生物多样性, 2022, 30(2): 21520- doi: 10.17520/biods.2021520

数据论文

中国哺乳动物形态、生活史和生态学特征数据集

丁晨晨,1,2, 梁冬妮2,3, 信文培2,4, 李春旺,2,3, 蒋志刚,,2,3,*

1.北京师范大学生命科学学院生物多样性与生态工程教育部重点实验室, 北京 100875

2.中国科学院动物研究所, 北京 100101

3.中国科学院大学, 北京 100049

4.河北大学生命科学学院, 河北保定 071002

A dataset on the morphological, life-history and ecological traits of the mammals in China

Chenchen Ding,1,2, Dongni Liang2,3, Wenpei Xin2,4, Chunwang Li,2,3, Eric I. Ameca,,1,*, Zhigang Jiang,,2,3,*

1 Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing 100875

2 Institute of Zoology, Chinese Academy of Sciences, Beijing 100101

3 University of Chinese Academy of Sciences, Beijing 100049

4 College of Life Sciences, Hebei University, Baoding, Hebei 071002

通讯作者: *E-mail:jiangzg@ioz.ac.cn;eric.ameca08@alumni.imperial.ac.uk

编委: 王彦平

责任编辑: 周玉荣

收稿日期: 2021-12-13   接受日期: 2022-01-29  

基金资助: 中国科学院战略性先导科技专项子课题(XDA19050204)
北京师范大学引进人才启动经费(10300-312232103)

Corresponding authors: *E-mail:jiangzg@ioz.ac.cn;eric.ameca08@alumni.imperial.ac.uk

Received: 2021-12-13   Accepted: 2022-01-29  

摘要

物种特征是生物对生存环境适应和响应的表现, 反映了物种的生态位、适合度和生态功能。特征数据库的建立和共享是研究生物多样性维持与丧失、物种进化与适应、生态过程与生态系统功能、物种对气候变化和人类干扰响应、种内与种间关系等的基础。中国是世界哺乳动物物种数最多的国家之一, 然而目前中国还没有包含哺乳动物形态、生活史、生态学和地理分布等物种特征的数据库。我们系统查阅了文献和各种数据资料, 共收集整理出中国有分布记录的754种哺乳动物(包括近些年野外绝灭种、分布存疑种)的体重、脑容量、体长、尾长、前臂长(翼手目)、后足长、耳长、性成熟时间、妊娠期、窝崽数、年窝数、世代长度、食性、活动模式、是否特有种、濒危等级、海拔范围、栖息地类型、栖息地宽度、动物地理界、生物群系、分布型、动物地理区划和分布省份或水域等24个生态特征数据。在这些特征中, 除了分布省份或水域及是否特有种外, 其余特征数据均存在不同程度的缺失, 数据的完整度为30%‒100%。本数据库收录的哺乳动物种数为目前中国哺乳动物种数的上限, 为中国哺乳动物研究提供了基础数据, 推进中国哺乳动物多样性信息共享和深度挖掘。

数据库(集)基本信息简介

数据库(集)名称 中国哺乳动物形态、生活史和生态学特征数据集
作者 丁晨晨, 梁冬妮, 信文培, 李春旺, Eric I. Ameca, 蒋志刚
通讯作者 蒋志刚(jiangzg@ioz.ac.cn), Eric I. Ameca (eric.ameca08@alumni.imperial.ac.uk)
时间范围 截止到2021年12月
地理区域 地理范围为中华人民共和国
文件大小 295 kb
数据格式 *.xlsx
数据链接 http://dataopen.info/home/datafile/index/id/228
http://doi.org/10.24899/do.202112001
https://www.biodiversity-science.net/fileup/1005-0094/DATA/2021520.zip
数据库(集)组成 数据集共包括1个数据文件和1个数据描述文件, 包括754种哺乳动物24个物种特征

关键词: 哺乳动物; 形态特征; 生活史特征; 繁殖特征; 生态特征; 地理分布; 生物多样性信息学

Abstract

Species traits reflect the species’ ecological function and fitness. The trait data play a vital role in studying biodiversity maintenance and loss, species evolution and adaptation, ecological interactions and processes, ecosystem functions, and species responses to both climate change and human pressures. China is one of the countries with the richest mammal diversity in the world, so far, there is no comprehensive resource of morphological, life history, ecological and geographical distribution data of the mammals in China. We compiled 24 traits data of 754 Chinese mammals (including recently regional extinct species and those species with disputed taxonomy and distribution) between 2008 and 2021 through systematic literature review and dataset integration, referred to mammalian monographs and field guides. The main sources used in completing the dataset were: the life history traits were retrieved from A Field Guide to the Mammals of China (Pan et al, 2007), A Guide to the Mammals of China (Smith & Xie, 2009), and trait database (COMBINE: COalesced Mammal dataBase of INtrinsic and Extrinsic traits, Soria et al, 2021), and the zoogeographical regionalization and distribution type were searched in China Animal Geography (Zhang, 2011), and species distribution in provinces and threatened category were cited from China’s Red List of Biodiversity: Vertebrates, Volume I, Mammals (Jiang et al, 2021) and Handbook of Mammals of China (Liu et al, 2019, 2020). In addition, Handbook of the Mammals of the World (Wilson & Mittermeier, 2009, 2011, 2012, 2014, 2018, 2019; Wilson et al, 2016, 2017), Mammal Diversity Database (American Society of Mammalogists, ASM, 2021) and COMBINE database (Soria et al, 2021) were taken as supplementary data source. Further, peer-reviewed scientific publications from 1990 to 2021 were searched in CNKI, Google Scholar to supplementary traits data. Our dataset included body weight, brain size, head body length, tail length, forearm length (Chiroptera), hind foot length, ear length, sexual maturity time, gestation length, litter size, litters per year, generation length, diet, activity pattern, habitat type, habitat breadth, realm, biome, endemic species, elevational range, distribution type, zoogeographical regionalization, geographical distribution. Among these twenty-four traits, the data integrity ranged from 30% to 100%. The traits data were incomplete to some extent due to lack of research while the information about endemic species, geographical distribution in province of China’s mammals are completed. The dataset is the latest and most complete database on the traits of China’s mammals, which lays the foundation for future researches in mammalogy and biodiversity study and promote information sharing and in-depth mining of mammal diversity in China.

Dataset/Database Profile

Title A dataset on the morphological, life-history and ecological traits of the mammals in China
Authors Chenchen Ding, Dongni Liang, Wenpei Xin, Chunwang Li, Eric I. Ameca, Zhigang Jiang
Corresponding authors Zhigang Jiang (jiangzg@ioz.ac.cn), Eric I. Ameca (eric.ameca08@alumni.imperial.ac.uk)
Time range Until December 2021
Geographical scope The study region is the People’s Republic of China
File size 295 kb
Data format *.xlsx
Data link http://dataopen.info/home/datafile/index/id/228
http://doi.org/10.24899/do.202112001
https://www.biodiversity-science.net/fileup/1005-0094/DATA/2021520.zip
Dataset/Database composition The dataset consists of one subset and one meta-data description file in total. It comprises morphological, life-history and ecological traits of all the 754 mammal species in China.

Keywords: mammals; morphological traits; life-history traits; breeding traits; ecological traits; biogeographic distribution; biodiversity informatics

PDF (503KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

丁晨晨, 梁冬妮, 信文培, 李春旺, 蒋志刚 (2022) 中国哺乳动物形态、生活史和生态学特征数据集. 生物多样性, 30, 21520-. doi:10.17520/biods.2021520.

Chenchen Ding, Dongni Liang, Wenpei Xin, Chunwang Li, Eric I. Ameca, Zhigang Jiang (2022) A dataset on the morphological, life-history and ecological traits of the mammals in China. Biodiversity Science, 30, 21520-. doi:10.17520/biods.2021520.

