生物多样性, 2022, 30(10): 22462 doi: 10.17520/biods.2022462

综述

气候变化与生物多样性之间的复杂关系和反馈机制

井新,,1,*, 蒋胜竞,1, 刘慧颖,2, 李昱,1, 贺金生,1,3

1.兰州大学草种创新与草地农业生态系统全国重点实验室/兰州大学草地农业科技学院, 兰州 730020

2.华东师范大学生态与环境科学学院, 上海 200241

3.北京大学城市与环境学院, 北京 100871

Complex relationships and feedback mechanisms between climate change and biodiversity

Xin Jing,,1,*, Shengjing Jiang,1, Huiying Liu,2, Yu Li,1, Jin-Sheng He,1,3

1. State Key Laboratory of Grassland Agro-ecosystem, and College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020

2. School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241

3. College of Urban and Environmental Science, Peking University, Beijing 100871

通讯作者: * E-mail:jingx@lzu.edu.cn

编委: 蒋林

责任编辑: 周玉荣

收稿日期: 2022-08-11   接受日期: 2022-09-27  

基金资助: 国家自然科学基金(32130065)
兰州大学“双一流”人才引进科研启动经费

Corresponding authors: * E-mail:jingx@lzu.edu.cn

Received: 2022-08-11   Accepted: 2022-09-27  

摘要

气候变化与生物多样性丧失是人类社会正在经历的两大变化。气候变化影响生物多样性的方方面面, 是导致生物多样性丧失的一个主要驱动因子; 反过来, 生物多样性丧失会加剧气候变化。因此, 阻止甚至扭转气候变化和生物多样性丧失是当前人类社会亟需解决的全球性问题,但我们对气候变化与生物多样性之间的复杂关系和反馈机制尚缺乏清晰认识。本文总结了近年气候变化与生物多样性变化的研究进展, 重点概述了不同组织层次、空间尺度和维度的生物多样性对气候变化的响应和反馈等相关领域的研究进展和存在的主要问题。结果发现多数研究关注气候变化对生物多样性的直接影响, 涉及到生物多样性的不同组织层次、维度和营养级, 但针对气候变化间接影响的研究仍然较少, 机理研究同样需要加强; 生物多样性对生态系统功能影响的环境依赖和尺度推演、生物多样性对生态系统多功能性的作用机理和量化方法是当前研究面临的挑战; 生物多样性对生态系统响应气候变化的作用机制尚无统一的认识; 生物多样性对气候变化的正、负反馈效应是国内外研究的盲点。最后, 本文展望了未来发展方向和需要解决的关键科学问题, 包括多因子气候变化对生物多样性的影响; 减缓和适应气候变化的措施如何惠益于生物多样性保护; 生物多样性与生态系统功能的理论如何应用到现实世界; 生物多样性保护对实现碳中和目标的贡献。

关键词: 气候变化; 多维度生物多样性; 多尺度生物多样性; 生态系统多功能性; 反馈机制

Abstract

Background and Aims: Climate change and biodiversity loss are two major changes that human society is experiencing. Climate change affects all aspects of biodiversity and is a major driver of biodiversity loss; in turn, biodiversity loss exacerbates climate change. Therefore, halting or even reversing climate change and biodiversity loss is a global issue that needs to be addressed by human society. However, we lack a clear understanding of the complex relationships and feedback mechanisms between climate change and biodiversity. Here, we summarize the research on climate and biodiversity change in the last decade by focusing on studies investigating the responses and feedback of biodiversity to climate change at different organizational levels, spatial scales, and diversity dimensions.
Progress: Our results showed that most studies focus on the direct impacts of climate change on biodiversity, involving different organizational levels and dimensions and trophic levels of biodiversity. Studies on the indirect impacts of climate change were rare, and we suggested that mechanistic studies need to be strengthened. The mechanisms and quantification of the effects of biodiversity on ecosystem multifunctionality were challenges for current research. There was no consensus on how biodiversity contributes to ecosystem response to climate change; the positive and negative feedback effects of biodiversity in the context of climate change were a blind spot in domestic and international research.
Prospects: The future direction and key scientific issues that need to be solved in the field of climate change and biodiversity change are numerous. We identify 4 main areas of future research: understanding (1) the impacts of multi-factor climate change on biodiversity, (2) how mitigation and adaptation measures to climate change can benefit biodiversity conservation, (3) how the theory of biodiversity and ecosystem function can be applied to the real-world ecosystems and (4) what is the contribution of biodiversity conservation to carbon neutrality goals.

Keywords: climate change; multi-dimensional biodiversity; multi-scale biodiversity; ecosystem multifunctionality; feedback mechanisms

PDF (1678KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

井新, 蒋胜竞, 刘慧颖, 李昱, 贺金生 (2022) 气候变化与生物多样性之间的复杂关系和反馈机制. 生物多样性, 30, 22462. doi:10.17520/biods.2022462.

Xin Jing, Shengjing Jiang, Huiying Liu, Yu Li, Jin-Sheng He (2022) Complex relationships and feedback mechanisms between climate change and biodiversity. Biodiversity Science, 30, 22462. doi:10.17520/biods.2022462.

我们生活的世界正在经历两大变化, 并且与每个人息息相关, 这就是气候变化和生物多样性变化。这两大变化, 一个是非生物的环境变化, 一个是生物因素的变化, 它们的发生都与人类活动密切相关, 反过来又影响到人类活动。

全球气候变化是不争的事实, 鲜有异议。气候变化是指气候平均状态在较长一段时间上具有统计学意义的改变或波动。通常情况, 全球气候变化是指工业革命以来, 与大气CO2浓度上升相联系的气温的升高和降水格局的改变。联合国气候变化政府间专家委员会(Intergovernmental Panel on Climate Change, IPCC)第6次评估报告明确指出, 大气中CO2浓度相对于1850年工业革命前的285 ppm已经升高了47.3%, 即达到了409.9 ppm, 导致全球和陆地地表大气温度分别升高1.09oC和1.59oC, 也加剧了极端气候事件(如干旱、热浪)发生的强度、频率和持续时间(IPCC, 2021)。

相比较而言, 人们对生物多样性变化的感知并没有那么直接。这是因为, 认识生物多样性的变化, 一方面需要专业知识, 甚至依赖专业设备的分析; 另一方面需要长期的观察、监测(马克平等, 2018; 冯晓娟等, 2019)。例如人们很早就注意到一些大型动物、有花植物种群数量的变化, 制定了珍稀濒危生物的红皮书, 但对于隐花植物、昆虫、海洋生物、微生物等则关注甚少, 而这些生物往往在生态系统中扮演了重要的角色。随着气候变化和人类活动的加剧, 全球尺度上的生物多样性丧失是极其显著的。据统计, 自公元1500年以来, 约有30%的物种在全球范围内受到威胁或已经灭绝(Isbell et al, 2022)。在地球的演化历史上, 由于剧烈的环境变化曾经出现过5次生物大灭绝, 而目前由人类活动引起的生物多样性丧失, 特别是4万年前人类走出非洲到现在, 大规模的生物灭绝, 被认为是第6次生物大灭绝(Cowie et al, 2022)。当然, 现在的生物灭绝速率要远比人类非洲起源时代大得多。

气候变化与人类活动共同作用, 塑造了地球生物多样性格局; 而不同维度和营养级上的生物多样性变化, 反过来或多或少也影响气候变化和人类活动, 也即生物多样性的反馈作用(图1)。其中, 我们了解最少的是生物多样性如何通过生态系统功能的变化间接调控气候变化。比如, 传统知识认为, 伴随着生物多样性的丧失, 生态系统固碳、抵御极端气候、抵御外来种入侵等功能也随之减弱, 甚至丧失(Díaz et al, 2009a; Tilman et al, 2014; Isbell et al, 2015), 最终会加速气候变化(Mori et al, 2021)。但因生物多样性的多维度性和多营养级, 使得准确预测生态系统功能如何响应生物多样性的变化变得异常困难(Le Bagousse-Pinguet et al, 2019; Wu et al, 2022)。

图1

图1   气候变化对多维度、多营养级生物多样性的影响以及生物多样性对气候变化的反馈作用。人类活动和生物多样性的协同发展是维持生态系统多服务性、生态安全和人类可持续性的基础。

Fig. 1   Impacts of climate change on multi-dimensional, multi-trophic biodiversity, and the feedback of biodiversity to climate change. The coordinated development of human activities and biodiversity is the basis for maintaining ecosystem multiserviceability, ecological security and human sustainability.


鉴于气候变化和生物多样性变化对人类社会的深刻影响, 有两个国际组织评估了适应和减缓这些变化的可能对策。IPCC是世界气象组织(World Meteorological Organization, WMO)及联合国环境规划署(United Nations Environment Programme, UNEP)于1988年联合建立的政府间机构, 其主要任务是对关于气候变化的科学、技术和社会经济知识的现状, 气候变化对社会、经济的潜在影响和未来风险, 适应和减缓气候变化的可能对策等进行评估。到目前为止, IPCC第6次气候变化评估报告已经出版 (https://www.ipcc.ch/assessment-report/ar6)。成立于2012年的生物多样性和生态系统服务政府间科学政策平台(Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, IPBES, https://ipbes.net/global-assessment)作为独立的政府间机构, 开展全球和区域尺度的生物多样性与生态系统服务评估, 涉及包括《生物多样性公约》《濒危野生动植物物种国际贸易公约》《湿地公约》等7项环境领域的国际协议, 其作用类似IPCC。2021年6月, IPCC和IPBES联合发布了一份关于生物多样性和气候变化的会议报告, 凸显了气候变化和生物多样性对解决目前环境问题的重要性(Pörtner et al, 2021)。

近20年, 生物多样性相关研究发表文章数量呈逐年增长趋势, 而同时关注生物多样性和气候变化的文章在2000-2017年呈缓慢增长, 从2018年开始年增长迅速 (图2a)。生物多样性和气候变化相关研究领域主要集中在生物多样性、生物多样性保护、生态环境科学和野生生物管理等, 其次是环境科学、种群研究、生物地理学和计算生物学等领域(图2b)。

图2

图2   生物多样性和气候变化领域发表文章趋势分析和主要研究方向。(a)近20年生物多样性和气候变化相关文章发表趋势(数据来源Web of Science, 最后一次访问2022年8月6日)。(b)生物多样性和气候变化主要研究方向发表文章数量。

Fig. 2   Analysis of publication trends and main research areas in the field of biodiversity and climate change. (a) Publication trends in biodiversity and climate change-related articles published over the last 20 years (data sources: Web of Science, last accessed August 6, 2022). (b) Number of articles published in the main research areas of biodiversity and climate change.


气候变化和生物多样性变化虽然得到了极大关注, 但是我们对两者之间的复杂关系和反馈机制尚缺少清晰认识(牛书丽等, 2009; Chapin III & Díaz, 2020; Mori et al, 2021)。气候变化对生物多样性的影响表现在不同的时空尺度和不同组织层次, 异常复杂(图3)。在大尺度上, 气候变化直接影响到物种的地理分布、迁徙模式、季节动态等。在生态系统尺度上, 气候变化最重要和最直接的影响是改变群落物种组成、多样性以及与生物多样性紧密关联的生态系统功能。反过来, 生物多样性变化是多维的, 主要包括生物群落组成变化和生物多样性丧失, 表现为物种多样性以及物种多度、物种分布和遗传多样性等方面的变化(Pereira et al, 2012)。生物多样性变化的多维性使得研究生物多样性对气候变化的反馈作用变得异常复杂。

图3

图3   主要气候变化因子对不同时空尺度和不同组织层次上生物多样性的影响

Fig. 3   Impacts of major climate change factors on biodiversity at different spatial and temporal scales and different levels of organization


基于以上背景, 本文重点概述了近10年气候变化与生物多样性之间的复杂关系和反馈机制的研究进展, 并展望了未来发展方向和需要解决的关键科学问题。

1 相关研究领域的现状和主要问题

针对气候变化和生物多样性之间的复杂关系和反馈机制,在这一部分我们着重综述了(1)气候变化对生物多样性的影响, 包括直接和间接影响、对不同组织层次、维度和营养级生物多样性的影响, (2)生物多样性与生态系统功能的关系, 以及(3)生物多样性对气候变化的贡献和反馈等相关研究领域的现状和主要问题。

1.1 气候变化对生物多样性的直接和间接影响

近代以来, 生境丧失、农业扩张、资源过度开发、外来物种入侵和土地利用变化一直是生物多样性丧失主要且直接的驱动因素(Hoffmann et al, 2010; 魏辅文等, 2014; Isbell et al, 2022), 但目前越来越多的研究表明, 气候变化很可能成为过去一个世纪物种消失甚至灭绝的主要原因(Jones et al, 2016)。

气候变化对生物多样性的影响不仅表现在对生物体的生理、活性、生长和温度敏感性产生直接影响, 还会通过改变非生物环境而间接影响物种的空间分布、群落组成以及物种相互作用。在受到气候变化影响后, 生物一般有3种可能的反应: 变化, 迁移, 灭绝(Rinawati et al, 2013)。例如, 随着全球变暖, 植物和动物向两极或更高海拔移动(Chen et al, 2011; Lenoir et al, 2020; 祖奎玲和王志恒, 2022), 也有些物种表现出开花提前等变化, 甚至还有一些物种发生了快速进化以适应环境变化(Shen et al, 2022)。除了前两种反应, 从一个地区灭绝的生物也不在少数。气候变化增加了极端气候的频率和强度, 洪水、热浪、干旱和火灾的增加也深刻影响了生物多样性。有研究发现, 如果全球大气温度超过工业化前水平的1.5°C, 植物、动物和昆虫等的地理分布范围将下降50%, 物种灭绝会明显加速(Warren et al, 2021)。除了直接影响, 气候变化还可能通过物种相互作用影响生物多样性水平。例如, 当一些关键物种因为气候变化而灭绝, 与之依赖的物种也必然会受到影响(王晴晴等, 2021), 包括捕食者或猎物(Terraube et al, 2017)、寄生虫(Pardikes et al, 2022)以及对植物繁殖至关重要的物种, 例如传粉昆虫(Vasiliev & Greenwood, 2021; Ganuza et al, 2022)。此外, 气候变化可能影响特定物种的竞争者(Collins et al, 2022)、捕食者(Bestion et al, 2019)或病原体(Delgado-Baquerizo et al, 2020; Makiola et al, 2022), 从而影响生物多样性。另外, 气候变化还可能导致相互依存的物种由于对环境变化响应的不同步, 从而出现物候的不匹配(Kharouba et al, 2018; 刘安榕等, 2018; Visser & Gienapp, 2019)。目前气候变化对生物多样性直接影响的研究很多, 但针对间接影响的研究仍然较少, 而如何确定与量化气候变化对物种相互作用的方向以及程度仍面临挑战(Blanchet et al, 2020; Collins et al, 2022)。目前大部分研究仅仅关注单一或多种气候变化因子对有限的生物多样性维度、组织层次或时空尺度的直接或间接影响。因此, 未来的实验设计与理论分析需要同时考虑多种气候变化因子在更大时空尺度上对多维度、多组织层次生物多样性的直接与间接影响, 以便全面地评估和量化气候变化对生物多样性的影响。

1.2 气候变化对不同组织层次生物多样性的影响

气候变化可在分子、个体、种群、群落、生态系统和生物群区等不同组织层次影响生物多样性。在分子水平上, 气候变化会影响生物体内相关基因的表达及代谢产物的生成, 这些变化有助于提高生物体对气候变化的适应(Scheffers et al, 2016)。如植物在干旱环境中会生产更多的脯氨酸、丙二醛、脱落酸等以提高自身的抗胁迫能力(Li et al, 2021)。在个体水平上, 生物体响应气候变化主要表现在生理形态特征(Bjorkman et al, 2018)和生长繁殖策略(Petry et al, 2016)这两方面, 但具体的响应模式还取决于其自身的生理特征和地理分布范围(Humphrey et al, 2018)。在种群水平上, 气候变化会引起物种微进化。微进化是指生物在基因组水平上通过基因突变与多基因交互作用, 改变表型或其他性状以适应新环境(Bonnet et al, 2022)。例如, 在沿美国加利福尼亚州海岸线的一项研究中发现, 因气候变化所引起的入海口水流变化(由急水流向缓水流变化)使得低骨板化的三刺鱼(Gasterosteus aculeatus)种群数量显著上升(Des Roches et al, 2020)。在群落水平, 气候变化主要通过非生物和生物因素两方面来影响生物多样性。一方面, 如在寒冷且潮湿的温带地区, 温度的升高可增加土壤有机质的分解, 提高土壤养分的可利用性(Hicks Pries et al, 2017)。这些变化为生物体提供更多生态位的同时, 也会带来新的植物物种间及植物-微生物间的竞争关系。在更大的生态系统水平上, 气候变化还会导致生态系统结构、功能以及多样性发生改变。如生态系统的退化将直接导致生物多样性的丧失。另一方面, 在生态系统响应气候变化的同时, 也会对气候变化产生一系列的反馈效应(详见1.6节), 正反馈效应将导致更大程度的气候变化, 进而加剧气候变化对生态系统结构和功能的影响。在更大的生物群区水平, 以极端气候著称的生物群区, 如极地、山地、荒漠和北方森林等, 往往微小的温度或降水变化就会对物种组成和生物多样性产生较大的影响(Sala et al, 2000)。

