生物多样性, 2020, 28(9): 1059-1066 doi: 10.17520/biods.2020139

中国野生动物红外相机监测网络专题

东北虎豹生物多样性红外相机监测平台概述

王天明1,2,3#, 冯利民1,2,3#, 杨海涛1,2,3, 鲍蕾1,2,3, 王红芳1,2,3, 葛剑平,1,2,3,*

1 生物多样性与生态工程教育部重点实验室, 北京 100875

2 东北虎豹国家公园保护生态学国家林草局重点实验室, 北京 100875

3 北京师范大学生命科学学院, 北京 100875

An introduction to Long-term Tiger-Leopard Observation Network based on camera traps in Northeast China

Tianming Wang1,2,3#, Limin Feng1,2,3#, Haitao Yang1,2,3, Lei Bao1,2,3, Hongfang Wang1,2,3, Jianping Ge,1,2,3,*

1 Ministry of Education Key Laboratory for Biodiversity Science and Engineering, Beijing 100875

2 National Forestry and Grassland Administration Key Laboratory for Conservation Ecology in the Northeast Tiger and Leopard National Park, Beijing 100875

3 College of Life Sciences, Beijing Normal University, Beijing 100875

通讯作者: *E-mail:gejp@bnu.edu.cn

第一联系人: Co-first author

编委: 李晟

责任编辑: 时意专

收稿日期: 2020-04-6   接受日期: 2020-07-1   网络出版日期: 2020-09-20

基金资助: 科技基础性工作专项.  2012FY112000
国家自然科学基金.  31210103911
国家自然科学基金.  31270567
国家自然科学基金.  31470566
国家自然科学基金.  31971539
国家自然科学基金.  31200410

Received: 2020-04-6   Accepted: 2020-07-1   Online: 2020-09-20

摘要

东北虎豹生物多样性红外相机监测平台始建于2006年, 位于中国东北温带针阔混交林区, 覆盖老爷岭、张广才岭和完达山, 面积达1.5万多平方公里。平台的监测目标是从生态系统水平上对东北虎(Panthera tigris altaica)、东北豹(P. pardus orientalis)、有蹄类猎物及同域分布的其他哺乳动物、森林栖息生境、环境要素和人类活动等进行全面系统的调查和观测。截至2019年6月, 平台产生视频记录超过78.5万条, 有效相机工作日173.6万多天, 记录了28种野生兽类和32种野生鸟类。另外, 利用红外相机平台已经在野生动物多样性本底调查、虎豹种群分布、数量与扩散限制、同域食肉动物种间关系、动物生境利用等方面取得一些成果, 同时为东北虎豹国家公园生物多样性监测、评估和管理提供了科技支撑。

关键词: 东北虎 ; 东北豹 ; 物种名录 ; 红外相机 ; 生物多样性监测

Abstract

The Long-term Tiger-Leopard Observation Network (TLON) is a camera trap based program that was established in 2006 by Beijing Normal University. TLON covers an area of more than 15,000 km 2 and is located in the temperate broadleaf and mixed forest in Northeast China. This area covers the Laoye Mountains, Zhangguangcai Mountains, and Wanda Mountains. The goals of TLON are to monitor the status of the Amur tiger (Panthera tigris altaica), Amur leopard (Panthera pardus orientalis), ungulate prey, and other sympatric mammal species. Additionally, a goal for TLON is to study animal’s response to different environmental factors and human activity. As of June 2019, TLON has more than 785,000 video recordings that include recordings for 28 wild mammal species and 32 wild birds species that span 1,736,000 days of camera trapping. TLON has helped advance several fields of scientific research which include: surveying of wildlife diversity, studying population status of animals, understanding the distribution and threats for tigers and leopards, interactions between sympatric carnivore species, and mammal habitat use. TLON has also helped with monitoring, evaluation, and the management of biodiversity in the Northeast Tiger and Leopard National Park.

Keywords: Amur tiger ; Panthera tigris altaica ; Amur leopard ; Panthera pardus orientalis ; species list ; camera trapping ; biodiversity monitoring

PDF (1521KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

王天明, 冯利民, 杨海涛, 鲍蕾, 王红芳, 葛剑平 (2020) 东北虎豹生物多样性红外相机监测平台概述. 生物多样性, 28, 1059-1066. doi:10.17520/biods.2020139.

Tianming Wang, Limin Feng, Haitao Yang, Lei Bao, Hongfang Wang, Jianping Ge (2020) An introduction to Long-term Tiger-Leopard Observation Network based on camera traps in Northeast China. Biodiversity Science, 28, 1059-1066. doi:10.17520/biods.2020139.

野生虎(Panthera tigris)与豹(P. pardus)作为生物链顶端物种, 对维持森林生态系统质量和服务功能具有极为重要的作用(Sunquist, 2010)。由于濒临绝境, 野生虎和豹的生存和保护在20世纪就已是国际性议题。对所涉国家而言, 保护工作开展得好坏、研究水平的高低, 也具有重大国际影响(Dinerstein et al, 2007; Walston et al, 2010)。作为亚洲温带针阔混交林旗舰物种的东北虎(P. t. altaica)和东北豹(P. p. orientalis)曾广泛分布于我国东北、俄罗斯远东地区和朝鲜半岛的原始森林(田瑜等, 2009; Miquelle et al, 2010a)。但在过去的一个世纪里, 东北虎和东北豹种群与分布范围急剧衰退, 人为猎杀、猎物匮乏和栖息地丧失是其主要原因(李钟汶等, 2009; Miquelle et al, 2010b)。目前, 野生东北虎仅有500只左右, 主要残存于俄罗斯锡霍特山脉和中俄边境地区, 濒临灭绝(Miquelle et al, 2010a; Wang et al, 2016)。野生东北豹则更加濒危, 它远不如野生东北虎那么受人关注, 长期被忽视甚至被遗忘, 21世纪初调查只发现25-35只左右残存于俄罗斯滨海边疆区西南部不足2,500 km2的区域, 随时可能有灭绝风险(Pikunov et al, 2003; Hebblewhite et al, 2011)。而且, 由于种群和生境缩小、近交衰退, 这些残存野生虎豹生存质量仍在持续下降(Henry et al, 2009; Sugimoto et al, 2014; Wang et al, 2017, 2018)。