物种编目、分布、性状等是生物多样性研究的基础, 在物种起源与进化、物种形成与灭绝、生物多样性保护等研究中发挥着重要作用(Mi et al, 2021)。物种性状是生物对生存环境的响应和适应, 决定了物种在生态系统中的角色和功能(Wilman et al, 2014; Mammola et al, 2021)。物种特征与物种灭绝风险息息相关。地理分布范围小的物种有更高的灭绝风险, 因为它们更可能遭受自然灾害、遗传漂变和近亲繁殖的影响(Chichorro et al, 2019); 营养级高的物种往往容易受食物链级联效应的影响(Crooks & Soulé, 1999); 妊娠期长、窝崽数少和世代周期长的物种一般很难从种群数量下降的状态恢复(Verde-Arregoitia, 2016); 栖息地和食谱窄的物种, 一旦栖息地或食物资源受到严重破坏, 便难以生存(Boyles & Storm, 2007; Price et al., 2012); 白天活动和树栖的物种通常更容易受到狩猎和森林砍伐等人为活动影响(Tingley et al, 2013; Gaynor et al, 2018); 扩散能力弱的物种更容易受到气候变化和栖息地破坏等因素的威胁。此外, 体型大的物种往往比体型小的物种灭绝风险更高, 可能是因为前者通常数量少、繁殖慢、常常是被捕杀的目标(Cardillo et al, 2005)。在全球环境变化的背景下, 分析物种生活史、生态和地理特征差异、原因和可能后果对保护生物多样性至关重要(Jones et al, 2009; Dawson et al, 2011; Foden et al, 2019)。

目前已有多个全球尺度的脊椎动物性状数据库/数据集建立。例如, Jones等(2009)整合了现存和最近灭绝的哺乳动物的生活史、生态和地理分布特征数据, 建立了PanTHERIA数据库。Wilman等(2014)整合了多个数据源, 建立了几乎包含全球所有现存鸟类(9,993种)和哺乳动物(5,400种)的特征数据集EltonTrait 1.0。该数据集包括体型大小、食性、营养层级和活动模式等生活史特征数据。Soria等(2021)建立了集合数据库COMBINE (COalesced Mammal dataBase of INtrinsic and Extrinsic traits)。COMBINE包含6,234种现存和最近灭绝的哺乳动物的54个特征, 包括形态、繁殖、食性、生物地理、生活习性、物候、活动模式、家域范围和种群密度等信息。然而, 前述特征数据库收录中国哺乳动物最多不超过550种, 各数据库中性状的数量、数据格式不同, 并且同一物种的亚种间生态特征差别可能很大, 所以收集和整合国内的研究数据尤为必要。

中国疆域辽阔, 地貌多样, 气候迥异, 动物区系组成复杂, 是世界上哺乳动物资源最丰富的国家之一。中国也已陆续出版很多有关描述哺乳动物多样性的专著, 如《中国动物志·兽纲》(食肉目: 高耀亭等, 1987; 仓鼠科: 罗泽珣等, 2000; 海兽类: 周开亚, 2004)、《中国哺乳动物分布》(张荣祖, 1997)、《中国濒危动物红皮书: 兽类》(汪松, 1998)、《中国哺乳动物图鉴》(盛和林, 2005)、《中国哺乳动物彩色图鉴》(潘清华等, 2007)、《中国兽类野外手册》(Smith和解焱, 2009)、《中国哺乳动物多样性及地理分布》(蒋志刚等, 2015)、《中国兽类图鉴》(刘少英等, 2019, 2020)和《中国生物多样性红色名录: 脊椎动物 (第一卷)·哺乳动物》(蒋志刚等, 2021)。这些书籍在描述中国哺乳动物自然史、生态学特征、地理分布、濒危状态与保护等方面各有侧重。此外, 由于不同的学者采用不同的分类标准和收录原则, 并且随着时间的推移也不断有物种经厘定、增删和订正, 因此中国哺乳动物物种数量还存在争议(蒋志刚等, 2016, 2017; 余文华等, 2021)。例如, 蒋志刚等(2017)等发表了《中国哺乳动物多样性(第2版)》,共收录中国哺乳动物13目56科248属693种; 蒋志刚等(2021)出版了《中国生物多样性红色名录: 脊椎动物 (第一卷)·哺乳动物》, 收录了中国哺乳动物13目56科248属700种; 魏辅文等(2021)《中国兽类名录2021》收录中国现生兽类686种, 此编目不包含中国局部灭绝种, 如野水牛(Bubalus arnee)、犀牛(Rhinoceros spp.)、高鼻羚羊(Saiga tatarica)等, 未采纳偶蹄类的最新分类系统(Burgin et al, 2018; Mammal Diversity Database, 2021), 而将羚牛(Budorcas spp.)、马鹿(Cervus spp.)、盘羊(Ovis spp.)均分别视为1种; 未收入藏南地区记录的物种, 例如灰獴(Herpestes edwardsii)、印度穿山甲(Manis crassicaudata)、渔猫(Prionailurus viverrinus) (蒋志刚等, 2021)。

中国已建立生物多样性与生态安全大数据平台(https://bio-one.org.cn/)、中国动物主题数据库(http://www.zoology.csdb.cn/)、物种多样性数据平台(http://www.especies.cn/)等生物多样性大数据平台(张健, 2017; 马克平等, 2018)。王彦平等(2021)发布了中国1,445种鸟类生活史、生态学和地理分布等17个物种特征数据集。然而, 至今还没有中国哺乳动物形态、生活史、繁殖、食性、濒危状况、地理分布等特征的共享数据库。因此有必要对数据资源整合, 建立哺乳动物物种功能特征数据库, 减少研究人员收集和整理数据的时间, 并通过科研人员与公众的参与, 促进数据共享平台的完善, 进一步推动宏生态学研究和保护领域的发展。

我们通过系统查阅文献和资料, 收集整理了中国754种哺乳动物的体重、脑容量、体长、尾长、前臂长、后足长、耳长、性成熟时间、妊娠期、窝崽数、年窝数、世代长度、食性、家域大小、活动模式、是否特有种、濒危等级、海拔范围、栖息地类型、生物群系、分布型、动物地理区划和分布省份或水域等24个生态特征数据。本数据集以期为哺乳动物宏生态学、进化生物学、生物地理学以及保护生物学研究提供基本信息。

1 数据采集和处理方法

(1)本研究数据收集工作时间为2008‒2021年。根据蒋志刚等(2017, 2021)和魏辅文等(2021)确定中国哺乳动物名录。然后按照国际哺乳动物编目惯例(IUCN, 2021; Mammal Diversity Database, 2021)收入近期区域灭绝和野外灭绝种, 比如犀牛(Rhinoceros spp.)、高鼻羚羊(Saiga tatarica)、爪哇野牛(Bos javanicus)等10种; 按照最新哺乳动物分类系统(Wilson & Mittermeier, 2011; Groves & Grubb, 2013; Mammal Diversity Database, 2021)将羚牛拆分为秦岭羚牛(Budorcas bedfordi)、四川羚牛(B. xizangus)、不丹羚牛(B. whitei)和贡山羚牛(B. taxicolor) 4个独立种, 将盘羊拆分为阿尔泰盘羊(Ovis ammon)、哈萨克盘羊(O. collium)、戈壁盘羊(O. darwini)、西藏盘羊(O. hodgsoni)、华北盘羊(O. jubata)、天山盘羊(O. karelini)和帕米尔盘羊(O. polii) 7个种, 将马鹿拆分为西藏马鹿(Cervus wallichii)、东北马鹿(C. canadensis)和塔里木马鹿(C. hanglu) 3个种, 收录中国新分布记录种越南鼬獾(Melogale cucphuongensis) (Li et al, 2019); 收录藏南地区分布的粗毛兔(Caprolagus hispidus)、懒熊(Melursus ursinus)、恒河豚(Platanista gangetica)等(蒋志刚等, 2017, 2021); 同时也收录了最新发现的物种, 如冯氏白腹鼠(Niviventer fengi) (Ge et al, 2020)、李氏小飞鼠(Priapomys leonardi) (Li et al, 2021)、墨脱鼹(Uropsilus soricipes) (Chen et al, 2021), 最终收录了754种哺乳动物。本数据库收录的哺乳动物种数是目前中国哺乳动物种数的上限。

(2)以《中国濒危动物红皮书: 兽类》(汪松, 1998)、《中国哺乳动物图鉴》(盛和林, 2005)、《中国哺乳动物彩色图鉴》(潘清华, 2007)、《中国兽类野外手册》 (Smith和解焱, 2009)和《中国兽类图鉴》(刘少英等, 2019, 2020)为形态、生活史、繁殖力和生活习性等的基础数据源。以Handbook of the Mammals of the World (Wilson & Mittermeier, 2009, 2011, 2012, 2014, 2018, 2019; Wilson et al, 2016, 2017)和全球哺乳动物性状综合数据集(Soria et al, 2021)为生活史和繁殖特征补充数据源, 以Burger等(2019)和González-Suárez等(2021)为脑容量数据源。

(3)如果某些特征数据在上述专著中缺失或者因为分类学变动等原因数据差异较大, 根据《中国兽类图鉴》(刘少英和吴毅, 2019; 刘少英等 2020)和国内外相关学术论文进行补充和核对, 同时通过中国知网(https://www.cnki.net/)、谷歌学术(https://scholar. google.com)数据库进行数据完善。

(4)查阅《中国动物地理》(张荣祖, 2011), 获取动物分布型和动物地理区划。把其中2界3亚界7区19亚区的区划图进行了矢量化。对于此书未收录的物种使用物种分布区与区划矢量图层叠加以提取区划结果。

(5)从《中国生物多样性红色名录: 脊椎动物 (第一卷)·哺乳动物》(蒋志刚等, 2021)中收集是否中国特有种、濒危等级和分布省份等特征数据。

(6)此外, 查询了中国生物志库——动物数据库(https://species.sciencereading.cn/biology/v/botanyIndex/122/DW.html)、中国动物主题数据库(http://www. zoology.csdb.cn/)、IUCN受威胁物种红色名录网站(https://www.iucnredlist.org)和Animal Diversity Web (https://animaldiversity.org/)等, 增补了缺失数据。

