生物多样性, 2022, 30(10): 22609 doi: 10.17520/biods.2022609

编者按

中国生物多样性研究的30个核心问题

张健,1, 孔宏智,2, 黄晓磊,3, 傅声雷,4, 郭良栋,5, 郭庆华,6, 雷富民,7, 吕植,8, 周玉荣2, 马克平,,2,*

1.华东师范大学生态与环境科学学院, 浙江天童森林生态系统国家野外科学观测研究站/全球变化与复杂生态系统研究中心, 上海 200241

2.中国科学院植物研究所, 北京 100093

3.福建农林大学植物保护学院闽台作物有害生物生态防控国家重点实验室, 福州 350002

4.河南大学地理与环境学院, 河南开封 475004

5.中国科学院微生物研究所真菌学国家重点实验室, 北京 100101

6.北京大学地球与空间科学学院遥感与地理信息研究所, 北京 100871

7.中国科学院动物研究所, 北京 100101

8.北京大学生命科学学院自然保护与社会发展研究中心, 北京 100871

Thirty key questions for biodiversity science in China

Jian Zhang,1, Hongzhi Kong,2, Xiaolei Huang,3, Shenglei Fu,4, Liangdong Guo,5, Qinghua Guo,6, Fumin Lei,7, Zhi Lü,8, Yurong Zhou2, Keping Ma,,2,*

1. Center for Global Change and Complex Ecosystems, Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241

2. Institute of Botany, Chinese Academy of Sciences, Beijing 100093

3. State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002

4. Key Laboratory of Geospatial Technology for Middle and Lower Yellow River Regions, Ministry of Education; College of Geography and Environmental Science, Henan University, Kaifeng, Henan 475004

5. State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101

6. Institute of Remote Sensing and Geographic Information System, School of Earth and Space Sciences, Peking University, Beijing 100871

7. Institute of Zoology, Chinese Academy of Sciences, Beijing 100101

8. Center for Nature and Society, College of Life Sciences, Peking University, Beijing 100871

通讯作者: * E-mail:kpma@ibcas.ac.cn

责任编辑: 周玉荣

Corresponding authors: * E-mail:kpma@ibcas.ac.cn

摘要

在联合国《生物多样性公约》生效30年和《生物多样性》创刊30周年之际, 我们通过问卷调查从281名中国研究人员收集到763个生物多样性相关的研究问题, 通过归纳与整理, 并参考英国生态学会提出的100个生态学基本问题, 从中筛选出30个核心问题。这些问题涉及7个方面: 演化与生态(6个问题)、种群(4个问题)、群落与多样性(7个问题)、生态系统与功能(3个问题)、人类影响与全球变化(4个问题)、方法与监测(4个问题)、生物多样性保护(2个问题)。前5个方面主要聚焦在物种形成、生物多样性维持等的关键过程与机制、生物多样性与生态功能关系、全球变化对生物多样性的影响机制等, 第6方面主要涉及生物监测与预测、数据共享等, 第7方面涉及多样性保护、自然与人类健康关系这两个与公众息息相关的重要话题。这30个问题的筛选难免存在偏颇, 希望能以此为契机, 促进我国生物多样性研究人员对本领域核心问题的深入思考与探讨。

关键词: 演化; 种群生态学; 群落生态学; 生态系统功能; 生物多样性监测; 生物多样性保护

Abstract

Aim & Method: On the 30th anniversary of the implementation of the Convention on Biological Diversity and the establishment of the journal Biodiversity Science, we conducted questionnaire surveys from Chinese biodiversity researchers to gather the crucial questions in biodiversity science, and finally collected 763 questions from 281 participants.
Results: By summarizing these questions and using the 100 fundamental questions of British Ecology Society as the reference, we narrowed down these questions into 30 key questions, which is grouped into 7 subjects: evolution and ecology (6 questions), populations (4 questions), communities and diversity (7 questions), ecosystems and functioning (3 questions), human impacts and global change (4 questions), methods and monitoring (4 questions), and biodiversity conservation (2 questions). The first five subjects mainly focus on the important processes and mechanisms of speciation and biodiversity maintenances, the relation between biodiversity and ecosystem functioning, and the consequences of global change in biodiversity; the sixth subject focus on biodiversity monitoring, prediction and data sharing; the last subject covers the key issues in conservation and the connections between nature and human health.
Prospect: Although some biases certainly exist in the selection of these questions, we hope that the 30 key questions could stimulate critical thinking and promote in-depth discussions among Chinese biodiversity researchers.

Keywords: evolution; population ecology; community ecology; ecosystem functioning; biodiversity monitoring; biodiversity conservation

PDF (434KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

张健, 孔宏智, 黄晓磊, 傅声雷, 郭良栋, 郭庆华, 雷富民, 吕植, 周玉荣, 马克平 (2022) 中国生物多样性研究的30个核心问题. 生物多样性, 30, 22609. doi:10.17520/biods.2022609.

Jian Zhang, Hongzhi Kong, Xiaolei Huang, Shenglei Fu, Liangdong Guo, Qinghua Guo, Fumin Lei, Zhi Lü, Yurong Zhou, Keping Ma (2022) Thirty key questions for biodiversity science in China. Biodiversity Science, 30, 22609. doi:10.17520/biods.2022609.

科学研究是不断发现问题、提出问题和解决问题的过程, 凝练核心科学问题对一个学科的发展至关重要。2005年, Science在创刊125周年之际发布了125个最具挑战性的科学问题, 其中不少与生态学和生物多样性密切相关(Kennedy & Norman, 2005)。2013年, 英国生态学会在学会成立100周年之际筛选了生态学研究的100个基本问题(Sutherland et al, 2013), 为生态学发展提供了重要参考。

1992年6月1日, 《生物多样性公约》由联合国环境规划署发起的政府间谈判委员会第七次会议在内罗毕通过, 成为生物多样性领域的重要里程碑。在过去30年间, 中国生物多样性科学与保护取得了快速发展, 研究队伍不断壮大, 自然保护地体系不断完善, 新的研究问题也不断涌现。为梳理中国生物多样性领域在过去30年的发展, 在《生物多样性》创刊30周年之际, 编委会组织国内本领域的学者来共同凝练生物多样性研究的30个核心问题。通过两轮的问题征集, 共收到来自281名研究人员的763个问题。其中, 来自编委会成员和特约顾问(共72人)的233个, 来自其他研究者(共209人)的530个。这些问题涉及到生物多样性研究的诸多领域, 从中筛选与归纳出30个核心问题, 并非易事。参考英国生态学会的100个生态学基本问题的分类方式(Sutherland et al, 2013), 并结合所收集问题的一些特点, 我们从演化与生态、种群、群落与多样性、生态系统与功能、人类影响与全球变化、方法与监测、生物多样性保护7个方面筛选出30个核心问题。

