生物多样性, 2020, 28(5): 596-605 doi: 10.17520/biods.2020133

综述

推进生物多样性保护与人类健康的共同发展——One Health

李彬彬,*

昆山杜克大学环境研究中心, 江苏昆山 215316

Creating synergy between biodiversity conservation and human health — One Health

Binbin V Li,*

Environmental Research Center, Duke Kunshan University, Kunshan, Jiangsu 215316

通讯作者: * E-mail: bl113@duke.edu

编委: 华方圆

责任编辑: 黄祥忠

收稿日期: 2020-03-31   接受日期: 2020-03-31   网络出版日期: 2020-05-20

Corresponding authors: * E-mail: bl113@duke.edu

Received: 2020-03-31   Accepted: 2020-03-31   Online: 2020-05-20

摘要

随着新冠肺炎(COVID-19)的暴发, 野生动物、生物多样性和人类健康的关系再次引起广泛讨论。近20年来, 国际社会对于生物多样性与健康的研究日益增多, 并将它作为生物多样性保护与研究的重要方向之一。One Health作为一个新的理念框架, 通过交叉学科的研究和行动来推动包括人、所有其他动物及环境的健康。这个理念被不同国家、国际组织及协定所接纳及推广, 包括《生物多样性公约》等。本文通过总结近些年生物多样性对健康的影响方式、One Health的定义与发展历史、进入生物多样性议程的过程, 提出中国应用One Health改进相关野生动物管理以降低公共卫生危机的可能性的建议, 以及One Health框架内增强生物多样性保护所需的研究方向。One Health在中国的应用与发展应重视生物多样性研究和保护在其中的作用, 利用在景观生态学、群落内物种关系动态变化、气候变化影响、土地利用变化模式与趋势的研究, 与人类健康相结合, 提高One Health在应对公共健康和环境健康风险方面的准确性与及时性。同时, 需要加强我国在野生动物管理方面的投入和力度, 增强生物多样性保护与公共健康的联系, 将预警与干预措施前移, 减少疾病暴发带来的社会经济成本。

关键词: 生物多样性 ; 公共卫生 ; One Health ; 野生动物管理

Abstract

With the pandemic of COVID-19, the linkage between wildlife, biodiversity and human health has drawn tremendous attention from the public. In the recent 20 years, there has been growing interest from the international community to understand how biodiversity influences human health, which has become one of the crucial directions to promote biodiversity conservation and research. At the same time, One Health, as a new concept and framework, promotes interdisciplinary research and action to improve the health of humans, animals and the environment altogether. This concept has been adopted and promoted by various countries and international organizations, including the Convention on Biological Conservation. This paper summarizes major pathways of how biodiversity influences human health, the definition and history of One Health, the incorporation of One Health into the biodiversity conservation agenda. In the end, using the One Health framework, this paper suggests ways to improve China’s current wildlife management system to reduce the probability of potential public health crisis. This paper also identifies some key research gaps in enhancing the role of biodiversity in protecting human health. The implementation of One Health in China should emphasize the importance of biodiversity research and conservation. By integrating research on landscape ecology, community and species interactions, climate change impacts, land-cover and land-use change with that on human health, One Health can improve its efficiency in addressing risks of public health and environmental health. At the same time, China should invest more resources in wildlife management, reinforce the linkage between biodiversity conservation and human health, and prevent and control epidemics from their very beginning.

Keywords: biodiversity ; public health ; One Health ; wildlife management

PDF (1106KB) 摘要页面 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

引用本文

李彬彬. 推进生物多样性保护与人类健康的共同发展——One Health. 生物多样性, 2020, 28(5): 596-605 doi:10.17520/biods.2020133

Binbin V Li. Creating synergy between biodiversity conservation and human health — One Health. Biodiversity Science, 2020, 28(5): 596-605 doi:10.17520/biods.2020133