(7)若经过上述程序和步骤无法获取数据, 则该数据将被确定为目前缺失(not available, NA, 见数据集链接)。

(8)最后, 计算总物种数中有特征数据的物种数比例及不同目水平的特征数据数量, 即为数据完整度。

2 数据描述

24个特征中, 体重、体长、尾长、前臂长、后足长、耳长6个特征反映哺乳动物形态量度, 其中鲸豚类仅记录体重和体长, 性成熟时间、妊娠时间、窝崽数、年窝数、世代长度反映生活史和繁殖特征; 食性、活动模式反映物种生活习性, 其他分布特征则反映了生物地理状况。具体数据描述见数据集中的数据描述文件。除了是否特有种、翼手目前臂长、分布省份或水域, 其他特征数据均存在不同程度的缺失, 数据完整度为30.11%‒100% (图1)。不同目水平的特征数据完整度见附录1。各变量定义和描述详见数据集中的说明文件。需要说明的是, 由于单一文献覆盖的数据有限, 同一物种不同地理区域的样本数据可能会有差异, 所以不同数据源整合过程中可能会出现相互不一致的情况, 这时我们优先参考包含此特征的国内专著及文献, 选择以区间或者平均值形式表示这些数据。

图1

图1   中国754种哺乳动物24个生态特征数据完整度

Fig. 1   Percentage of data completeness for each of the 24 ecological traits for the 754 mammals in China


3 数据质量控制和评估

本数据集主要从数据准备、数据录入、汇总处理及数据检查四个方面进行。前期准备主要是明确数据源、讨论数据收集的方法和步骤, 并对参与人员的数据收集任务进行分工。数据汇总录入阶段, 考虑同物异名和分类学变动情况, 按照既定的数据收集方法和步骤进行, 以减少人为造成的误差。查询国内外发表的论文和哺乳动物相关性状数据库补充完善。数据检查阶段, 会同作者对获取的数据进行交叉核对, 以确保数据输入的准确性。录入的数据通过质量控制方法进行评估, 确保准确无误后入库。

4 数据使用方法和建议

目前, 中国生物资源库缺乏建设规范与数据标准, 资源质量差异较大, 存在交叉重复和空缺、共享水平参差不齐、信息化水平较低等问题(杨明等, 2021; Huang et al, 2021)。研究生物多样性格局及其成因(Safi et al, 2011)、气候变化背景下灭绝风险脆弱性评估(Zhang et al, 2019; Leclerc et al, 2020)、功能多样性变化(Vandewalle et al, 2010; Oliveira et al, 2016; Carmona et al, 2021)、物种对人类活动和城市化响应程度的种特异性(Santini et al, 2019)和物种保护及管理(Hilbers et al, 2016; Morton et al, 2021)等工作迫切需要建立和共享特征数据库。本数据集将补充和完善中国动物主题数据库(http://www. zoology.csdb.cn/), 从而推动中国哺乳动物学的研究发展。由于本数据集是多种数据源的整合, 物种分类系统和收录标准各异, 不同文献所使用的物种样本不同, 因此物种编目、形态和生活史等数据存在差别, 读者使用时需注意甄别和标准化。此外, 由于缺乏研究数据, 数据集也有空缺, 希望后续研究补充如种群数量及变动情况等基础生物学信息。此外, 对于一些特别的分类单元, 考虑到数据库统一的规范, 我们没有单独收录物种的某些特征, 比如大中型食肉类和有蹄类的肩高, 海洋哺乳动物的尾长、鳍宽等。下面给出几个可以应用本数据集的研究方向和案例:

(1)灭绝风险评估。研究发现, 生态学和生活史特征与灭绝风险显著相关(Purvis et al, 2000; Davidson et al, 2009; Ameca et al, 2014; Pearson et al, 2014)。Carmona等(2021)发现灭绝风险不是随机分布的, 而是局限在体型大、生长速度慢或繁殖力低的物种所占据的某些功能空间。这意味着物种灭绝将导致全球范围内功能集聚和同质化, 导致生态功能策略的丧失和重新排列。由于受到过度利用和生境丧失、人类干扰、气候变化、生物入侵等全球环境变化的影响, 中国有181种哺乳动物处于受威胁等级(蒋志刚等, 2021)。分析哪些特定功能特征会导致中国哺乳动物濒危灭绝, 对中国生物多样性保护有重要意义。Shuai等(2021)收集了中国453个陆生哺乳动物的生物学特征、环境因子和人为干扰数据, 从物种特征和外部因素两个方面比较分析了中国陆生哺乳动物的灭绝风险。结果显示, 物种灭绝风险在各科间并非随机分布, 猴科、长臂猿科、猫科、灵猫科、麝科、鹿科和牛科的物种濒危比例明显高于预测值, 地理分布范围大小是决定中国哺乳动物灭绝脆弱性的最重要因素。

(2)预测物种对气候变化的响应和适应。气候变化给动物的生存带来了压力, 动物正在以各种方式和策略应对全球变化, 比如迁移到更寒冷、更高海拔的地区, 改变生活史中迁徙或繁殖时间以适应物候的变化(Cohen et al, 2018)。还有一些物种, 则通过进化改变了体型, 以便更好地调节体温。例如, Ryding等(2021)发现许多温血动物的喙、腿、尾巴、耳朵的尺寸增加, 表明气候变暖可能导致动物的形态变化。由于不同物种具有不同的进化历史和生态特征, 因此气候变化对群落内物种的影响不同。Boutin和Lane (2014)发现表型可塑性和进化适应是哺乳动物应对气候变化的主要策略。理论预测和观测结果都表明动物形态、生活史和行为模式等影响物种对气候变化的响应(Ameca et al, 2013; Santini et al, 2016; Pacifici et al, 2017; McCain, 2019)。例如, Wen等(2017)研究了中国西南亚热带森林30年间(1986年至2014和2015年)气候变化下啮齿动物海拔分布范围变化, 发现气候变暖对啮齿动物在海拔分布变化上的影响呈现出明显的物种异质性。体型较大、栖息地宽度较窄以及饮食需求更专一的物种, 其物种丰度加权范围中心更有可能表现出向高海拔迁移。

(3)解析物种共存机制。哺乳动物生活史和生态特征数据是了解和阐释物种共存模式的重要基础。尤其是食肉类动物, 食性和活动节律差异是形成稳定群落的基础(Davis et al, 2018; 李治霖等, 2021)。Shao等(2021)围绕全球生物多样性热点区即中国西南山地, 通过对粪便样品的宏条形码分析, 解析了同域共存的食肉动物的食性生态位分化, 发现食肉动物的猎物多样性和系统发育多样性呈现随其自身体重增加而减小的趋势; 食肉动物与其猎物体重之间存在正相关性, 体型相近的食肉动物之间具有更高的食性重叠。这可能是实现群落内物种稳定共存的重要机制。

(4)研究人类活动影响下野生动物生态适应机制。动物生活史和生态特征决定了物种响应环境变化和人类活动的模式, 从而影响物种和群落生态过程(Mayfield et al, 2010; Cadotte et al, 2015)。在人为干扰压力下, 野生动物的丧失会对生态系统功能产生级联效应, 扰乱自然生态系统中的生态过程和平衡(Bogoni et al, 2020)。因此, 量化研究人类活动对野生动物的影响是应对野生动物物种丧失的必要前提和基础, 可为系统保护规划和生态系统功能恢复提供科学依据。Li等(2021)基于中国横断山区45个长期红外相机监测样地的数据, 将哺乳动物分为食肉动物、草食动物和杂食动物三个营养级, 分析了不同类型人类活动对哺乳动物群落结构、功能及行为的影响及哺乳动物对人类活动的响应模式。结果表明群落中个体平均体重、食肉类占比、功能多样性均随人类活动强度和改造指数的增加而显著下降, 表明人类活动致使兽类群落功能同质化、多样性丧失以及夜行性行为显著改变。

作者分工

丁晨晨负责数据收集、整理、核对及论文撰写和修改; 梁冬妮和信文培主要承担物种特征数据补充与核对; 李春旺主要承担数据检查和论文修改; Eric I. Ameca主要承担论文构思与修改; 蒋志刚作为中国哺乳动物数据库项目(XDA19050240)负责人, 承担数据库结构、数据整理安排协调与论文修改。

附录 Supplementary Material

附录1 中国754种哺乳动物13个目24个生态特征数据完整度

Appendix 1 Percentage of data completeness for 24 traits of the 754 Chinese mammals in 13 Order

致谢

感谢审稿专家对本文提出的宝贵修改意见; 感谢中国科学院动物研究所野生动物与行为生态研究组平晓鸽、李立立、方红霞在前期数据收集工作方面的支持和帮助。

参考文献

Ameca EI, Mace GM, Cowlishaw G, Cornforth WA, Pettorelli N (2013)

Assessing exposure to extreme climatic events for terrestrial mammals

Conservation Letters, 6, 145-153.