1 演化与生态

生物学家杜布赞斯基有句名言: “如果不考虑演化, 生物学的一切都没有意义” (Nothing in biology makes sense except in light of evolution)。生物多样性的研究当然也不例外。问题1和2在专家推荐的问题中多次出现, 也包括在2005年Science列出的125个问题之中。物种是演化的基本单位(Simpson, 1951), 也是生物多样性的基本单元。本刊2016年第9期专门组织专题对“什么是物种” (问题1)进行讨论, 指出“生物多样性事业需要科学、可操作的物种概念” (洪德元, 2016)。关于物种形成(问题2)和多样化机制(问题3)的研究历时已久, 新的证据和假说不断涌现(薛成等, 2022)。在我国, 东亚地区生物多样性的起源和演化问题尤为重要, 季风气候、地理隔离、生态过程等如何影响并塑造当前的生物多样性格局仍是生物多样性研究的一个中心问题。同时, 自然杂交、性选择、表型可塑性等都会影响物种形成(问题4-6), 其内在的演化机制与生态意义仍待深入探究。

(1)什么是物种?

(2)什么决定了物种多样性?

(3)重要生物类群起源和多样化的过程、动因和机制是什么?

(4)自然杂交在生物适应性进化中的作用有哪些?

(5)生物性别多样性的演化机制与生态意义是什么?

(6)表型可塑性如何影响生物演化的路径?

2 种群

作为研究种群生长、存活、繁殖、灭绝等的分支学科, 种群生态学是生态学中最成熟的分支, 这与其坚实的数学根基和聚焦于物种分布和多度这些最基础的问题密切相关(Krebs, 2015)。生物种群对环境的适应机制(问题7)是种群生态学的核心问题。在极端环境下, 生物可能表现出不同的适应策略(问题8)。厘清种群衰减或灭绝的原因与机制(问题9)是开展物种保护的前提。理解上述问题以及提出切实可行的种群恢复策略都需要对种群生活史的深入了解(问题10)。本刊近年来针对不同生物种群组织了多个专刊来推动种群生态与保护的工作, 如: 2016年第5期“中国脊椎动物红色名录” (蒋志刚等, 2016)、2017年第7期“中国高等植物红色名录” (覃海宁等, 2017)、2020年第3期“中国极小种群野生植物保护” (许玥和臧润国, 2022)、2022年第9期“中国猫科动物研究与保护” (李晟和王天明, 2022)。

(7)物种对环境的适应机制是什么?

(8)物种如何适应极端环境(如: 高山、深海等)?

(9)生物濒危或灭绝的原因与机制是什么?

(10)哪些生活史特征决定了自然种群的完整性及其对扰动的恢复力?

3 群落与多样性

自哈钦森在20世纪60年代提出“浮游生物悖论” (Hutchinson, 1961), 群落生态学迎来了持续30多年的百家争鸣, 新的理论和假说不断涌现(Vellend, 2016; 王少鹏等, 2022), 但始终缺乏普适性的理论, 以至于英国生态学家John Lawton指出“群落生态学一片混乱” (Community ecology is a mess) (Lawton, 1999)。2001年, Stephen Hubbell的专著《生物多样性与生物地理学的统一中性理论》(The Unified Neutral Theory of Biodiversity and Biogeography)开启了一轮新的论战(Hubbell, 2001), 但关于“生物多样性是如何维持的” (问题11)目前仍缺少一个统一的理论体系(Vellend, 2016; Leibold & Chase, 2018; 王少鹏等, 2022)。稀有种作为群落物种组成的主体, 理解其在维持多样性和生态系统功能中的作用(问题12)对于生物多样性研究和保护都具有重要意义。生物间相互作用是驱动群落过程与动态的关键, 但关于同一营养级(种内和种间竞争)和不同营养级之间如何共同作用来影响群落构建尚不明确(问题13)。当前物种共存研究多聚焦在较小的局域群落, 生态学家逐渐认识到局域尺度的多样性受到区域物种库、地质历史等的影响(Ricklefs, 1987); 局域群落的多样性是否以及如何受到区域群落的调控(问题14)对于理解多尺度的生物多样性维持至关重要。山地环境的异质性被认为是造成热带高生物多样性形成与维持的重要机制之一(Janzen, 1967), 理解山地区域高的生物多样性及其成因(问题15)对我国和全球生物多样性保护都具有重要意义(Mi et al, 2021)。随着基因组学技术的快速发展, 动植物与微生物共生关系(问题16)成为生物间相互作用研究的热点话题(高程等, 2022)。由于微型生物在演化策略、扩散方式等方面与大型生物存在较大差异, 宏生态学(macroecology)的格局及其驱动机制在这些类群之间是否存在差异(问题17)? 检验这一问题对于寻求生态学的普适性规律有重要意义(Vellend, 2016)。

(11)生物多样性是如何维持的?

(12)稀有物种对维持生物多样性和生态功能有多重要?

(13)生物间相互作用与营养级联如何影响生物多样性?

(14)局域群落的物种多样性在多大程度上受到扩散限制和区域物种库的调控?

(15)为什么山地系统具有更高的物种多样性?

(16)动植物与共生微生物的协同进化机制是什么?

(17)宏生态格局(如: 物种-多度分布、种-面积关系)是否同样适用于大型生物和微型生物, 以及同样的格局是否源于同样的生态过程?

4 生态系统与功能

生物多样性与生态系统功能关系是近年来生态学研究的热点话题。这一主题在我们收集的问题中出现次数也非常多。生物多样性与生态系统功能关系已通过控制实验和野外调查数据等进行检验, 多数结果发现植物多样性越高, 群落生产力越高、生态系统稳定性和抗入侵能力等也越强, 但对结果的解释仍存在诸多争议, 主要表现在实验或采样设计的有效性、多样性对生态系统功能作用的机理、野外与控制实验结果的一致性等(徐炜等, 2016)。不同营养级的生物多样性对生物系统多功能性的影响在很长时期内仍将是生态学的热点之一(问题18), 尤其是地下生物多样性(土壤动物、微生物等)对地上生物的反馈机制及其对生态系统功能的影响机制(傅声雷等, 2022) (问题19)。物种功能性状因代表了生物多样性的功能维度, 可能与生态功能存在更强的联系, 该假说的真实性尚需进一步的检验(问题20)。

(18)生物多样性变化如何影响和改变生态系统功能?