随着新冠肺炎(COVID-19)的暴发, 野生动物和人类健康的关系受到了前所未有的关注。不论是野生动物还是家养动物, 对于人类生活都极其重要。但是频繁近距离地接触动物及其环境, 也为疾病在动物与人之间的传播提供了机会(Romanelli et al, 2015)。气候变化和土地利用改变会对生态系统及其功能造成影响, 同时导致产生新的疾病传播途径。国际贸易和运输能力的增强, 使得疾病可以快速在全球传播, 造成严重的公共卫生威胁(Mace et al, 2012)。人类传染病60%来源于动物, 50%的动物传染病可传染给人类(Romanelli et al, 2015)。1970年至今, 新发和再发传染病中超过75%为人兽共患病(zoonosis) (聂恩琼等, 2016), 这与生物多样性丧失、畜牧业生产增加、集约化生产和交易方式都密切相关。人兽共患病的不断暴发严重影响人类健康并造成了巨大的经济损失和社会的动荡。随着全球化进程加快、人口数量与流动性增加, 导致对自然的干扰增强、人类与野生动物及其栖息地的接触几率增高。人类与动物、环境健康间的关系越来越紧密, 成为一个不可分割的整体。因此, 单独研究人类健康或环境健康, 会忽略重要的相互作用机制而无法有效妥善地解决公共卫生与安全的问题。 近些年, 国际上已经达成共识: 任何一个单一的学科已经无法有效解决这样复杂的公共卫生问题, 这需要有生态系统、生物多样性、野生动物与家畜、人类医疗与公共卫生管理等诸多领域的研究与合作(Romanelli et al, 2014)。需要在有限的公共卫生资源条件下, 对疾病的监测、预防、应急响应和控制等作出有效调整, 也必须加强对生态环境和动物健康的关注和研究, 才能更好应对可能出现的公共危机。

在这样的背景下, One Health作为一种新的理念框架, 逐渐被应用于研究与解决人类健康问题。这个概念最开始为动物医学行业所接受并推动, 后来逐渐被其他国际机构以及生物多样性领域所认同。本文将回顾One Health的发展历史和进入生物多样性议程的过程, 探讨生物多样性与人类健康的关系, 以及如何利用One Health框架更好地推进中国的生物多样性与人类健康联系的研究。

1 One Health的定义及其发展历史

One Health涉及的学科众多, 其定义和涉及的边界也难以清晰界定(Gibbs, 2014)。其核心是通过交叉学科的研究和行动来推动包括人、所有其他动物及环境的健康, 这与之前的Eco Health, One Medicine等理念类似(Romanelli et al, 2015)。One Health的定义为: 涉及人类、动物、环境卫生健康的一种跨学科跨地域(国家、地区、全球)协作和交流的新策略, 致力于共同促进人和动物健康, 维护和改善生态环境(聂恩琼等, 2016)。为了达成One Health的目标, 需要有包括动物医学、人类医学、生态和保护领域的交叉学科方法, 同时也需要例如经济、农业、政策及遥感等其他领域的参与(Patz et al, 2012; Cleaveland et al, 2014) (图1)。之后一些研究者把植物的健康也加入到One Health的框架当中(Romanelli et al, 2015)。

图1

图1   One Health框架(改编自http://climvib.eu/? post_type= post&s=one+health)

Fig. 1   Framework for One Health (Adapted from http://climvib.eu/? post_type=post&s=one+health)


对于One Health的中文翻译, 因为不同研究人员的偏好, 一直没有统一。现有的翻译包括“同一(个)健康” “唯一健康” “大健康” “全健康” “一体化健康”等。笔者倾向于使用“同一健康”, 因为这个翻译与One Health本身的理念连接最为紧密, 即人类、动物、环境健康是密不可分、紧密相连的。同一健康, 代表着这三者健康其实是一个整体, 某一部分的变化都会影响到其他组成部分。为了避免中文翻译导致的理解偏差, 本文依旧使用英文“One Health”。

环境因素可以影响人类健康这一理念很早就已存在, 医药之父希波克拉底(Hippocrates)曾将“空气、水、土地”记载为可以影响人类健康的环境因素。随着“人兽共患病”一词的提出, 逐渐明确了人类医学和动物医学之间本来没有、也不应该有明显界限。近半个世纪以来, 新发和再发传染病尤其是人兽共患病的增加, 导致一些大规模甚至对人类有高致死率的传染病暴发, 推动了One Health理念的产生(Gibbs, 2005)。这些疾病包括疯牛病、严重急性呼吸综合征(SARS)、埃博拉、亨德拉、中东呼吸综合征(MERS)、尼帕病、急性呼吸综合征、西尼罗河热等。而这次引发全球动荡的新冠肺炎病毒是第七种确定可以感染人类的冠状病毒(Gibbs, 2014; Bonilla-Aldana et al, 2020)。

