard assemblage along multiple ecological axes offers a new way to conceive lizard diversity patterns. It suggests that local lizard richness mostly increases when species belonging to particular ecological strategies become hyper-diverse there, and not because more ecological types are present in the most species rich localities. Thus maximum richness and maximum ecological diversity do not overlap. These results shed light on the global richness pattern of lizards, and highlight previously unidentified spatial patterns in understudied functional groups.

Wang B, Cai B, Chen WT, Wen ZX, Zhang DZ, He SP, Lei FM, Yang QS, Jiang JP (2021)

New vertebrate forms discovered in China in 2020

Biodiversity Science, 29, 1021-1025. (in Chinese with English abstract)

DOI:10.17520/biods.2021214      URL     [本文引用: 2]

[ 王斌, 蔡波, 陈蔚涛, 温知新, 张德志, 何舜平, 雷富民, 杨奇森, 江建平 (2021)

中国脊椎动物2020年新增物种

生物多样性, 29, 1021-1025.]

[本文引用: 2]

Wang K, Ren JL, Chen HM, Lyu ZT, Guo XG, Jiang K, Chen JM, Li JT, Guo P, Wang YY, Che J (2020)

The updated checklists of amphibians and reptiles of China

Biodiversity Science, 28, 189-218. (in Chinese with English abstract)

DOI:10.17520/biods.2019238      [本文引用: 2]

We updated the checklists of extant, native amphibians and reptiles of China based on the previously published checklist of reptiles in 2015, the online checklist of amphibians on the database AmphibiaChina, newly published data as of December 2019, and previously uncollected literature prior to 2015. In total, the amphibian fauna of China consists of 515 species in 62 genera, 13 families, and three orders (Anura: 431 species in 47 genera and nine families; Caudata: 82 species in 14 genera and four families; Gymnophiona: one species in one genus and one family), while the reptilian fauna of China consists of 511 species in 135 genera, 35 families, and three orders (Crocodylia: one species in one genus and one family; Testudines: 34 species in 18 genera and six families; Squamata 466 species in 116 genera and 28 families [Serpentes: 256 species in 73 genera, 18 families; Lacertilia: 211 species in 43 genera and 10 families]). Specifically, for amphibians between 2015 and 2019, one family was recorded from China for the first time, two new genera were described, a genus was resurrected, a genus was recorded from China for the first time, 74 new, valid species were either described or resurrected, 18 recognized species were recorded from China for the first time, and six genera and eight species were considered as junior synonyms. For reptiles between 2015 and 2019, five subfamilies were elevated to the full family status, one new subfamily and a new genus were described, three genera were resurrected, three recognized genera were recorded from China for the first time, 35 new species were described, two species were resurrected from synonyms, six subspecies were elevated to the full species status, 10 recognized species were recorded from China for the first time, four genera and four species were considered as junior synonyms, and distribution records of one genus and four recognized species were removed from China. Furthermore, by reviewing literature before 2015, we make additional changes on the previous reptile checklist, including adding new records of three genera, elevating three subspecies to full species status, adding new records of three recognized species, synonymizing three genera and two species as junior synonyms, and removing the distribution record of a single recognized species from China. Lastly, we revise the Chinese common names of some reptilian groups with recomandations to maintain the stability of the Chinese common names. The number of new species and new national records for amphibians and reptiles between 2015 and 2019 in China accounts for 17.1% and 10.2% of the total number of species in each group, respectively. Because new species are described at considerable speed and given the constant changes in the taxonomy of China’s herpetofuna, it is crucial to update the checklists regularly and discuss the existing taxonomic problems, so that such information reflects the most current state of knowledge and are available for taxonomic researchers and conservation biologists alike.

[ 王剀, 任金龙, 陈宏满, 吕植桐, 郭宪光, 蒋珂, 陈进民, 李家堂, 郭鹏, 王英永, 车静 (2020)

中国两栖、爬行动物更新名录

生物多样性, 28, 189-218.]

DOI:10.17520/biods.2019238      [本文引用: 2]