(19)地上与地下生物多样性的关联及其对生态系统功能的影响是怎样的?

(20)物种功能性状多大程度上可以预测群落特征以及生态系统功能变化?

5 人类影响与全球变化

人类活动极大地改变了地球上大部分地方的自然状况, 因人类威胁而濒临灭绝的物种比任何时候都多(IPBES, 2019)。生物入侵(刘艳杰等, 2022)、气候变化(井新等, 2022)、人类活动等正在重塑着局域、区域和全球尺度的生物物种组成、群落结构和生态系统功能(问题21), 一些关键的生物类群则面临着大范围的衰退(问题22)。近年来, 极端气候事件(如干旱、野火等)发生频率不断增加, 这些快速的环境变化对生物群落可能造成极大影响(问题23)。为应对这些急剧变化的环境, 联合国大会提出了“联合国生态恢复十年(2021-2030)”倡议, 退化生态系统的恢复需建立在生态学理论基础之上(问题24)。

(21)生物入侵、气候变化、人类活动等影响生物多样性的内在机制与演化后果是什么?

(22)关键生物类群(大型动物、顶级捕食者、传粉者等)衰退的关键影响因素和驱动机制是什么?

(23)生物群落如何响应与适应不断增加的极端气候事件?

(24)如何确定退化生态系统的修复目标并重建包括复杂营养级的生态系统稳定性与持续性?

6 方法与监测

地球上有多少物种存在(问题25)是生物多样性研究的最基本问题。我国在物种监测和编目等方面开展了大量基础性工作, 为了解我国物种多样性现状提供了重要资料(Mi et al, 2021), 但这些数据在生物类群(如昆虫、苔藓植物、土壤动物等)和地理区域等方面存在较大偏差。近年来, 新监测方法与技术(如红外相机、遥感、基因组学、公众科学等)在极大地改变着我们的调查方式(问题26), 也在逐渐减少着在物种名录、分布、生活史特征、时间动态等方面的知识空缺(Hortal et al, 2015; 张健, 2017)。除了监测手段的革新, 生物多样性研究也需要在数据分析方法和思维方式上的改变。由于生命系统的复杂性, 生态学家常因研究结果的不可重复性及难以进行尺度推演和预测而备受批评(Currie, 2019), 生物多样性科学的发展需要通过数据分析方法的创新来提高其预测能力(问题27)。同时, 高质量的生物多样性研究也需要海量的、高质量的、可发现、可访问、可互操作和可再用的大数据作为支撑。推动高质量的生物多样性数据共享对于提升生物多样性研究深度和广度、科学制定多样性保护政策至关重要(问题28)。本刊出版的新物种年度报告(如2021年第8期、2022年第8期)、红外相机监测(如2014年第6期、2019年第3期、2021年第9期)、遥感监测(如2018年第8期)、数据论文(如2016年第12期、2021年第9期)等都是在这些方面的探索与努力。

(25)地球上有多少物种?中国有多少物种?

(26)如何开发和推广适用于生物多样性调查、监测和研究的新方法与新技术?

(27)如何结合多尺度、多类型的监测数据提高对生物多样性相关属性的预测精度?

(28)如何生产和共享高质量的生物多样性数据?

7 生物多样性保护

当前, 全球生物多样性正面临着人类活动、气候变化等的严重威胁。新冠疫情的暴发与蔓延也让我们认识到生物多样性与人类健康的紧密联系, 让我们重新审视人与自然之间的关系(吕植, 2020)。在我们收集到的问题中, 有很多是与生物多样性保护相关的, 涉及到不同生态系统的保护、自然保护地管理、国家公园建设、人类健康等, 我们将这些问题归纳为问题29-30。对于这两个问题的回答, 都没有单一的解决方案, 而是需要建立在上面提到的28个核心问题回答的基础之上, 构建与完善生物多样性科学、保护与管理的网络体系。

(29)如何建立保障生物多样性保护决策和行动科学性和有效性的机制?

(30)生物多样性如何影响人类精神与生理健康?

8 小结

本文从281名研究人员的763个问题中筛选出生物多样性研究的30个核心问题。这些问题部分反映了人们当前对生物多样性研究的认知程度。毋庸置疑, 这些问题的筛选难免存在偏颇。在《生物多样性》创刊30周年之际, 我们仅希望能够以此为契机, 促进我国生物多样性相关的研究人员对本领域核心问题的思考与探讨, 并不断“提出新的问题、新的可能性, 从新的角度来看旧问题” (Einstein & Infeld, 1938), 这样才标志着生物多样性科学的真正进步, 并为生物多样性保护的短期和长远目标与行动提供依据。

致谢

感谢281名生物多样性研究者对调查问卷的反馈。感谢郝占庆教授的建议与讨论, 感谢华东师范大学王潇然、张然、杨贤宇、陈佳乐、王宇卓、田中平、刘鹏程等帮忙整理问卷。

参考文献

Currie DJ (2019)

Where Newton might have taken ecology?

Global Ecology and Biogeography, 28, 18-27.

DOI:10.1111/geb.12842      [本文引用: 1]

A dilemma in ecology Ecologists aspire to build a discipline to both understand the natural world and to provide society with tools to make responsible decisions about the environment. For both of these purposes, most sciences have, at their core, a set of empirical generalizations that predict the behaviour of important properties of nature (e.g., Newton's laws of mechanics, Mendeleev's periodic table, Mendel's genetics). Ecological science, in contrast, has favoured studies to understand processes (competition, population regulation, etc. - i.e., independent variables) rather than models that predict attributes of nature (dependent variables). Classical reductionist scientific training emphasizes studies of mechanisms under controlled experimental conditions. Yet, inferences about nature from experiments are nearly always unjustifiable extrapolations beyond the experimental conditions. Mechanisms that are statistically detectable in experimental systems may contribute very little to the variation of nature. Studies of ecological processes in isolation may contribute to "expert understanding," but experts have been shown to be poor predictors of the behaviour of natural systems. A proposed solution The more relevant, often neglected question is: what factors can statistically account for the observed variance of nature? A more Newtonian approach to ecology would: (a) first, specify the properties of nature (i.e., dependent variables) whose variance is of concern; (b) develop models that statistically capture the variance of those properties in nature; (c) demonstrate that those models can predict independent data; and, only last, (d) experimentally test hypotheses about processes that could give rise to the predictable patterns in nature. Why it matters Successful disciplines identify specific goals and measure progress toward those goals. Predictive accuracy of properties of nature is a measure of that progress in ecology. Predictive accuracy is the objective evidence of understanding. It is the most useful tool that science can offer society.