我国东北广袤的温带针阔混交林曾是东北虎、东北豹的故乡, 是其最主要的历史分布区, 分布面积曾达到约30万平方公里, 占野生虎和豹(以下简称野生虎豹或虎豹)分布区总面积的60% (田瑜等, 2009; Miquelle et al, 2010a)。20世纪90年代末期, 野生虎豹在我国东北基本销声匿迹。21世纪初, 我国东北中俄边境开始出现野生虎豹活动的相关报道。然而, 这些报道只是基于零星的观测和短期的调查, 对于我国东北境内是否还有野生虎豹长期活动、野生虎豹还有无可能在故土重新定居, 缺乏科学回答。面对生境的丧失和退化, 中国东北虎豹种群恢复和保护需要精确的生态信息, 然而在中国这两个大型猫科动物的基础生态学研究非常匮乏。基于此, 北京师范大学在原国家林业局支持下, 与吉林省林业厅、黑龙江省森工总局和边防部队等单位组成联合队伍, 经过近15年的努力, 已在我国东北逐步建立了一个东北虎豹生物多样性红外相机监测平台(Long-term Tiger-Leopard Observation Network based on camera traps in Northeast China)。

根据我们的长期监测, 当前东北虎豹已在中俄跨境区域形成种源, 为中国虎豹种群恢复和生态系统修复提供了重大机遇(肖文宏等, 2014; Wang et al, 2016)。东北虎豹的保护将成为继大熊猫(Ailuropoda melanoleuca)之后中国生物多样性保护的重要标志。大中型动物物种濒危机制的研究是生物多样性研究和保护中的重要课题, 也是保护生物学所要解决的三大迫切问题之一(Kelt et al, 2019)。面对大量物种灭绝和濒临灭绝这一严峻的现实, 我们对于物种, 尤其是稀有和濒危物种的了解仍然相当贫乏, 这使得现有的物种保护缺乏科学依据, 给物种的保护和可持续利用带来了困难。东北温带针阔混交林支撑和维持着独特和多样的野生动物区系, 特别是濒危的东北虎豹的存在使得该区域成为全球生物多样性关注和研究的热点区域, 是建立生物多样性科学研究综合平台的最佳区域, 占据着重要的科学地位。因此, 在该区域开展生物多样性监测、物种濒危机制以及濒危物种种群恢复途径的研究具有重要的科学价值和现实意义。

1 平台简介、历史和监测目标

东北虎豹生物多样性红外相机监测平台始建于2006年, 位于黑龙江和吉林两省东部, 从中俄边境线开始, 根据东北虎豹向中国可能的扩散路径, 监测区域逐步向中国内陆扩展。经过十几年的发展, 目前该平台覆盖了中国东北5个国家级自然保护区, 13个林业局, 面积约1.5万平方公里(图1)。平台的监测目标是从生态系统水平上对东北虎豹、有蹄类猎物及同域分布的其他哺乳动物、森林栖息生境、环境要素和人类活动等进行全面系统的调查和观测, 获取长期和系统性的生态监测数据, 重点开展东北虎豹等野生动物的种群生态学、行为生态学、繁殖生物学、景观和保护生态学等领域研究, 建成一个“动物与植物、宏观与微观、理论与应用”相结合的生物多样性监测网络, 并成为具有国际重大影响力的生态学研究平台, 同时为东北虎豹国家公园自然资源监测、评估和管理提供科技支撑, 为我国国家公园与自然保护地的野生动物等自然资源监测提供示范。2018年12月, 该平台已建设成为国家野外科学观测研究站。

图1

图1   东北虎豹生物多样性红外相机监测平台相机位点分布图。左上角的照片是分别于2007和2010年红外相机拍摄的东北虎和东北豹个体。

Fig. 1   Map of the Long-term Tiger-Leopard Observation Network based on camera traps in Northeast China, with the insets showing two wild Amur tiger and leopard individuals photographed in China in 2007 and 2010, respectively.


2 平台设计与数据库说明

(1)数据采集。根据东北虎的主要猎物野猪(Sus scrofa)、梅花鹿(Cervus nippon)和狍(Capreolus pygargus)的家域面积, 将监测区按照3.6 km × 3.6 km划分成单元网格。如果森林覆盖率达到90%以上, 就在网格中设置至少1台红外相机, 相机间平均距离2.36 km。另外, 为了提高虎豹个体识别和探测率, 在东北虎豹国家公园东部虎豹核心分布区(面积约5,400 km2)约70%的位点设2台相机, 双向安放, 并在部分区域进行了相机补充, 相机间距离大约1 km。2006-2019年, 我们在监测区内共设置了910个相机位点, 架设的地点通常选择动物最可能出现的地方, 包括兽道、山脊、土路、标记树、洞穴和补盐点等。相机安装在乔木树干上, 离地面高度0.4-0.8 m左右, 相机的镜头尽量顺着通道方向放置, 避免阳光直射, 清除镜头前的杂物和小灌木等遮挡物以保证最佳的角度拍摄动物, 相机处不放置任何诱饵。使用的相机型号为猎科Ltl-6210被动式红外触发相机, 相机设置为视频模式, 录像长度为15 s, 拍摄间隔为1 min, 全天24 h工作, 敏感度设为低或中。所有相机加装铁壳和锁链以防被盗。由于研究区域交通不便, 每隔3-4个月检查电池状态和更换数据存储卡。