DOI:10.1111/conl.2013.6.issue-3      URL     [本文引用: 1]

Ameca EI, Mace GM, Cowlishaw G, Pettorelli N (2014)

Identifying species’ characteristics associated with natural population die-offs in mammals

Animal Conservation, 17, 35-43.

DOI:10.1111/acv.2014.17.issue-1      URL     [本文引用: 1]

Bogoni JA, Peres CA, Ferraz KMPMB (2020)

Effects of mammal defaunation on natural ecosystem services and human well being throughout the entire Neotropical realm

Ecosystem Services, 45, 101173.

DOI:10.1016/j.ecoser.2020.101173      URL     [本文引用: 1]

Boutin S, Lane JE (2014)

Climate change and mammals: Evolutionary versus plastic responses

Evolutionary Applications, 7, 29-41.

DOI:10.1111/eva.12121      PMID:24454546      [本文引用: 1]

Phenotypic plasticity and microevolution are the two primary means by which organisms respond adaptively to local conditions. While these mechanisms are not mutually exclusive, their relative magnitudes will influence both the rate of, and ability to sustain, phenotypic responses to climate change. We review accounts of recent phenotypic changes in wild mammal populations with the purpose of critically evaluating the following: (i) whether climate change has been identified as the causal mechanism producing the observed change; (ii) whether the change is adaptive; and (iii) the relative influences of evolution and/or phenotypic plasticity underlying the change. The available data for mammals are scant. We found twelve studies that report changes in phenology, body weight or litter size. In all cases, the observed response was primarily due to plasticity. Only one study (of advancing parturition dates in American red squirrels) provided convincing evidence of contemporary evolution. Subsequently, however, climate change has been shown to not be the causal mechanism underlying this shift. We also summarize studies that have shown evolutionary potential (i.e. the trait is heritable and/or under selection) in traits with putative associations with climate change and discuss future directions that need to be undertaken before a conclusive demonstration of plastic or evolutionary responses to climate change in wild mammals can be made.

Boyles JG, Storm JJ (2007)

The perils of picky eating: Dietary breadth is related to extinction risk in insectivorous bats

PLoS ONE, 2, e672.

DOI:10.1371/journal.pone.0000672      URL     [本文引用: 1]

Burger JR, George MA, Leadbetter C, Shaikh F (2019)

The allometry of brain size in mammals

Journal of Mammalogy, 100, 276-283.

DOI:10.1093/jmammal/gyz043      URL     [本文引用: 1]

Burgin CJ, Colella JP, Kahn PL, Upham NS (2018)

How many species of mammals are there?

Journal of Mammalogy, 99, 1-14.

DOI:10.1093/jmammal/gyx147      URL     [本文引用: 1]

Cadotte MW, Arnillas CA, Livingstone SW, Yasui SLE (2015)

Predicting communities from functional traits

Trends in Ecology & Evolution, 30, 510-511.

DOI:10.1016/j.tree.2015.07.001      URL     [本文引用: 1]

Cardillo M, Mace GM, Jones KE, Bielby J, Bininda-Emonds ORP, Sechrest W, Orme CDL, Purvis A (2005)

Multiple causes of high extinction risk in large mammal species

Science, 309, 1239-1241.

PMID:16037416      [本文引用: 1]

Many large animal species have a high risk of extinction. This is usually thought to result simply from the way that species traits associated with vulnerability, such as low reproductive rates, scale with body size. In a broad-scale analysis of extinction risk in mammals, we find two additional patterns in the size selectivity of extinction risk. First, impacts of both intrinsic and environmental factors increase sharply above a threshold body mass around 3 kilograms. Second, whereas extinction risk in smaller species is driven by environmental factors, in larger species it is driven by a combination of environmental factors and intrinsic traits. Thus, the disadvantages of large size are greater than generally recognized, and future loss of large mammal biodiversity could be far more rapid than expected.

Carmona CP, Tamme R, Pärtel M, de Bello F, Brosse S, Capdevila P, González-M. R, González-Suárez M, Salguero- Gómez R, Vásquez-Valderrama M, Toussaint A(2021)

Erosion of global functional diversity across the tree of life

Science Advances, 7, eabf2675.

DOI:10.1126/sciadv.abf2675      URL     [本文引用: 2]

Chen ZZ, He SW, Hu WH, Song WY, Onditi KO, Li XY, Jiang XL (2021)

Morphology and phylogeny of scalopine moles (Eulipotyphla: Talpidae: Scalopini) from the eastern Himalayas, with descriptions of a new genus and species

Zoological Journal of the Linnean Society, 193, 432-444.

DOI:10.1093/zoolinnean/zlaa172      URL     [本文引用: 1]

Chichorro F, Juslén A, Cardoso P (2019)

A review of the relation between species traits and extinction risk

Biological Conservation, 237, 220-229.

DOI:10.1016/j.biocon.2019.07.001      [本文引用: 1]

Biodiversity is shrinking rapidly, and despite our efforts only a small part of it has been assessed for extinction risk. Identifying the traits that make species vulnerable might help us to predict the status for those less known. We gathered information on the relationships between traits and extinction risk from 173 publications, across all taxa, spatial scales and biogeographical regions, in what we think it is the most comprehensive compilation to date. We aimed to identify (1) taxonomical and spatial biases, and (2) statistically robust and generalizable predictors of extinction risk through the use of meta-analyses. Vertebrates and the Palaearctic are the most studied taxon and region because of higher accumulation of data in these groups. Among the many traits that have been suggested to be predictors, only three had enough data for meta-analyses. Two of them are potentially useful in assessing risk for the lesser-known species: regardless of the taxon, species with small range and narrow habitat breadth are more vulnerable to extinction. Contrastingly, body size (the most studied trait) did not present a consistently positive or negative response. We hypothesize that the relationship between body size and extinction risk is shaped by different aspects, namely the phenomena represented by body size depending on the taxonomic group. To increase our understanding of the drivers of extinction, further studies should focus on understudied groups such as invertebrates and fungi and regions such as the tropics and expand the number of traits in comparative analyses that should avoid current biases.

Cohen JM, Lajeunesse MJ, Rohr JR (2018)

A global synthesis of animal phenological responses to climate change

Nature Climate Change, 8, 224-228.

DOI:10.1038/s41558-018-0067-3      URL     [本文引用: 1]

Crooks KR, Soulé ME (1999)

Mesopredator release and avifaunal extinctions in a fragmented system

Nature, 400, 563-566.

DOI:10.1038/23028      URL     [本文引用: 1]

Davidson AD, Hamilton MJ, Boyer AG, Brown JH, Ceballos G (2009)

Multiple ecological pathways to extinction in mammals

Proceedings of the National Academy of Sciences, USA, 106, 10702-10705.

[本文引用: 1]

Davis CL, Rich LN, Farris ZJ, Kelly MJ, di Bitetti MS, Blanco YD, Albanesi S, Farhadinia MS, Gholikhani N, Hamel S, Harmsen BJ, Wultsch C, Kane MD, Martins Q, Murphy AJ, Steenweg R, Sunarto S, Taktehrani A, Thapa K, Tucker JM, Whittington J, Widodo FA, Yoccoz NG, Miller DAW (2018)

Ecological correlates of the spatial co-occurrence of sympatric mammalian carnivores worldwide

Ecology Letters, 21, 1401-1412.

DOI:10.1111/ele.2018.21.issue-9      URL     [本文引用: 1]

Dawson TP, Jackson ST, House JI, Prentice IC, Mace GM (2011)

Beyond predictions: Biodiversity conservation in a changing climate

Science, 332, 53-58.

DOI:10.1126/science.1200303      URL     [本文引用: 1]

Foden WB, Young BE, Akçakaya HR, Garcia RA, Hoffmann AA, Stein BA, Thomas CD, Wheatley CJ, Bickford D, Carr JA, Hole DG, Martin TG, Pacifici M, Pearce-Higgins JW, Platts PJ, Visconti P, Watson JEM, Huntley B (2019)

Climate change vulnerability assessment of species

Wiley Interdisciplinary Reviews: Climate Change, 10, e551.

[本文引用: 1]

Gao YT, Wang S, Zhang ML, Ye ZY, Zhou JD (1987) Fauna Sinica (Mammalia 8): Carnivora. Science Press, Beijing. (in Chinese)

[本文引用: 1]

[ 高耀亭, 汪松, 张曼丽, 叶宗耀, 周嘉樀 (1987) 中国动物志·兽纲 (第八卷):食肉目 科学出版社, 北京.]

[本文引用: 1]

Gaynor KM, Hojnowski CE, Carter NH, Brashares JS (2018)

The influence of human disturbance on wildlife nocturnality

Science, 360, 1232-1235.