值得注意的是, 不同组织层次的生物多样性对气候变化的响应可能不同, 且不同组织层次间也可能相互影响。因此未来研究必须综合考虑气候变化对不同组织层次生物多样性的影响。此外, 气候变化会在不同时间和空间尺度上影响生物多样性, 要准确地评估气候变化对生物多样性的影响需要长时间、多位点的研究, 在研究方法上也需要适当加入遥感等大数据集并耦合相关的统计和过程模型。

1.3 气候变化对不同维度生物多样性的影响

气候变化对生物多样性的影响因生物多样性的多维度性而变得复杂。首先, 在物种多样性层面的研究最为广泛, 但经常因研究区域、生态系统类型和生物类群的不同而得到不一致的结论(Gruner et al, 2017; Bastazini et al, 2021)。比如, 有的研究发现气候变暖导致物种丰富度下降, 但对群落均匀度影响很小; 也有研究发现气候变暖不影响物种丰富度, 但会影响物种的优势度。气候变化对功能多样性的影响, 目前关注最多的主要是以功能性状表征为主的功能多样性。功能性状是指那些影响个体或物种的生长、存活和繁殖等表现, 最终影响物种适合度的形态、生理、物候等性状(Violle et al, 2007)。物种性状选择、性状空间维度和空间结构的量化(Mouillot et al, 2021)是该领域主要关注的方向之一。在群落水平, 气候变化可能不会导致功能多样性的直接丧失, 一个可能的原因是物种功能冗余(一个或多个物种的丧失对生态系统功能的影响很小或可忽略)可能缓冲气候变化对功能多样性的影响(Gallagher et al, 2013)。但目前有关气候变化对功能多样性的影响研究主要来自于地上生物, 而对土壤生物功能多样性的影响尚缺乏系统性认识(Malik et al, 2020)。在进化水平, 假如因气候变化导致的物种丧失在进化树上不是随机分布的, 那么气候变化可能导致谱系多样性不成比例地丧失(Thuiller et al, 2011; Li et al, 2019)。有研究发现快速的气候变化是导致谱系多样性丧失的重要原因(Saladin et al, 2020)。尽管如此, 谱系多样性如何响应气候变化的选择压力仍缺少实证性研究(Lavergne et al, 2010; Li et al, 2019)。

气候变化对不同营养级生物多样性的影响也不尽相同, 这可能与不同营养级的物候对气候变化的响应存在差异有关。在过去的几十年间, 植物、鸟类、昆虫、两栖动物、真菌等物候都发生了显著的改变(Thackeray et al, 2016; Roslin et al, 2021)。然而, 生物间物候的变化, 特别是不同营养级物种的物候, 对气候变化的响应并不同步, 这改变了物种间相互作用强度(Gilman et al, 2010), 导致高营养级物种多样性的下降(Potts et al, 2010), 甚至造成了局部地区动植物种群衰退。物候对气候变化的非同步性响应不但存在于不同营养级物种间(Roslin et al, 2021), 也会发生于同一生物的不同器官间(Blume-Werry, 2022)。最近的研究发现, 植物地上、地下部分的物候对气候变暖的响应存在差异(Liu et al, 2022a), 这势必会影响植物向地上绿色食物网和地下棕色食物网所提供资源的季节动态(Thakur, 2020)。由于棕色食物网对气候变化的响应具有更高的稳定性(Thakur, 2020), 因此, 植物地上、地下物候的非同步性响应引起的资源质量和数量输入的季节性改变可能会造成绿色和棕色食物网间物质和能量流动的失衡(Visser & Gienapp, 2019), 从而对物种多样性及生态系统功能造成严重威胁。目前为止, 在气候变化背景下, 人们对生物物候的非同步性变化如何影响多营养级生物多样性的认识尚不清晰, 极有可能成为未来研究热点。

1.4 生物多样性变化对生态系统功能的影响

生物多样性变化最直接的后果是生态系统功能的变化; 而生态系统功能的变化, 如初级生产力的变化, 反过来又影响气候变化。因此, 厘清生物多样性与生态系统功能之间的关系是理解生物多样性与气候变化复杂关系的关键(Mori et al, 2021)。过去30年, 生物多样性与生态系统功能关系研究得以快速发展, 是因为多样性的丧失会对生态系统功能造成直接负面的影响, 进而影响生态系统为人类提供的各类服务(Tilman et al, 2014; van der Plas, 2019)。长期以来, 该领域的研究主要以草地生态系统为主, 近些年因森林生物多样性在固碳方面的重要性(Díaz et al, 2009a; Liu et al, 2018; Feng et al, 2022; Hua et al, 2022), 其与生态系统功能的关系等方面的研究得以发展, 研究方法涉及到控制实验、野外观察、森林清查等(Verheyen et al, 2016)。生物多样性丧失对生态系统功能的影响主要有两大机理性的解释, 分别是取样效应(the sampling effect)和互补效应(the complementarity effect) (Loreau & Hector, 2001)。其中, 取样效应是指优势物种的特定功能性状对生态系统功能的影响占优势, 而互补效应是指在高的生物多样性群落里面, 由于资源分异或正的种间关系使得生态系统整体资源利用效率增加, 进而提升生态系统功能。因草地和森林生态系统结构的差异, 所涉及的机理过程各有不同(详见Forrester & Bauhus, 2016)。已有的研究普遍发现, 取样和互补效应同时共存, 并且随着时间的推移, 生物多样性的互补效应逐渐增强(Tilman et al, 2001; Huang et al, 2018; Bongers et al, 2021)。尽管如此, 生物多样性对生态系统功能影响的环境依赖(Ratcliffe et al, 2017; Fei et al, 2018; Jing et al, 2022)、尺度推演(Craven et al, 2020; Gonzalez et al, 2020; Qiu & Cardinale, 2020)仍是当前研究面临的挑战。

传统的研究主要关注生物多样性丧失对单一生态系统功能的影响, 比如生态系统初级生产力。而一个健康的生态系统, 不仅能提供初级生产力, 还同时提供养分循环、有机质分解等多样的生态系统功能。也即, 生态系统具有同时提供多重生态系统功能的能力, 称作生态系统多功能性(Hector & Bagchi, 2007; Byrnes et al, 2014; 徐炜等, 2016; Manning et al, 2018)。虽然当前的研究主要以观测研究为主, 但研究者已达成一些共识。例如, 生态系统需要更多的物种才能支持更高的生态系统多功能性, 这是因为更多的物种往往有更高的功能多样性, 与此同时, 不同的物种支持的生态系统功能不尽相同。不仅如此, 更高的生态系统多功能性, 还需要不同营养级生物多样性来支撑(Schuldt et al, 2018; Luo et al, 2022)。生物多样性与生态系统多功能性研究已经有大量工作发表, 涉及到生物多样性的维度、空间依赖、全球变化因子的影响等方面的工作(井新和贺金生, 2021)。尽管如此, 该领域还面临诸多挑战。比如, 生物多样性丧失对生态系统多功能性、生态系统多服务性影响的机理还不清楚(van der Plas et al, 2016; 徐炜等, 2016; Gamfeldt & Roger, 2017; 井新和贺金生, 2021), 生态系统多功能性的量化方法及其数理统计原理等方面的研究需要加强(Jing et al, 2020)。

1.5 生物多样性对生态系统响应气候变化的贡献

生物多样性除对生态系统功能有直接的影响, 它对生态系统响应气候变化还具有重要的调控作用。一方面, 生物多样性丧失对生态系统功能的影响, 与干旱、氮沉降、CO2浓度增加等气候变化相关驱动因子同等重要, 甚至远强于这些因子(Hooper et al, 2012; Tilman et al, 2014; Duffy et al, 2017)。另一方面, 生物多样性对生态系统功能的影响不仅体现在对初级生产力的促进作用, 同时还体现在对生态系统稳定性的影响, 包括生态系统对气候变化的缓冲、抗性和恢复力等(李周园等, 2021)。也就是说, 气候变化对生态系统功能的影响受生物多样性的调控。首先, 高的生物多样性往往能形成与周围环境不同的微气候, 从而有效缓冲因干旱、气候变暖等气候变化因子对生态系统结构和功能的负面影响(Zellweger et al, 2020)。其次, 高的生物多样性往往有复杂的群落结构和高的资源获取能力和资源利用效率, 比如在干旱环境下, 对土壤水分的有效利用能帮助森林生态系统抵抗干旱胁迫(Grossiord, 2020)。再次, 大量的研究表明, 在干旱、火烧、热浪等干扰下, 高的生物多样性也往往伴随有高的生态系统恢复力。反过来, 气候也能调控生物多样性与生态系统功能之间的关系(Jing et al, 2015; Fei et al, 2018), 甚至调控生物多样性与生态系统稳定性之间的关系(García-Palacios et al, 2018)。目前, 生物多样性对生态系统响应气候变化的作用机制尚无统一的认识, 这是因为生物多样性的作用机制涉及面很广, 包括优势物种的功能性状、不同物种对气候变化响应的非同步性、多个物种对同一生态系统功能影响的功能冗余程度、时空保险效应以及对响应性状和效应性状的分类等(de Bello et al, 2021)。

1.6 生物多样性对气候变化的反馈作用

生物多样性对气候变化有正、负两方面的反馈作用(Mori et al, 2021)。气候变化可能会导致局域生物多样性格局的变化, 如林线因气候变暖向高海拔或高纬度区域扩张, 往往伴随着生态系统生产力的提升, 进而增加生态系统的固碳量, 这样大气中的CO2通过植物的光合作用被固定在生态系统中, 从而减缓或降低气候变暖, 最终对气候变化有负反馈效应。与此相反, 气候变化也会导致生物多样性的丧失, 进而降低生态系统的生产力。由于输入生态系统的碳远远低于输出的碳, 大量的CO2通过分解作用释放到大气中, 进一步加剧气候变暖, 最终对气候变化有正反馈效应。一般来说, 生物多样性对气候变化的负反馈效应使得生态系统更加稳定, 而正反馈效应使得生态系统加速改变, 变得不稳定。因此, 生物多样性对气候变化的正负反馈效应关乎生态系统的变化及其稳定性, 涉及到气候变化、生物多样性和生态系统功能3个方面。

目前生物多样性对气候变化的正、负反馈效应是国内外研究的盲点, 尤其是对其机理认识还不够深入, 并且正负反馈效应还没有系统地纳入人类社会、政策制定等框架里面, 亟需长期、跨学科研究(O’Connor et al, 2021)。尽管如此, 从生物多样性与生态系统功能的关系出发是应对、减缓、适应气候变化的一种有效的、基于自然的解决方案(nature-based solution), 而保护和恢复生物种的多样性和生境, 将增强负反馈效应, 以达到气候变化减缓的目的。虽然森林在生物多样性的正负反馈效应中有决定性作用, 但在占全球面积40%的干旱、半干旱区的植树造林活动备受质疑, 而如何调整次生林的分布和结构将是平衡碳固定与其他限制性资源竞争的有效途径(Liu et al, 2022b)。除此以外, 未来的研究还面临诸多挑战, 比如, 由于生物多样性对气候变化的正负反馈效应会影响到未来种群、群落和生态系统的稳定性和变化轨迹, 如何利用模型来模拟未来气候变化情景, 以准确预测生物多样性变化对未来气候变化的正负反馈效应仍是一个极大的挑战(Mori et al, 2021)。未来的挑战还涉及到过去气候变化的滞后效应如何来影响当前时期生物多样性的地理分布格局, 在多大程度和时间尺度上影响生物多样性及其功能。最后, 极端气候事件, 如干旱、热浪、极端降雨对生物多样性和生态系统功能的影响也不容忽视, 尤其需要关注极端气候事件与其他全球变化因子(如土地利用变化、环境污染、荒漠化、土地退化)的相互作用。

2 未来发展方向和需要解决的关键科学问题

鉴于生物多样性对生态系统功能的重要影响以及生物多样性对气候变化的反馈作用, 多因子气候变化对生物多样性的作用、生物多样性保护和气候变化减缓和适应的关系, 生物多样性与生态系统功能的关系, 以及生物多样性在实现碳中和目标中的作用, 将仍是未来的研究重点, 这些研究领域将从不同层次进一步解析气候变化与生物多样性之间的复杂关系和反馈机制(图4)。

图4

图4   未来发展方向和需要解决的关键科学问题

Fig. 4   Future directions and key scientific questions to be addressed


2.1 多因子气候变化对生物多样性的作用

不同的气候变化因子之间存在着复杂的作用(Komatsu et al, 2019; 牛书丽和陈卫楠, 2020), 深入理解这些因子之间的相互作用对探讨未来气候变化情景下生物多样性变化格局具有重要作用。先前的工作表明不同气候变化因子对生物多样性和生态过程的影响较为复杂, 表现为加和、协同和拮抗作用(Song et al, 2019; Isbell et al, 2022)。另外, 当前大多数研究仅关注降水、温度和CO2这3个气候变化因子及其交互作用, 对干旱、洪水、低温等气候变化因子的关注不足。Rillig等(2019)指出增加全球变化因子的数量会增加土壤性质、土壤过程和微生物群落的方向性变化, 当超过8个全球变化因子组合时就会出现不可预测的非叠加性效应。因此未来的研究需纳入更多的气候变化因子, 并注重不同气候变化因子间以及与其他全球变化因子的相互作用(Custer & Dini-Andreote, 2022; Yang et al, 2022)。其次, 与生物相关的气候变化要素还包括极端事件的发生(例如干旱、洪水、热浪、低温)。极端气候事件突发性强、难以预测, 却对全球生态系统的结构和功能有着不可忽视的影响。尽管目前针对极端气候事件进行了大量的研究, 得到了一些重要结论, 但极端气候事件对生物多样性的影响仍存在较大的不确定性。未来的研究需要进一步加强多源数据与模型模拟的结合、设计区域联网实验, 以更好地解析极端气候事件影响生物多样性的内在机制。最后, 历史上的气候变化问题可能还会对生物多样性产生遗留效应(Hawkes et al, 2017)。例如, 在严重干旱后的1-4年内, 树木会普遍出现生长缓慢、恢复不完全的现象(Anderegg et al, 2015)。因此预测未来气候变化对生物多样性的影响还需要了解历史气候变化造成的时间滞后问题。

2.2 减缓和适应气候变化的措施如何惠益于生物多样性保护

为了同时减缓气候变化和保护生物多样性, 我们必须要保护和恢复现存的生物多样性与生态系统(Pettorelli et al, 2021)。目前已有多个研究提出有利于气候与生物多样性的3个主要措施, 即保护、恢复和管理(Pettorelli et al, 2021; Shin et al, 2022; Smith et al, 2022)。保护措施主要是指减少森林等富碳生态系统的破坏与退化。例如在63个国家中, 设立保护区可以使森林砍伐率降低41%, 有效阻止了生物多样性的丧失(Wolf et al, 2021)。有研究表明, 对地球上退化最严重地区的恢复, 结合生物多样性保护, 可以显著提高生态系统碳固存能力, 同时防止约70%的物种灭绝(Strassburg et al, 2020)。在保护与恢复之后, 为了能够可持续发展, 必须进行科学的管理(于贵瑞等, 2021)。比如采用集约化的农业经营方案, 提高单位农业面积生产力的同时, 释放更多土地用于生物多样性保护(Pretty et al, 2018)。此外, 还可以通过增加城市绿化增强碳吸收(De la Sota et al, 2019), 同时也为一些生物在城市定居提供了条件, 有利于生物多样性保护和维持。

总而言之, 大部分减缓或适应气候变化的措施都惠益于生物多样性保护, 但也有一些措施存在争议, 比如大面积的人工生态系统(如人工栽培单一树种或能源作物), 虽然有益于减缓气候变化, 但对生物多样性产生不利影响并可能与粮食生产竞争土地(Smith et al, 2022)。然而, 这些对生物多样性的潜在不利影响, 可以通过更加细化且具有针对性的方案, 来最小化甚至抵消掉负面影响。因此, 在实施相应措施时一定要注重因地制宜, 方可产生最佳的双赢解决方案(贺金生等, 2020)。