One Health希望推动跨学科的合作以应对日益增多的公共卫生危机。这个理念首先被兽医行业提出并积极推动, 接着被一些关注人兽共患病的国际组织接受, 例如联合国粮食及农业组织(Food and Agriculture Organization, FAO)、世界动物卫生组织(Office International Des Epizooties, OIE)以及世界卫生组织(World Health Organization, WHO) (Gibbs, 2014)。2004年, 世界野生生物保护学会(WCS)首次提出“One-World-One-Health”来推动人类和生态系统健康, 并建议增强对人类、家畜和野生动物健康之间联系的认识, 明确疾病不只威胁人类健康、食品安全和经济, 还会对维持环境健康所必须的生物多样性和生态系统造成破坏性的影响(Gibbs, 2014)。同时世界野生生物保护学会提出了12条建议, 以探索更为综合全面的方法来预防大范围疫情, 维持生态系统健康完整, 以保证其为人类和家养动物提供的健康保障。后来, 这些建议被称为《曼哈顿原则》。其中第四条明确提出, 人类健康相关项目可以帮助推进自然保护(Gibbs, 2014)。随着2007年美国医学会(American Medical Association)通过One Health决议来推动人医和兽医之间的合作, One Health正式进入医学和科学领域。

此后, One Health被全球不同机构所认同。2008年, 联合国粮食及农业组织、世界动物卫生组织、世界卫生组织与儿童基金会、联合国系统流感协调项目和世界银行合作, 制定了一个联合战略框架“Contributing the One World One Health”, 以应对不断变化的新发和再发传染病风险。2009年美国成立了One Health委员会, 专业合作伙伴有美国兽医协会、美国公共卫生协会、美国医学协会、美国医学院校协会、美国兽医医学院校协会、美国传染病学会和爱荷华州立大学健康联盟。2010年, 联合国粮食及农业组织、世界动物卫生组织和世界卫生组织在河内达成“FAO-OIE-WHO”合作, 即在动物-人类-环境方面共同担当责任, 创建一个通过不同学科不同部门的合作体制, 来阻止、监测、控制、消除并及时响应动物和公众健康危机(FAO et al, 2008)。三家协作促成了全球包括人兽共患病在内的重大动物疾病全球早期预警系统(Global Early Warning System, GLEWS)的建立。随后, 美国佛罗里达大学、杜克大学、英国爱丁堡大学等研究机构开始推行One Health研究并设立相应的课程。One Health理念在中国引入和研究起步较晚, 但从2013年复旦大学闻玉梅院士发起“一健康基金”鼓励相关研究之后, 2014年中山大学公共卫生学院在广州承办首届One Health研究国际论坛并建立中国第一个One Health网站(http://www.healthonly.cn/)及研究中心, 中国的One Health研究有了实质性的进展(聂恩琼等, 2016)。

2 One Health进入生物多样性议程

从最开始的生态系统方法(ecosystem approach)到后期的One Health框架都强调生物多样性和人类健康之间的联系。图2总结了生态系统方法和One Health进入生物多样性议程的过程。1995年《生物多样性公约》(CBD)第二次缔约方大会第一次提及生态系统方法, 即综合管理土地、水和生物资源, 公平促进其保护与可持续利用的战略(图2)。2000年的千年生态系统评估(Millennium Ecosystem Assessment)以及《生物多样性公约》第五次缔约方大会正式将生态系统方法作为行动的基本框架, 并且与适应性管理相联系来解决环境问题中的不确定性(Lajaunie & Mazzega, 2016)。在2002年的《生物多样性公约》第六次缔约方大会上确定需要将生态系统方法引入国家层面的政策和立法。在接下来的第七次缔约方大会中, 《生物多样性公约》开始联手《濒危野生动植物种国际贸易公约》(CITES), 在同年CITES第13次缔约方大会上正式采用生态系统方法来解决生物多样性丧失的问题。随后在2005年世界卫生组织发布的对千年生态系统评估内关于人类健康的分析总结中显示, 人类健康与环境变化之间的关系错综复杂, 并且确定由《生物多样性公约》提出的生态系统方法正在延伸到人类健康领域以解决相应问题, 例如传染病和慢性病(Wilcox & Gubler, 2005; Lajaunie & Morand, 2015)的防治。2008年, 《野生动物迁徙物种保护公约》(The Convention on Migratory Species, CMS)和《国际重要湿地公约》(Ramsar Convention)分别明确了生态系统健康与野生动物和人类健康的关联。

图2

图2   生态系统方法和One Health进入生物多样性议程的过程(改编自Lajaunie & Mazzega, 2016)。CBD: 生物多样性公约; CCD: 防治荒漠化公约; COP: 缔约方大会; CITES: 濒危野生动植物种国际贸易公约; CMS: 野生动物迁徙物种保护公约; RAMSAR: 国际重要湿地公约。

Fig. 2   Process of the Ecosystem Approach and the One Health framework entering international biodiversity agenda (Adapted from Lajaunie & Mazzega, 2016). CBD, Convention on Biological Diversity; CCD, Convention to Combat Desertification; COP, Conference of the Parties; CITES, Convention on International Trade in Endangered Species of Wild Fauna and Flora; CMS, The Convention on Migratory Species; RAMSAR, Ramsar Convention.