Einstein A, Infeld L (1938) The Evolution of Physics:The Growth of Ideas from Early Concepts to Relativity and Quanta. Cambridge University Press, Cambridge.

[本文引用: 1]

Fu SL, Liu MQ, Zhang WX, Shao YH (2022)

A review of recent advances in the study of geographical distribution and ecological functions of soil fauna diversity

Biodiversity Science, 30, 22435. (in Chinese with English abstract)

[本文引用: 1]

[傅声雷, 刘满强, 张卫信, 邵元虎 (2022)

土壤动物多样性的地理分布及其生态功能研究进展

生物多样性, 30, 22435.]

DOI:10.17520/biods.2022435      [本文引用: 1]

土壤动物多样性地理分布及其生态功能研究已成为地学和生态学等领域共同关注的科学前沿。本文在介绍相关研究最新进展的基础上,讨论已有研究的局限性或不确定性,展望未来研究的重点方向。近10年来,蚯蚓等代表性土壤动物类群的全球分布研究取得突破性进展;国内在研究尺度和采样密度上也有明显进步,尤其在蚯蚓和线虫相关研究上取得了系列成果。结果表明,土壤动物多样性随纬度变化模式主要有两种,即在低纬度的热带最高或在中纬度的温带最高;而土壤动物多度与多样性的变化可能存在同步、无明显关系、截然不同、甚至相反等多种关系;降雨、植物生产力和土壤有机质是土壤动物分布格局的关键驱动力,但其影响力因土壤动物类群不同而异。土壤动物具有改善土壤物理结构、促进养分循环和有机碳稳定、提高作物健康等功能,为了充分揭示土壤动物复杂的生态功能,土壤动物的多功能性评估方兴未艾,但仍面临诸多挑战。简单分析土壤动物随经纬度等的变化规律存在较大的局限性,应该考虑在基于地质-生态历史及经纬度-海拔-离海岸距离等构建的多维时空框架内,探究土壤动物分布特征及其驱动力。土壤动物分布格局对其潜在的生态功能有关键影响,但是土壤动物分布的预测和模拟仍主要依靠经验模型,代谢生态学等理论在土壤动物群落研究中的应用值得关注。探究分类学多样性的冗余机制,突出功能多样性,可以将生物多样性与生态功能更好地联系起来;而评估土壤动物多功能性需要在特定条件和时空下,从整个土壤食物网及其与植物的联系中理解土壤动物的多样性及其生态功能。建议未来关注两个研究方向:1)探究人类活动和气候变化给土壤动物多样性和生态功能带来的巨大不确定性;2)完善土壤动物群落特征预测的理论框架和开展土壤动物群落的精准调控,综合评价其多功能性,进而将土壤动物与人类福祉更紧密地联系起来。

Hong DY (2016)

Biodiversity pursuits need a scientific and operative species concept

Biodiversity Science, 24, 979-999. (in Chinese with English abstract)

DOI:10.17520/biods.2016203      URL     [本文引用: 1]

[洪德元 (2016)

生物多样性事业需要科学、可操作的物种概念

生物多样性, 24, 979-999.]

DOI:10.17520/biods.2016203      [本文引用: 1]

物种概念(species concept)是生物学家们持续关注的中心问题。物种概念决定物种划分, 而物种划分的合理性关系到生物多样性的研究、保护和可持续利用。本文把现有较流行的物种概念分为6类, 并对它们予以述评后指出: 虽然生物学物种概念、遗传学物种概念、进化物种概念、系统发生物种概念等从不同方面认识了物种的客观真实性和物种的本质, 但在实践中都难以操作。绝大多数物种是由分类学家划分的, 但目前所有的分类学物种概念都包含有不同程度的主观因素, 从而造成物种划分的人为性, 对生物多样性研究造成负面影响。因此, 生物多样性事业需要科学、可操作的物种概念。本文在吸收了生物学物种概念、遗传学物种概念、进化物种概念以及系统发生物种概念等的长处, 也分析了它们的不足和问题的基础上提出一个新的物种概念, 即形态-生物学物种概念。最后, 以芍药属(Paeonia)几个物种的处理为例, 说明这一新的物种概念是可操作的, 划分的物种在形态上区别分明, 易于鉴别。更重要的是, 其结果得到基于25或26个单拷贝或寡拷贝核基因DNA序列所作的系统发生分析的强有力支持。各个物种在系统发生树上形成单系和独立的谱系, 表明其间各自形成独立的基因库, 没有基因交换, 它们独立进化, 有各自的生态位和独立的分布区。因此, 利用这一新的物种概念能够达到预期目标。

Hortal J, Bello F, Diniz-Filho JA, Lewinsohn T, Lobo J, Ladle R (2015)

Seven shortfalls that beset large-scale knowledge of biodiversity

Annual Review of Ecology, Evolution and Systematics, 46, 523-549.

DOI:10.1146/annurev-ecolsys-120213-054400      [本文引用: 1]

Ecologists and evolutionary biologists are increasingly using big-data approaches to tackle questions at large spatial, taxonomic, and temporal scales. However, despite recent efforts to gather two centuries of biodiversity inventories into comprehensive databases, many crucial research questions remain unanswered. Here, we update the concept of knowledge shortfalls and review the tradeoffs between generality and uncertainty. We present seven key shortfalls of current biodiversity data. Four previously proposed shortfalls pinpoint knowledge gaps for species taxonomy (Linnean), distribution (Wallacean), abundance (Prestonian), and evolutionary patterns (Darwinian). We also redefine the Hutchinsonian shortfall to apply to the abiotic tolerances of species and propose new shortfalls relating to limited knowledge of species traits (Raunkiaeran) and biotic interactions (Eltonian). We conclude with a general framework for the combined impacts and consequences of shortfalls of large-scale biodiversity knowledge for evolutionary and ecological research and consider ways of overcoming the seven shortfalls and dealing with the uncertainty they generate.

Hubbell SP (2001) The Unified Neutral Theory of Biodiversity and Biogeography. Princeton University Press, Princeton.

[本文引用: 1]

Hutchinson GE (1961)

The paradox of the plankton

The American Naturalist, 95, 137-145.

DOI:10.1086/282171      URL     [本文引用: 1]

IPBES (2019)

Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services

IPBES Secretariat, Bonn, Germany.

[本文引用: 1]

Janzen DH (1967)

Why mountain passes are higher in the tropics?

The American Naturalist, 101, 233-249.