2.3 生物多样性与生态系统功能理论应用到自然生态系统

传统的生物多样性与生态系统功能研究多集中于受控的实验系统, 涵盖的空间尺度比较小, 与人类社会活动相对应的自然生态系统联系比较少(贺金生等, 2003)。未来发展方向之一是如何将小尺度的实验研究的理论和发现应用到生物多样的自然生态系统(Manning et al, 2019; van der Plas, 2019), 尤其是与气候变化相关政策的制定和生态系统管理等层面相匹配的尺度, 包括草地、森林和干旱生态系统、农业生态系统和城市生态系统等。其中, 尺度推演(Craven et al, 2020; Gonzalez et al, 2020; Qiu & Cardinale, 2020)、营养级(Eisenhauer et al, 2019)、生物多样性维度(Le Bagousse-Pinguet et al, 2019)和地上和地下生态系统关联(Bardgett & Wardle, 2010)是理论应用扩展的基石, 但尚缺乏深刻的认识。首先, 尺度推演不仅涉及到时空尺度, 还涉及到研究对象从个体到生态系统, 甚至到景观、区域尺度的变化。随着尺度的扩展, 影响生物多样性格局的气候、土壤和植被等驱动因子也随之改变。其次, 传统研究为了简化问题, 常常只关注初级生产者, 而其他营养级对生态系统功能的影响研究不足。再次, 由于生物多样性维度的复杂性, 以及生物群落物种的多样性, 实验研究难以综合考虑这些因素, 因此需要借助野外观察、长期监测和遥感观测等方法来综合研究分类多样性、功能多样性和谱系多样性对生态系统功能的影响。最后, 近年随着高通量测序和宏基因组技术的发展, 生态系统地下部分生物多样性与生态系统功能的关系研究得以发展(褚海燕等, 2020; 高贵锋和褚海燕, 2020; 米湘成等, 2021), 但由于土壤物理化学属性的复杂性, 土壤生物种的鉴定难度和土壤生物间的复杂关系, 使得地上和地下部分关联的机理研究缺乏(Bardgett & van der Putten, 2014; Bardgett, 2018)。因此, 将生物多样性和生态系统功能理论应用到自然生态系统是未来需要解决的关键科学问题之一。

2.4 生物多样性保护在碳中和目标实现中的贡献

减少碳排放、增加碳吸收和固存是实现碳中和的有效途径(方精云, 2021; 朴世龙等, 2022; 杨元合等, 2022; 于贵瑞等, 2022)。碳中和措施的实施不仅有效减缓气候变化, 同时, 通过生物栖息地保护、退化土地恢复和生态系统管理等措施, 还将对生物多样性保护有深远影响。反过来, 作为生物多样性与生态系统功能理论应用到自然生态系统的一个案例, 生物多样性也将在碳中和目标实现中起到至关重要的作用。这是因为, 生态系统碳固持的功能, 包括碳固持量、固持速率、固持时间等也会随着生物多样性的提升而提升; 而对生物多样性的保护也是一种基于自然的气候变化减缓与调控的解决方案(Díaz et al, 2009b; Shin et al, 2022)。因此, 生物多样性保护在碳中和目标实现中的贡献是未来的研究方向和需要解决的关键科学问题之一。尽管如此, 我们也面临诸多挑战, 比如, 在不同生态系统类型、时空尺度和生态系统管理措施下, 生物多样性通过哪些机理过程作用于生态系统碳排放和固持(Díaz et al, 2009b)。在实践中, 如何实现最优的生态系统布局、最优的物种配置、最优的生态系统管理, 来实现生物多样性保护和碳中和的双赢目标(方精云, 2021)。同时, 如何通过生物多样性的保护和管理, 以实现气候变化减缓与其他可持续发展的共同目标(Shin et al, 2022)。

3 具体可实施的措施建议

3.1 建立、健全生物多样性监测系统

传统的生物多样性监测系统常常以物种多样性、单一营养级、单一空间尺度为中心, 但伴随着新技术的开发和应用, 如高通量测序技术, 为开展以多维度(分类多样性、功能多样性和谱系多样性)、多营养级(生产者、消费者、分解者)、跨尺度(生态系统、景观、生物群区)的生物多样性长期监测奠定了基础。因此, 建议依托国家公园、自然保护区、定位研究站, 建立统一的生物多样性监测指标和规范, 以实现保护生物多样性、预测多样性变化、适应和减缓气候变化的目的。

3.2 构建基于自然的减缓和适应气候变化的解决方案

基于自然的解决方案往往是最快、成本最低的政策管理方案。当前构建基于自然的减缓和适应气候变化的解决方案, 需要将生物多样性纳入可持续发展框架中, 以解决人类社会面临的诸多环境问题。生境保护、生态系统可持续管理、退化生态系统恢复将是核心。因此, 建议对适宜生物生存的原始生境进行保护, 厘清驱动生物多样性变化的主要气候变化因子和极端气候事件, 以实现生态系统的可持续管理和退化生态系统的恢复目标, 最终为气候-自然-社会提供三赢解决方案。

3.3 加强对气候变化-生物多样性变化正、负反馈机制的认识

在全球尺度上生物多样性丧失是不争的事实, 在生态系统尺度生物群落物种组成的变化也是不争的事实, 而物种组成的变化涉及到物种的丧失或增加两个主要过程, 与生态系统对气候变化的正、负反馈机制息息相关。因此, 需要明确不同生态系统导致生物多样性变化的主要驱动因子是什么, 如何通过调控这些因子来阻止甚至扭转气候变化对生物多样性的负面影响, 同时通过对生物多样性的保护, 提升生态系统碳固持能力, 以实现气候变化减缓和生物多样性保护的协同发展。

致谢

审稿人和责任编委提出了建设性修改意见, 特此致谢!

参考文献

Anderegg WR, Schwalm C, Biondi F, Camarero JJ, Koch G, Litvak M, Ogle K, Shaw JD, Shevliakova E, Williams AP, Wolf A, Ziaco E, Pacala S (2015)

Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models

Science, 349, 528-532.

DOI:10.1126/science.aab1833      PMID:26228147      [本文引用: 1]

The impacts of climate extremes on terrestrial ecosystems are poorly understood but important for predicting carbon cycle feedbacks to climate change. Coupled climate-carbon cycle models typically assume that vegetation recovery from extreme drought is immediate and complete, which conflicts with the understanding of basic plant physiology. We examined the recovery of stem growth in trees after severe drought at 1338 forest sites across the globe, comprising 49,339 site-years, and compared the results with simulated recovery in climate-vegetation models. We found pervasive and substantial "legacy effects" of reduced growth and incomplete recovery for 1 to 4 years after severe drought. Legacy effects were most prevalent in dry ecosystems, among Pinaceae, and among species with low hydraulic safety margins. In contrast, limited or no legacy effects after drought were simulated by current climate-vegetation models. Our results highlight hysteresis in ecosystem-level carbon cycling and delayed recovery from climate extremes. Copyright © 2015, American Association for the Advancement of Science.

Bardgett RD (2018) Linking aboveground-belowground ecology:A short historical perspective. In: Aboveground- Belowground Community Ecology (eds Ohgushi T, Wurst S, Johnson SN), pp.1-17. Springer Nature, Gewerbestrasse, Switzerland.

[本文引用: 1]

Bardgett RD,van der Putten WH (2014)

Belowground biodiversity and ecosystem functioning

Nature, 515, 505-511.

DOI:10.1038/nature13855      URL     [本文引用: 1]

Bardgett RD, Wardle DA (2010) Aboveground-belowground linkages: Biotic interactions, ecosystem processes, and global change. Oxford University Press, New York.

[本文引用: 1]

Bastazini VAG, Galiana N, Hillebrand H, Estiarte M, Ogaya R, Peñuelas J, Sommer U, Montoya JM, Bates A (2021)

The impact of climate warming on species diversity across scales: Lessons from experimental meta-ecosystems

Global Ecology and Biogeography, 30, 1545-1554.

DOI:10.1111/geb.13308      URL     [本文引用: 1]

Bestion E, Soriano-Redondo A, Cucherousset J, Jacob S, White J, Zinger L, Fourtune L, Di Gesu L, Teyssier A, Cote J (2019)

Altered trophic interactions in warming climates:Consequences for predator diet breadth and fitness

Proceedings of the Royal Society B: Biological Sciences, 286, 20192227.

[本文引用: 1]

Bjorkman AD, Myers-Smith IH, Elmendorf SC, Normand S, Rüger N, Beck PSA, Blach-Overgaard A, Blok D, Cornelissen JHC, Forbes BC, Georges D, Goetz SJ, Guay KC, Henry GHR, HilleRisLambers J, Hollister RD, Karger DN, Kattge J, Manning P, Prevéy JS, Rixen C, Schaepman-Strub G, Thomas HJD, Vellend M, Wilmking M, Wipf S, Carbognani M, Hermanutz L, Lévesque E, Molau U, Petraglia A, Soudzilovskaia NA, Spasojevic MJ, Tomaselli M, Vowles T, Alatalo JM, Alexander HD, Anadon-Rosell A, Angers-Blondin S, Beest MT, Berner L, Björk RG, Buchwal A, Buras A, Christie K, Cooper EJ, Dullinger S, Elberling B, Eskelinen A, Frei ER, Grau O, Grogan P, Hallinger M, Harper KA, Heijmans MMPD, Hudson J, Hülber K, Iturrate-Garcia M, Iversen CM, Jaroszynska F, Johnstone JF, Jørgensen RH, Kaarlejärvi E, Klady R, Kuleza S, Kulonen A, Lamarque LJ, Lantz T, Little CJ, Speed JDM, Michelsen A, Milbau A, Nabe-Nielsen J, Nielsen SS, Ninot JM, Oberbauer SF, Olofsson J, Onipchenko VG, Rumpf SB, Semenchuk P, Shetti R, Collier LS, Street LE, Suding KN, Tape KD, Trant A, Treier UA, Tremblay JP, Tremblay M, Venn S, Weijers S, Zamin T, Boulanger-Lapointe N, Gould WA, Hik DS, Hofgaard A, Jónsdóttir IS, Jorgenson J, Klein J, Magnusson B, Tweedie C, Wookey PA, Bahn M, Blonder B, van Bodegom PM, Bond-Lamberty B, Campetella G, Cerabolini BEL, Chapin FS III, Cornwell WK, Craine J, Dainese M, de Vries FT, Díaz S, Enquist BJ, Green W, Milla R, Niinemets Ü, Onoda Y, Ordoñez JC, Ozinga WA, Penuelas J, Poorter H, Poschlod P, Reich PB, Sandel B, Schamp B, Sheremetev S, Weiher E (2018)

Plant functional trait change across a warming tundra biome

Nature, 562, 57-62.

DOI:10.1038/s41586-018-0563-7      URL     [本文引用: 1]

Blanchet FG, Cazelles K, Gravel D (2020)

Co-occurrence is not evidence of ecological interactions

Ecology Letters, 23, 1050-1063.

DOI:10.1111/ele.13525      PMID:32429003      [本文引用: 1]

There is a rich amount of information in co-occurrence (presence-absence) data that could be used to understand community assembly. This proposition first envisioned by Forbes (1907) and then Diamond (1975) prompted the development of numerous modelling approaches (e.g. null model analysis, co-occurrence networks and, more recently, joint species distribution models). Both theory and experimental evidence support the idea that ecological interactions may affect co-occurrence, but it remains unclear to what extent the signal of interaction can be captured in observational data. It is now time to step back from the statistical developments and critically assess whether co-occurrence data are really a proxy for ecological interactions. In this paper, we present a series of arguments based on probability, sampling, food web and coexistence theories supporting that significant spatial associations between species (or lack thereof) is a poor proxy for ecological interactions. We discuss appropriate interpretations of co-occurrence, along with potential avenues to extract as much information as possible from such data.© 2020 John Wiley & Sons Ltd/CNRS.

Blume-Werry G (2022)

The belowground growing season

Nature Climate Change, 12, 11-12.

DOI:10.1038/s41558-021-01243-y      URL     [本文引用: 1]

Bongers FJ, Schmid B, Bruelheide H, Bongers F, Li S, von Oheimb G, Li Y, Cheng AP, Ma KP, Liu XJ (2021)

Functional diversity effects on productivity increase with age in a forest biodiversity experiment

Nature Ecology & Evolution, 5, 1594-1603.

[本文引用: 1]

Bonnet T, Morrissey MB, de Villemereuil P, Alberts SC, Arcese P, Bailey LD, Boutin S, Brekke P, Brent LJN, Camenisch G, Charmantier A, Clutton-Brock TH, Cockburn A, Coltman DW, Courtiol A, Davidian E, Evans SR, Ewen JG, Festa-Bianchet M, de Franceschi C, Gustafsson L, Höner OP, Houslay TM, Keller LF, Manser M, McAdam AG, McLean E, Nietlisbach P, Osmond HL, Pemberton JM, Postma E, Reid JM, Rutschmann A, Santure AW, Sheldon BC, Slate J, Teplitsky C, Visser ME, Wachter B, Kruuk LEB (2022)

Genetic variance in fitness indicates rapid contemporary adaptive evolution in wild animals

Science, 376, 1012-1016.

DOI:10.1126/science.abk0853      PMID:35617403      [本文引用: 1]

The rate of adaptive evolution, the contribution of selection to genetic changes that increase mean fitness, is determined by the additive genetic variance in individual relative fitness. To date, there are few robust estimates of this parameter for natural populations, and it is therefore unclear whether adaptive evolution can play a meaningful role in short-term population dynamics. We developed and applied quantitative genetic methods to long-term datasets from 19 wild bird and mammal populations and found that, while estimates vary between populations, additive genetic variance in relative fitness is often substantial and, on average, twice that of previous estimates. We show that these rates of contemporary adaptive evolution can affect population dynamics and hence that natural selection has the potential to partly mitigate effects of current environmental change.

Byrnes JEK, Gamfeldt L, Isbell F, Lefcheck JS, Griffin JN, Hector A, Cardinale BJ, Hooper DU, Dee LE, Duffy JE (2014)

Investigating the relationship between biodiversity and ecosystem multifunctionality: Challenges and solutions

Methods in Ecology and Evolution, 5, 111-124.

DOI:10.1111/2041-210X.12143      URL     [本文引用: 1]

Chapin FS III, Díaz S (2020)

Interactions between changing climate and biodiversity: Shaping humanity’s future

Proceedings of the National Academy of Sciences, USA, 117, 6295-6296.

[本文引用: 1]

Chen IC, Hill JK, Ohlemüller R, Roy DB, Thomas CD (2011)

Rapid range shifts of species associated with high levels of climate warming

Science, 333, 1024-1026.

[本文引用: 1]

Chu HY, Feng MM, Liu X, Shi Y, Yang T, Gao GF (2020)

Soil microbial biogeography: Recent advances in China and research frontiers in the world

Acta Pedologica Sinica, 57, 515-529. (in Chinese with English abstract)

[本文引用: 1]

[褚海燕, 冯毛毛, 柳旭, 时玉, 杨腾, 高贵锋 (2020)

土壤微生物生物地理学: 国内进展与国际前沿

土壤学报, 57, 515-529.]

[本文引用: 1]

Collins CG, Elmendorf SC, Smith JG, Shoemaker L, Szojka M, Swift M, Suding KN (2022)

Global change re-structures alpine plant communities through interacting abiotic and biotic effects

Ecology Letters, 25, 1813-1826.

DOI:10.1111/ele.14060      URL     [本文引用: 2]

Cowie RH, Bouchet P, Fontaine B (2022)

The sixth mass extinction: Fact, fiction or speculation?

Biological Reviews of the Cambridge Philosophical Society, 97, 640-663.

DOI:10.1111/brv.12816      URL     [本文引用: 1]

Craven D, van der Sande MT, Meyer C, Gerstner K, Bennett JM, Giling DP, Hines J, Phillips HRP, May F, Bannar-Martin KH, Chase JM, Keil P (2020)

A cross-scale assessment of productivity-diversity relationships

Global Ecology and Biogeography, 29, 1940-1955.

DOI:10.1111/geb.13165      URL     [本文引用: 2]

Custer GF, Dini-Andreote F (2022)

Embracing complexity in ecosystem response to global change

Environmental Science & Technology, 56, 9832-9834.

DOI:10.1021/acs.est.2c02817      URL     [本文引用: 1]

de Bello F, Lavorel S, Hallett LM, Valencia E, Garnier E, Roscher C, Conti L, Galland T, Goberna M, Májeková M, Montesinos-Navarro A, Pausas JG, Verdú M, E-Vojtkó A, Götzenberger L, Lepš (2021)

Functional trait effects on ecosystem stability: Assembling the jigsaw puzzle

Trends in Ecology & Evolution, 36, 822-836.

DOI:10.1016/j.tree.2021.05.001      URL     [本文引用: 1]

De la Sota C, Ruffato-Ferreira VJ, Ruiz-García L, Alvarez S (2019)

Urban green infrastructure as a strategy of climate change mitigation: A case study in northern Spain

Urban Forestry & Urban Greening, 40, 145-151.

[本文引用: 1]

Delgado-Baquerizo M, Guerra CA, Cano-Díaz C, Egidi E, Wang JT, Eisenhauer N, Singh BK, Maestre FT (2020)

The proportion of soil-borne pathogens increases with warming at the global scale

Nature Climate Change, 10, 550-554.

DOI:10.1038/s41558-020-0759-3      URL     [本文引用: 1]

Des Roches S, Bell MA, Palkovacs EP (2020)

Climate-driven habitat change causes evolution in Threespine Stickleback

Global Change Biology, 26, 597-606.