DOI:10.1126/science.aar7121      [本文引用: 1]

Rapid expansion of human activity has driven well-documented shifts in the spatial distribution of wildlife, but the cumulative effect of human disturbance on the temporal dynamics of animals has not been quantified. We examined anthropogenic effects on mammal diel activity patterns, conducting a meta-analysis of 76 studies of 62 species from six continents. Our global study revealed a strong effect of humans on daily patterns of wildlife activity. Animals increased their nocturnality by an average factor of 1.36 in response to human disturbance. This finding was consistent across continents, habitats, taxa, and human activities. As the global human footprint expands, temporal avoidance of humans may facilitate human-wildlife coexistence. However, such responses can result in marked shifts away from natural patterns of activity, with consequences for fitness, population persistence, community interactions, and evolution.

Ge DY, Feijó A, Abramov AV, Wen ZX, Liu ZJ, Cheng JL, Xia L, Lu L, Yang QS (2020)

Molecular phylogeny and morphological diversity of the Niviventer fulvescens species complex with emphasis on species from China

Zoological Journal of the Linnean Society, 191, 528-547.

[本文引用: 1]

González-Suárez M, Gonzalez-Voyer A, Hardenberg A, Santini L (2021)

The role of brain size on mammalian population densities

Journal of Animal Ecology, 90, 653-661.

DOI:10.1111/1365-2656.13397      PMID:33354764      [本文引用: 1]

The local abundance or population density of different organisms often varies widely. Understanding what determines this variation is an important, but not yet fully resolved question in ecology. Differences in population density are partly driven by variation in body size and diet among organisms. Here we propose that the size of an organism' brain could be an additional, overlooked, driver of mammalian population densities. We explore two possible contrasting mechanisms by which brain size, measured by its mass, could affect population density. First, because of the energetic demands of larger brains and their influence on life history, we predict mammals with larger relative brain masses would occur at lower population densities. Alternatively, larger brains are generally associated with a greater ability to exploit new resources, which would provide a competitive advantage leading to higher population densities among large-brained mammals. We tested these predictions using phylogenetic path analysis, modelling hypothesized direct and indirect relationships between diet, body mass, brain mass and population density for 656 non-volant terrestrial mammalian species. We analysed all data together and separately for marsupials and the four taxonomic orders with most species in the dataset (Carnivora, Cetartiodactyla, Primates, Rodentia). For all species combined, a single model was supported showing lower population density associated with larger brains, larger bodies and more specialized diets. The negative effect of brain mass was also supported for separate analyses in Primates and Carnivora. In other groups (Rodentia, Cetartiodactyla and marsupials) the relationship was less clear: supported models included a direct link from brain mass to population density but 95% confidence intervals of the path coefficients overlapped zero. Results support our hypothesis that brain mass can explain variation in species' average population density, with large-brained species having greater area requirements, although the relationship may vary across taxonomic groups. Future research is needed to clarify whether the role of brain mass on population density varies as a function of environmental (e.g. environmental stability) and biotic conditions (e.g. level of competition).© 2020 British Ecological Society.

Groves C, Grubb P (2011) Ungulate Taxonomy. Johns Hopkins University Press, Baltimore.

[本文引用: 1]

Hilbers JP, Schipper AM, Hendriks AJ, Verones F, Pereira HM, Huijbregts MAJ(2016)

An allometric approach to quantify the extinction vulnerability of birds and mammals

Ecology, 97, 615-626.

PMID:27197389      [本文引用: 1]

Methods to quantify the vulnerability of species to extinction are typically limited by the availability of species-specific input data pertaining to life-history characteristics and population dynamics. This lack of data hampers global biodiversity assessments and conservation planning. Here, we developed a new framework that systematically quantifies extinction risk based on allometric relationships between various wildlife demographic parameters and body size. These allometric relationships have a solid theoretical and ecological foundation. Extinction risk indicators included are (1) the probability of extinction, (2) the mean time to extinction, and (3) the critical patch size. We applied our framework to assess the global extinction vulnerability of terrestrial carnivorous and non-carnivorous birds and mammals. Irrespective of the indicator used, large-bodied species were found to be more vulnerable to extinction than their smaller counterparts. The patterns with body size were confirmed for all species groups by a comparison with IUCN data on the proportion of extant threatened species: the models correctly predicted a multimodal distribution with body size for carnivorous birds and a monotonic distribution for mammals and non-carnivorous birds. Carnivorous mammals were found to have higher extinction risks than non-carnivores, while birds were more prone to extinction than mammals. These results are explained by the allometric relationships, predicting the vulnerable species groups to have lower intrinsic population growth rates, smaller population sizes, lower carrying capacities, or larger dispersal distances, which, in turn, increase the importance of losses due to environmental stochastic effects and dispersal activities. Our study is the first to integrate population viability analysis and allometry into a novel, process-based framework that is able to quantify extinction risk of a large number of species without requiring data-intensive, species-specific information. The framework facilitates the estimation of extinction vulnerabilities of data-deficient species. It may be applied to forecast extinction vulnerability in response to a changing environment, by incorporating quantitative relationships between wildlife demographic parameters and environmental drivers like habitat alteration, climate change, or hunting.

Huang GP, Ping XG, Xu WH, Hu YB, Chang J, Swaisgood RR, Zhou J, Zhan XJ, Zhang ZJ, Nie YG, Cui J, Bruford M, Zhang ZH, Li BG, Zhang L, Lv Z, Wei FW (2021)

Wildlife conservation and management in China: Achievements, challenges and perspectives

National Science Review, 8, nwab042.

[本文引用: 1]

IUCN International Union for Conservation of Nature (2021) Spatial Data & Mapping Resources. https://www.iucnredlist.org/resources/spatial-data-download. (accessed on 2021-08-15)

URL     [本文引用: 1]

Jiang ZG, Jiang JP, Wang YZ, Zhang E, Zhang YY, Li LL, Xie F, Cai B, Cao L, Zheng GM, Dong L, Zhang ZW, Ding P, Luo ZH, Ding CQ, Ma ZJ, Tang SH, Cao WX, Li CW, Hu HJ, Ma Y, Wu Y, Wang YX, Zhou KY, Liu SY, Chen YY, Li JT, Feng ZJ, Wang Y, Wang B, Li C, Song XL, Cai L, Zang CX, Zeng Y, Meng ZB, Fang HX, Ping XG (2016)

Red List of China’s Vertebrates

Biodiversity Science, 24, 501-551. (in Chinese and in English)

[本文引用: 1]

[ 蒋志刚, 江建平, 王跃招, 张鹗, 张雁云, 李立立, 谢锋, 蔡波, 曹亮, 郑光美, 董路, 张正旺, 丁平, 罗振华, 丁长青, 马志军, 汤宋华, 曹文宣, 李春旺, 胡慧建, 马勇, 吴毅, 王应祥, 周开亚, 刘少英, 陈跃英, 李家堂, 冯祚建, 王燕, 王斌, 李成, 宋雪琳, 蔡蕾, 臧春鑫, 曾岩, 孟智斌, 方红霞, 平晓鸽 (2016)

中国脊椎动物红色名录

生物多样性, 24, 501-551.]

[本文引用: 1]

Jiang ZG, Liu SY, Wu Y, Jiang XL, Zhou KY (2017)

China’s mammal diversity (2nd edition)

Biodiversity Science, 25, 886-895. (in Chinese with English abstract)

DOI:10.17520/biods.2017098      URL     [本文引用: 4]

[ 蒋志刚, 刘少英, 吴毅, 蒋学龙, 周开亚 (2017)

中国哺乳动物多样性(第2版)

生物多样性, 25, 886-895.]

DOI:10.17520/biods.2017098      [本文引用: 4]