DOI:10.1086/282487      URL     [本文引用: 1]

Jiang ZG, Jiang JP, Wang YZ, Zhang E, Zhang YY, Li LL, Xie F, Cai B, Cao L, Zheng GM, Dong L, Zhang ZW, Ding P, Luo ZH, Ding CQ, Ma ZJ, Tang SH, Cao WX, Li CW, Hu HJ, Ma Y, Wu Y, Wang YX, Zhou KY, Liu SY, Chen YY, Li JT, Feng ZJ, Wang Y, Wang B, Li C, Song XL, Cai L, Zang CX, Zeng Y, Meng ZB, Fang HX, Ping XG (2016)

Red List of China’s Vertebrates

Biodiversity Science, 24, 501-551. (in Chinese and in English)

[本文引用: 1]

[蒋志刚, 江建平, 王跃招, 张鹗, 张雁云, 李立立, 谢锋, 蔡波, 曹亮, 郑光美, 董路, 张正旺, 丁平, 罗振华, 丁长青, 马志军, 汤宋华, 曹文宣, 李春旺, 胡慧建, 马勇, 吴毅, 王应祥, 周开亚, 刘少英, 陈跃英, 李家堂, 冯祚建, 王燕, 王斌, 李成, 宋雪琳, 蔡蕾, 臧春鑫, 曾岩, 孟智斌, 方红霞, 平晓鸽 (2016)

中国脊椎动物红色名录

生物多样性, 24, 501-551.]

[本文引用: 1]

Jing X, Jiang SJ, Liu HY, Li Y, He JS (2022)

Complex relationships and feedback mechanisms between climate change and biodiversity

Biodiversity Science, 30, 22462. (in Chinese with English abstract)

DOI:10.17520/biods.2022462      [本文引用: 1]

<p> <strong></strong> </p><p class="Abstract" style="text-align:justify;"> <p class="Abstract"> <span> <strong>Background &amp; Aims:</strong></span><span>Climate changeand biodiversity loss are two major changes that human society is experiencing.Climate change affects all aspects of biodiversity and is a major driver ofbiodiversity loss; in turn, biodiversity loss exacerbates climate change.Therefore, halting or even reversing climate change and biodiversity loss is aglobal issue that needs to be addressed by human society. However, we lack aclear understanding of the complex relationships and feedback mechanismsbetween climate change and biodiversity. Here, we summarize the research onclimate and biodiversity change in the last decade by focusing on studiesinvestigating the responses and feedback of biodiversity to climate change atdifferent organizational levels, spatial scales, and diversity dimensions.</span> </p> <p class="Abstract"> <span><strong>Progress:</strong></span><span> Our results showed thatmost studies focus on the direct impacts of climate change on biodiversity,involving different organizational levels and dimensions and trophic levels ofbiodiversity. Studies on the indirect impacts of climate change were rare, and we suggested that mechanistic studies needto be strengthened. The mechanisms and quantification of the effects ofbiodiversity on ecosystem multifunctionality were challenges for currentresearch. There was no consensus on how biodiversity contributes to ecosystemresponse to climate change; the positive and negative feedback effects ofbiodiversity in the context of climate change were a blind spot in domestic andinternational research.</span> </p> <p class="Abstract"> <span> <strong>Prospects:</strong></span><span>The future direction and key scientific issues thatneed to be solved in the field of climate change and biodiversity change arenumerous. We identify 4 main areas of future research: understanding (1) theimpacts of multi-factor climate change on biodiversity, (2) how mitigation andadaptation measures to climate change can benefit biodiversity conservation, (3)how the theory of biodiversity and ecosystem function can be applied to thereal-world ecosystems and (4) what is the contribution of biodiversityconservation to carbon neutrality goals.</span> </p></p><p> <br></p><p> <strong></strong><strong></strong> </p>

[井新, 蒋胜竞, 刘慧颖, 李昱, 贺金生 (2022)

气候变化与生物多样性之间的复杂关系和反馈机制

生物多样性, 30, 22462.]

DOI:10.17520/biods.2022462      [本文引用: 1]

气候变化与生物多样性变化是人类社会正在经历的两大变化。气候变化影响生物多样性的方方面面, 是导致生物多样性丧失的一个主要驱动因子; 反过来, 生物多样性丧失会加剧气候变化。因此, 阻止甚至扭转气候变化和生物多样性丧失是当前人类社会亟需解决的全球性问题,但我们对气候变化与生物多样性之间的复杂关系和反馈机制尚缺乏清晰认识。本文总结了近年气候变化与生物多样性变化的研究进展, 重点概述了不同组织层次、空间尺度和维度的生物多样性对气候变化的响应和反馈等相关领域的研究进展和主要问题。结果发现多数研究关注气候变化对生物多样性的直接影响, 涉及到生物多样性的不同组织层次、维度和营养级, 但针对气候变化间接影响的研究仍然较少, 机理研究同样需要加强; 生物多样性对生态系统功能影响的环境依赖和尺度推演、生物多样性对生态系统多功能性的作用机理和量化方法是当前研究面临的挑战; 生物多样性对生态系统响应气候变化的作用机制尚无统一的认识; 生物多样性对气候变化的正、负反馈效应是国内外研究的盲点。最后, 本文展望了未来发展方向和需要解决的关键科学问题, 包括多因子气候变化对生物多样性的影响; 减缓和适应气候变化的措施如何惠益于生物多样性保护; 生物多样性与生态系统功能的理论如何应用到现实世界; 生物多样性保护对实现碳中和目标的贡献。

Kennedy D, Norman C (2005)

What don’t we know?

Science, 309, 75.

PMID:15994521      [本文引用: 1]

Krebs CJ (2015)

One hundred years of population ecology: Successes, failures and the road ahead

Integrative Zoology, 10, 233-240.

DOI:10.1111/1749-4877.12130      PMID:25664990      [本文引用: 1]

Population ecology is the most mature of the three subdisciplines of ecology partly because it has a solid mathematical foundation and partly because it can address the primary questions of distribution and abundance with experimental protocols. Yet there is much left to do to integrate our population knowledge into community and ecosystem ecology to help address the global issues of food security and the conservation of biodiversity. Many different approaches are now being developed to bring about this integration and much more research will be necessary to decide which if any will be most useful in achieving our goals of explaining the changes we see in the distribution and abundance of animals and plants. Food web ecology would appear to be the best approach at present because it uses the detailed information of the population ecology of particular species in combination with data on consumer-resource interactions to apply to the applied problems of biodiversity conservation, food security, pest management and disease prevention. If we can use our understanding of population ecology to address the practical problems of our time in a creative way, we will benefit both the human population and the Earth's biodiversity. Much remains to be done. © 2015 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and Wiley Publishing Asia Pty Ltd.