[本文引用: 1]

Díaz S, Hector A, Wardle DA (2009a)

Biodiversity in forest carbon sequestration initiatives: Not just a side benefit

Current Opinion in Environmental Sustainability, 1, 55-60.

DOI:10.1016/j.cosust.2009.08.001      URL     [本文引用: 2]

Díaz S, Wardle DA, Hector A (2009b) Incorporating biodiversity in climate change mitigation initiatives. In: Biodiversity, Ecosystem Functioning, Human Wellbeing: An Ecological Economic Perspective (eds Naeem S, Bunker DE, Hector A, Loreau M, Perrings C), pp. 149-166. Oxford University Press, New York.

[本文引用: 2]

Duffy JE, Godwin CM, Cardinale BJ (2017)

Biodiversity effects in the wild are common and as strong as key drivers of productivity

Nature, 549, 261-264.

DOI:10.1038/nature23886      URL     [本文引用: 1]

Eisenhauer N, Schielzeth H, Barnes AD, Barry KE, Bonn A, Brose U, Bruelheide H, Buchmann N, Buscot F, Ebeling A, Ferlian O, Freschet GT, Giling DP, Hättenschwiler S, Hillebrand H, Hines J, Isbell F, Koller-France E, König-Ries B, de Kroon H, Meyer ST, Milcu A, Müller J, Nock CA, Petermann JS, Roscher C, Scherber C, Scherer-Lorenzen M, Schmid B, Schnitzer SA, Schuldt A, Tscharntke T, Türke M, van Dam NM, van der Plas F, Vogel A, Wagg C, Wardle DA, Weigelt A, Weisser WW, Wirth C, Jochum M (2019) A multitrophic perspective on biodiversity-ecosystem functioning research. In: Mechanisms Underlying the Relationship Between Biodiversity and Ecosystem Function (eds Eisenhauer N, Bohan DA, Dumbrell AJ), pp. 1-54. Academic Press, London.

[本文引用: 1]

Fang JY (2021)

Ecological perspectives of carbon neutrality

Chinese Journal of Plant Ecology, 45, 1173-1176. (in Chinese with English abstract)

DOI:10.17521/cjpe.2021.0394      URL     [本文引用: 2]

[方精云 (2021)

碳中和的生态学透视

植物生态学报, 45, 1173-1176.]

DOI:10.17521/cjpe.2021.0394      [本文引用: 2]

在简述碳中和概念的基础上, 重点对碳中和的实现途径及生态系统碳汇的重要性进行了评述, 认为碳减排和碳增汇是实现&#x0201c;碳中和&#x0201d;的两个决定因素; 碳减排的核心是节能、调结构、增效和发展清洁能源, 碳增汇的核心是生态保护、建设和管理。由于植被自然生长和生态建设等因素, 中国陆地生态系统发挥了, 并将在未来继续发挥着重要的碳汇作用。为增强生态系统的固碳能力, 作者提出&#x0201c;三优&#x0201d;生态建设和管理原则, 即&#x0201c;最优的生态系统布局、最优的物种配置、最优的生态系统管理&#x0201d;。此外, 文章还对&#x0201c;后碳中和&#x0201d;时代可能出现的问题和挑战进行了展望, 认为碳中和后, 由于气候变化, 特别是大气CO<sub>2</sub>浓度增速减缓甚至下降等因素, 可能导致全球性的植被生产力下降, 对此可能带来的新的环境问题需要提前谋划和应对。

Fei SL, Jo I, Guo QF, Wardle DA, Fang JY, Chen AP, Oswalt CM, Brockerhoff EG (2018)

Impacts of climate on the biodiversity-productivity relationship in natural forests

Nature Communications, 9, 5436.

DOI:10.1038/s41467-018-07880-w      PMID:30575752      [本文引用: 2]

Understanding biodiversity-productivity relationships (BPRs) is of theoretical importance, and has important management implications. Most work on BPRs has focused on simple and/or experimentally assembled communities, and it is unclear how these observed BPRs can be extended to complex natural forest ecosystems. Using data from over 115,000 forest plots across the contiguous United States, we show that the bivariate BPRs are positive in dry climates and hump-shaped in mesic climates. When considering other site characteristics, BPRs change to neutral in dry climates and remain hump-shaped in humid sites. Our results indicate that climatic variation is an underlying determinant of contrasting BPRs observed across a large spatial extent, while both biotic factors (e.g., stand age and density) and abiotic factors (e.g., soil properties) can impact BPRs within a given climate unit. These findings suggest that tradeoffs need be made when considering whether to maximize productivity vs. conserve biodiversity, especially in mesic climates.

Feng XJ, Mi XC, Xiao ZS, Cao L, Wu H, Ma KP (2019)

Overview of Chinese biodiversity observation network (Sino BON)

Bulletin of Chinese Academy of Sciences, 34, 1389-1398. (in Chinese with English abstract)

[本文引用: 1]

[冯晓娟, 米湘成, 肖治术, 曹垒, 吴慧, 马克平 (2019)

中国生物多样性监测与研究网络建设及进展

中国科学院院刊, 34, 1389-1398.]

[本文引用: 1]

Feng YH, Schmid B, Loreau M, Forrester DI, Fei SL, Zhu JX, Tang ZY, Zhu JL, Hong PB, Ji CJ, Shi Y, Su HJ, Xiong XY, Xiao J, Wang SP, Fang JY (2022)

Multispecies forest plantations outyield monocultures across a broad range of conditions

Science, 376, 865-868.

DOI:10.1126/science.abm6363      PMID:35587983      [本文引用: 1]

Multispecies tree planting has long been applied in forestry and landscape restoration in the hope of providing better timber production and ecosystem services; however, a systematic assessment of its effectiveness is lacking. We compiled a global dataset of matched single-species and multispecies plantations to evaluate the impact of multispecies planting on stand growth. Average tree height, diameter at breast height, and aboveground biomass were 5.4, 6.8, and 25.5% higher, respectively, in multispecies stands compared with single-species stands. These positive effects were mainly the result of interspecific complementarity and were modulated by differences in leaf morphology and leaf life span, stand age, planting density, and temperature. Our results have implications for designing afforestation and reforestation strategies and bridging experimental studies of biodiversity-ecosystem functioning relationships with real-world practices.

Forrester DI, Bauhus J (2016)

A review of processes behind diversity-productivity relationships in forests

Current Forestry Reports, 2, 45-61.

DOI:10.1007/s40725-016-0031-2      URL     [本文引用: 1]

Gallagher RV, Hughes L, Leishman MR (2013)

Species loss and gain in communities under future climate change: Consequences for functional diversity

Ecography, 36, 531-540.

DOI:10.1111/j.1600-0587.2012.07514.x      URL     [本文引用: 1]

Gamfeldt L, Roger F (2017)

Revisiting the biodiversity- ecosystem multifunctionality relationship

Nature Ecology & Evolution, 1, 0168.

[本文引用: 1]

Ganuza C, Redlich S, Uhler J, Tobisch C, Rojas-Botero S, Peters MK, Zhang J, Benjamin CS, Englmeier J, Ewald J, Fricke U, Haensel M, Kollmann J, Riebl R, Uphus L, Müller J, Steffan-Dewenter I (2022)

Interactive effects of climate and land use on pollinator diversity differ among taxa and scales

Science Advances, 8, eabm9359.

DOI:10.1126/sciadv.abm9359      URL     [本文引用: 1]

Gao GF, Chu HY (2020)

Techniques and methods of microbiomics and their applications

Chinese Journal of Plant Ecology, 44, 395-408. (in Chinese with English abstract)

DOI:10.17521/cjpe.2019.0222      URL     [本文引用: 1]

[高贵锋, 褚海燕 (2020)

微生物组学的技术和方法及其应用

植物生态学报, 44, 395-408.]

DOI:10.17521/cjpe.2019.0222      [本文引用: 1]

微生物组是指一个特定环境或生态系统中全部微生物及其遗传信息的集合, 其蕴藏着极为丰富的微生物资源。全面系统地解析微生物组的结构和功能, 将为解决人类面临的能源、生态环境、工农业生产和人体健康等重大问题带来新思路。然而, 微生物组学研究在很大程度上取决于其技术与方法的发展。在高通量测序技术出现以前, 微生物研究主要基于分离培养和指纹图谱等技术, 然而, 由于这些技术存在的缺陷, 人们对于微生物的认识十分有限。自21世纪初以来, 尽管高通量测序和质谱技术的革命性突破极大地促进了人们对于微生物的认识, 微生物组学技术在微生物组研究中的应用仍面临着诸多挑战。此外, 目前微生物组的结构和多样性等描述性研究已臻成熟, 微生物组学研究正处于从数量到质量、从结构到功能的关键转变时期。因此, 该文首先介绍了微生物组学的基本概念及其发展简史, 其次简述了微生物组学研究的相关技术和方法及其发展历程, 并进一步阐述了微生物组学的技术和方法在生态学研究中的应用及存在的主要问题, 最后从技术、理论和应用层面阐述了未来微生物组学技术和方法发展的前沿方向, 并提出了今后微生物组学研究的优先发展领域。

García-Palacios P, Gross N, Gaitán J, Maestre FT (2018)

Climate mediates the biodiversity-ecosystem stability relationship globally

Proceedings of the National Academy of Sciences, USA, 115, 8400-8405.

[本文引用: 1]

Gilman SE, Urban MC, Tewksbury J, Gilchrist GW, Holt RD (2010)

A framework for community interactions under climate change

Trends in Ecology & Evolution, 25, 325-331.

DOI:10.1016/j.tree.2010.03.002      URL     [本文引用: 1]

Gonzalez A, Germain RM, Srivastava DS, Filotas E, Dee LE, Gravel D, Thompson PL, Isbell F, Wang S, Kéfi S, Montoya J, Zelnik YR, Loreau M (2020)

Scaling-up biodiversity- ecosystem functioning research

Ecology Letters, 23, 757-776.

DOI:10.1111/ele.13456      PMID:31997566      [本文引用: 2]

A rich body of knowledge links biodiversity to ecosystem functioning (BEF), but it is primarily focused on small scales. We review the current theory and identify six expectations for scale dependence in the BEF relationship: (1) a nonlinear change in the slope of the BEF relationship with spatial scale; (2) a scale-dependent relationship between ecosystem stability and spatial extent; (3) coexistence within and among sites will result in a positive BEF relationship at larger scales; (4) temporal autocorrelation in environmental variability affects species turnover and thus the change in BEF slope with scale; (5) connectivity in metacommunities generates nonlinear BEF and stability relationships by affecting population  synchrony at local and regional scales; (6) spatial scaling in food web structure and diversity will generate scale dependence in ecosystem functioning. We suggest directions for synthesis that combine approaches in metaecosystem and metacommunity ecology and integrate cross-scale feedbacks. Tests of this theory may combine remote sensing with a generation of networked experiments that assess effects at multiple scales. We also show how anthropogenic land cover change may alter the scaling of the BEF relationship. New research on the role of scale in BEF will guide policy linking the goals of managing biodiversity and ecosystems.© 2020 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.

Grossiord C (2020)

Having the right neighbors: How tree species diversity modulates drought impacts on forests

New Phytologist, 228, 42-49.

DOI:10.1111/nph.15667      URL     [本文引用: 1]

Gruner DS, Bracken MES, Berger SA, Eriksson BK, Gamfeldt L, Matthiessen B, Moorthi S, Sommer U, Hillebrand H (2017)

Effects of experimental warming on biodiversity depend on ecosystem type and local species composition

Oikos, 126, 8-17.

DOI:10.1111/oik.03688      URL     [本文引用: 1]

Hawkes CV, Waring BG, Rocca JD, Kivlin SN (2017)

Historical climate controls soil respiration responses to current soil moisture

Proceedings of the National Academy of Sciences, USA, 114, 6322-6327.

[本文引用: 1]

He JS, Bu HY, Hu XW, Feng YH, Li SL, Zhu JX, Liu GH, Wang YR, Nan ZB (2020)

Close-to-nature restoration of degraded alpine grasslands: Theoretical basis and technical approach

Chinese Science Bulletin, 65, 3898-3908. (in Chinese with English abstract)

[本文引用: 1]

[贺金生, 卜海燕, 胡小文, 冯彦皓, 李守丽, 朱剑霄, 刘国华, 王彦荣, 南志标 (2020)

退化高寒草地的近自然恢复: 理论基础与技术途径

科学通报, 65, 3898-3908.]

[本文引用: 1]

He JS, Fang JY, Ma KP, Huang JH (2003)

Biodiversity and ecosystem productivity: Why is there a discrepancy in the relationship between experimental and natural ecosystems?

Acta Phytoecologica Sinica, 27, 835-843. (in Chinese with English abstract)

[本文引用: 1]

[贺金生, 方精云, 马克平, 黄建辉 (2003)

生物多样性与生态系统生产力: 为什么野外观测和受控实验结果不一致?

植物生态学报, 27, 835-843.]

DOI:10.17521/cjpe.2003.0120      [本文引用: 1]

人们担心生物多样性的空前丧失会危及到生态系统的服务功能,因此有关生物多样性-生态系统生产力这一古老命题的讨论成为当今生态学的热点议题之一。20世纪90年代以David Tilman和Shahid Naeem为代表的生态学家利用大规模的受控实验,对物种多样性与生态系统功能的诸多方面进行

Hector A, Bagchi R (2007)

Biodiversity and ecosystem multifunctionality

Nature, 448, 188-190.

DOI:10.1038/nature05947      URL     [本文引用: 1]

Hicks Pries CE, Castanha C, Porras RC, Torn MS (2017)

The whole-soil carbon flux in response to warming

Science, 355, 1420-1423.

DOI:10.1126/science.aal1319      PMID:28280251      [本文引用: 1]

Soil organic carbon harbors three times as much carbon as Earth's atmosphere, and its decomposition is a potentially large climate change feedback and major source of uncertainty in climate projections. The response of whole-soil profiles to warming has not been tested in situ. In a deep warming experiment in mineral soil, we found that CO production from all soil depths increased with 4°C warming; annual soil respiration increased by 34 to 37%. All depths responded to warming with similar temperature sensitivities, driven by decomposition of decadal-aged carbon. Whole-soil warming reveals a larger soil respiration response than many in situ experiments (most of which only warm the surface soil) and models.Copyright © 2017, American Association for the Advancement of Science.

Hoffmann M, Hilton-Taylor C, Angulo A, Böhm M, Brooks TM, Butchart SHM, Carpenter KE, Chanson J, Collen B, Cox NA, Darwall WRT, Dulvy NK, Harrison LR, Katariya V, Pollock CM, Quader S, Richman NI, Rodrigues ASL, Tognelli MF, Vié JC, Aguiar JM, Allen DJ, Allen GR, Amori G, Ananjeva NB, Andreone F, Andrew P, Ortiz ALA, Baillie JEM, Baldi R, Bell BD, Biju SD, Bird JP, Black-Decima P, Blanc JJ, Bolaños F, Bolivar-G W, Burfield IJ, Burton JA, Capper DR, Castro F, Catullo G, Cavanagh RD, Channing AL, Chao NL, Chenery AM, Chiozza F, Clausnitzer V, Collar NJ, Collett LC, Collette BB, Cortez Fernandez CF, Craig MT, Crosby MJ, Cumberlidge N, Cuttelod A, Derocher AE, Diesmos AC, Donaldson JS, Duckworth JW, Dutson G, Dutta SK, Emslie RH, Farjon A, Fowler S, Freyhof J, Garshelis DL, Gerlach J, Gower DJ, Grant TD, Hammerson GA, Harris RB, Heaney LR, Hedges SB, Hero JM, Hughes B, Hussain SA, Javier IM, Inger RF, Ishii N, Iskandar DT, Jenkins RKB, Kaneko Y, Kottelat M, Kovacs KM, Kuzmin SL, La Marca E, Lamoreux JF, Lau MWN, Lavilla EO, Leus K, Lewison RL, Lichtenstein G, Livingstone SR, Lukoschek V, Mallon DP, McGowan PJK, McIvor A, Moehlman PD, Molur S, Alonso AM, Musick JA, Nowell K, Nussbaum RA, Olech W, Orlov NL, Papenfuss TJ, Parra-Olea G, Perrin WF, Polidoro BA, Pourkazemi M, Racey PA, Ragle JS, Ram M, Rathbun G, Reynolds RP, Rhodin AGJ, Richards SJ, Rodríguez LO, Ron SR, Rondinini C, Rylands AB, de Mitcheson YS, Sanciangco JC, Sanders KL, Santos-Barrera G, Schipper J, Self-Sullivan C, Shi YC, Shoemaker A, Short FT, Sillero-Zubiri C, Silvano DL, Smith KG, Smith AT, Snoeks J, Stattersfield AJ, Symes AJ, Taber AB, Talukdar BK, Temple HJ, Timmins R, Tobias JA, Tsytsulina K, Tweddle D, Ubeda C, Valenti SV, van Dijk PP, Veiga LM, Veloso A, Wege DC, Wilkinson M, Williamson EA, Xie F, Young BE, Akçakaya HR, Bennun L, Blackburn TM, Boitani L, Dublin HT, da Fonseca GAB, Gascon C, Lacher TE Jr, Mace GM, Mainka SA, McNeely JA, Mittermeier RA, Reid GM, Rodriguez JP, Rosenberg AA, Samways MJ, Smart J, Stein BA, Stuart SN (2010)

The impact of conservation on the status of the world’s vertebrates

Science, 330, 1503-1509.