(2)数据处理和建库。首先将视频初步整理, 删除空拍的视频(主要是没有任何动物的视频), 然后鉴定有效视频中出现的野生动物、人类活动(包括人和车辆)和家养动物(牛、羊、马、狗和猫等)。随着分析技术发展, 2018年之后的视频数据首先通过人工智能进行处理, 然后再人工校正。考虑到同一动物或人类活动在同一相机点短期内可能重复拍摄, 我们对视频进行独立事件判断, 判断标准为: (i)相同或不同物种的不同个体或车辆的连续视频; (ii)相同物种或车辆的连续视频时间间隔大于30 min; (iii)相同物种或车辆的不连续视频。符合以上任意一条即被定义为一次独立事件。确定独立事件后, 将以上数据导入到Access数据库, 该数据库记录了每个视频拍摄的日期、时间、物种名、地理位置等信息。

目前, 我们已经构建东北温带针阔混交林区哺乳动物物种多样性数据库, 包括野生东北虎和东北豹个体识别数据库、足迹图片数据库、粪便样品数据库、栖息地(生境)数据库。另外, 2015年, 我们与俄罗斯豹地国家公园开展了中俄跨境东北虎豹联合监测与研究, 双方签署合作协议, 建立了东北虎和东北豹种群的联合数据库(Feng et al, 2017; Vitkalova et al, 2018)。

3 数据量和物种名录

自2006年7月至2019年6月, 东北虎豹生物多样性长期定位监测平台共建立6个监测点(图1), 覆盖了长白山支脉老爷岭、张广才岭和完达山(表1), 累计投入相机4,000余台, 有效相机工作日173.6万多天, 产生视频记录超过78.5万条。目前每年产生红外相机监测数据4 T。

表1   东北虎豹生物多样性红外相机监测平台内各监测点基本信息列表

Table 1  Basic information of each monitoring sites across the Long-term Tiger-Leopard Observation Network

序号
No.
名称
Name
省区
Province
保护状态
Protection status
面积
Area (km2)
中心经度
Longitude
(E)
中心纬度
Latitude
(N)
起始年份
Start year
截止年份
End year
相机位点数
Number of camera traps
工作天数
Trap days
1东北虎豹国家公园
Northeast Tiger and Leopard National Park
吉林和黑龙江
Jilin and Heilongjiang
国家公园
National park
10,300130.85°43.26°200620196741,338,158
2凤凰山
Fenghuang Mountains
黑龙江
Heilongjiang
国家级自然保护区
National nature reserve
893130.95°44.86°2010201567119,607
3完达山
Wanda Mountains
黑龙江
Heilongjiang
国家级自然保护区
National nature reserve
2,300133.51°46.66°201420195673,130
4桦南
Huanan
黑龙江
Heilongjiang
-375131.17°46.37°201420192544,664
5张广才岭
Zhangguangcai Mountains
吉林和黑龙江
Jilin and Heilongjiang
国家级自然保护区
National nature reserve
945128.26°44.03°2010201978151,720
6依兰
Yilan
吉林
Jilin
省级自然保护区
Provincial nature reserve
130129.31°43.23°20122014108,861

新窗口打开| 下载CSV


红外相机拍摄到28种野生兽类, 隶属5目12科(附录1), 其中食肉目4科13种, 偶蹄目3科6种, 啮齿目3科7种, 兔形目1科1种, 劳亚食虫目1科1种。在记录到的野生兽类中, 国家I级重点保护野生动物有东北虎、东北豹、紫貂(Martes zibellina)、原麝(Moschus moschiferus)和梅花鹿5种; II级有猞猁(Lynx lynx)棕熊(Ursus arctos)、黑熊(U. thibetanus)黄喉貂(Martes flavigula)、水獭(Lutra lutra)马鹿(Cervus elaphus)和獐(Hydropotes inermis) 7种, 獐是近20年来在东北地区重新发现。东北豹被IUCN红色物种名录(http://www.iucnredlist.org)列为极危物种(CR), 东北虎被列为濒危物种(EN), 黑熊、原麝和獐被列为易危物种(VU)、水獭列为近危物种(NT)。东北虎、东北豹、原麝和梅花鹿被《中国脊椎动物红色名录》(蒋志刚等, 2016)列为极危物种; 猞猁、水獭和东北马鹿被列为濒危物种; 豹猫(Prionailurus bengalensis)、黑熊和棕熊等6种被列为易危物种。

红外相机拍摄到32种野生鸟类, 隶属8目15科, 其中鸡形目1科2种, 雁形目1科2种, 鸽形目1科1种, 鸻形目1科1种, 鹰形目1科5种, 鸮形目1科1种, 啄木鸟目1科3种, 雀形目8科17种。在记录到的野生鸟类中, 国家I级重点保护野生动物有白尾海雕(Haliaeetus albicilla), II级有花尾榛鸡(Tetrastes bonasia)、鸳鸯(Aix galericulata)、秃鹫(Aegypius monachus)、松雀鹰(Accipiter virgatus)、苍鹰(A. gentilis)、普通鵟(Buteo buteo)和长尾林鸮(Strix uralensis) 7种。秃鹫被IUCN红色物种名录列为近危物种(NT)。白尾海雕被《中国脊椎动物红色名录》列为易危物种, 鸳鸯、秃鹫、苍鹰和长尾林鸮被列为近危物种。