本文在2015年发表的爬行动物名录及同年《中国两栖类信息系统》发布的两栖动物名录的基础上, 通过整理新发表的分类学研究及先前名录遗漏的部分早期文献, 更新了截至2019年底中国现生本土两栖、爬行动物物种名录。2015-2019年间, 中国两栖动物新记录1科, 新描述2属, 恢复1属有效性, 新记录1属, 新描述或恢复有效种74种, 新增国家纪录18种; 另6属、8种的有效性未得到近年研究证据支持(在此视为次定同物异名而未做收录, 后同)。同期, 中国爬行动物新恢复5科, 新描述1亚科, 新描述1属, 恢复3属有效性, 新记录3属, 新描述、恢复或提升有效种43个, 新增国家纪录10种; 另有5属、4种的有效性未得到近年研究证据支持, 并移除1属、4种在我国的分布纪录。此外, 通过整理2015年前文献, 爬行动物增补3属, 提升3亚种至种级地位, 增补国家新纪录3种, 另有3属、2种的有效性未得到近年研究证据支持, 同时移除1种在我国的分布纪录。综上, 截至2019年底, 我国共记录现生本土两栖动物3目13科62属515种(蚓螈目1科1属1种, 有尾目3科14属82种, 无尾目9科47属431种), 爬行动物3目35科135属511种(鳄形目1科1属1种, 龟鳖目6科18属34种, 有鳞目蛇亚目18科73属265种、蜥蜴亚目10科43属211种)。此外, 本文还对先前名录中部分爬行动物的中文名提出了修改建议, 建议恢复部分物种的惯用中文名。2015-2019年, 新物种及新纪录已知物种数量占现两栖、爬行动物物种总数的17.1%和10.2%。近年来, 我国发表的两栖、爬行动物新物种和已知物种的新纪录数量持续增加, 分类体系也在研究中不断完善, 建议今后及时地进行阶段性总结, 同时对存在的问题提出讨论, 以推动中国两栖、爬行动物分类学研究工作的进一步开展。

Wang YP, Song YF, Zhong YX, Chen CW, Zhao YH, Zeng D, Wu YR, Ding P (2021)

A dataset on the life-history and ecological traits of Chinese birds

Biodiversity Science, 29, 1149-1153. (in Chinese with English abstract)

DOI:10.17520/biods.2021201      URL     [本文引用: 1]

[ 王彦平, 宋云枫, 钟雨茜, 陈传武, 赵郁豪, 曾頔, 吴亦如, 丁平 (2021)

中国鸟类的生活史和生态学特征数据集

生物多样性, 29, 1149-1153.]

DOI:10.17520/biods.2021201      [本文引用: 1]

中国现有1,445种鸟类, 是世界上鸟类物种数最多的国家之一。物种特征反应了生物有机体的功能和适合度, 在生态学、进化生物学和保护生物学研究中具有重要作用。但是, 目前还没有关于我国鸟类生活史、生态学和地理分布等物种特征的完整数据库。通过系统查阅文献和各种数据资料, 本文共收集整理出了中国1,445种鸟类17个功能特征数据: 体重、体长、嘴峰长、翅长、尾长、跗蹠长、食性、窝卵数、卵大小、卵体积、巢址、巢的类型、集群状况、迁徙状况、是否特有种、地理分布范围和分布省份等。在这些特征中, 除迁徙状况、是否特有种、地理分布范围和分布省份外, 其余特征数据均存在不同程度的缺失, 数据的完整度为60.83%‒100%。本数据库是目前关于中国鸟类最新和最全的物种特征数据库, 期望能为我国鸟类生态学、进化生物学、生物地理学、保护生物学等研究提供支持。 数据库(集)基本信息简介 数据库(集)名称 中国鸟类的生活史和生态学特征数据集 作者 王彦平, 宋云枫, 钟雨茜, 陈传武, 赵郁豪, 曾頔, 吴亦如, 丁平 通讯作者 王彦平(wangyanping@njnu.edu.cn) 时间范围 截止到2021年5月 地理区域 地理区域为全中国, 包括香港、台湾和澳门等地区 文件大小 1.0 MB 数据格式 *.xlsx 数据链接 http://dataopen.info/home/datafile/index/id/222 http://doi.org/10.24899/do.202109003 https://www.biodiversity-science.net/fileup/1005-0094/DATA/2021201.zip 数据库(集)组成 数据集共包括1个数据文件, 包括中国1,445种鸟类的17个物种特征

Zhang RZ (1999) Zoogeography of China. Science Press, Beijing. (in Chinese)

[本文引用: 1]

[ 张荣祖 (1999) 中国动物地理. 科学出版社, 北京.]

[本文引用: 1]

Zhao EM, Jiang YM, Huang QY, Zhao H, Zhao KT, Zhou KY, Liu YZ, Liu MY, Li DJ, Zhang YX (1999) Fauna Sinica•Reptilia (Vol. 2):Squamata•Lacertilia. Science Press, Beijing. (in Chinese)

[本文引用: 4]

[ 赵尔宓, 江耀明, 黄庆云, 赵惠, 赵肯堂, 周开亚, 刘月珍, 刘明玉, 李德俊, 张玉霞 (1999) 中国动物志•爬行纲(第二卷):有鳞目•蜥蜴亚目. 科学出版社, 北京.]

[本文引用: 4]

Zhong YX, Chen CW, Wang YP (2021)

Biological and extrinsic correlates of extinction risk in Chinese lizards

Current Zoology, zoab040, https://doi.org/10.1093/cz/zoab040.

URL     [本文引用: 2]

/