DOI:10.1126/science.1194442      PMID:20978281      [本文引用: 1]

Using data for 25,780 species categorized on the International Union for Conservation of Nature Red List, we present an assessment of the status of the world's vertebrates. One-fifth of species are classified as Threatened, and we show that this figure is increasing: On average, 52 species of mammals, birds, and amphibians move one category closer to extinction each year. However, this overall pattern conceals the impact of conservation successes, and we show that the rate of deterioration would have been at least one-fifth again as much in the absence of these. Nonetheless, current conservation efforts remain insufficient to offset the main drivers of biodiversity loss in these groups: agricultural expansion, logging, overexploitation, and invasive alien species.

Hooper DU, Adair EC, Cardinale BJ, Byrnes JEK, Hungate BA, Matulich KL, Gonzalez A, Duffy JE, Gamfeldt L, O’Connor MI (2012)

A global synthesis reveals biodiversity loss as a major driver of ecosystem change

Nature, 486, 105-108.

DOI:10.1038/nature11118      URL     [本文引用: 1]

Hua FY, Bruijnzeel LA, Meli P, Martin PA, Zhang J, Nakagawa S, Miao XR, Wang WY, McEvoy C, Peña-Arancibia JL, Brancalion PHS, Smith P, Edwards DP, Balmford A (2022)

The biodiversity and ecosystem service contributions and trade-offs of forest restoration approaches

Science, 376, 839-844.

DOI:10.1126/science.abl4649      URL     [本文引用: 1]

Huang YY, Chen YX, Castro-Izaguirre N, Baruffol M, Brezzi M, Lang A, Li Y, Härdtle W, von Oheimb G, Yang XF, Liu XJ, Pei KQ, Both S, Yang B, Eichenberg D, Assmann T, Bauhus J, Behrens T, Buscot F, Chen XY, Chesters D, Ding BY, Durka W, Erfmeier A, Fang JY, Fischer M, Guo LD, Guo DL, Gutknecht JLM, He JS, He CL, Hector A, Hönig L, Hu RY, Klein AM, Kühn P, Liang Y, Li S, Michalski S, Scherer-Lorenzen M, Schmidt K, Scholten T, Schuldt A, Shi XZ, Tan MZ, Tang ZY, Trogisch S, Wang ZW, Welk E, Wirth C, Wubet T, Xiang WH, Yu MJ, Yu XD, Zhang JY, Zhang SR, Zhang NL, Zhou HZ, Zhu CD, Zhu L, Bruelheide H, Ma KP, Niklaus PA, Schmid B (2018)

Impacts of species richness on productivity in a large-scale subtropical forest experiment

Science, 362, 80-83.

DOI:10.1126/science.aat6405      PMID:30287660      [本文引用: 1]

Biodiversity experiments have shown that species loss reduces ecosystem functioning in grassland. To test whether this result can be extrapolated to forests, the main contributors to terrestrial primary productivity, requires large-scale experiments. We manipulated tree species richness by planting more than 150,000 trees in plots with 1 to 16 species. Simulating multiple extinction scenarios, we found that richness strongly increased stand-level productivity. After 8 years, 16-species mixtures had accumulated over twice the amount of carbon found in average monocultures and similar amounts as those of two commercial monocultures. Species richness effects were strongly associated with functional and phylogenetic diversity. A shrub addition treatment reduced tree productivity, but this reduction was smaller at high shrub species richness. Our results encourage multispecies afforestation strategies to restore biodiversity and mitigate climate change.Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

Humphrey V, Zscheischler J, Ciais P, Gudmundsson L, Sitch S, Seneviratne SI (2018)

Sensitivity of atmospheric CO2 growth rate to observed changes in terrestrial water storage

Nature, 560, 628-631.

DOI:10.1038/s41586-018-0424-4      URL     [本文引用: 1]

IPCC (2021) Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte V, Zhai P, Pirani A, Connors SL, Péan C, Berger S, Caud N, Chen Y, Goldfarb L, Gomis MI, Huang M, Leitzell K, Lonnoy E, Matthews JBR, Maycock TK, Waterfield T, Yelekçi O, Yu R, Zhou B). Cambridge University Press, Cambridge, UK.

[本文引用: 1]

Isbell F, Balvanera P, Mori AS, He JS, Bullock JM, Regmi GR, Seabloom EW, Ferrier S, Sala OE, Guerrero-Ramírez NR, Tavella J, Larkin DJ, Schmid B, Outhwaite CL, Pramual P, Borer ET, Loreau M, Omotoriogun TC, Obura DO, Anderson M, Portales-Reyes C, Kirkman K, Vergara PM, Clark AT, Komatsu KJ, Petchey OL, Weiskopf SR, Williams LJ, Collins SL, Eisenhauer N, Trisos CH, Renard D, Wright AJ, Tripathi P, Cowles J, Byrnes JEK, Reich PB, Purvis A, Sharip Z, O’Connor MI, Kazanski CE, Haddad NM, Soto EH, Dee LE, Díaz S, Zirbel CR, Avolio ML, Wang SP, Ma ZY, Liang JJ, Farah HC, Johnson JA, Miller BW, Hautier Y, Smith MD, Knops JMH, Myers BJE, Harmáčková ZV, Cortés J, Harfoot MBJ, Gonzalez A, Newbold T, Oehri J, Mazón M, Dobbs C, Palmer MS (2022)

Expert perspectives on global biodiversity loss and its drivers and impacts on people

Frontiers in Ecology and the Environment, doi: 10.1002/fee.2536.

[本文引用: 3]

Isbell F, Craven D, Connolly J, Loreau M, Schmid B, Beierkuhnlein C, Bezemer TM, Bonin C, Bruelheide H, de Luca E, Ebeling A, Griffin JN, Guo QF, Hautier Y, Hector A, Jentsch A, Kreyling J, Lanta V, Manning P, Meyer ST, Mori AS, Naeem S, Niklaus PA, Polley HW, Reich PB, Roscher C, Seabloom EW, Smith MD, Thakur MP, Tilman D, Tracy BF, van der Putten WH, van Ruijven J, Weigelt A, Weisser WW, Wilsey B, Eisenhauer N (2015)

Biodiversity increases the resistance of ecosystem productivity to climate extremes

Nature, 526, 574-577.

DOI:10.1038/nature15374      URL     [本文引用: 1]

Jing X, He JS (2021)

Relationship between biodiversity, ecosystem multifunctionality and multiserviceability: Literature overview and research advances

Chinese Journal of Plant Ecology, 45, 1094-1111. (in Chinese with English abstract)

DOI:10.17521/cjpe.2020.0154      [本文引用: 2]

Over the recent decade, biodiversity and ecosystem multifunctionality (BEMF) has aroused as an emerging reserach hotspot in the filed of biodiversity and ecosystem functioning. Ecosystem multifunctionality is defined as the capacity of an ecosystem to provide multiple ecosystem functions simulateneously, it has received broad consideration by community and ecosystem ecologists. In this study, we first conducted a literature review of the research history in biodiversity and ecosystem multifunctionality. Next, we summarized the major trends in biodiversity and ecosystem multifunctionality research including the impacts of biodiversity dimensions, global change drivers and spatial-temporal scales on ecosystem multifunctionality. We reviewed the new research methods and research directions emerged in the field. We also defined a new concept, i.e., ecosystem multiserviceability (EMS) based on the distinction between ecosystem functions and ecosystem services. Finally, we briefly summarized the limitations in current research of biodiversity and ecosystem multifunctionality/multiserviceability (BEMF/BEMS) and presented the outlook for future study.

[井新, 贺金生 (2021)

生物多样性与生态系统多功能性和多服务性的关系: 回顾与展望

植物生态学报, 45, 1094-1111.]

DOI:10.17521/cjpe.2020.0154      [本文引用: 2]

近10年来, 生物多样性与生态系统多功能性(BEMF)的关系是生物多样性与生态系统功能领域新兴的热点研究方向。生态系统多功能性是指生态系统同时提供多重生态系统功能的能力, 受到群落和生态系统生态学研究者的广泛关注。该文简要回顾了生物多样性与生态系统多功能性关系研究历史, 侧重介绍了生态系统多功能性量化方法发展历程, 并总结了生物多样性与生态系统多功能性研究的主要趋势, 包括生物多样性维度、时空尺度和全球变化驱动因子等对生态系统多功能性的影响。同时, 回顾了近5年生物多样性与生态系统多功能性关系研究的新方法、新方向; 根据生态系统服务和生态系统功能的区别, 提出了生态系统多服务性(ecosystem multiserviceability, EMS)概念。最后简要介绍了生物多样性与生态系统多功能性、生物多样性与生态系统多服务性(BEMS)研究存在的不足及对未来的展望。

Jing X, Muys B, Baeten L, Bruelheide H, de Wandeler H, Desie E, Hättenschwiler S, Jactel H, Jaroszewicz B, Jucker T, Kardol P, Pollastrini M, Ratcliffe S, Scherer-Lorenzen M, Selvi F, Vancampenhout K, van der Plas F, Verheyen K, Vesterdal L, Zuo J,Van Meerbeek K (2022)

Climatic conditions, not above- and belowground resource availability and uptake capacity, mediate tree diversity effects on productivity and stability

Science of the Total Environment, 812, 152560.

DOI:10.1016/j.scitotenv.2021.152560      URL     [本文引用: 1]

Jing X, Prager CM, Classen AT, Maestre FT, He JS, Sanders NJ (2020)

Variation in the methods leads to variation in the interpretation of biodiversity-ecosystem multifunctionality relationships

Journal of Plant Ecology, 13, 431-441.

DOI:10.1093/jpe/rtaa031      URL     [本文引用: 1]

Jing X, Sanders NJ, Shi Y, Chu HY, Classen AT, Zhao K, Chen LT, Shi Y, Jiang YX, He JS (2015)

The links between ecosystem multifunctionality and above- and belowground biodiversity are mediated by climate

Nature Communications, 6, 8159.

DOI:10.1038/ncomms9159      PMID:26328906      [本文引用: 1]

Jing, Xin; Zhao, Ke; Shi, Yue; He, Jin-Sheng Peking Univ, Dept Ecol, Coll Urban & Environm Sci, Beijing 100871, Peoples R China. Jing, Xin; Zhao, Ke; Shi, Yue; He, Jin-Sheng Peking Univ, Key Lab Earth Surface Proc, Minist Educ, Beijing 100871, Peoples R China. Sanders, Nathan J. Univ Copenhagen, Ctr Macroecol Evolut & Climate, Nat Hist Museum Denmark, DK-2100 Copenhagen, Denmark. Shi, Yu; Chu, Haiyan Chinese Acad Sci, Inst Soil Sci, State Key Lab Soil & Sustainable Agr, Nanjing 210008, Peoples R China. Classen, Aimee T. Univ Copenhagen, Nat Hist Museum Denmark, DK-2100 Copenhagen, Denmark. Chen, Litong; He, Jin-Sheng Chinese Acad Sci, Northwest Inst Plateau Biol, Key Lab Adaptat & Evolut Plateau Biota, Xining 810008, Peoples R China. Shi, Yue Chinese Acad Sci, Inst Bot, Beijing 100093, Peoples R China. Jiang, Youxu Chinese Acad Forestry, Inst Forest Ecol, Beijing 100091, Peoples R China.

Jones KR, Watson JEM, Possingham HP, Klein CJ (2016)

Incorporating climate change into spatial conservation prioritisation: A review

Biological Conservation, 194, 121-130.

DOI:10.1016/j.biocon.2015.12.008      URL     [本文引用: 1]

Kharouba HM, Ehrlén J, Gelman A, Bolmgren K, Allen JM, Travers SE, Wolkovich EM (2018)

Global shifts in the phenological synchrony of species interactions over recent decades

Proceedings of the National Academy of Sciences, USA, 115, 5211-5216.

[本文引用: 1]

Komatsu KJ, Avolio ML, Lemoine NP, Isbell F, Grman E, Houseman GR, Koerner SE, Johnson DS, Wilcox KR, Alatalo JM, Anderson JP, Aerts R, Baer SG, Baldwin AH, Bates J, Beierkuhnlein C, Belote RT, Blair J, Bloor JMG, Bohlen PJ, Bork EW, Boughton EH, Bowman WD, Britton AJ, Cahill Jr JF, Chaneton E, Chiariello NR, Cheng JM, Collins SL, Cornelissen JHC, Du GZ, Eskelinen A, Firn J, Foster B, Gough L, Gross K, Hallett LM, Han XG, Harmens H, Hovenden MJ, Jagerbrand A, Jentsch A, Kern C, Klanderud K, Knapp AK, Kreyling J, Li W, Luo YQ, McCulley RL, McLaren JR, Megonigal JP, Morgan JW, Onipchenko V, Pennings SC, Prevéy JS, Price JN, Reich PB, Robinson CH, Russell FL, Sala OE, Seabloom EW, Smith MD, Soudzilovskaia NA, Souza L, Suding K, Suttle KB, Svejcar T, Tilman D, Tognetti P, Turkington R, White S, Xu ZW, Yahdjian L, Yu Q, Zhang PF, Zhang YH (2019)

Global change effects on plant communities are magnified by time and the number of global change factors imposed

Proceedings of the National Academy of Sciences, USA, 116, 17867-17873.

[本文引用: 1]

Lavergne S, Mouquet N, Thuiller W, Ronce O (2010)

Biodiversity and climate change: Integrating evolutionary and ecological responses of species and communities

Annual Review of Ecology, Evolution, and Systematics, 41, 321-350.

DOI:10.1146/annurev-ecolsys-102209-144628      URL     [本文引用: 1]

Le Bagousse-Pinguet Y, Soliveres S, Gross N, Torices R, Berdugo M, Maestre FT (2019)

Phylogenetic, functional, and taxonomic richness have both positive and negative effects on ecosystem multifunctionality

Proceedings of the National Academy of Sciences, USA, 116, 8419-8424.

[本文引用: 2]

Lenoir J, Bertrand R, Comte L, Bourgeaud L, Hattab T, Murienne J, Grenouillet G (2020)

Species better track climate warming in the oceans than on land

Nature Ecology & Evolution, 4, 1044-1059.

[本文引用: 1]

Li DJ, Miller JED, Harrison S (2019)

Climate drives loss of phylogenetic diversity in a grassland community

Proceedings of the National Academy of Sciences, USA, 116, 19989-19994.

[本文引用: 2]

Li N, Euring D, Cha JY, Lin Z, Lu MZ, Huang LJ, Kim WY (2021)

Plant hormone-mediated regulation of heat tolerance in response to global climate change

Frontiers in Plant Science, 11, 627969.

DOI:10.3389/fpls.2020.627969      URL     [本文引用: 1]

Li ZY, Ye XZ, Wang SP (2021)

Ecosystem stability and its relationship with biodiversity

Chinese Journal of Plant Ecology, 45, 1127-1139. (in Chinese with English abstract)

DOI:10.17521/cjpe.2020.0116      URL     [本文引用: 1]

[李周园, 叶小洲, 王少鹏 (2021)

生态系统稳定性及其与生物多样性的关系

植物生态学报, 45, 1127-1139.]

DOI:10.17521/cjpe.2020.0116      [本文引用: 1]

在全球变化背景下, 生态系统能否长期有效地维持功能并提供服务, 有赖于其稳定性。生态系统稳定性及其与生物多样性的关系, 是生态学研究的核心问题, 生物多样性能否促进生态系统稳定性曾引起很多争论。该文在前期国内外综述和研究的基础上, 重点从以下三个方面对近期进展做了总结。第一, 介绍了近期理论研究在生态系统稳定性的内涵及不同稳定性指标间的内在关联方面取得的新认识。第二, 梳理了最近基于生物多样性实验开展的多项整合分析研究和理论探索, 以及在多维度框架下开展的多样性-稳定性关系研究。第三, 详细介绍了最近发展起来的多尺度稳定性理论框架, 对稳定性的尺度依赖、多样性-稳定性的多尺度关系等新议题做了探讨。最后, 提出了本领域有待进一步研究的关键问题和方向建议。

Liu AR, Yang T, Xu W, Shangguan ZJ, Wang JZ, Liu HY, Shi Y, Chu HY, He JS (2018)

Status, issues and prospects of belowground biodiversity on the Tibetan alpine grassland

Biodiversity Science, 26, 972-987. (in Chinese with English abstract)

DOI:10.17520/biods.2018119      [本文引用: 2]

The diversity and abundance of below-ground microorganisms and animals play an important role in shaping above-ground biodiversity and helps maintain ecosystem function. Yet, we have a limited understanding of belowground biodiversity, e.g. its spatial/temporal patterns, driving factors and responses to global change and human activities. This knowledge gap is particularly acute for the Tibetan alpine grassland that is sensitive to climate change and occupies 60% of the area of the Tibetan Plateau. Here, we first review recent studies that reported the drivers of patterns in five major soil organism groups, including fungi, bacteria, archaea, nematodes and arthropods on Tibetan alpine grassland. We then focus on the responses of soil biodiversity to climate change and human activities. Finally, we highlight some open questions for future research of soil diversity on the Tibetan alpine grassland. Specifically, we recommend that future studies examine (1) The mechanisms underlying distribution patterns of belowground biodiversity; (2) Links between aboveground and belowground biodiversity; (3) Effects of belowground biodiversity on the health and functioning of ecosystems; (4) Manipulative experiments of belowground biodiversity.