同年, 《野生动物迁徙物种保护公约》决定和联合国粮食及农业组织一起成立Task Force on Wildlife Disease并且采用One Health的框架, 这也是One Health第一次出现在生物多样性相关的公约决定中(Lajaunie & Mazzega, 2016)。2011年《野生动物迁徙物种保护公约》将野生动物疾病任务组改名为野生动物与生态系统健康任务组, 正式应用One Health框架。最终, 2014年的《生物多样性公约》第12次缔约方大会确定使用One Health方法来完善野生动物管理, 并且明确One Health可以用于解决生物多样性与人类健康问题的重要意义(https://www.cbd.int/decisions/cop/?m=cop-12/)。One Health框架中对于生物多样性的关注, 从最初集中在野生动物作为传染源对于家禽家畜和人类健康的影响, 发展到关注一些对人类和家畜有影响的疾病跨物种传播到野生动物的过程(Cleaveland et al, 2001)。

3 生物多样性与人类健康的关系

随着更多相关研究的推进, 生物多样性与人类健康的联系也更为全面地被科学界认识。整体来说, 生物多样性通过保障生态系统服务, 包括提供食物、清洁的水和空气、调节气温与降水、减少自然灾害例如洪水的影响、降低传染性疾病传播风险、提高心理健康、增强体内微生物群落健康等方式影响人类的健康(图3)。下文针对生物多样性对传染性疾病、人类基础健康以及特定人群和地区的影响进行重点分析。

图3

图3   生物多样性、生态系统与健康间的关系

Fig. 3   Relationship between biodiversity, ecosystem and health


3.1 对传染性疾病的影响

(1)稀释效应(dilution effect)与土地利用变化的影响。研究表明, 生物多样性可以通过稀释效应来降低疾病传播的可能性(Keesing et al, 2010; Rohr et al, 2020)。虽然生物多样性高的地方病原体数量也多, 而且哺乳动物多样性也可以作为预测由野生动物引发人兽共患病的重要变量(Jones et al, 2008), 但是单一的病原体数量多并不代表风险大, 疾病传播过程高度依赖于接触频率(Bonds et al, 2012)。生物多样性可以通过宿主竞争和调节功能降低接触的可能性, 提供保护作用(Romanelli et al, 2015)。在生物多样性高的地方, 物种丰富度高, 物种间相互制约, 数量相对稳定且物种均匀度高。在这样的地区, 由于宿主密度较低, 细菌或是病毒难以在大范围内快速扩散开, 可以有效抑制疾病的暴发(Ostfeld & Keesing, 2000; Bonds et al, 2012; Romanelli et al, 2015)。

人类导致的生态系统变化, 包括土地利用变化、集约式的农业生产、抗微生物药品使用等, 使得传染性疾病传播的风险和影响增加。土地利用变化是导致野生生物引起的传染性疾病增加的最主要因素(Romanelli et al, 2015)。在亚马逊流域的研究发现, 当因砍伐等人为原因导致森林覆盖率降低4%时, 疟疾的发病率提高了50%。因为被砍伐区域的水热条件恰好利于中间宿主蚊子的繁殖(Hahn et al, 2014)。栖息地消失、人类干扰增加、对土地利用的变化直接或间接改变宿主及病媒生物间的接触频率、改变病媒生物的行为、分布、数量以及宿主群落组成, 导致生物多样性的选择性丧失。很多情况下会使得一些不易感的物种数量减少, 宿主或是病媒物种增加, 从而增加疾病传播的可能性(Romanelli et al, 2015)。人类干扰很多时候并不直接带来物种多样性的变化, 而是通过影响群落组成和种群动态导致病原体增加, 提高其传播和传染的几率(Dornelas et al, 2014)。稀释效应解释最有效的一个例子就是莱姆病: 因为经济发展导致森林消失和破碎化, 顶级捕食者例如狼、狐狸、猫头鹰等的数量下降, 使莱姆病菌的重要宿主白足鼠(Peromyscus leucopus)数量增长, 增加了莱姆病通过蜱虫传播到人的可能性(Romanelli et al, 2015)。

当自然生态系统受到破坏, 生物多样性下降, 导致其保护作用下降。虽然有不少研究支持稀释效应, 但是生物多样性下降和栖息地消失与疾病之间的关系并不总是稳定不变或是简单的线性关系, 甚至对于单一疾病例如莱姆病来说, 这种影响的强度和方向根据环境背景也会有很大的变化(Wood & Lafferty, 2013; Wood et al, 2014)。因此, 需要更多的研究来阐明人类干扰-生物多样性-疾病间的关系, 这种关系往往随着时间和空间不同而变化。