4 主要发现和贡献

目前, 我们通过东北虎豹生物多样性红外相机监测平台调查和分析了野生东北虎豹在中国境内的种群数量、分布、密度和跨境活动规律, 系统评价了人类干扰特别是放牧活动对东北虎豹及其猎物多度、分布、行为和扩散的影响; 分析了东北虎豹的食性构成和偏好, 并通过分析虎豹与其主要猎物梅花鹿、野猪和狍子的时空重叠, 阐明了它们的捕食策略; 从时间、空间和食物资源三个维度上分析了东北虎和东北豹的竞争与共存机制; 分析了小型和大型食肉动物在人为干扰景观下的时空作用关系, 进一步推动了对物种区域共存机制的理解。2015年我们完成的《关于实施中国野生东北虎、豹恢复与保护重大生态工程的建议》得到了国家领导人的重要批示, 相关建议列入了十三五规划, 推动了中国东北虎豹国家公园体制试点建设, 相关成果在“改革开放40周年成就展”上展出; 同年完成的《虎豹回归中国计划的建议》被吉林省政府采纳。2017年完成的《东北虎豹国家公园自然资源监测标准》被国家林业和草原局采纳。有关东北虎和东北豹的研究成果被Science杂志专题报道, 发表在Landscape Ecology杂志的虎豹研究论文(Wang et al, 2016)入选2017年Springer Nature集团发布的“可以改变世界的180篇年度杰出论文”。重要发现如下。

4.1 东北虎和东北豹种群数量和密度估计

监测平台于2007年6月以及2010年10月分别拍摄到我国第一张自然状态下东北虎以及东北豹的活动照片, 证明了我国境内仍然有野生东北虎豹活动(Feng, 2011)。监测平台于2013年11月在距离中俄边界20 km的吉林珲春腹地拍摄到1只雌性东北虎携带4只幼崽活动的影像资料, 2014年监测到1只雄性东北虎从俄罗斯豹地国家公园向我国腹地迁移的全过程(Wang et al, 2014, 2015), 表明了东北虎种群向我国内陆扩散的趋势。2012年8月至2014年7月期间, 在我国境内共监测到至少26只东北虎和42只东北豹, 并记录了部分个体从成功繁殖到子代成年, 然后扩散定居的过程(Wang et al, 2016)。我们与俄罗斯豹地公园监测数据联合分析, 表明2014年在约9,000 km2的中俄边境区域至少存在87只东北豹个体(36只成年雌性, 34只成年雄性, 8只未知性别成体以及9只亚成体), 其中有31只豹个体跨境活动; 另外, 在该区域还同期分布着至少38只东北虎个体, 其中至少14只虎拥有“双国籍” (Feng et al, 2017)。空间捕获-再捕获模型(SECR)显示中国境内东北虎密度为0.20-0.27只/100 km2 (Xiao et al, 2016; Wang et al, 2018); 东北豹密度为0.30-0.42只/100 km2, 显著低于俄罗斯种群的密度(大约1.40只/100 km2)。中俄联合监测数据进一步表明部分在中国拍摄的东北豹, 其活动中心在俄罗斯(Wang et al, 2017; Vitkalova et al, 2018)。总之, 中俄跨境合作研究首次完成了东北豹种群和东北虎1个小种群的生存状态评估, 为这两个濒危物种的跨境保护提供了重要的科学基础。

4.2 人类活动对东北虎豹扩散的影响

监测数据表明东北虎豹种群尽管有明显向我国内陆扩散的趋势, 但大多数个体主要聚集于中俄边境附近, 林下放牧等各种人类干扰导致猎物短缺, 严重制约了虎、豹种群向中国内陆的扩散和定居(肖文宏等, 2014; Wang et al, 2016)。研究表明, 东北虎的生境利用远离高放牧区、居民点和主要道路, 随着梅花鹿多度和森林覆盖率的增加而增加(Wang et al, 2018; Xiao et al, 2018; Yang et al, 2019)。同样, 东北豹的生境利用与猎物的多样性显著相关, 其次豹避开道路和居民点, 特别是避开放牧地区(Wang et al, 2017)。总之, 牛的长期放牧活动已导致猎物生境退化, 尤其是牛替代了虎豹最主要的猎物梅花鹿(Feng et al, 2018), 导致虎和豹在长期放牧地区广泛缺失。该研究在猎物恢复、减少人类干扰等方面提出了具体的建议, 特别强调逐步减少森林中的放牧活动和人类干扰, 扩大梅花鹿的分布范围和增加种群数量应是优先的保护行动。

4.3 东北虎豹食性与捕食策略分析

为了准确获知中国境内东北虎和东北豹的食性, 我们应用粪便分析法对采集的虎豹粪便内容物进行分析, 确定其食物中猎物组成。同时, 结合红外相机技术估计环境中猎物种群多度, 确定食性偏好(Yang et al, 2018a; Dou et al, 2019)。另外, 我们还评估了东北虎与猎物的时空重叠情况, 进一步解释东北虎的食物选择机制。研究表明尽管东北虎豹食性存在不同的季节性变化, 但野猪、梅花鹿和狍是对其生物量贡献率最高的猎物(占到75%-80%以上)。东北虎豹的食物中也包括了家养动物狗和牛, 这加剧了人兽冲突和疾病传播(如犬瘟热)的风险(Soh et al, 2014; Wang et al, 2016; Sulikhan et al, 2018)。食性偏好分析表明东北虎极度偏好捕食野猪, 其次为梅花鹿, 对狍无明显偏好, 而东北豹偏好狍。东北虎及其主要猎物的时空重叠分析结果显示, 尽管梅花鹿与东北虎空间重叠度较高, 但两者活动高峰明显错开; 而野猪与东北虎虽然空间重叠度较低, 但两者活动高峰明显一致。结合食性分析结果, 我们认为东北虎与梅花鹿和野猪的这种时空分布模式是其捕食策略的一种权衡(Dou et al, 2019)。