鉴于哺乳动物分类系统的修订、中国哺乳动物的新发现以及保育实践的需要, 有必要更新中国哺乳动物多样性编目。在收集整理2015年3月以来发表的中国哺乳动物新种和新分布记录种的基础上, 我们采用新的分类系统, 综合作者的最新研究, 补充了以前知之甚少的藏南地区哺乳动物信息, 更新了中国哺乳动物多样性编目。主要修改有: (1)将鲸偶蹄类(Cetartiodactyla)列为总目, 将鲸类与偶蹄类恢复为鲸目(Cetacea)和偶蹄目(Artiodactyla); (2)劳亚食虫目增加了新种霍氏缺齿鼩(Chodsigoa hoffmanni)、林猬一新种(Mesechinus sp.)及由亚种提升为种的烟黑缺齿鼩(Chodsigoa furva); (3)翼手目增补了梵净山管鼻蝠(Murina fanjingshanensis)、渡濑氏鼠耳蝠(Myotis rufoniger)和葛氏菊头蝠(Rhinolophus subbadius), 删除了毛须鼠耳蝠(Myotis hirsutus)和琉球长翼蝠(Miniopterus fuscus); (4)灵长目增补了高黎贡白眉长臂猿(Hoolock tianxing)、戴帽叶猴(Trachypithecus pileatus)、懒猴(Nycticebus coucang)和西白眉长臂猿(Hoolock hoolock); (5)食肉目增补了分布在中国藏南的懒熊(Melursus ursinus)、亚洲胡狼(Canis aureus)、孟加拉狐(Vulpes bengakensis)、灰獴(Herpestes edwardsii)和渔猫(Felis viverrinus); (6)依据Wilson和Mittermeier Handbook of the Mammals of the World, Vol. 2, Ungulates (2012)的偶蹄类分类系统, 重新厘定了中国偶蹄目动物分类。偶蹄目增加了阿尔泰盘羊(Ovis ammon)、哈萨克盘羊(O. collium)、高黎贡羚牛(Budorcas taxicolor)和印度麂(Muntiacus muntjak)。将中国境内的梅花鹿合并为Cervus nippon、驼鹿合并为Alces alces。删去了阿拉善马鹿(Cervus alashanicus)、四川马鹿(C. macneilli)和矮岩羊(Psuodois sharferi)。将分布在西双版纳的小鼷鹿定为鼷鹿未定种(Tragulus sp.); (7)鲸目增加了恒河豚(Platanista gangetica), 删除了长喙真海豚(Delphinus capensis), 将短喙真海豚(D. delphis)的中文名修改为真海豚; (8)啮齿目增加了小板齿鼠(Bandicota bengalensis)、小猪尾鼠(Typhlomys nanus)、墨脱松田鼠(Neodon medogensis)、聂拉木松田鼠(N. nyalamensis)以及由亚种提升为种的大猪尾鼠(Typhlomys daloushanensis); 还增加了甘肃鼢鼠(Myospalax cansus)、比氏鼯鼠(Biswamoyopterus biswasi)、白腹鼠(Niviventer niviventer)、印度小鼠(Mus booduga)。删去了休氏壮鼠(Hadromys humei)。同时厘清了我国田鼠亚科Arvicolini族的分类; (9)兔形目增加了粗毛兔(Caprolagus hispidus)和尼泊尔黑兔(Lepus nigricollis)。理清了鼠兔属(Ochotona)的分类, 降级了5个鼠兔种, 提升了4个鼠兔亚种为种, 增加了5个新种。中国有29种鼠兔分布, 北美鼠兔(O. princeps)、斑颈鼠兔(O. collaris)、荷氏鼠兔(O. hoffinanni)、阿富汗鼠兔(O. rufescens)和草原鼠兔(O. pusilla)在中国没有分布。与2015年的《中国哺乳动物多样性》比较, 本编目删除了21个种, 新增了41个种, 其中, 新增了藏南地区分布的哺乳动物16种。截至2017年8月底, 中国记录到哺乳动物13目56科248属693种, 比《中国哺乳动物多样性》多1目1科3属20种。人们对18种中国哺乳动物的分类地位尚存在争议。中国有146种特有哺乳动物, 占中国哺乳动物总数的21%。兔形目、劳亚食虫目和偶蹄目中的特有种比率分别为37%、35%和25%。

Jiang ZG, Ma Y, Wu Y, Wang YX, Zhou KY, Liu SY, Feng ZJ (2015) China’s Mammal Diversity and Geographic Distribution. Science Press, Beijing. (in Chinese and in English)

[本文引用: 1]

[ 蒋志刚, 马勇, 吴毅, 王应祥, 周开亚, 刘少英, 冯祚建 (2015) 中国哺乳动物多样性及地理分布. 科学出版社, 北京.]

[本文引用: 1]

Jiang ZG, Wu Y, Liu SY, Jiang XL, Zhou KY, Hu HJ (2021) China’s Red List of Biodiversity: Vertebrates, Volume I, Mammals. Science Press, Beijing. (in Chinese and in English)

[本文引用: 8]

[ 蒋志刚, 吴毅, 刘少英, 蒋学龙, 周开亚, 胡慧建 (2021) 中国生物多样性红色名录:脊椎动物 (第一卷) · 哺乳动物. 科学出版社, 北京.]

[本文引用: 8]

Jones KE, Bielby J, Cardillo M, Fritz SA, O’dell J, Orme CDL, Safi K, Sechrest W, Boakes EH, Carbone C, Connolly C, Cutts MJ, Foster JK, Grenyer R, Habib M, Plaster CA, Price SA, Rigby EA, Rist J, Teacher A, Bininda-Emonds ORP, Gittleman JL, Mace GM, Purvis A (2009)

PanTHERIA: A species-level database of life history, ecology, and geography of extant and recently extinct mammals

Ecology, 90, 2648.

[本文引用: 2]

Leclerc C, Courchamp F, Bellard C (2020)

Future climate change vulnerability of endemic island mammals

Nature Communications, 11, 4943.

DOI:10.1038/s41467-020-18740-x      URL     [本文引用: 1]

Li Q, Cheng F, Jackson SM, Helgen KM, Song WY, Liu SY, Sanamxay D, Li S, Li F, Xiong Y, Sun J, Wang HJ, Jiang XL (2021)

Phylogenetic and morphological significance of an overlooked flying squirrel (Pteromyini, Rodentia) from the eastern Himalayas with the description of a new genus

Zoological Research, 42, 389-400.

[本文引用: 2]

Li S, Yu GH, Liu S, Jin CS (2019)

First record of the ferret-badger Melogale cucphuongensis Nadler et al, 2011 (Carnivora: Mustelidae), with description of a new subspecies, in southeastern China

Zoological Research, 40, 575-579.

[本文引用: 1]

Li XY, Hu WQ, Bleisch WV, Li Q, Wang HJ, Lu W, Sun J, Zhang FY, Ti B, Jiang XL (2021)

Functional diversity loss and change in nocturnal behavior of mammals under anthropogenic disturbance

Conservation Biology, doi: 10.1111/cobi.1383.

Li ZL, Duo LA, Li S, Wang TM (2021)

Competition and coexistence among terrestrial mammalian carnivores

Biodiversity Science, 29, 81-97. (in Chinese with English abstract)

DOI:10.17520/biods.2020359      URL     [本文引用: 1]

[ 李治霖, 多立安, 李晟, 王天明 (2021)

陆生食肉动物竞争与共存研究概述

生物多样性, 29, 81-97.]

[本文引用: 1]

Liu SY, Wu Y (2019) Handbook of Mammals of China. The Strait Publishing & Distributing Group, Fuzhou. (in Chinese)

[本文引用: 4]

[ 刘少英, 吴毅 (2019) 中国兽类图鉴. 海峡书局, 福州.]

[本文引用: 4]

Liu SY, Wu Y, Li S (2020) Handbook of Mammals of China,2nd edn. The Strait Publishing & Distributing Group, Fuzhou. (in Chinese)

[本文引用: 4]

[ 刘少英, 吴毅, 李晟 (2020) 中国兽类图鉴(第2版). 海峡书局, 福州. ]

[本文引用: 4]

Luo ZX, Chen W, Gao W (2000) Fauna Sinica (Mammalia 6): Rodentia, Cricetidae (Vol. 2). Science Press, Beijing. (in Chinese)

[本文引用: 1]

[ 罗泽珣, 陈卫, 高武 (2000) 中国动物志·兽纲 (第六卷):啮齿目·仓鼠科(下). 科学出版社, 北京.]

[本文引用: 1]

Ma KP, Zhu M, Ji LQ, Ma JC, Guo QH, Ouyang ZY, Zhu L (2018)

Establishing China infrastructure for big biodiversity data

Bulletin of Chinese Academy of Sciences, 33, 838-845. (in Chinese with English abstract)

[本文引用: 1]

[ 马克平, 朱敏, 纪力强, 马俊才, 郭庆华, 欧阳志云, 朱丽 (2018)

中国生物多样性大数据平台建设

中国科学院院刊, 33, 838-845.]

[本文引用: 1]

Mammal Diversity Database (2021)

Mammal Diversity Database (Version 1.7) [Data set]

Zenodo. https://www.mammaldiversity.org/.

URL     [本文引用: 3]

Mammola S, Carmona CP, Guillerme T, Cardoso P (2021)

Concepts and applications in functional diversity

Functional Ecology, 35, 1869-1885.

DOI:10.1111/fec.v35.9      URL     [本文引用: 1]

Mayfield MM, Bonser SP, Morgan JW, Aubin I, McNamara S, Vesk PA (2010)

What does species richness tell us about functional trait diversity? Predictions and evidence for responses of species and functional trait diversity to land-use change

Global Ecology and Biogeography, 19, 423-431.

[本文引用: 1]

McCain CM (2019)

Assessing the risks to United States and Canadian mammals caused by climate change using a trait-mediated model

Journal of Mammalogy, 100, 1808-1817.

[本文引用: 1]

Mi XC, Feng G, Hu YB, Zhang J, Chen L, Corlett RT, Hughes AC, Pimm S, Schmid B, Shi SH, Svenning JC, Ma KP (2021)

The global significance of biodiversity science in China: An overview

National Science Review, 8, 34-58.

[本文引用: 1]

Morton O, Scheffers BR, Haugaasen T, Edwards DP (2021)

Impacts of wildlife trade on terrestrial biodiversity

Nature Ecology & Evolution, 5, 540-548.