[刘安榕, 杨腾, 徐炜, 上官子健, 王金洲, 刘慧颖, 时玉, 褚海燕, 贺金生 (2018)

青藏高原高寒草地地下生物多样性: 进展、问题与展望

生物多样性, 26, 972-987.]

DOI:10.17520/biods.2018119      [本文引用: 2]

栖息于土壤中的微生物和微型动物种类繁多、数量巨大, 在对地上生物多样性的调控和在生态系统功能与服务的维系中, 具有举足轻重的作用。虽然对土壤微生物以及土壤动物已经开展了广泛的调查, 但是整体上对于地下生物多样性的分布格局、驱动机制及其对全球变化的响应与适应过程, 仍缺乏深刻的认识。青藏高原是全球变化的敏感区域, 其中高寒草地是高原最主要的植被类型, 占高原面积的60%左右, 在高寒生态系统生物多样性维持中具有重要意义。近年来, 已有大量研究关注于高寒草地地下生物多样性, 但是缺乏系统的总结与论述。基于此, 本文从细菌、真菌、古菌、线虫、节肢动物五大土壤生物类群出发, 阐述了青藏高原高寒草地的地下物种丰富度、分布格局及其影响因素, 重点探讨了它们对气候变化和人类活动的响应, 并就未来高寒草地地下生物多样性亟需关注的关键问题进行了展望, 包括: (1)地下各个生物类群的分布格局、各类群之间的联系及驱动机制; (2)地上与地下生物多样性耦联的机制; (3)地下生物多样性对生态系统功能和健康的影响; (4)地下生物多样性的调控实验研究。

Liu HY, Wang H, Li N, Shao JJ, Zhou XH, van Groenigen KJ, Thakur MP (2022a)

Phenological mismatches between above- and belowground plant responses to climate warming

Nature Climate Change, 12, 97-102.

DOI:10.1038/s41558-021-01244-x      URL     [本文引用: 1]

Liu HY, Xu CY, Allen CD, Hartmann H, Wei XH, Yakir D, Wu XC, Yu PT (2022b)

Nature-based framework for sustainable afforestation in global drylands under changing climate

Global Change Biology, 28, 2202-2220.

DOI:10.1111/gcb.16059      URL     [本文引用: 1]

Liu XJ, Trogisch S, He JS, Niklaus PA, Bruelheide H, Tang ZY, Erfmeier A, Scherer-Lorenzen M, Pietsch KA, Yang B, Kühn P, Scholten T, Huang YY, Wang C, Staab M, Leppert KN, Wirth C, Schmid B, Ma KP (2018)

Tree species richness increases ecosystem carbon storage in subtropical forests

Proceedings of the Royal Society B: Biological Sciences, 285, 20181240.

Loreau M, Hector A (2001)

Partitioning selection and complementarity in biodiversity experiments

Nature, 412, 72-76.

DOI:10.1038/35083573      URL     [本文引用: 1]

Luo YH, Cadotte MW, Liu J, Burgess KS, Tan SL, Ye LJ, Zou JY, Chen ZZ, Jiang XL, Li J, Xu K, Li DZ, Gao LM (2022)

Multitrophic diversity and biotic associations influence subalpine forest ecosystem multifunctionality

Ecology, 103, e3745.

[本文引用: 1]

Ma KP, Zhu M, Ji LQ, Ma JC, Guo QH, Ouyang ZY, Zhu L (2018)

Establishing China infrastructure for big biodiversity data

Bulletin of Chinese Academy of Sciences, 33, 838-845. (in Chinese with English abstract)

[本文引用: 1]

[马克平, 朱敏, 纪力强, 马俊才, 郭庆华, 欧阳志云, 朱丽 (2018)

中国生物多样性大数据平台建设

中国科学院院刊, 33, 838-845.]

[本文引用: 1]

Makiola A, Holdaway RJ, Wood JR, Orwin KH, Glare TR, Dickie IA (2022)

Environmental and plant community drivers of plant pathogen composition and richness

New Phytologist, 233, 496-504.

DOI:10.1111/nph.17797      URL     [本文引用: 1]

Malik AA, Martiny JBH, Brodie EL, Martiny AC, Treseder KK, Allison SD (2020)

Defining trait-based microbial strategies with consequences for soil carbon cycling under climate change

The ISME Journal, 14, 1-9.

DOI:10.1038/s41396-019-0510-0      URL     [本文引用: 1]

Manning P, Loos J, Barnes AD, Batáry P, Bianchi FJJA, Buchmann N, de Deyn GB, Ebeling A, Eisenhauer N, Fischer M, Fründ J, Grass I, Isselstein J, Jochum M, Klein AM, Klingenberg EOF, Landis DA, Lepš J, Tscharntke T (2019)

Transferring biodiversity-ecosystem function research to the management of ‘real-world’ ecosystems

Advances in Ecological Research, 66, 323-356.

[本文引用: 1]

Manning P, van der Plas F, Soliveres S, Allan E, Maestre FT, Mace G, Whittingham MJ, Fischer M (2018)

Redefining ecosystem multifunctionality

Nature Ecology & Evolution, 2, 427-436.

[本文引用: 1]

Mi XC, Feng G, Zhang J, Hu YB, Zhu L, Ma KP (2021)

Review on biodiversity science in China

Bulletin of Chinese Academy of Sciences, 36, 384-398. (in Chinese with English abstract)

[本文引用: 1]

[米湘成, 冯刚, 张健, 胡义波, 朱丽, 马克平 (2021)

中国生物多样性科学研究进展评述

中国科学院院刊, 36, 384-398.]

[本文引用: 1]

Mori AS, Dee LE, Gonzalez A, Ohashi H, Cowles J, Wright AJ, Loreau M, Hautier Y, Newbold T, Reich PB, Matsui T, Takeuchi W, Okada KI, Seidl R, Isbell F (2021)

Biodiversity-productivity relationships are key to nature-based climate solutions

Nature Climate Change, 11, 543-550.

DOI:10.1038/s41558-021-01062-1      URL     [本文引用: 5]

Mouillot D, Loiseau N, Grenié M, Algar AC, Allegra M, Cadotte MW, Casajus N, Denelle P, Guéguen M, Maire A, Maitner B, McGill BJ, McLean M, Mouquet N, Munoz F, Thuiller W, Villéger S, Violle C, Auber A (2021)

The dimensionality and structure of species trait spaces

Ecology Letters, 24, 1988-2009.

DOI:10.1111/ele.13778      URL     [本文引用: 1]

Niu SL, Wan SQ, Ma KP (2009)

Acclimation and mitigation of terrestrial ecosystem and biodiversity to climate change

Bulletin of Chinese Academy of Sciences, 24, 421-427. (in Chinese with English abstract)

[本文引用: 1]

[牛书丽, 万师强, 马克平 (2009)

陆地生态系统及生物多样性对气候变化的适应与减缓

中国科学院院刊, 24, 421-427.]

[本文引用: 1]

Niu SL, Chen WN (2020)

Global change and ecosystems research progress and prospect

Chinese Journal of Plant Ecology, 44, 449-460. (in Chinese with English abstract)

DOI:10.17521/cjpe.2019.0355      URL     [本文引用: 1]

[牛书丽, 陈卫楠 (2020)

全球变化与生态系统研究现状与展望

植物生态学报, 44, 449-460.]

DOI:10.17521/cjpe.2019.0355      [本文引用: 1]

全球变化与生态系统研究是一个宏观与微观相互交叉、多学科相互渗透的前沿科学领域,重点研究生态系统结构和功能对全球变化的响应及反馈作用,其目标是实现人类对生态系统服务的可持续利用。本专刊在对国内外全球变化研究进行历史回顾和综合分析的基础上, 总结全球变化与生态系统研究的阶段性重大进展及存在的主要问题,并对全球变化研究的前沿方向进行展望和建议。根据研究内容和对象,本专刊系统地综述了不同全球变化因子,包括CO2和O3浓度升高、气候变暖、降雨格局改变、氮沉降增加、土地利用变化等对植物生理生态、群落结构及生态系统功能等的影响;探讨生态系统关键过程以及生物多样性的变化;在明确全球变化生态效应的基础上,阐明这些影响对气候和环境变化的反馈机制,为构筑全球变化的适应对策提供生态学理论基础。

O’Connor MI, Mori AS, Gonzalez A, Dee LE, Loreau M, Avolio M, Byrnes JEK, Cheung W, Cowles J, Clark AT, Hautier Y, Hector A, Komatsu K, Newbold T, Outhwaite CL, Reich PB, Seabloom E, Williams L, Wright A, Isbell F (2021)

Grand challenges in biodiversity-ecosystem functioning research in the era of science-policy platforms require explicit consideration of feedbacks

Proceedings of the Royal Society B: Biological Sciences, 288, 20210783.

[本文引用: 1]

Pardikes NA, Revilla TA, Lue CH, Thierry M, Souto-Vilarós D, Hrcek J (2022)

Effects of phenological mismatch under warming are modified by community context

Global Change Biology, 28, 4013-4026.

DOI:10.1111/gcb.16195      PMID:35426203      [本文引用: 1]

Climate change is altering the relative timing of species interactions by shifting when species first appear in communities and modifying the duration organisms spend in each developmental stage. However, community contexts, such as intraspecific competition and alternative resource species, can prolong shortened windows of availability and may mitigate the effects of phenological shifts on species interactions. Using a combination of laboratory experiments and dynamic simulations, we quantified how the effects of phenological shifts in Drosophila-parasitoid interactions differed with concurrent changes in temperature, intraspecific competition, and the presence of alternative host species. Our study confirmed that warming shortens the window of host susceptibility. However, the presence of alternative host species sustained interaction persistence across a broader range of phenological shifts than pairwise interactions by increasing the degree of temporal overlap with suitable development stages between hosts and parasitoids. Irrespective of phenological shifts, parasitism rates declined under warming due to reduced parasitoid performance, which limited the ability of community context to manage temporally mismatched interactions. These results demonstrate that the ongoing decline in insect diversity may exacerbate the effects of phenological shifts in ecological communities under future global warming temperatures.This article is protected by copyright. All rights reserved.

Pereira HM, Navarro LM, Martins IS (2012)

Global biodiversity change: The bad, the good, and the unknown

Annual Review of Environment and Resources, 37, 25-50.

DOI:10.1146/annurev-environ-042911-093511      [本文引用: 1]

Global biodiversity change is one of the most pressing environmental issues of our time. Here, we review current scientific knowledge on global biodiversity change and identify the main knowledge gaps. We discuss two components of biodiversity change-biodiversity alterations and biodiversity loss-across four dimensions of biodiversity: species extinctions, species abundances, species distributions, and genetic diversity. We briefly review the impacts that modern humans and their ancestors have had on biodiversity and discuss the recent declines and alterations in biodiversity. We analyze the direct pressures on biodiversity change: habitat change, overexploitation, exotic species, pollution, and climate change. We discuss the underlying causes, such as demographic growth and resource use, and review existing scenario projections. We identify successes and impending opportunities in biodiversity policy and management, and highlight gaps in biodiversity monitoring and models. Finally, we discuss how the ecosystem services framework can be used to identify undesirable biodiversity change and allocate conservation efforts.

Petry WK, Soule JD, Iler AM, Chicas-Mosier A, Inouye DW, Miller TEX, Mooney KA (2016)

Sex-specific responses to climate change in plants alter population sex ratio and performance

Science, 353, 69-71.

DOI:10.1126/science.aaf2588      PMID:27365446      [本文引用: 1]

Males and females are ecologically distinct in many species, but whether responses to climate change are sex-specific is unknown. We document sex-specific responses to climate change in the plant Valeriana edulis (valerian) over four decades and across its 1800-meter elevation range. Increased elevation was associated with increased water availability and female frequency, likely owing to sex-specific water use efficiency and survival. Recent aridification caused male frequency to move upslope at 175 meters per decade, a rate of trait shift outpacing reported species' range shifts by an order of magnitude. This increase in male frequency reduced pollen limitation and increased seedset. Coupled with previous studies reporting sex-specific arthropod communities, these results underscore the importance of ecological differences between the sexes in mediating biological responses to climate change.Copyright © 2016, American Association for the Advancement of Science.

Pettorelli N, Graham NAJ, Seddon N, Bustamante M, Lowton MJ, Sutherland WJ, Koldewey HJ, Prentice HC, Barlow J (2021)

Time to integrate global climate change and biodiversity science-policy agendas

Journal of Applied Ecology, 58, 2384-2393.

DOI:10.1111/1365-2664.13985      URL     [本文引用: 2]

Piao SL, He Y, Wang XH, Chen FH (2022)

Estimation of China’s terrestrial ecosystem carbon sink: Methods, progress and prospects

Science China Earth Sciences, 65, 641-651. (in Chinese with English abstract)

DOI:10.1007/s11430-021-9892-6      URL     [本文引用: 1]

[朴世龙, 何悦, 王旭辉, 陈发虎 (2022)

中国陆地生态系统碳汇估算: 方法、进展、展望

中国科学: 地球科学, 52, 1010-1020.]

[本文引用: 1]

Pörtner HO, Scholes RJ, Agard J, Archer E, Arneth A, Bai X, Barnes D, Burrows M, Chan L, Cheung WLW, Diamond S, Donatti C, Duarte C, Eisenhauer N, Foden W, Gasalla MA, Handa C, Hickler T, Hoegh-Guldberg O, Ichii K, Jacob U, Insarov G, Kiessling W, Leadley P, Leemans R, Levin L, Lim M, Maharaj S, Managi S, Marquet PA, McElwee P, Midgley G, Oberdorff T, Obura D, Osman Elasha B, Pandit R, Pascual U, Pires APF, Popp A, Reyes-García V, Sankaran M, Settele J, Shin Y-J, Sintayehu DW, Smith P, Steiner N, Strassburg B, Sukumar R, Trisos C, Val AL, Wu J, Aldrian E, Parmesan C, Pichs-Madruga R, Roberts DC, Rogers AD, Díaz SM, Fischer M, Hashimoto S, Lavorel S, Ning W, Ngo H (2021)

Scientific outcome of the IPBES-IPCC co-sponsored workshop on biodiversity and climate change

Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES), https://zenodo.org/record/5101125. (last accessed on 2022-08-06).

URL     [本文引用: 1]

Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE (2010)

Global pollinator declines: Trends, impacts and drivers

Trends in Ecology & Evolution, 25, 345-353.

DOI:10.1016/j.tree.2010.01.007      URL     [本文引用: 1]

Pretty J, Benton TG, Bharucha ZP, Dicks LV, Flora CB, Godfray HCJ, Goulson D, Hartley S, Lampkin N, Morris C, Pierzynski G, Prasad PVV, Reganold J, Rockström J, Smith P, Thorne P, Wratten S (2018)

Global assessment of agricultural system redesign for sustainable intensification

Nature Sustainability, 1, 441-446.

DOI:10.1038/s41893-018-0114-0      URL     [本文引用: 1]

Qiu JX, Cardinale BJ (2020)

Scaling up biodiversity- ecosystem function relationships across space and over time

Ecology, 101, e03166.

[本文引用: 2]

Ratcliffe S, Wirth C, Jucker T, van der Plas F, Scherer- Lorenzen M, Verheyen K, Allan E, Benavides R, Bruelheide H, Ohse B, Paquette A, Ampoorter E, Bastias CC, Bauhus J, Bonal D, Bouriaud O, Bussotti F, Carnol M, Castagneyrol B, Chećko E, Dawud SM, De Wandeler H, Domisch T, Finér L, Fischer M, Fotelli M, Gessler A, Granier A, Grossiord C, Guyot V, Haase J, Hättenschwiler S, Jactel H, Jaroszewicz B, Joly FX, Kambach S, Kolb S, Koricheva J, Liebersgesell M, Milligan H, Müller S, Muys B, Nguyen D, Nock C, Pollastrini M, Purschke O, Radoglou K, Raulund-Rasmussen K, Roger F, Ruiz-Benito P, Seidl R, Selvi F, Seiferling I, Stenlid J, Valladares F, Vesterdal L, Baeten L (2017)

Biodiversity and ecosystem functioning relations in European forests depend on environmental context

Ecology Letters, 20, 1414-1426.