Lawton JH (1999)

Are there general laws in ecology?

Oikos, 84, 177.

DOI:10.2307/3546712      URL     [本文引用: 1]

Leibold MA, Chase JM (2018) Metacommunity Ecology. Princeton University Press, Princeton.

[本文引用: 1]

Li S, Wang TM (2022)

Progress in the research and conservation of China’s Felidae species

Biodiversity Science, 30, 22560. (in Chinese)

DOI:10.17520/biods.2022560      URL     [本文引用: 1]

[李晟, 王天明 (2022)

中国猫科动物研究与保护进展

生物多样性, 30, 22560.]

DOI:10.17520/biods.2022560      [本文引用: 1]

Liu YJ, Huang W, Yang Q, Zheng YL, Li SP, Wu H, Ju RT, Sun Y, Ding JQ (2022)

Research advances of plant invasion ecology over the past 10 years

Biodiversity Science, 30, 22438. (in Chinese with English abstract)

DOI:10.17520/biods.2022438      [本文引用: 1]

<p class="Abstract"> <strong><span>Background&amp; Aims:</span></strong><span>&nbsp;</span><span>Alienplant invasion has significantly threatened native biodiversity, ecologicalsecurity, socio-economic development, and human health. Consequently, exploringthe mechanisms of alien plant invasion and its ecological impacts are of greatimportance to the ecologically sustainable development of our country. Bothquestions are also key topics in the field of invasion ecology. Over the pastdecade, ecologists have conducted much research and achieved fruitful outcomes,providing theoretical guidance for the prevention and management of invasivealien plants and biodiversity conservation.&nbsp;</span></p><p class="Abstract"> <span style="font-weight:700;">Progresses:&nbsp;&nbsp;</span>Based on domestic and international studies inthis field over the past decade, the present article reviews the progress ofplant invasion ecology, focusing on the following three aspects of the field.First, we present the roles of species characteristics, biotic and abioticenvironments on alien plant invasion. Second, we review the impacts of alienplant invasion on native ecosystems. Third, we briefly introduce the term‘native plant invasion’ as an analog to alien plant invasion, as well asapplications of multi-omics technology in the area.<br><span> <p class="Abstract"> <strong>Prospects: </strong>The review looks ahead to further developments in invasion ecology,including that (1) multiple species experiments rather than single speciesexperiments are more suited to obtaining gerneralizable findings; (2) thegeographical scale is increasing, such as from local scale to latitudinalgradient pattern; (3) more studies are integrating multiple invasion theories,rather than one hypothesis, into a unified framework. </p></span></p>

[刘艳杰, 黄伟, 杨强, 郑玉龙, 黎绍鹏, 吴昊, 鞠瑞亭, 孙燕, 丁建清 (2022)

近十年植物入侵生态学重要研究进展

生物多样性, 30, 22438.]

DOI:10.17520/biods.2022438      [本文引用: 1]

外来植物入侵对本地生物多样性、生态安全、社会经济发展和人类健康造成了严重威胁。因此, 探究植物入侵机制及其生态效应对我国生态可持续发展具有重要意义, 也是植物入侵生态学的主要研究内容。过去10年, 生态学家开展了大量研究, 取得了丰硕成果, 为推动入侵植物防控与生物多样性保护提供了理论指导。为深入解析外来植物入侵机制, 为其防控管理提供依据, 本文从以下3个方面综述了植物入侵生态学重要进展: 首先是外来植物生物学特性、生物和非生物环境对植物入侵的调控作用; 其次是外来植物入侵对本地生态系统的影响; 最后介绍了外来植物入侵的类比研究范式——本地植物入侵, 以及多组学技术在入侵生态学研究中的应用。基于这些研究进展, 本文展望了该领域的未来发展趋势, 包括: (1)研究对象从单一物种扩展到多物种比较; (2)研究地理范围从局域尺度扩大到纬度梯度格局; (3)入侵机制从单一理论验证到综合阐释多个假说。

Z (2020)

Reassess wildlife conservation in the context of public health

Biodiversity Science, 28, 539-540. (in Chinese)

DOI:10.17520/biods.2020288      [本文引用: 1]

[吕植 (2020)

重新审视野生动物与公共健康的关系

生物多样性, 28, 539-540.]

DOI:10.17520/biods.2020288      [本文引用: 1]

Mi XC, Feng G, Hu YB, Zhang J, Chen L, Corlett RT, Hughes AC, Pimm S, Schmid B, Shi SH, Svenning JC, Ma KP (2021)

The global significance of biodiversity science in China: An overview

National Science Review, 8, nwab032.

[本文引用: 2]

Qin HN, Yang Y, Dong SY, He Q, Jia Y, Zhao LN, Yu SX, Liu HY, Liu B, Yan YH, Xiang JY, Xia NH, Peng H, Li ZY, Zhang ZX, He XJ, Yin LK, Lin YL, Liu QR, Hou YT, Liu Y, Liu QX, Cao W, Li JQ, Chen SL, Jin XH, Gao TG, Chen WL, Ma HY, Geng YY, Jin XF, Chang CY, Jiang H, Cai L, Zang CX, Wu JY, Ye JF, Lai YJ, Liu B, Lin QW, Xue NX (2017)

Threatened Species List of China’s Higher Plants

Biodiversity Science, 25, 696-744. (in Chinese and in English)

DOI:10.17520/biods.2017144      URL     [本文引用: 1]

[覃海宁, 杨永, 董仕勇, 何强, 贾渝, 赵莉娜, 于胜祥, 刘慧圆, 刘博, 严岳鸿, 向建英, 夏念和, 彭华, 李振宇, 张志翔, 何兴金, 尹林克, 林余霖, 刘全儒, 侯元同, 刘演, 刘启新, 曹伟, 李建强, 陈世龙, 金效华, 高天刚, 陈文俐, 马海英, 耿玉英, 金孝锋, 常朝阳, 蒋宏, 蔡蕾, 臧春鑫, 武建勇, 叶建飞, 赖阳均, 刘冰, 林秦文, 薛纳新 (2017)

中国高等植物受威胁物种名录

生物多样性, 25, 696-744.]

DOI:10.17520/biods.2017144      [本文引用: 1]

Ricklefs RE (1987)

Community diversity: Relative roles of local and regional processes

Science, 235, 167-171.