4.4 东北虎豹竞争与共存

大型食肉动物种间竞争与共存是保护生物学的核心科学问题。我们应用大尺度红外相机监测数据和野外生境调查数据, 首次从空间生态位和时间生态位等方面探究了东北虎豹在人为干扰以及猎物资源驱动下的竞争与共存机制(Yang et al, 2018b; Li et al, 2019)。双物种占域模型结果表明, 东北虎豹在空间上表现出独立的占域关系, 并且东北豹广泛利用高海拔和山脊, 虎则主要出现在低海拔和频繁利用林中土路, 进一步促进了二者的共存(Yang et al, 2019)。时间生态位分析表明, 东北虎表现为夜行性以及晨昏活动的节律, 而东北豹则以昼行性活动为主, 因此时间生态位分化是促进东北虎豹景观共存的重要因素(Li et al, 2019)。同时, 时空相互作用分析结果也进一步证实了东北虎豹在时空生态位上的分化。东北虎与人类活动表现出较高的空间生态位重叠, 但是东北虎白天活动较少, 以此对人类活动产生时间上的规避(Xiao et al, 2018), 东北豹则在空间上明显避开人类活动。放牧活动严重限制了东北虎豹和主要猎物的空间利用, 并对东北豹产生较大的空间排除作用。总之, 有限的生境面积, 以及这2种大型猫科动物对主要有蹄类猎物的竞争(Yang et al, 2018a), 可能加剧二者之间的竞争。

综上所述, 东北虎豹的共存与竞争机制受到种间干涉性竞争、猎物资源可获得性、人类以及放牧活动等多重因素影响。

5 后续工作计划和重点

目前, 该平台已集成新技术创新体系, 依托中国广播电视有线网和700 Mhz无线4 G网络, 在东北虎豹国家公园内实现了红外相机监测数据的实时传输、云端存储、在线访问和人工智能识别。平台未来将针对野生动物监测需求, 研发实时智能红外相机、动物定位项圈、声音传感器等野生动物智能感知设备, 研发野生动物个体形态与声音智能识别技术, 建设新一代的“物联网 + 生态”监测系统, 应用现代技术开展长期、系统、网格化定点科学观测, 获取食物链、生境、环境要素和干扰等原始资料和基础数据。为了满足中国定量评估野生动物保护状态的需求, 红外相机数据将根据研究需要在不同机构间实现共享。平台未来将重点开展主要食肉和食草动物的种群动态、觅食、生境选择、种群遗传学和行为生态学等方面研究, 探索生态系统中食物链、食物网的动态及物种之间的相互作用关系, 以及多尺度生境丧失、破碎化和退化等对关键动物物种生存的影响。综合研究物种濒危和种群衰退的遗传学机制、动物濒危的生态学过程及其保护对策。将持续为重要物种的跨境保护、景观规划和东北虎豹国家公园的建设提供科学支撑, 以促进不同机构之间以及与外部保护团体之间的数据共享。

附录 Supplementary Material

附录1 东北虎豹生物多样性红外相机监测平台所记录的物种名录

Appendix 1 List of mammals and birds recorded by the Long-term Tiger Leopard Observation Network based on camera traps in Northeast, China (Before June 2019)

参考文献

Dinerstein E, Loucks C, Wikramanayake E, Ginsberg J, Sanderson E, Seidensticker J, Forrest J, Bryja G, Heydlauff A, Klenzendorf S, Leimgruber P, Mills J, O’Brien TG, Shrestha M, Simons R, Songer M (2007)

The fate of wild tigers

BioScience, 57, 508-514.

[本文引用: 1]

Dou HL, Yang HT, Smith JLD, Feng LM, Wang TM, Ge JP (2019)

Prey selection of Amur tigers in relation to the spatiotemporal overlap with prey across the Sino-Russian border

Wildlife Biology, 1, 1-11.

DOI:10.2981/wlb.1995.002      URL     [本文引用: 2]

Feng LM, Shevtsova E, Vitkalova A, Matyukhina DS, Miquelle DG, Aramilev VV, Wang TM, Mou P, Xu RM, Ge JP (2017)

Collaboration brings hope for the last Amur leopards

Cat News, 65, 20.

[本文引用: 2]

Feng LM, Wang TM, Mou P, Kou XJ, Ge JP (2011)

First image of an Amur leopard recorded in China

Cat News, 55, 9.

[本文引用: 1]

Feng RN, Lu XY, Wang TM, Feng JW, Sun YF, Guan Y, Xiao WH, Smith JLD, Ge JP (2018)

Effects of free-ranging livestock on sympatric herbivores at fine spatiotemporal scales

arXiv:1810. 11192.

[本文引用: 1]

Hebblewhite M, Miguelle DG, Murzin AA, Aramilev VV, Pikunov DG (2011)

Predicting potential habitat and population size for reintroduction of the Far Eastern leopards in the Russian Far East

Biological Conservation, 144, 2403-2413.

[本文引用: 1]

Henry P, Miquelle D, Sugimoto T, McCullough DR, Caccone A, Russello MA (2009)

In situ population structure and ex situ representation of the endangered Amur tiger

Molecular Ecology, 18, 3173-3184.