[本文引用: 1]

Oliveira BF, Machac A, Costa GC, Brooks TM, Davidson AD, Rondinini C, Graham CH (2016)

Species and functional diversity accumulate differently in mammals

Global Ecology and Biogeography, 25, 1119-1130.

DOI:10.1111/geb.2016.25.issue-9      URL     [本文引用: 1]

Pacifici M, Visconti P, Butchart SHM, Watson JEM, Cassola FM, Rondinini C (2017)

Species’ traits influenced their response to recent climate change

Nature Climate Change, 7, 205-208.

DOI:10.1038/nclimate3223      URL     [本文引用: 1]

Pan QH, Wang YX, Yan K (2007) A Field Guide to the Mammals of China. China Forestry Publishing House, Beijing. (in Chinese)

[本文引用: 3]

[ 潘清华, 王应祥, 岩崑 (2007) 中国哺乳动物彩色图鉴. 中国林业出版社, 北京.]

[本文引用: 3]

Pearson RG, Stanton JC, Shoemaker KT, Aiello-Lammens ME, Ersts PJ, Horning N, Fordham DA, Raxworthy CJ, Ryu HY, McNees J, Akçakaya HR (2014)

Life history and spatial traits predict extinction risk due to climate change

Nature Climate Change, 4, 217-221.

DOI:10.1038/nclimate2113      URL     [本文引用: 1]

Price SA, Hopkins SSB, Smith KK, Roth VL (2012)

Tempo of trophic evolution and its impact on mammalian diversification

Proceedings of the National Academy of Sciences of USA, 109, 7008-7012.

[本文引用: 1]

Purvis A, Gittleman JL, Cowlishaw G, Mace GM (2000) Predicting extinction risk in declining species. Proceedings of the Royal Society of London. Series B: Biological Sciences, 267, 1947-1952.

[本文引用: 1]

Ryding S, Klaassen M, Tattersall GJ, Gardner JL, Symonds MRE (2021)

Shape-shifting: Changing animal morphologies as a response to climatic warming

Trends in Ecology & Evolution, 36, 1036-1048.

DOI:10.1016/j.tree.2021.07.006      URL     [本文引用: 1]

Safi K, Cianciaruso MV, Loyola RD, Brito D, Armour- Marshall K, Diniz-Filho JAF (2011)

Understanding global patterns of mammalian functional and phylogenetic diversity

Philosophical Transactions of the Royal Society of London Series B: Biological Sciences, 366, 2536-2544.

[本文引用: 1]

Santini L, Cornulier T, Bullock JM, Palmer SCF, White SM, Hodgson JA, Bocedi G, Travis JMJ (2016)

A trait-based approach for predicting species responses to environmental change from sparse data: How well might terrestrial mammals track climate change?

Global Change Biology, 22, 2415-2424.

DOI:10.1111/gcb.13271      PMID:27073017      [本文引用: 1]

Estimating population spread rates across multiple species is vital for projecting biodiversity responses to climate change. A major challenge is to parameterise spread models for many species. We introduce an approach that addresses this challenge, coupling a trait-based analysis with spatial population modelling to project spread rates for 15 000 virtual mammals with life histories that reflect those seen in the real world. Covariances among life-history traits are estimated from an extensive terrestrial mammal data set using Bayesian inference. We elucidate the relative roles of different life-history traits in driving modelled spread rates, demonstrating that any one alone will be a poor predictor. We also estimate that around 30% of mammal species have potential spread rates slower than the global mean velocity of climate change. This novel trait-space-demographic modelling approach has broad applicability for tackling many key ecological questions for which we have the models but are hindered by data availability.© 2016 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

Santini L, González-Suárez M, Russo D, Gonzalez-Voyer A, von Hardenberg A, Ancillotto L (2019)

One strategy does not fit all: Determinants of urban adaptation in mammals

Ecology Letters, 22, 365-376.

DOI:10.1111/ele.13199      PMID:30575254      [本文引用: 1]

Urbanisation exposes wildlife to new challenging conditions and environmental pressures. Some mammalian species have adapted to these novel environments, but it remains unclear which characteristics allow them to persist. To address this question, we identified 190 mammals regularly recorded in urban settlements worldwide, and used phylogenetic path analysis to test hypotheses regarding which behavioural, ecological and life history traits favour adaptation to urban environments for different mammalian groups. Our results show that all urban mammals produce larger litters; whereas other traits such as body size, behavioural plasticity and diet diversity were important for some but not all taxonomic groups. This variation highlights the idiosyncrasies of the urban adaptation process and likely reflects the diversity of ecological niches and roles mammals can play. Our study contributes towards a better understanding of mammal association to humans, which will ultimately allow the design of wildlife-friendly urban environments and contribute to mitigate human-wildlife conflicts.© 2018 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.

Shao XN, Lu Q, Xiong MY, Bu HL, Shi XY, Wang DJ, Zhao JD, Li S, Yao M (2021)

Prey partitioning and livestock consumption in the world’s richest large carnivore assemblage

Current Biology, 31, 4887-4897.

DOI:10.1016/j.cub.2021.08.067      URL     [本文引用: 1]

Sheng HL (2005) Atlas of Mammals of China. Henan Science and Technology Press, Zhengzhou. (in Chinese)

[本文引用: 2]

[ 盛和林 (2005) 中国哺乳动物图鉴. 河南科学技术出版社, 郑州.]

[本文引用: 2]

Shuai LY, Chen CW, Liu W, Xu WY, Wang Y, Zeng ZG, Zhang ZR, Zhao LG, Wang YP (2021)

Ecological correlates of extinction risk in Chinese terrestrial mammals

Diversity and Distributions, 27, 1294-1307.

DOI:10.1111/ddi.v27.7      URL     [本文引用: 1]

Smith AT, Xie Y (2009) A Guide to the Mammals of China. Hunan Education Press, Changsha. (in Chinese)

[本文引用: 3]

[ Smith AT, 解焱 (2009) 中国兽类野外手册. 湖南教育出版社, 长沙.]

[本文引用: 3]

Soria CD, Pacifici M, di Marco M, Stephen SM, Rondinini C (2021)

COMBINE: A coalesced mammal database of intrinsic and extrinsic traits

Ecology, 102, e03344.

[本文引用: 4]

Tingley R, Hitchmough RA, Chapple DG (2013)

Life-history traits and extrinsic threats determine extinction risk in New Zealand lizards

Biological Conservation, 165, 62-68.

DOI:10.1016/j.biocon.2013.05.028      URL     [本文引用: 1]

Vandewalle M, Bello F, Berg MP, Bolger T, Dolédec S, Dubs F, Feld CK, Harrington R, Harrison PA, Lavorel S, Silva PM, Moretti M, Niemelä J, Santos P, Sattler T, Sousa JP, Sykes MT, Vanbergen AJ, Woodcock BA (2010)

Functional traits as indicators of biodiversity response to land use changes across ecosystems and organisms

Biodiversity and Conservation, 19, 2921-2947.

DOI:10.1007/s10531-010-9798-9      URL     [本文引用: 1]

Verde Arregoitia LD(2016)

Biases, gaps, and opportunities in mammalian extinction risk research

Mammal Review, 46, 17-29.

DOI:10.1111/mam.12049      URL     [本文引用: 1]

Wang S (1998) China Red Data Book of Endangered Animals:Mammals. Science Press, Beijing. (in Chinese)

[本文引用: 2]

[ 汪松 (1998) 中国濒危动物红皮书: 兽类. 科学出版社, 北京.]

[本文引用: 2]

Wang YP, Song YF, Zhong YQ, Chen CW, Zhao YH, Zeng D, Wu YR, Ding P (2021)

A dataset on the life-history and ecological traits of Chinese birds

Biodiversity Science, 29, 1149-1153. (in Chinese with English abstract)

DOI:10.17520/biods.2021201      URL     [本文引用: 1]

[ 王彦平, 宋云枫, 钟雨茜, 陈传武, 赵郁豪, 曾頔, 吴亦如, 丁平 (2021)

中国鸟类的生活史和生态学特征数据集

生物多样性, 29, 1149-1153.]