DOI:10.1111/ele.12849      PMID:28925074      [本文引用: 1]

The importance of biodiversity in supporting ecosystem functioning is generally well accepted. However, most evidence comes from small-scale studies, and scaling-up patterns of biodiversity-ecosystem functioning (B-EF) remains challenging, in part because the importance of environmental factors in shaping B-EF relations is poorly understood. Using a forest research platform in which 26 ecosystem functions were measured along gradients of tree species richness in six regions across Europe, we investigated the extent and the potential drivers of context dependency of B-EF relations. Despite considerable variation in species richness effects across the continent, we found a tendency for stronger B-EF relations in drier climates as well as in areas with longer growing seasons and more functionally diverse tree species. The importance of water availability in driving context dependency suggests that as water limitation increases under climate change, biodiversity may become even more important to support high levels of functioning in European forests.© 2017 John Wiley & Sons Ltd/CNRS.

Rillig MC, Ryo M, Lehmann A, Aguilar-Trigueros CA, Buchert S, Wulf A, Iwasaki A, Roy J, Yang GW (2019)

The role of multiple global change factors in driving soil functions and microbial biodiversity

Science, 366, 886-890.

DOI:10.1126/science.aay2832      PMID:31727838      [本文引用: 1]

Soils underpin terrestrial ecosystem functions, but they face numerous anthropogenic pressures. Despite their crucial ecological role, we know little about how soils react to more than two environmental factors at a time. Here, we show experimentally that increasing the number of simultaneous global change factors (up to 10) caused increasing directional changes in soil properties, soil processes, and microbial communities, though there was greater uncertainty in predicting the magnitude of change. Our study provides a blueprint for addressing multifactor change with an efficient, broadly applicable experimental design for studying the impacts of global environmental change.Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

Rinawati F, Stein K, Lindner A (2013)

Climate change impacts on biodiversity—The setting of a lingering global crisis

Diversity, 5, 114-123.

DOI:10.3390/d5010114      URL     [本文引用: 1]

Roslin T, Antão L, Hällfors M, Meyke E, Lo C, Tikhonov G, del Mar Delgado M, Gurarie E, Abadonova M, Abduraimov O, Adrianova O, Akimova T, Akkiev M, Ananin A, Andreeva E, Andriychuk N, Antipin M, Arzamascev K, Babina S, Babushkin M, Bakin O, Barabancova A, Basilskaja I, Belova N, Belyaeva N, Bespalova T, Bisikalova E, Bobretsov A, Bobrov V, Bobrovskyi V, Bochkareva E, Bogdanov G, Bolshakov V, Bondarchuk S, Bukharova E, Butunina A, Buyvolov Y, Buyvolova A, Bykov Y, Chakhireva E, Chashchina O, Cherenkova N, Chistjakov S, Chuhontseva S, Davydov EA, Demchenko V, Diadicheva E, Dobrolyubov A, Dostoyevskaya L, Drovnina S, Drozdova Z, Dubanaev A, Dubrovsky Y, Elsukov S, Epova L, Ermakova O, Ermakova OS, Ershkova E, Esengeldenova A, Evstigneev O, Fedchenko I, Fedotova V, Filatova T, Gashev S, Gavrilov A, Gaydysh I, Golovcov D, Goncharova N, Gorbunova E, Gordeeva T, Grishchenko V, Gromyko L, Hohryakov V, Hritankov A, Ignatenko E, Igosheva S, Ivanova U, Ivanova N, Kalinkin Y, Kaygorodova E, Kazansky F, Kiseleva D, Knorre A, Kolpashikov L, Korobov E, Korolyova H, Korotkikh N, Kosenkov G, Kossenko S, Kotlugalyamova E, Kozlovsky E, Kozsheechkin V, Kozurak A, Kozyr I, Krasnopevtseva A, Kruglikov S, Kuberskaya O, Kudryavtsev A, Kulebyakina E, Kulsha Y, Kupriyanova M, Kurbanbagamaev M, Kutenkov A, Kutenkova N, Kuyantseva N, Kuznetsov A, Larin E, Lebedev P, Litvinov K, Luzhkova N, Mahmudov A, Makovkina L, Mamontov V, Mayorova S, Megalinskaja I, Meydus A, Minin A, Mitrofanov O, Motruk M, Myslenkov A, Nasonova N, Nemtseva N, Nesterova I, Nezdoliy T, Niroda T, Novikova T, Panicheva D, Pavlov A, Pavlova K, Podolski S, Polikarpova N, Polyanskaya T, Pospelov I, Pospelova E, Prokhorov I, Prokosheva I, Puchnina L, Putrashyk I, Raiskaya J, Rozhkov Y, Rozhkova O, Rudenko M, Rybnikova I, Rykova S, Sahnevich M, Samoylov A, Sanko V, Sapelnikova I, Sazonov S, Selyunina Z, Shalaeva K, Shashkov M, Shcherbakov A, Shevchyk V, Shubin S, Shujskaja E, Sibgatullin R, Sikkila N, Sitnikova E, Sivkov A, Skok N, Skorokhodova S, Smirnova E, Sokolova G, Sopin V, Spasovski Y, Stepanov S, Stratiy V, Strekalovskaya V, Sukhov A, Suleymanova G, Sultangareeva L, Teleganova V, Teplov V, Teplova V, Tertitsa T, Timoshkin V, Tirski D, Tolmachev A, Tomilin A, Tselishcheva L, Turgunov M, Tyukh Y, Van P, Van V, Vasin A, Vasina A, Vekliuk A, Vetchinnikova L, Vinogradov V, Volodchenkov N, Voloshina I, Xoliqov T, Yablonovska-Grishchenko E, Yakovlev V, Yakovleva M, Yantser O, Yarema Y, Zahvatov A, Zakharov V, Zelenetskiy N, Zheltukhin A, Zubina T, Kurhinen J, Ovaskainen O (2021)

Phenological shifts of abiotic events, producers and consumers across a continent

Nature Climate Change, 11, 241-248.

DOI:10.1038/s41558-020-00967-7      URL     [本文引用: 2]

Sala OE, Chapin FS III, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH (2000)

Global biodiversity scenarios for the year 2100

Science, 287, 1770-1774.

PMID:10710299      [本文引用: 1]

Scenarios of changes in biodiversity for the year 2100 can now be developed based on scenarios of changes in atmospheric carbon dioxide, climate, vegetation, and land use and the known sensitivity of biodiversity to these changes. This study identified a ranking of the importance of drivers of change, a ranking of the biomes with respect to expected changes, and the major sources of uncertainties. For terrestrial ecosystems, land-use change probably will have the largest effect, followed by climate change, nitrogen deposition, biotic exchange, and elevated carbon dioxide concentration. For freshwater ecosystems, biotic exchange is much more important. Mediterranean climate and grassland ecosystems likely will experience the greatest proportional change in biodiversity because of the substantial influence of all drivers of biodiversity change. Northern temperate ecosystems are estimated to experience the least biodiversity change because major land-use change has already occurred. Plausible changes in biodiversity in other biomes depend on interactions among the causes of biodiversity change. These interactions represent one of the largest uncertainties in projections of future biodiversity change.

Saladin B, Pellissier L, Graham CH, Nobis MP, Salamin N, Zimmermann NE (2020)

Rapid climate change results in long-lasting spatial homogenization of phylogenetic diversity

Nature Communications, 11, 4663.

DOI:10.1038/s41467-020-18343-6      PMID:32938914      [本文引用: 1]

Scientific understanding of biodiversity dynamics, resulting from past climate oscillations and projections of future changes in biodiversity, has advanced over the past decade. Little is known about how these responses, past or future, are spatially connected. Analyzing the spatial variability in biodiversity provides insight into how climate change affects the accumulation of diversity across space. Here, we evaluate the spatial variation of phylogenetic diversity of European seed plants among neighboring sites and assess the effects of past rapid climate changes during the Quaternary on these patterns. Our work shows a marked homogenization in phylogenetic diversity across Central and Northern Europe linked to high climate change velocity and large distances to refugia. Our results suggest that the future projected loss in evolutionary heritage may be even more dramatic, as homogenization in response to rapid climate change has occurred among sites across large landscapes, leaving a legacy that has lasted for millennia.

Scheffers BR, De Meester L, Bridge TCL, Hoffmann AA, Pandolfi JM, Corlett RT, Butchart SHM, Pearce-Kelly P, Kovacs KM, Dudgeon D, Pacifici M, Rondinini C, Foden WB, Martin TG, Mora C, Bickford D, Watson JEM (2016)

The broad footprint of climate change from genes to biomes to people

Science, 354, aaf7671.

DOI:10.1126/science.aaf7671      URL     [本文引用: 1]

Schuldt A, Assmann T, Brezzi M, Buscot F, Eichenberg D, Gutknecht J, Härdtle W, He JS, Klein AM, Kühn P, Liu XJ, Ma KP, Niklaus PA, Pietsch KA, Purahong W, Scherer-Lorenzen M, Schmid B, Scholten T, Staab M, Tang ZY, Trogisch S, von Oheimb G, Wirth C, Wubet T, Zhu CD, Bruelheide H (2018)

Biodiversity across trophic levels drives multifunctionality in highly diverse forests

Nature Communications, 9, 2989.

DOI:10.1038/s41467-018-05421-z      PMID:30065285      [本文引用: 1]

Human-induced biodiversity change impairs ecosystem functions crucial to human wellbeing. However, the consequences of this change for ecosystem multifunctionality are poorly understood beyond effects of plant species loss, particularly in regions with high biodiversity across trophic levels. Here we adopt a multitrophic perspective to analyze how biodiversity affects multifunctionality in biodiverse subtropical forests. We consider 22 independent measurements of nine ecosystem functions central to energy and nutrient flow across trophic levels. We find that individual functions and multifunctionality are more strongly affected by the diversity of heterotrophs promoting decomposition and nutrient cycling, and by plant functional-trait diversity and composition, than by tree species richness. Moreover, cascading effects of higher trophic-level diversity on functions originating from lower trophic-level processes highlight that multitrophic biodiversity is key to understanding drivers of multifunctionality. A broader perspective on biodiversity-multifunctionality relationships is crucial for sustainable ecosystem management in light of non-random species loss and intensified biotic disturbances under future environmental change.

Shen MG, Wang SP, Jiang N, Sun JP, Cao RY, Ling XF, Fang B, Zhang L, Zhang LH, Xu XY, Lv WW, Li BL, Sun QL, Meng FD, Jiang YH, Dorji T, Fu YS, Iler A, Vitasse Y, Steltzer H, Ji ZM, Zhao WW, Piao SL, Fu BJ (2022)

Plant phenology changes and drivers on the Qinghai-Tibetan Plateau

Nature Reviews Earth & Environment, 3, 633-651.

[本文引用: 1]

Shin YJ, Midgley GF, Archer ERM, Arneth A, Barnes DKA, Chan LN, Hashimoto S, Hoegh-Guldberg O, Insarov G, Leadley P, Levin LA, Ngo HT, Pandit R, Pires APF, Pörtner HO, Rogers AD, Scholes RJ, Settele J, Smith P (2022)

Actions to halt biodiversity loss generally benefit the climate

Global Change Biology, 28, 2846-2874.

DOI:10.1111/gcb.16109      URL     [本文引用: 3]

Smith P, Arneth A, Barnes DKA, Ichii K, Marquet PA, Popp A, Pörtner HO, Rogers AD, Scholes RJ, Strassburg B, Wu JG, Ngo H (2022)

How do we best synergize climate mitigation actions to co-benefit biodiversity?

Global Change Biology, 28, 2555-2577.

DOI:10.1111/gcb.16056      URL     [本文引用: 2]

Song J, Wan SQ, Piao SL, Knapp AK, Classen AT, Vicca S, Ciais P, Hovenden MJ, Leuzinger S, Beier C, Kardol P, Xia JY, Liu Q, Ru JY, Zhou ZX, Luo YQ, Guo DL, Adam Langley J, Zscheischler J, Dukes JS, Tang JW, Chen JQ, Hofmockel KS, Kueppers LM, Rustad L, Liu LL, Smith MD, Templer PH, Quinn Thomas R, Norby RJ, Phillips RP, Niu SL, Fatichi S, Wang YP, Shao PS, Han HY, Wang DD, Lei LJ, Wang JL, Li XN, Zhang Q, Li XM, Su FL, Liu B, Yang F, Ma GG, Li GY, Liu YC, Liu YZ, Yang ZL, Zhang KS, Miao Y, Hu MJ, Yan C, Zhang A, Zhong MX, Hui Y, Li Y, Zheng MM (2019)

A meta-analysis of 1,119 manipulative experiments on terrestrial carbon-cycling responses to global change

Nature Ecology & Evolution, 3, 1309-1320.

[本文引用: 1]

Strassburg BBN, Iribarrem A, Beyer HL, Cordeiro CL, Crouzeilles R, Jakovac CC, Braga Junqueira A, Lacerda E, Latawiec AE, Balmford A, Brooks TM, Butchart SHM, Chazdon RL, Erb KH, Brancalion P, Buchanan G, Cooper D, Díaz S, Donald PF, Kapos V, Leclère D, Miles L, Obersteiner M, Plutzar C, de M Scaramuzza CA, Scarano FR, Visconti P (2020)

Global priority areas for ecosystem restoration

Nature, 586, 724-729.

DOI:10.1038/s41586-020-2784-9      URL     [本文引用: 1]

Terraube J, Villers A, Poudré L, Varjonen R, Korpimäki E (2017)

Increased autumn rainfall disrupts predator-prey interactions in fragmented boreal forests

Global Change Biology, 23, 1361-1373.

DOI:10.1111/gcb.13408      PMID:27371812      [本文引用: 1]

There is a pressing need to understand how changing climate interacts with land-use change to affect predator-prey interactions in fragmented landscapes. This is particularly true in boreal ecosystems facing fast climate change and intensification in forestry practices. Here, we investigated the relative influence of autumn climate and habitat quality on the food-storing behaviour of a generalist predator, the pygmy owl, using a unique data set of 15 850 prey items recorded in western Finland over 12 years. Our results highlighted strong effects of autumn climate (number of days with rainfall and with temperature <0 °C) on food-store composition. Increasing frequency of days with precipitation in autumn triggered a decrease in (i) total prey biomass stored, (ii) the number of bank voles (main prey) stored, and (iii) the scaled mass index of pygmy owls. Increasing proportions of old spruce forests strengthened the functional response of owls to variations in vole abundance and were more prone to switch from main prey to alternative prey (passerine birds) depending on local climate conditions. High-quality habitat may allow pygmy owls to buffer negative effects of inclement weather and cyclic variation in vole abundance. Additionally, our results evidenced sex-specific trends in body condition, as the scaled mass index of smaller males increased while the scaled mass index of larger females decreased over the study period, probably due to sex-specific foraging strategies and energy requirements. Long-term temporal stability in local vole abundance refutes the hypothesis of climate-driven change in vole abundance and suggests that rainier autumns could reduce the vulnerability of small mammals to predation by pygmy owls. As small rodents are key prey species for many predators in northern ecosystems, our findings raise concern about the impact of global change on boreal food webs through changes in main prey vulnerability.© 2016 John Wiley & Sons Ltd.

Thackeray SJ, Henrys PA, Hemming D, Bell JR, Botham MS, Burthe S, Helaouet P, Johns DG, Jones ID, Leech DI, Mackay EB, Massimino D, Atkinson S, Bacon PJ, Brereton TM, Carvalho L, Clutton-Brock TH, Duck C, Edwards M, Elliott JM, Hall SJG, Harrington R, Pearce-Higgins JW, Høye TT, Kruuk LEB, Pemberton JM, Sparks TH, Thompson PM, White I, Winfield IJ, Wanless S (2016)

Phenological sensitivity to climate across taxa and trophic levels

Nature, 535, 241-245.

[本文引用: 1]

Thakur MP (2020)

Climate warming and trophic mismatches in terrestrial ecosystems: The green-brown imbalance hypothesis

Biology Letters, 16, 20190770.

DOI:10.1098/rsbl.2019.0770      URL     [本文引用: 2]

Thuiller W, Lavergne S, Roquet C, Boulangeat I, Lafourcade B, Araujo MB (2011)

Consequences of climate change on the Tree of Life in Europe

Nature, 470, 531-534.

DOI:10.1038/nature09705      URL     [本文引用: 1]

Tilman D, Isbell F, Cowles JM (2014)

Biodiversity and ecosystem functioning

Annual Review of Ecology, Evolution, and Systematics, 45, 471-493.

DOI:10.1146/annurev-ecolsys-120213-091917      URL     [本文引用: 3]

Tilman D, Reich PB, Knops J, Wedin D, Mielke T, Lehman C (2001)

Diversity and productivity in a long-term grassland experiment

Science, 294, 843-845.