DOI:10.1111/j.1365-294X.2009.04266.x      URL     PMID:19555412      [本文引用: 1]

The Amur tiger (Panthera tigris altaica) is a critically endangered felid that suffered a severe demographic contraction in the 1940s. In this study, we sampled 95 individuals collected throughout their native range to investigate questions relative to population genetic structure and demographic history. Additionally, we sampled targeted individuals from the North American ex situ population to assess the genetic representation found in captivity. Population genetic and Bayesian structure analyses clearly identified two populations separated by a development corridor in Russia. Despite their well-documented 20th century decline, we failed to find evidence of a recent population bottleneck, although genetic signatures of a historical contraction were detected. This disparity in signal may be due to several reasons, including historical paucity in population genetic variation associated with postglacial colonization and potential gene flow from a now extirpated Chinese population. Despite conflicting signatures of a bottleneck, our estimates of effective population size (N(e) = 27-35) and N(e)/N ratio (0.07-0.054) were substantially lower than the only other values reported for a wild tiger population. Lastly, the extent and distribution of genetic variation in captive and wild populations were similar, yet gene variants persisted ex situ that were lost in situ. Overall, our results indicate the need to secure ecological connectivity between the two Russian populations to minimize loss of genetic diversity and overall susceptibility to stochastic events, and support a previous study suggesting that the captive population may be a reservoir of gene variants lost in situ.

Jiang ZG, Jiang JP, Wang YZ, Zhang E, Zhang YY, Li LL, Xie F, Cai B, Cao L, Zheng GM, Dong L, Zhang ZW, Ding P, Luo ZH, Ding CQ, Ma ZJ, Tang SH, Cao WX, Li CW, Hu HJ, Ma Y, Wu Y, Wang YX, Zhou KY, Liu SY, Chen YY, Li JT, Feng ZJ, Wang Y, Wang B, Li C, Song XL, Cai L, Zang CX, Zeng Y, Meng ZB, Fang HX, Ping XG (2016)

Red List of China’s Vertebrates

Biodiversity Science, 24, 500-551. (in Chinese and in English)

DOI:10.17520/biods.2016076      URL     [本文引用: 1]

[ 蒋志刚, 江建平, 王跃招, 张鹗, 张雁云, 李立立, 谢锋, 蔡波, 曹亮, 郑光美, 董路, 张正旺, 丁平, 罗振华, 丁长青, 马志军, 汤宋华, 曹文宣, 李春旺, 胡慧建, 马勇, 吴毅, 王应祥, 周开亚, 刘少英, 陈跃英, 李家堂, 冯祚建, 王燕, 王斌, 李成, 宋雪琳, 蔡蕾, 臧春鑫, 曾岩, 孟智斌, 方红霞, 平晓鸽 (2016)

中国脊椎动物红色名录

生物多样性, 24, 500-551.]

[本文引用: 1]

Kelt DA, Heske EJ, Lambin X, Oli MK, Orrock JL, Ozgul A, Pauli JN, Prugh LR, Sollmann R, Sommer S (2019)

Advances in population ecology and species interactions in mammals

Journal of Mammalogy, 100, 965-1007.

DOI:10.1093/jmammal/gyz017      URL     [本文引用: 1]

Li ZL, Wang TM, Smith JLD, Feng RN, Feng LM, Mou P, Ge JP (2019)

Coexistence of two sympatric flagship carnivores in the human-dominated forest landscapes of Northeast Asia

Landscape Ecology, 34, 291-305.

DOI:10.1007/s10980-018-0759-0      URL     [本文引用: 2]

Li ZW, Wu JG, Kou XJ, Tian Y, Wang TM, Mou P, Ge JP (2009)

Land use pattern and its dynamic changes in Amur tiger distribution region

Chinese Journal of Applied Ecology, 20, 713-724.(in Chinese with English abstract)

URL     PMID:19637615      [本文引用: 1]

(1860〖KG-*2〗-〖KG-*7〗1949), and contemporary times (after 1949). The results showed that the sporadic land use in ancient times had no significant effects on the survival of Amur tiger, while the extensive and intensive land use after the 1860s was mainly responsible for the decrease of Amur tiger population and its living space. Since 1949, the Amur tiger distribution region has been divided into two parts, i.e., Northeast China and Russia Far East. The differences in land use pattern, policy, and intensity between these two parts led to different survival status of Amur tiger. The key driving forces for the land use change in Amur tiger distribution region were human population increase, policy change, and increased productivity.]]>

[ 李钟汶, 邬建国, 寇晓军, 田瑜, 王天明, 牟溥, 葛剑平 (2009)

东北虎分布区土地利用格局与动态

应用生态学报, 20, 713-724.]

PMID:19637615      [本文引用: 1]

Miquelle DG, Goodrich JM, Kerley LL, Pikunov DG, Dunishenko YM, Aramiliev VV, Nikolaev IG, Smirnov EN, Salkina GP, Endi Z, Seryodkin IV, Carroll C, Gapanov VV, Fomenko PV, Kostyria AV, Murzin AA, Quigley HB, Hornocker MG (2010a)

Science-based conservation of Amur tigers in the Russian Far East and Northeast China

In: Tiger of the World: The Science, Politics, and Conservation of Panthera tigris, 2nd edn. (eds Tilson R, Nyhus PJ), pp. 403-423. Academic Press, Oxford.

[本文引用: 3]

Miquelle DG, Goodrich JM, Smirnov EN, Stephens PA, Zaumyslova OY, Chapron G, Kerley L, Murzin AA, Hornocker MG, Quigley HB (2010b)

Amur tiger: A case study of living on the edge

In: Biology and Conservation of Wild Felids (eds Macdonald D, Loveridge A), pp. 325-339. Oxford University Press, Oxford.