PMID:17778629      [本文引用: 1]

The species richness (diversity) of local plant and animal assemblages-biological communities-balances regional processes of species formation and geographic dispersal, which add species to communities, against processes of predation, competitive exclusion, adaptation, and stochastic variation, which may promote local extinction. During the past three decades, ecologists have sought to explain differences in local diversity by the influence of the physical environment on local interactions among species, interactions that are generally believed to limit the number of coexisting species. But diversity of the biological community often fails to converge under similar physical conditions, and local diversity bears a demonstrable dependence upon regional diversity. These observations suggest that regional and historical processes, as well as unique events and circumstances, profoundly influence local community structure. Ecologists must broaden their concepts of community processes and incorporate data from systematics, biogeography, and paleontology into analyses of ecological patterns and tests of community theory.

Simpson GG (1951)

The species concept

Evolution, 5, 285-298.

DOI:10.1111/j.1558-5646.1951.tb02788.x      URL     [本文引用: 1]

Sutherland WJ, Freckleton RP, Godfray HCJ, Beissinger SR, Benton T, Cameron DD, Carmel Y, Coomes DA, Coulson T, Emmerson MC, Hails RS, Hays GC, Hodgson DJ, Hutchings MJ, Johnson D, Jones JPG, Keeling MJ, Kokko H, Kunin WE, Lambin X, Lewis OT, Malhi Y, Mieszkowska N, Milner-Gulland EJ, Norris K, Phillimore AB, Purves DW, Reid JM, Reuman DC, Thompson K, Travis JMJ, Turnbull LA, Wardle DA, Wiegand T (2013)

Identification of 100 fundamental ecological questions

Journal of Ecology, 101, 58-67.

DOI:10.1111/1365-2745.12025      URL     [本文引用: 2]

Vellend M (2016) The Theory of Ecological Communities. Princeton University Press, Princeton.

[本文引用: 3]

Wang SP, Luo MY, Feng YH, Chu CJ, Zhang DY (2022)

Theoretical advances in biodiversity research

Biodiversity Science, 30, 22410. (in Chinese with English abstract)

[本文引用: 2]

[王少鹏, 罗明宇, 冯彦皓, 储诚进, 张大勇 (2022)

生物多样性理论最新进展

生物多样性, 30, 22410.]

DOI:10.17520/biods.2022410      [本文引用: 2]

生物多样性是生态系统复杂性的重要特征, 理解多样性的形成和维持机制一直是理论生态学研究的核心议题。本文从三方面概述了生物多样性理论的最新进展。一是物种共存和群落构建, 总结了现代共存理论和基于过程的群落构建理论的新进展。二是物种相互作用, 综述了利用经验数据推断物种相互作用关系和强度的最新方法。三是生态-进化动态, 介绍了生态-进化模型的一般框架及其在生物多样性研究中的应用。最后对生物多样性理论的发展趋势做了展望, 特别是多尺度整合理论和全球变化下的预测理论。

Xu W, Ma ZY, Jing X, He JS (2016)

Biodiversity and ecosystem multifunctionality: Advances and perspectives

Biodiversity Science, 24, 55-71. (in Chinese with English abstract)

DOI:10.17520/biods.2015091      [本文引用: 1]

As global biodiversity losses accelerate, there is increasing evidence shows that there may be negative impacts on ecosystem functioning, such as declines in plant primary productivity and imbalances in nutrient cycling. Thus, it is critical to understand the relationship between biodiversity and ecosystem functioning (BEF). However, ecosystems can provide multiple functions simultaneously (ecosystem multifunctionality, EMF). Since 2007, the quantification of relationships between biodiversity and ecosystem multifunctionality (BEMF) has generated additional questions and controversies, such as the lack of consensus in appropriate multifunctionality indices and uncertain trade-offs among ecosystem functions. In this review, we briefly summarize the history of BEMF studies and the methods of EMF quantification, then outline the mechanisms of EMF maintenance and current research progress. We emphasize the importance of optimizing EMF quantifications and investigating the relationship between different dimensions of biodiversity and EMF. We also provide suggestions and directions for future research on BEMF.

[徐炜, 马志远, 井新, 贺金生 (2016)

生物多样性与生态系统多功能性: 进展与展望

生物多样性, 24, 55-71.]

DOI:10.17520/biods.2015091      [本文引用: 1]

全球变化和人类活动引起的生物多样性丧失将会对生态系统功能产生诸多不利影响, 如生产力下降、养分循环失衡等。因此, 始于20世纪90年代的生物多样性与生态系统功能(biodiversity and ecosystem functioning, BEF)研究一直是生态学界关注的热点。然而, 随着研究的深入, 人们逐步认识到生态系统并非仅仅提供单个生态系统功能, 而是能同时提供多个功能, 这一特性被称之为&#x0201c;生态系统多功能性&#x0201d; (ecosystem multifunctionality, EMF)。尽管有此认识, 但直到2007年, 研究者才开始定量描述生物多样性与生态系统多功能性(biodiversity and ecosystem multifunctionality, BEMF)的关系。目前, BEMF研究已成为生态学研究的一个重要议题, 但仍存在很多问题和争议, 如缺少公认的多功能性测度标准、生态系统不同功能之间的权衡问题等。本文概述了BEMF研究的发展历程、常用的量化方法、EMF的维持机制和不同研究视角下BEMF的关系。针对现有研究中的不足, 本文还总结了需要进一步深入研究的地方, 特别强调了优化EMF测度方法和研究不同维度生物多样性与EMF间关系的重要性, 以期对未来的BEMF研究有所帮助。

Xu Y, Zang RG (2022)

The theoretical and practical research on conservation of Wild Plants with Extremely Small Populations in China

Biodiversity Science, 30, 22505. (in Chinese with English abstract)

DOI:10.17520/biods.2022505      [本文引用: 1]

<p class="Abstract"> <strong>Aims: </strong>Wild Plants with Extremely Small Populations (WPESP)are plant species with high risk of extinction that are in urgent need ofconservation. This concept has become a hotspot of biodiversity conservation inChina since it was first proposed. In 2010, China officially launched theImplementation Plan of Rescuing and Conserving China’s WPESP (2011–2015), whichinitiated conservation research efforts and achieved successful progress.<br><strong>Methods: </strong>We conducted a topic search onWeb of Science and on China National Knowledge Infrastructure (CNKI) with“extremely small population*” and “plant” as the search terms. We reviewed theresearch results and achievements from academic papers, dissertations, andconference papers in order to evaluate the conservation of WPESP in China. <br><strong>Results: </strong>WPESPresearch provides an important theoretical basis to guide conservationpractice. We systematically reviewed research on the conservation of WPESP inrecent years from six aspects: (1) the survey and monitoring of population,community and habitat, (2) adaptation, (3) genetic diversity, (4) reproductivebiology, (5) endangered mechanisms, and (6) dynamic models. In this paper, wereviewed WPESP conservation progress from five aspects: (1) <i>in situ</i> conservation, (2) <i>ex situ</i> conservation and germplasm conservation, (3)reintroduction, (4) artificial propagation, and (5) technical regulation systemconstruction. We also proposed several priorities for future conservationresearch. <br><strong>Conclusions:</strong> Based on current theoretical and practicalresearch, we propose five priorities for future conservation research of WPESPin China. We suggest that the conservation list should be adjusted and improvedperiodically. Researchers should highlight the observation and prediction ofpopulation structure, reinforce research on the formation and recoverymechanisms of small populations and conduct long-term systematic studies ofspecific species. The WPESP concept should be promoted at international levelsto increase its influence. We hope this review may provide a reference fornational biodiversity protection and ecological civilization construction.</p>