(2)野生动物贸易。野生动物贸易也会增加疾病传染的可能性。对于野生动物的消费不仅出现在发展中国家, 发达国家例如北美和欧洲因为文化或饮食偏好也推动着这个市场的扩大。据统计, 每年全球野生动物贸易额在210亿美元(Barrett & Osofsky, 2013), 包括非法和合法野生动物的贸易估算在每年3,000亿美元(http://www.grida.no/graphicslib/detail/)。随着野生动物利用的增加, 与野生动物接触增多所引发的人类健康问题也更为频繁(Romanelli et al, 2015)。很多传染性疾病的产生与野生动物的利用和贸易密切相关, 比如食用野生动物和野生动物贸易引起的SARS、捕猎食用灵长类引起的艾滋病、异宠交易带来的猴痘病毒等(Gilbert et al, 2014)。在人类-野生动物-家畜接触频繁的情况下, 传染性疾病同时威胁着这三者的健康。例如, 高致病性的埃博拉病毒不仅导致高达90%的人类患病者死亡, 也导致低地大猩猩(Gorilla gorilla)种群快速下降(Olson et al, 2012)。而随着国际贸易增多、跨国运输更为便捷, 野生动物合法与非法贸易增加, 使得区域甚至全球性传染性疾病暴发的可能性更高。同时, 随着对野生动物需求的增加, 外来物种有意或无意的引入, 带来了极高的人类健康风险, 例如新型过敏反应、野生动物携带新型病原体等。这类风险会随着气候变化和生物入侵过程而加剧。因此, 《曼哈顿原则》第五条提出, 要减少人类对于野生动物及其制品的需求, 以提高自然保护的收益, 降低公共卫生的风险(Barrett & Osofsky, 2013)。

3.2 对人类基础健康的影响

(1)老朋友假说(old friends hypothesis)与微生物多样性。这个假说认为人类的免疫系统和生存于人类消化系统的微生物协同进化, 从而使得这些微生物成为免疫系统的一部分(Von Herzen et al, 2011)。因此, 一个健康的免疫系统依赖于这些微生物的多样性, 这种依赖性也扩展到人体消化和营养吸收功能上(Romanelli et al, 2015)。人体内共生的微生物多样性取决于环境和物理因素, 例如土壤和水的质量等(Karpinets et al, 2018)。环境中的微生物可以补充人体内微生物的多样性和组成, 帮助人体更好地适应新的食物及环境(Romanelli et al, 2015)。土壤在这其中尤为重要, 不同区域的土壤可以支撑不同的植物根际环境和微生物群落组成, 从而帮助人体适应相应的新环境(Karpinets et al, 2018)。但是城市化进程加快、人群与自然环境接触减少、生物多样性丧失以及抗生素等药物滥用, 导致人体内微生物多样性降低、免疫系统缺陷与疾病的产生(Romanelli et al, 2015)。对高收入国家城市绿化的研究发现, 住在植被覆盖率高的地方的人群, 尤其是低收入家庭, 人类健康受益非常大。但这种联系可能和更多的锻炼机会无关, 而与环境中较高的微生物多样性联系更为紧密(Romanelli et al, 2015)。这些发现都强有力地支持了人类健康与环境因素和生物多样性之间的联系, 成为One Health框架重要的理论依据。

(2)生物多样性与医药。生物多样性是研发新的药物和生物医药领域突破不可替代的基础与资源。从1981年到2010年, 美国食品药品监督管理局(FDA)批准的抗菌素有75%都来源于自然界, 而抗病毒和抗寄生虫药物的比例则更高(Romanelli et al, 2015)。然而, 野生植物和动物, 尤其是那些可以作为食物和医药资源的物种, 因为过度采集或捕猎、栖息地破坏、气候变化等, 其种群受到严重威胁。不可持续的野生生物利用不仅影响这些物种, 也影响依赖于这些资源来维持生计和健康的人类社会。另一方面, 人类的药物也在反向影响自然环境。很多药物例如激素、抗生素、抗抑郁药物、抗真菌药物以及活性医药物成分已经在全球不同地区的河流和土壤中检测到, 影响了野生动物和植物的正常生长和繁殖, 降低生物多样性、破坏生态系统和生态系统服务, 最终可能会威胁人类健康(Orlando & Guillette, 2007; Cardoso et al, 2014; Romanelli et al, 2015)。