PMID:11679667      [本文引用: 1]

Plant diversity and niche complementarity had progressively stronger effects on ecosystem functioning during a 7-year experiment, with 16-species plots attaining 2.7 times greater biomass than monocultures. Diversity effects were neither transients nor explained solely by a few productive or unviable species. Rather, many higher-diversity plots outperformed the best monoculture. These results help resolve debate over biodiversity and ecosystem functioning, show effects at higher than expected diversity levels, and demonstrate, for these ecosystems, that even the best-chosen monocultures cannot achieve greater productivity or carbon stores than higher-diversity sites.

van der Plas F (2019)

Biodiversity and ecosystem functioning in naturally assembled communities

Biological Reviews of the Cambridge Philosophical Society, 94, 1220-1245.

DOI:10.1111/brv.12499      PMID:30724447      [本文引用: 2]

Approximately 25 years ago, ecologists became increasingly interested in the question of whether ongoing biodiversity loss matters for the functioning of ecosystems. As such, a new ecological subfield on Biodiversity and Ecosystem Functioning (BEF) was born. This subfield was initially dominated by theoretical studies and by experiments in which biodiversity was manipulated, and responses of ecosystem functions such as biomass production, decomposition rates, carbon sequestration, trophic interactions and pollination were assessed. More recently, an increasing number of studies have investigated BEF relationships in non-manipulated ecosystems, but reviews synthesizing our knowledge on the importance of real-world biodiversity are still largely missing. I performed a systematic review in order to assess how biodiversity drives ecosystem functioning in both terrestrial and aquatic, naturally assembled communities, and on how important biodiversity is compared to other factors, including other aspects of community composition and abiotic conditions. The outcomes of 258 published studies, which reported 726 BEF relationships, revealed that in many cases, biodiversity promotes average biomass production and its temporal stability, and pollination success. For decomposition rates and ecosystem multifunctionality, positive effects of biodiversity outnumbered negative effects, but neutral relationships were even more common. Similarly, negative effects of prey biodiversity on pathogen and herbivore damage outnumbered positive effects, but were less common than neutral relationships. Finally, there was no evidence that biodiversity is related to soil carbon storage. Most BEF studies focused on the effects of taxonomic diversity, however, metrics of functional diversity were generally stronger predictors of ecosystem functioning. Furthermore, in most studies, abiotic factors and functional composition (e.g. the presence of a certain functional group) were stronger drivers of ecosystem functioning than biodiversity per se. While experiments suggest that positive biodiversity effects become stronger at larger spatial scales, in naturally assembled communities this idea is too poorly studied to draw general conclusions. In summary, a high biodiversity in naturally assembled communities positively drives various ecosystem functions. At the same time, the strength and direction of these effects vary highly among studies, and factors other than biodiversity can be even more important in driving ecosystem functioning. Thus, to promote those ecosystem functions that underpin human well-being, conservation should not only promote biodiversity per se, but also the abiotic conditions favouring species with suitable trait combinations.© 2019 Cambridge Philosophical Society.

van der Plas F, Manning P, Allan E, Scherer-Lorenzen M, Verheyen K, Wirth C, Zavala MA, Hector A, Ampoorter E, Baeten L, Barbaro L, Bauhus J, Benavides R, Benneter A, Berthold F, Bonal D, Bouriaud O, Bruelheide H, Bussotti F, Carnol M, Castagneyrol B, Charbonnier Y, Coomes D, Coppi A, Bastias CC, Muhie Dawud S, De Wandeler H, Domisch T, Finér L, Gessler A, Granier A, Grossiord C, Guyot V, Hättenschwiler S, Jactel H, Jaroszewicz B, Joly FX, Jucker T, Koricheva J, Milligan H, Müller S, Muys B, Nguyen D, Pollastrini M, Raulund-Rasmussen K, Selvi F, Stenlid J, Valladares F, Vesterdal L, Zielínski D, Fischer M (2016)

Jack-of-all-trades effects drive biodiversity- ecosystem multifunctionality relationships in European forests

Nature Communications, 7, 11109.

DOI:10.1038/ncomms11109      URL     [本文引用: 1]

Vasiliev D, Greenwood S (2021)

The role of climate change in pollinator decline across the Northern Hemisphere is underestimated

Science of the Total Environment, 775, 145788.

DOI:10.1016/j.scitotenv.2021.145788      URL     [本文引用: 1]

Violle C, Navas ML, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E (2007)

Let the concept of trait be functional!

Oikos, 116, 882-892.

DOI:10.1111/j.0030-1299.2007.15559.x      URL     [本文引用: 1]

Verheyen K, Vanhellemont M, Auge H, Baeten L, Baraloto C, Barsoum N, Bilodeau-Gauthier S, Bruelheide H, Castagneyrol B, Godbold D, Haase J, Hector A, Jactel H, Koricheva J, Loreau M, Mereu S, Messier C, Muys B, Nolet P, Paquette A, Parker J, Perring M, Ponette Q, Potvin C, Reich P, Smith A, Weih M, Scherer-Lorenzen M (2016)

Contributions of a global network of tree diversity experiments to sustainable forest plantations

Ambio, 45, 29-41.

DOI:10.1007/s13280-015-0685-1      URL     [本文引用: 1]

Visser ME, Gienapp P (2019)

Evolutionary and demographic consequences of phenological mismatches

Nature Ecology & Evolution, 3, 879-885.

[本文引用: 2]

Wang QQ, Gao Y, Wang R (2021)

Review on impacts of global change on food web structure

Chinese Journal of Plant Ecology, 45, 1064-1074. (in Chinese with English abstract)

DOI:10.17521/cjpe.2020.0061      URL     [本文引用: 1]

[王晴晴, 高燕, 王嵘 (2021)

全球变化对食物网结构影响机制的研究进展

植物生态学报, 45, 1064-1074.]

DOI:10.17521/cjpe.2020.0061      [本文引用: 1]

食物网主要依靠基于不同营养级间物种互作形成的上行与下行调控维持其结构。全球变化能够改变种间关系, 威胁生物多样性的维持, 然而目前对全球变化改变食物网结构的机制仍处于探索阶段。近年来通过大时空格局与多营养级食物网研究, 发现全球变化的作用机制主要可归结为3种: 物候错配、关键种丧失与生物入侵。该文聚焦于这3种机制, 综述各种机制造成的食物网结构变化并探讨相关的进化与生态驱动因素。三种干扰机制均通过改变原有种间关系, 影响食物网调控, 改变食物网结构。不同的是, 物候错配造成的种间关系变化是由于不同物种的物候对全球变化产生非同步响应所致; 关键种丧失则使营养级间取食/捕食关系发生变化甚至缺失; 而入侵物种通过竞争排除同营养级物种改变种间关系。最后, 该文提出食物网结构变化的实质是物种是否能够适应快速变化的生态环境, 并据此展望未来研究方向。随着全球变化影响日益加剧, 急需继续深入探索导致全球变化下食物网结构改变的机制, 为制定合理的生物多样性保护与生态修复规划提供重要理论支撑。

Warren R, Price J, Jenkins R (2021) Climate change and terrestrial biodiversity. In: The Impacts of Climate Change: A comprehensive Study of Physical, Biophisical, Social and Political Issues (ed. Letcher TM), pp. 85-114. Elsevier, Amsterdam.

[本文引用: 1]

Wei FW, Nie YG, Miao HX, Lu H, Hu YB (2014)

Advancements of the researches on biodiversity loss mechanisms

Chinese Science Bulletin, 59, 430-437. (in Chinese with English abstract)

DOI:10.1007/s11434-013-0029-0      URL     [本文引用: 1]

[魏辅文, 聂永刚, 苗海霞, 路浩, 胡义波 (2014)

生物多样性丧失机制研究进展

科学通报, 59, 430-437.]

[本文引用: 1]

Wolf C, Levi T, Ripple WJ, Zárrate-Charry DA, Betts MG (2021)

A forest loss report card for the world’s protected areas

Nature Ecology & Evolution, 5, 520-529.

[本文引用: 1]

Wu D, Xu C, Wang SP, Zhang L, Kortsch S (2022)

Why are biodiversity-ecosystem functioning relationships so elusive? Trophic interactions may amplify ecosystem function variability

Journal of Animal Ecology, doi: 10.1111/1365-2656.13808.

[本文引用: 1]

Xu W, Ma ZY, Jing X, He JS (2016)

Biodiversity and ecosystem multifunctionality: Advances and perspectives

Biodiversity Science, 24, 55-71. (in Chinese with English abstract)

DOI:10.17520/biods.2015091      [本文引用: 2]

As global biodiversity losses accelerate, there is increasing evidence shows that there may be negative impacts on ecosystem functioning, such as declines in plant primary productivity and imbalances in nutrient cycling. Thus, it is critical to understand the relationship between biodiversity and ecosystem functioning (BEF). However, ecosystems can provide multiple functions simultaneously (ecosystem multifunctionality, EMF). Since 2007, the quantification of relationships between biodiversity and ecosystem multifunctionality (BEMF) has generated additional questions and controversies, such as the lack of consensus in appropriate multifunctionality indices and uncertain trade-offs among ecosystem functions. In this review, we briefly summarize the history of BEMF studies and the methods of EMF quantification, then outline the mechanisms of EMF maintenance and current research progress. We emphasize the importance of optimizing EMF quantifications and investigating the relationship between different dimensions of biodiversity and EMF. We also provide suggestions and directions for future research on BEMF.

[徐炜, 马志远, 井新, 贺金生 (2016)

生物多样性与生态系统多功能性: 进展与展望

生物多样性, 24, 55-71.]

DOI:10.17520/biods.2015091      [本文引用: 2]

全球变化和人类活动引起的生物多样性丧失将会对生态系统功能产生诸多不利影响, 如生产力下降、养分循环失衡等。因此, 始于20世纪90年代的生物多样性与生态系统功能(biodiversity and ecosystem functioning, BEF)研究一直是生态学界关注的热点。然而, 随着研究的深入, 人们逐步认识到生态系统并非仅仅提供单个生态系统功能, 而是能同时提供多个功能, 这一特性被称之为&#x0201c;生态系统多功能性&#x0201d; (ecosystem multifunctionality, EMF)。尽管有此认识, 但直到2007年, 研究者才开始定量描述生物多样性与生态系统多功能性(biodiversity and ecosystem multifunctionality, BEMF)的关系。目前, BEMF研究已成为生态学研究的一个重要议题, 但仍存在很多问题和争议, 如缺少公认的多功能性测度标准、生态系统不同功能之间的权衡问题等。本文概述了BEMF研究的发展历程、常用的量化方法、EMF的维持机制和不同研究视角下BEMF的关系。针对现有研究中的不足, 本文还总结了需要进一步深入研究的地方, 特别强调了优化EMF测度方法和研究不同维度生物多样性与EMF间关系的重要性, 以期对未来的BEMF研究有所帮助。

Yang GW, Ryo M, Roy J, Lammel DR, Ballhausen MB, Jing X, Zhu XF, Rillig MC (2022)

Multiple anthropogenic pressures eliminate the effects of soil microbial diversity on ecosystem functions in experimental microcosms

Nature Communications, 13, 4260.

DOI:10.1038/s41467-022-31936-7      PMID:35871070      [本文引用: 1]

Biodiversity is crucial for the provision of ecosystem functions. However, ecosystems are now exposed to a rapidly growing number of anthropogenic pressures, and it remains unknown whether biodiversity can still promote ecosystem functions under multifaceted pressures. Here we investigated the effects of soil microbial diversity on soil functions and properties when faced with an increasing number of simultaneous global change factors in experimental microcosms. Higher soil microbial diversity had a positive effect on soil functions and properties when no or few (i.e., 1-4) global change factors were applied, but this positive effect was eliminated by the co-occurrence of numerous global change factors. This was attributable to the reduction of soil fungal abundance and the relative abundance of an ecological cluster of coexisting soil bacterial and fungal taxa. Our study indicates that reducing the number of anthropogenic pressures should be a goal in ecosystem management, in addition to biodiversity conservation.© 2022. The Author(s).

Yang YH, Shi Y, Sun WJ, Chang JF, Zhu JX, Chen LY, Wang X, Guo YP, Zhang HT, Yu LF, Zhao SQ, Xu K, Zhu JL, Shen HH, Wang YY, Peng YF, Zhao X, Wang XP, Hu HF, Chen SP, Huang M, Wen XF, Wang SP, Zhu B, Niu SL, Tang ZY, Liu LL, Fang JY (2022)

Terrestrial carbon sinks in China and around the world and their contribution to carbon neutrality

Science China Life Sciences, 65, 534-574.

[本文引用: 1]

[杨元合, 石岳, 孙文娟, 常锦峰, 朱剑霄, 陈蕾伊, 王欣, 郭焱培, 张宏图, 于凌飞, 赵淑清, 徐亢, 朱江玲, 沈海花, 王媛媛, 彭云峰, 赵霞, 王襄平, 胡会峰, 陈世苹, 黄玫, 温学发, 王少鹏, 朱彪, 牛书丽, 唐志尧, 刘玲莉, 方精云 (2022)

中国及全球陆地生态系统碳源汇特征及其对碳中和的贡献

中国科学: 生命科学, 52, 534-574.]

[本文引用: 1]

Yu GR, Hao TX, Zhu JX (2022)

Discussion on action strategies of China’s carbon peak and carbon neutrality

Bulletin of Chinese Academy of Sciences, 37, 423-434. (in Chinese with English abstract)

[本文引用: 1]

[于贵瑞, 郝天象, 朱剑兴 (2022)

中国碳达峰、碳中和行动方略之探讨

中国科学院院刊, 37, 423-434.]

[本文引用: 1]

Yu GR, Yang M, Fu C, Wang QF, Chen Z (2021)

Thinking on large-scale terrestrial ecosystem management and its theoretical fundament and practice

Chinese Journal of Applied Ecology, 32, 771-787. (in Chinese with English abstract)

[本文引用: 1]

[于贵瑞, 杨萌, 付超, 王秋凤, 陈智 (2021)

大尺度陆地生态系统管理的理论基础及其应用研究的思考

应用生态学报, 32, 771-787.]

DOI:10.13287/j.1001-9332.202103.040      [本文引用: 1]

大尺度陆地生态系统管理是解决当前全球资源环境挑战、应对气候变化、治理区域生态环境、实现社会经济可持续发展的重要技术途径,是全球自然资源和生态保护理论及应用研究的热点。本文采用对过去20年间的几个国际大型生态系统管理行动计划跟踪分析方法,从生态系统管理学科发展、理论基础及应用研究的视角,对生态系统管理概念及其应用问题进行了重新思考,具体内容包括以下3个方面: 首先,回顾了生态系统管理科学概念及应用实践的发展历程,讨论了概念的内涵及其再定义,归纳了生态系统管理社会实践及其对学科发展的贡献。其次,明确了生态系统管理研究的科技使命及基本任务,梳理了生态系统管理科学的科学体系及其主要研究领域,概括了生态系统管理科学的生态学基础理论及知识体系,明确了生态系统管理行动的关键环节、管理方案的基本要素与管理途径。最后,分析了生态系统管理科学研究及学科发展的新趋势,讨论了生态系统管理科学的重点研究空间尺度和对象系统,提出了全球生态系统管理的前沿科学问题,整合生态学研究思维及宏生态系统途径,以期为中国的生态系统管理科学研究及学科发展提供参考。

Zellweger F, de Frenne P, Lenoir J, Vangansbeke P, Verheyen K, Bernhardt-Römermann M, Baeten L, Hédl R, Berki I, Brunet J, van Calster H, Chudomelová M, Decocq G, Dirnböck T, Durak T, Heinken T, Jaroszewicz B, Kopecký M, Máliš F, Macek M, Malicki M, Naaf T, Nagel TA, Ortmann-Ajkai A, Petřík P, Pielech R, Reczyńska K, Schmidt W, Standovár T, Świerkosz K, Teleki B, Vild O, Wulf M, Coomes D (2020)

Forest microclimate dynamics drive plant responses to warming

Science, 368, 772-775.

DOI:10.1126/science.aba6880      PMID:32409476      [本文引用: 1]

Climate warming is causing a shift in biological communities in favor of warm-affinity species (i.e., thermophilization). Species responses often lag behind climate warming, but the reasons for such lags remain largely unknown. Here, we analyzed multidecadal understory microclimate dynamics in European forests and show that thermophilization and the climatic lag in forest plant communities are primarily controlled by microclimate. Increasing tree canopy cover reduces warming rates inside forests, but loss of canopy cover leads to increased local heat that exacerbates the disequilibrium between community responses and climate change. Reciprocal effects between plants and microclimates are key to understanding the response of forest biodiversity and functioning to climate and land-use changes.Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

Zu KL, Wang ZH (2022)

Research progress on the elevational distribution of mountain species in response to climate change

Biodiversity Science, 30, 123-137. (in Chinese with English abstract)

[本文引用: 1]

[祖奎玲, 王志恒 (2022)

山地物种海拔分布对气候变化响应的研究进展

生物多样性, 30, 123-137.]

[本文引用: 1]

/