[许玥, 臧润国 (2022)

中国极小种群野生植物保护理论与实践研究进展

生物多样性, 30, 22505.]

DOI:10.17520/biods.2022505      [本文引用: 1]

极小种群野生植物大都分布范围狭窄、个体数量稀少且自然更新困难, 面临随时灭绝的风险, 迫切需要拯救性保护。极小种群野生植物这一概念自提出以来受到了保护生物学领域的广泛关注, 已成为当前中国生物多样性保护的一个热点方向。我国于2010年正式启动实施极小种群野生植物拯救保护工程, 并开展了大量的保护研究和实践。以“extremely small population*”和“plant”为检索词在Web of Science进行了主题检索, 以“极小种群”和“植物”为检索词在中国知网进行了主题检索, 对获取的的学术期刊论文、学位论文和会议论文进行了梳理。本文从极小种群野生植物种群、群落及生境调查与监测、适应性、遗传多样性、繁殖生物学、濒危机制、动态模型6个方面对近年来极小种群野生植物的理论研究工作进行了较为系统的综述。在此基础上, 从就地保护、迁地保护与种质资源保存、野外回归、人工繁育、标准化体系5个方面, 回顾了极小种群野生植物保护实践及取得的进展。基于极小种群野生植物保护理论与实践研究现状, 我们建议在极小种群野生植物未来保护工作中不断调整和完善保护名录, 加强种群结构的观测和预测、小种群形成和恢复机制的针对性研究以及特定物种的长期系统性研究, 同时注意推进这一概念在国际上的推广。希望本文能为国家生物多样性保护和生态文明建设提供参考。

Xue C, Li BK, Lei TY, Shan HY, Kong HZ (2022)

Advances on the origin and evolution of biodiversity

Biodiversity Science, 30, 22460. (in Chinese with English abstract)

DOI:10.17520/biods.2022460      [本文引用: 1]

The origin and evolution of biodiversity is one of the most attractivescientific questions of the nature. With the accumulation of multi-omics dataand the development of related analysis techniques, our understanding of thisproblem has been deepened gradually, with new meanings assigned to it. On theoccasion of the 30th Anniversary of the launch of Biodiversity, this papersystematically reviews the important progress in the field of biodiversity(e.g. the re-construction of “Tree of Life”, the spatiotemporal distributionpattern of biodiversity, the concepts of species and speciation, and the originand diversification of new characters) in the past decade. We believe that moreaccurate reconstruction of the “Tree of Life”, in-depth mining of genomic data,and multidisciplinary integration will be the main trends in the future.

[薛成, 李波卡, 雷天宇, 山红艳, 孔宏智 (2022)

生物多样性起源与进化研究进展

生物多样性, 30, 22460.]

DOI:10.17520/biods.2022460      [本文引用: 1]

生物多样性的起源与进化是自然界最具吸引力的科学问题之一。随着多组学数据的积累和相关分析技术的发展, 人们对该问题的理解逐渐深入, 不断赋予其新的内涵。值此《生物多样性》创刊三十周年之际, 本文系统评述生物多样性研究领域最近十年在“生命之树”重建、生物多样性时空分布格局、物种概念与物种形成以及新性状起源与多样化等方面的重要进展。我们认为, 更精准地重建“生命之树”、深入挖掘基因组数据以及多学科交叉融合将是今后研究的主要趋势。

Zhang J (2017)

Biodiversity science and macroecology in the era of big data

Biodiversity Science, 25, 355-363. (in Chinese with English abstract)

DOI:10.17520/biods.2017037      [本文引用: 1]

High-quality biodiversity data are the scientific basis for understanding the origin and maintenance of biodiversity and dealing with its extinction risk. Currently, we identify at least seven knowledge shortfalls or gaps in biodiversity science, including the lack of knowledge on species descriptions, species geographic distributions, species abundance and population dynamics, evolutional history, functional traits, interactions between species and the abiotic environment, and biotic interactions. The arrival of the current era of big data offers a potential solution to address these shortfalls. Big data mining and its applications have recently become the frontier of biodiversity science and macroecology. It is a challenge for ecologists to utilize and effectively analyze the ever-growing quantity of biodiversity data. In this paper, I review several biodiversity-related studies over global, continental, and regional scales, and demonstrate how big data approaches are used to address biodiversity questions. These examples include forest cover changes, conservation ecology, biodiversity and ecosystem functioning, and the effect of climate change on biodiversity. Furthermore, I summarize the current challenges facing biodiversity data collection, data processing and data analysis, and discuss potential applications of big data approaches in the fields of biodiversity science and macroecology.

[张健 (2017)

大数据时代的生物多样性科学与宏生态学

生物多样性, 25, 355-363.]

DOI:10.17520/biods.2017037      [本文引用: 1]

高质量的生物多样性数据是认知生物多样性的起源和维持机制及应对其丧失风险的科学基础。当前, 在新物种发现、已知物种的地理分布、种群数量与时空动态、物种进化史、功能性状、物种与环境之间以及物种与物种之间的相互作用等7个方面都存在着知识上的空缺。大数据时代的到来为弥补这些知识空缺提供了可能,大数据的挖掘及其应用最近已成为国际生物多样性与宏生态学研究的前沿内容。如何有效地利用和分析不断增长的生物多样性大数据是生物多样性研究面临的一个极大挑战。本文通过全球、大陆和区域尺度上的研究案例展示了大数据在生物多样性研究中应用的新进展, 内容涉及森林覆盖变化、保护生态学、生物多样性与生态系统功能、气候变化对生物多样性的影响等。最后, 对大数据在生物多样性研究中存在的数据采集、处理和分析等方面的问题进行了总结, 并对其潜在应用前景进行了探讨。

/