[本文引用: 1]

Pikunov DG, Miquelle DG, Abramov VK, Nikolaev IG, Seredkin IV, Murzin AA, Korkishko VG (2003)

A Survey of Far Eastern Leopard and Amur Tiger Populations in Southwest Primorski Krai, Russian Far East (February 2003)

Pacific Institute of Geography (FEB RAS), Wildlife Conservation Society, and Tigris Foundation, Vladivostok

[本文引用: 1]

Soh YH, Carrasco LR, Miquelle DG, Jiang JS, Yang J, Stokes EJ, Tang JR, Kang AL, Liu PQ, Rao M (2014)

Spatial correlates of livestock depredation by Amur tigers in Hunchun, China: Relevance of prey density and implications for protected area management

Biological Conservation, 169, 117-127.

[本文引用: 1]

Sugimoto T, Aramilev VV, Kerley LL, Nagata J, Miquelle DG, McCullough DR (2014)

Noninvasive genetic analyses for estimating population size and genetic diversity of the remaining Far Eastern leopard (Panthera pardus orientalis) population

Conservation Genetics, 15, 521-532.

[本文引用: 1]

Sulikhan NS, Gilbert M, Blidchenko EY, Naidenko SV, Ivanchuk GV, Gorpenchenko TY, Alshinetskiy MV, Shevtsova EI, Goodrich JM, Lewis JCM, Goncharuk MS, Uphyrkina OV, Rozhnov VV, Shedko SV, McAloose D, Miquelle DG, Seimon TA (2018)

Canine distemper virus in a wild Far Eastern leopard (Panthera pardus orientalis)

Journal of Wildlife Diseases, 54, 170-174.

DOI:10.7589/2017-03-065      URL     PMID:29053427      [本文引用: 1]

The critically endangered population of Far Eastern leopards ( Panthera pardus orientalis) may number as few as 60 individuals and is at risk from stochastic processes such as infectious disease. During May 2015, a case of canine distemper virus (CDV) was diagnosed in a wild leopard exhibiting severe neurologic disease in the Russian territory of Primorskii Krai. Amplified sequences of the CDV hemagglutinin gene and phosphoprotein gene aligned within the Arctic-like clade of CDV, which includes viruses from elsewhere in Russia, China, Europe, and North America. Histologic examination of cerebral tissue revealed perivascular lymphoid cuffing and demyelination of the white matter consistent with CDV infection. Neutralizing antibodies against CDV were detected in archived serum from two wild Far Eastern leopards sampled during 1993-94, confirming previous exposure in the population. This leopard population is likely too small to maintain circulation of CDV, suggesting that infections arise from spillover from more-abundant domestic or wild carnivore reservoirs. Increasing the population size and establishment of additional populations of leopards would be important steps toward securing the future of this subspecies and reducing the risk posed by future outbreaks of CDV or other infectious diseases.

Sunquist M (2010)

What is a tiger? Ecology and behavior

In: Tiger of the World: The Science, Politics, and Conservation of Panthera tigris, 2nd edn. (eds Tilson R, Nyhus PJ), pp. 19-174. Academic Press, Oxford.

[本文引用: 1]

Tian Y, Wu JG, Kou XJ, Li ZW, Wang TM, Mou P, Ge JP (2009)

Spatiotemporal pattern and major causes of the Amur tiger population dynamics

Biodiversity Science, 17, 211-225.(in Chinese with English abstract)

[本文引用: 2]

[ 田瑜, 邬建国, 寇晓军, 李钟汶, 王天明, 牟溥, 葛剑平 (2009)

东北虎种群的时空动态及其原因分析

生物多样性, 17, 211-225.]

[本文引用: 2]

Vitkalova AV, Feng LM, Rybin AN, Gerber BD, Miquelle DG, Wang TM, Yang HT, Shevtsova EI, Aramilev VV, Ge JP (2018)

Transboundary cooperation improves endangered species monitoring and conservation actions: A case study of the global population of Amur leopards

Conservation Letters, 11, e12574.

[本文引用: 2]

Walston J, Robinson JG, Bennett EL, Breitenmoser U, da Fonseca GAB, Goodrich J, Gumal M, Hunter L, Johnson A, Karanth KU, Leader-Williams N, MacKinnon K, Miquelle D, Pattanavibool A, Poole C, Rabinowitz A, Smith JLD, Stokes EJ, Stuart SN, Vongkhamheng C, Wibisono H (2010)

Bringing the tiger back from the brink—The six percent solution

PLoS Biology, 8, e1000485.

DOI:10.1371/journal.pbio.1000485      URL     PMID:20856904      [本文引用: 1]

Wang TM, Feng LM, Mou P, Ge JP, Li C, Smith JLD (2015)

Long-distance dispersal of an Amur tiger indicates potential to restore the North-east China/Russian Tiger Landscape

Oryx, 49, 578-579.

DOI:10.1017/S0030605315000794      URL     [本文引用: 1]

Wang TM, Feng LM, Mou P, Wu JG, Smith JLD, Xiao WH, Yang HT, Dou HL, Zhao XD, Cheng YC, Zhou B, Wu HY, Zhang L, Tian Y, Guo QX, Kou XJ, Han XM, Miquelle DG, Oliver CD, Xu RM, Ge JP (2016)

Amur tigers and leopards returning to China: Direct evidence and a landscape conservation plan

Landscape Ecology, 31, 491-503.