(3)生物多样性与心理健康。经常接触绿色空间(green space)例如公园、森林、绿地的成年人某些疾病的患病率低、不适症状少, 尤其是对心理疾病例如抑郁、焦虑和压力缓解效果最强(Sandifer et al, 2015)。抑郁症患者占全球人口的4.3%, 超过3亿人, 是导致残疾的前十位疾病之一, 而女性更容易受到抑郁症的影响(WHO, 2013)。对于儿童及青少年, 频繁地接触自然及自然环境中的宠物或野生动物会帮助治疗这些心理疾病(Markevych et al, 2014; Wells, 2014)。接触绿色空间还被证实可以提高住院病人的恢复效果并缩短恢复时间。有些研究认为这可能与接触到更高的微生物多样性以及对于生物多样性的感知提升相关(Shwartz et al, 2014)。同时, 城市绿色空间尤其是生物多样性高的同类地区可以提高人类活动水平, 减少心血管疾病、提高免疫力、增加预期寿命(Romanelli et al, 2015)。

(4)生物多样性对气候变化下人类健康的影响。气候变化给人类健康带来的影响不可小觑, 例如, 气候变化引起的热浪导致人体脱水、中风增加; 降水、温度以及空气中CO2浓度的变化影响农作物生长, 造成减产, 加重贫困和偏远地区的人群营养不良等现象(Butler, 2014)。生物多样性可以提高生态系统的韧性, 降低灾害的影响, 尤其是在气候变化的背景下, 生物多样性可以帮助人类社会适应并应对相关健康风险(Huxham et al, 2010; McIvor et al, 2013)。

3.3 生物多样性对贫困地区的影响

全球保护地维系着周边超过10亿居民的生计(Bertzky et al, 2012)。这些地区生活着世界上最贫穷的一些人群, 由于缺乏医疗支持(Cincotta et al, 2000; Patz et al, 2012), 他们的健康非常依赖于生态健康和生态系统服务的稳定。生物多样性为这些贫穷的人群提供了应对食物安全、环境灾害和健康风险等最为经济有效的保障(McShane et al, 2011)。生物多样性和自然生态环境持续恶化, 对于很多生活在农村以及发展中地区的人来说, 就意味着健康和可持续经济增长的危机。因此在生物多样性高的地区以及荒野周边建立健全公共卫生体制, 明确生物多样性保护的意义, 会为人类健康以及可持续发展提供重要保障。

4 中国应用One Health框架需增强生物多样性保护与人类健康间的关系

One Health重视多部门、跨领域合作来解决动物-环境-人类健康问题(Wu et al, 2016), 应作为我国应对公共健康风险与生物多样性保护的重要框架。这次新冠肺炎的暴发, 暴露出我国在野生动物和公共卫生研究与管理上的缺陷, 即缺乏对生物多样性保护与公共健康间联系的重视。野生动物管理部门对于野生动物疫源疫病的监控还很薄弱, 通常在出现大面积动物个体死亡时, 才开始进行调查和干预, 但这个时候往往疾病已经严重威胁到野生动物生存, 并存在跨物种向家禽家畜及人类传播的可能性。对于人工繁育的野生动物, 原来的许可证制度没有考虑潜在的对人类健康及生物安全的影响, 对于是否具有成熟养殖技术以及是否具有相应卫生及防疫条件缺乏核查。同时兽医主管部门缺乏针对野生动物的检验检疫标准, 一些野生动物按照同类的家禽家畜标准来检疫, 例如雉鸡按照家禽来检疫, 但蛙类、龟鳖、竹鼠等野生动物则根本没有检疫标准, 直接进入市场, 无法保障食品安全及公共卫生。对于兽医行业及主管部门来说, 需要加强对野生动物医学的投入及重视。目前, 大部分野生动物兽医人才都集中在动物园, 而在基层野生动物主管部门、兽医主管部门或是研究部门的人员都非常匮乏。尤其是在动物疫源疫病监测和检验检疫方面, 明显缺乏技术支持和专业兽医人才。由于一直缺乏对于野生动物与公共卫生联系的考虑, 无论是检验检疫标准的制定、防疫的要求还是市场监督监管, 都缺乏关注和投入。此时, 推动One Health的理念与框架, 明确人类、动物和环境的健康息息相关变得尤为必要。不同部门和学科需要加强合作, 进行整体规划、研究和政策实施。

中国作为生物多样性最为丰富的国家之一, 同时也面临着巨大的社会与经济发展需求, 这导致土地利用变化、森林及湿地等生态系统功能退化、野生生物栖息地丧失与破碎化。由于市场需求, 对野生动植物偷盗的现象屡禁不止, 非法野生动物贸易造成中华穿山甲(Manis pentadactyla)等物种野外种群急剧下降, 威胁着物种的长期生存(Wu et al, 2016)。虽然近些年在生物多样性保护方面投入有所增强, 但是仍面临巨大的挑战, 无法获得公众和各级政府的充分重视。对生物多样性与人类健康联系的不断认知, 可以促进环境作为人类健康的重要基础和保障的公众认可, 平衡保护与发展间的关系。很多情况下, 可以通过生物多样性保护带来有益于人类健康的协同效应, 但某些时候也需要进行两者间的平衡取舍。这不仅涉及到一个学科的研究和推进, 也需要通过包括经济学、社会学、政策等其他学科间的协作, 来了解其内在联系和建立完整的管理及干预体制。