DOI:10.17520/biods.2021201      [本文引用: 1]

中国现有1,445种鸟类, 是世界上鸟类物种数最多的国家之一。物种特征反应了生物有机体的功能和适合度, 在生态学、进化生物学和保护生物学研究中具有重要作用。但是, 目前还没有关于我国鸟类生活史、生态学和地理分布等物种特征的完整数据库。通过系统查阅文献和各种数据资料, 本文共收集整理出了中国1,445种鸟类17个功能特征数据: 体重、体长、嘴峰长、翅长、尾长、跗蹠长、食性、窝卵数、卵大小、卵体积、巢址、巢的类型、集群状况、迁徙状况、是否特有种、地理分布范围和分布省份等。在这些特征中, 除迁徙状况、是否特有种、地理分布范围和分布省份外, 其余特征数据均存在不同程度的缺失, 数据的完整度为60.83%‒100%。本数据库是目前关于中国鸟类最新和最全的物种特征数据库, 期望能为我国鸟类生态学、进化生物学、生物地理学、保护生物学等研究提供支持。 数据库(集)基本信息简介 数据库(集)名称 中国鸟类的生活史和生态学特征数据集 作者 王彦平, 宋云枫, 钟雨茜, 陈传武, 赵郁豪, 曾頔, 吴亦如, 丁平 通讯作者 王彦平(wangyanping@njnu.edu.cn) 时间范围 截止到2021年5月 地理区域 地理区域为全中国, 包括香港、台湾和澳门等地区 文件大小 1.0 MB 数据格式 *.xlsx 数据链接 http://dataopen.info/home/datafile/index/id/222 http://doi.org/10.24899/do.202109003 https://www.biodiversity-science.net/fileup/1005-0094/DATA/2021201.zip 数据库(集)组成 数据集共包括1个数据文件, 包括中国1,445种鸟类的17个物种特征

Wei FW, Yang QS, Wu Y, Jiang XL, Liu SY, Li BG, Yang G, Li M, Zhou J, Li S, Hu YB, Ge DY, Li S, Yu WH, Chen BY, Zhang ZJ, Zhou CQ, Wu SB, Zhang L, Chen ZZ, Chen SD, Deng HQ, Jiang TL, Zhang LB, Shi HY, Lu XL, Li Q, Liu Z, Cui YQ, Li YC (2021)

Catalogue of mammals in China (2021)

Acta Theriologica Sinica, 41, 487-501. (in Chinese with English abstract)

[本文引用: 2]

[ 魏辅文, 杨奇森, 吴毅, 蒋学龙, 刘少英, 李保国, 杨光, 李明, 周江, 李松, 胡义波, 葛德燕, 李晟, 余文华, 陈炳耀, 张泽钧, 周材权, 吴诗宝, 张立, 陈中正, 陈顺德, 邓怀庆, 江廷磊, 张礼标, 石红艳, 卢学理, 李权, 刘铸, 崔雅倩, 李玉春 (2021)

中国兽类名录(2021版)

兽类学报, 41, 487-501.]

[本文引用: 2]

Wen ZX, Wu Y, Ge DY, Cheng JL, Chang YB, Yang ZS, Xia L, Yang QS (2017)

Heterogeneous distributional responses to climate warming: Evidence from rodents along a subtropical elevational gradient

BMC Ecology, 17, 17.

DOI:10.1186/s12898-017-0128-x      URL     [本文引用: 1]

Wilman H, Belmaker J, Simpson J, de la Rosa C, Rivadeneira MM, Jetz W (2014)

EltonTraits 1.0: Species-level foraging attributes of the world’s birds and mammals

Ecology, 95, 2027.

[本文引用: 2]

Wilson DE, Lacher TE, Mittermeier RA (2016) Handbook of the Mammals of the World, Vol. 6:Lagomorphs and Rodents I. Lynx Edicions, Barcelona, Spain.

[本文引用: 2]

Wilson DE, Mittermeier RA (2009) Handbook of the Mammals of the World, Vol. 1:Carnivores. Lynx Edicions, Barcelona, Spain.

[本文引用: 2]

Wilson DE, Mittermeier RA (2011) Handbook of the Mammals of the World, Vol. 2:Hoofed Mammals. Lynx Edicions, Barcelona, Spain.

[本文引用: 3]

Wilson DE, Mittermeier RA (2012) Handbook of the Mammals of the World, Vol. 3:Primates. Lynx Edicions, Barcelona, Spain.

[本文引用: 2]

Wilson DE, Mittermeier RA (2014) Handbook of the Mammals of the World, Vol. 4:Sea Mammals. Lynx Edicions, Barcelona, Spain.

[本文引用: 2]

Wilson DE, Mittermeier RA (2018) Handbook of the Mammals of the World, Vol.8: Insectivores, Sloths and Colugos. Lynx Edicions, Barcelona, Spain.

[本文引用: 2]

Wilson DE, Mittermeier RA (2019) Handbook of the Mammals of the World, Vol. 9:Bats. Lynx Edicions, Barcelona, Spain.

[本文引用: 2]

Wilson DE, Mittermeier RA, Lacher TE (2017) Handbook of the Mammals of the World, Vol. 7:Rodents II. Lynx Edicions, Barcelona, Spain.

[本文引用: 2]

Yang M, Zhou J, Zeng Y, Sun M (2021)

Main progress of biodiversity conservation in China and some suggestions for further work

Bulletin of Chinese Academy of Sciences, 36, 399-408. (in Chinese with English abstract)

[本文引用: 1]

[ 杨明, 周桔, 曾艳, 孙命 (2021)

我国生物多样性保护的主要进展及工作建议

中国科学院院刊, 36, 399-408.]

[本文引用: 1]

Yu WH, He K, Fan PF, Chen BY, Li S, Liu SY, Zhou J, Yang QS, Li M, Jiang XL, Yang G, Wu SB, Lu XL, Hu YB, Li BG, Li YC, Jiang TL, Wei FW, Wu Y (2021)

Taxonomic and systematic research progress of mammals in China

Acta Theriologica Sinica, 41, 502-524. (in Chinese with English abstract)

[本文引用: 1]

[ 余文华, 何锴, 范朋飞, 陈炳耀, 李晟, 刘少英, 周江, 杨奇森, 李明, 蒋学龙, 杨光, 吴诗宝, 卢学理, 胡义波, 李保国, 李玉春, 江廷磊, 魏辅文, 吴毅 (2021)

中国兽类分类与系统演化研究进展

兽类学报, 41, 502-524.]

[本文引用: 1]

Zhang J (2017)

Biodiversity science and macroecology in the era of big data

Biodiversity Science, 25, 355-363. (in Chinese with English abstract)

DOI:10.17520/biods.2017037      [本文引用: 1]

High-quality biodiversity data are the scientific basis for understanding the origin and maintenance of biodiversity and dealing with its extinction risk. Currently, we identify at least seven knowledge shortfalls or gaps in biodiversity science, including the lack of knowledge on species descriptions, species geographic distributions, species abundance and population dynamics, evolutional history, functional traits, interactions between species and the abiotic environment, and biotic interactions. The arrival of the current era of big data offers a potential solution to address these shortfalls. Big data mining and its applications have recently become the frontier of biodiversity science and macroecology. It is a challenge for ecologists to utilize and effectively analyze the ever-growing quantity of biodiversity data. In this paper, I review several biodiversity-related studies over global, continental, and regional scales, and demonstrate how big data approaches are used to address biodiversity questions. These examples include forest cover changes, conservation ecology, biodiversity and ecosystem functioning, and the effect of climate change on biodiversity. Furthermore, I summarize the current challenges facing biodiversity data collection, data processing and data analysis, and discuss potential applications of big data approaches in the fields of biodiversity science and macroecology.

[ 张健 (2017)

大数据时代的生物多样性科学与宏生态学

生物多样性, 25, 355-363.]

DOI:10.17520/biods.2017037      [本文引用: 1]

高质量的生物多样性数据是认知生物多样性的起源和维持机制及应对其丧失风险的科学基础。当前, 在新物种发现、已知物种的地理分布、种群数量与时空动态、物种进化史、功能性状、物种与环境之间以及物种与物种之间的相互作用等7个方面都存在着知识上的空缺。大数据时代的到来为弥补这些知识空缺提供了可能,大数据的挖掘及其应用最近已成为国际生物多样性与宏生态学研究的前沿内容。如何有效地利用和分析不断增长的生物多样性大数据是生物多样性研究面临的一个极大挑战。本文通过全球、大陆和区域尺度上的研究案例展示了大数据在生物多样性研究中应用的新进展, 内容涉及森林覆盖变化、保护生态学、生物多样性与生态系统功能、气候变化对生物多样性的影响等。最后, 对大数据在生物多样性研究中存在的数据采集、处理和分析等方面的问题进行了总结, 并对其潜在应用前景进行了探讨。

Zhang LB, Ameca EI, Cowlishaw G, Pettorelli N, Foden W, Mace GM (2019)

Global assessment of primate vulnerability to extreme climatic events

Nature Climate Change, 9, 554-561.

DOI:10.1038/s41558-019-0508-7      URL     [本文引用: 1]

Zhang RZ (2011) China Animal Geography. Science Press, Beijing. (in Chinese)

[本文引用: 3]

[ 张荣祖 (2011) 中国动物地理. 科学出版社, 北京.]

[本文引用: 3]

Zhou KY (2004) Fauna Sinica (Mammalia 9): Cetacea, Carnivora, Phocidae, Sirenia. Science Press, Beijing. (in Chinese)

[本文引用: 1]

[ 周开亚 (2004) 中国动物志·兽纲 (第九卷):鲸目·食肉目·海豹总科·海牛目. 科学出版社, 北京.]

[本文引用: 1]

/