[本文引用: 6]

Wang TM, Feng LM, Yang HT, Han BY, Zhao YH, Juan L, Lu XY, Zou L, Li T, Xiao WH, Mou P, Smith JLD, Ge JP (2017)

A science-based approach to guide Amur leopard recovery in China

Biological Conservation, 210, 47-55.

[本文引用: 3]

Wang TM, Royle JA, Smith JLD, Zou L, Lu XY, Li T, Yang HT, Li ZL, Feng RN, Bian YJ, Feng LM, Ge JP (2018)

Living on the edge: Opportunities for Amur tiger recovery in China

Biological Conservation, 217, 269-279.

[本文引用: 3]

Wang TM, Yang HT, Xiao WH, Feng LM, Mou P, Ge JP (2014)

Camera traps reveal Amur tiger breeding in NE China

Cat News, 61, 18-19.

[本文引用: 1]

Xiao WH, Feng LM, Mou P, Miquelle DG, Hebblewhite M, Goldberg JF, Robinson HS, Zhao XD, Zhou B, Wang TM, Ge JP (2016)

Estimating abundance and density of Amur tigers along the Sino-Russian border

Integrative Zoology, 11, 322-332.

URL     PMID:27136188      [本文引用: 1]

Xiao WH, Feng LM, Zhao XD, Yang HT, Dou HL, Cheng YC, Mou P, Wang TM, Ge JP (2014)

Distribution and abundance of Amur tiger, Amur leopard and their ungulate preys in Hunchun National Nature Reserve, Jilin

Biodiversity Science, 22, 717-724.(in Chinese with English abstract)

[本文引用: 2]

[ 肖文宏, 冯利民, 赵小丹, 杨海涛, 窦海龙, 程艳超, 牟溥, 王天明, 葛剑平 (2014)

吉林珲春自然保护区东北虎和东北豹及其有蹄类猎物的多度与分布

生物多样性, 22, 717-724.]

[本文引用: 2]

Xiao WH, Hebblewhite M, Robinson H, Feng LM, Zhou B, Mou P, Wang TM, Ge JP (2018)

Relationships between humans and ungulate prey shape Amur tiger occurrence in a core protected area along the Sino-Russian border

Ecology and Evolution, 8, 11677-11693.

DOI:10.1002/ece3.4620      URL     PMID:30598766      [本文引用: 2]

Large carnivore populations are globally threatened by human impacts. Better protection could benefit carnivores, co-occurring species, and the ecosystems they inhabit. The relationship between carnivores and humans, however, is not always consistent in areas of high human activities and is often mediated through the effects of humans on their ungulate prey. To test assumptions regarding how prey abundance and humans affect carnivore occurrence, density, and daily activity patterns, we assessed tiger-prey-human spatiotemporal patterns based on camera-trapping data in Hunchun Nature Reserve, a promising core area for tiger restoration in China. Our study area contained seasonally varying levels of human disturbance in summer and winter. We used N-mixture models to predict the relative abundance of ungulate prey considering human and environmental covariates. We estimated tiger spatial distribution using occupancy models and models of prey relative abundance from N-mixture models. Finally, we estimated temporal activity patterns of tigers and prey using kernel density estimates to test for temporal avoidance between tigers, prey, and humans. Our results show that human-related activities depressed the relative abundance of prey at different scales and in different ways, but across species, the relative abundance of prey directly increased tiger occupancy. Tiger occupancy was strongly positively associated with the relative abundance of sika deer in summer and winter. The crepuscular and nocturnal tigers also apparently synchronized their activity with that of wild boar and roe deer. However, tigers temporally avoided human activity without direct spatial avoidance. Our study supports the effects of humans on tigers through human impacts on prey populations. Conservation efforts may not only target human disturbance on predators, but also on prey to alleviate human-carnivore conflict.

Yang HT, Dou HL, Baniya RK, Han SY, Guan Y, Xie B, Zhao GJ, Wang TM, Mou P, Feng LM, Ge JP (2018a)

Seasonal food habits and prey selection of Amur tigers and Amur leopards in Northeast China

Scientific Reports, 8, 6930.

DOI:10.1038/s41598-018-25275-1      URL     PMID:29720702      [本文引用: 2]

We analyzed the scats of Amur tigers and Amur leopards, and examined their annual and seasonal food habits in Northeast China to comprehend their coexistence. Wild boar had the highest annual and seasonal consumption frequencies by the tigers, while both roe deer and sika deer were mostly preyed by the leopards annually. The three species appeared to be the key preys in terms of high proportion of consumed biomass by the two felids. Our data also revealed numerous mid-sized carnivores and small mammals included in the two felids' food list. We used the relative abundance and biomass density estimation in prey density estimation to calculate the prey preferences of tigers and leopards, and both methods confirmed that Amur tigers strongly preferred wild boar. However, preference estimations of Amur leopards were not consistant, or even opposite to one another from the two methods. The results of the study suggested that prey preference of predators is largely determined by body size of the prey species. Variation in diet composition of the two felids suggests that resource partitioning may contribute to their coexistence.

Yang HT, Han SY, Xie B, Mou P, Kou XJ, Wang TM, Ge JP, Feng L (2019)

Do prey availability, human disturbance and habitat structure drive the daily activity patterns of Amur tigers (Panthera tigris altaica)?

Journal of Zoology, 307, 131-140.

[本文引用: 2]

Yang HT, Zhao XD, Han BY, Wang TM, Mou P, Ge JP, Feng LM (2018b)

Spatiotemporal patterns of Amur leopards in northeast China: Influence of tigers, prey, and humans

Mammalian Biology, 92, 120-128.

DOI:10.1016/j.mambio.2018.03.009      URL     [本文引用: 1]

/