应用One Health框架, 首先可以通过加强环境保护管理、医学及公共卫生领域的合作, 加强动物源性疾病的预防、控制相关政策和措施的实施, 来保障公共卫生。公共卫生部门作为One Health框架下最重要的一个部分, 需要重视其他部门例如野生动物主管部门、兽医部门、保护地管理部门等的作用, 增强跨部门的合作(庞素芬和袁丽萍, 2015)。同时, 需要将干预措施前移, 制订预防性政策, 考虑生态系统服务及生物多样性对人类健康的影响及其相应的市场价值。通过成本效益更好的综合性的疾病监测体系, 来追踪监测野生动物、家畜家禽和人类的健康状况, 建立提前预警系统, 降低疾病暴发带来的巨大社会经济损失。这需要加强对野生动物兽医人才的培养、加强对于野生动物的疫源疫病监测与联动机制, 并减少对于野生动植物资源的利用及栖息地的破坏, 以降低潜在人类健康风险(Zowalaty & Jarhult, 2020)。针对《中华人民共和国野生动物保护法》, 需要进行修改并明确野生动物保护的意义应包括保障公共卫生与安全。应及时更新保护名录, 根据物种野外种群变化和疫源疫病风险, 严格管控野生动物利用范围和形式。《中华人民共和国动物防疫法》应补充野生动物相应内容与规定, 在有相应检疫标准的前提下, 才可以允许人工繁育野生动物。同时, 要加强对于市场监管与执法的力度, 保障野生动物利用的可持续性并降低带来的人类健康风险。对于经常接触野生动物的从业者、经常进入野外活动的人与家禽家畜, 应当加强相应疾病监测, 降低由人及家养动物向野生动物传播疫病的可能性。

目前国内针对One Health的讨论主要集中在公共卫生领域, 针对野生动物和生物多样性的研究和关注还非常缺乏。同时, 由于COVID-19的影响, 现有的讨论也主要集中在野生动物利用上面。但是, 生态环境、野生动物和人类健康间的关系不仅局限于传染性疾病这一点, 在社会老龄化、心理疾病增多、环境污染影响加剧、气候变化等大趋势下, 关注点需从野生动物扩展到生物多样性及生态健康对于人类健康的影响。生物多样性与人类健康间的关系错综复杂, 很多情况下也存在中间调控因子, 两者的变化及关联在时间与空间上经常有差异, 从而导致无法准确判别和量化两者间的联系(Romanelli et al, 2015)。因此从研究角度出发, 需要填补生物多样性与人类健康关系的空缺来完善One Health的框架及实现途径。以下5点应作为研究的重点:

(1)确定不同生态系统及生物多样性维度对于人类健康的影响及途径。已有很多研究量化植被的影响, 但是针对生态系统类型和生物多样性的研究非常匮乏(Romanelli et al, 2015)。未来的研究需要突破人类健康领域对于生物多样性关注的局限性, 引入生物多样性的其他维度, 例如功能多样性与系统发育多样性的概念。针对城市生态系统, 量化不同生物多样性指标及物种组成带来的人类健康影响, 通过城市生态及景观规划达到One Health的目标。

(2)确定及量化土地利用变化与栖息地消失导致的人类健康影响。影响的指标包括但不局限于不同人体生理指标、疾病患病率如传染性疾病及慢性疾病、生育率、新生儿健康状况、心理健康(压力、抑郁、焦虑等)、死亡率、预期寿命等。同时, 研究并阐述其影响的途径和中间调控因素、时间及空间影响尺度。

(3)融合景观生态学与健康研究。One Health注重环境、动物及人类健康之间的联系, 而这种联系很大程度上有空间特异性并且依赖于景观尺度上的生态过程。因此, 未来的研究需要引入并加强景观生态学的研究角度及方法, 确定景观格局对于物种分布影响导致的疾病传播变化、不同健康影响途径的空间尺度、空间格局特征及依赖的生态系统过程等。

(4)根据生态系统服务、生物多样性分布及这两者与人类健康的关系, 对新发疫病、传播路径及暴发地区进行空间预测。在此过程中, 探究不同影响因素如气候变化、土地利用改变、其他人类干扰形式(捕猎、捕捞、放牧、运输路线等)可能导致的人类健康影响并进行及时预测。

(5)气候变化导致的生物多样性改变对于人类健康的影响。气候变化对人类健康的直接影响相对关注较多, 但是由于气候变化导致的物种分布及数量变化、动物迁徙路线的改变、生物群落组成改变、物种生命周期及行为改变等也会对人类健康产生不可忽视的影响(Romanelli et al, 2015)。因此, 需要加强对于这方面的研究, 预测其交互作用对不同健康指标的影响。

其中, (1)的推进可以为预警系统提供监测指标, (2)-(4)在空间尺度上进行规划和预测, 推进更为精准的防控, (5)将这个框架放到动态变化中进行研究, 提高监测和响应的灵活性与准确性。

这些研究方向将有利于建立更为精准的One Health监测体系和响应机制, 根据生物多样性和环境的变化确定重点区域, 减少对关键生态系统服务地区及物种栖息地的破坏, 加强相应疫源疫病的监测, 根据气候变化和人类干扰方式与强度变化, 提前预警可能产生的人类健康危机。同时, 把生物多样性保护作为基于自然的解决方案来推动人类健康问题的解决。

参考文献

Barrett MA, Osofsky SA (2013)

One Health: Interdependence of people, other species, and the planet

In: Jekel’s Epidemiology, Biostatistics, Preventive Medicine, and Public Health, 4th edn (eds Katz DL, Elmore JG, Wild DMG, Lucan SC), pp. 364-377. Elsevier/Saunders, Philadelphia.

[本文引用: 2]

Bertzky B, Corrigan C, Kemsey J, Kenney S, Ravilious C, Besançon C, Burgess N (2012)

Protected Planet Report 2012: Tracking Progress Towards Global Targets for Protected Areas

United Nations Environment Programme’s World Conservation Monitoring Centre (UNEP-WCMC), Cambridge.

[本文引用: 1]

Bonds MH, Andrew PD, Donald CK (2012)

Disease ecology, biodiversity, and the latitudinal gradient in income

PLoS Biology, 10, 12.

[本文引用: 2]

Bonilla-Aldana, DK, Dhama K, Rodriguez-Morales AJ (2020)

Revisiting the One Health approach in the context of COVID-19: A look into the ecology of this emerging disease

Advances in Animal and Veterinary Sciences, 8, 234-237.

[本文引用: 1]

Butler CD (2014)

Climate change and global health: A new conceptual framework—Mini review

CAB Reviews, 9, 027.

[本文引用: 1]

Cardoso O, Porcher JM, Sanchez W (2014)

Factory discharged pharmaceuticals could be a relevant source of aquatic environment contamination: Review of evidence and need for knowledge

Chemosphere, 115, 20-30.

DOI:10.1016/j.chemosphere.2014.02.004      URL     [本文引用: 1]

Human and veterinary active pharmaceutical ingredients (APIs) are involved in contamination of surface water, ground water, effluents, sediments and biota. Effluents of waste water treatment plants and hospitals are considered as major sources of such contamination. However, recent evidences reveal high concentrations of a large number of APIs in effluents from pharmaceutical factories and in receiving aquatic ecosystems. Moreover, laboratory exposures to these effluents and field experiments reveal various physiological disturbances in exposed aquatic organisms. Also, it seems to be relevant to increase knowledge on this route of contamination but also to develop specific approaches for further environmental monitoring campaigns. The present study summarizes available data related to the impact of pharmaceutical factory discharges on aquatic ecosystem contaminations and presents associated challenges for scientists and environmental managers. (C) 2014 Elsevier Ltd.

Cincotta RP, Wisnewski J, Engelman R (2000)

Human population in the biodiversity hotspots

Nature, 404, 990-992.

DOI:10.1038/35010105      URL     PMID:10801126      [本文引用: 1]

Biologists have identified 25 areas, called biodiversity hotspots, that are especially rich in endemic species and particularly threatened by human activities. The human population dynamics of these areas, however, are not well quantified. Here we report estimates of key demographic variables for each hotspot, and for three extensive tropical forest areas that are less immediately threatened. We estimate that in 1995 more than 1.1 billion people, nearly 20% of world population, were living within the hotspots, an area covering about 12% of Earth's terrestrial surface. We estimate that the population growth rate in the hotspots (1995-2000) is 1.8% yr(-1), substantially higher than the population growth rate of the world as a whole (1.3% yr(-1)) and above that of the developing countries (1.6% yr(-1)). These results suggest that substantial human-induced environmental changes are likely to continue in the hotspots and that demographic change remains an important factor in global biodiversity conservation. The results also underline the potential conservation significance of the continuing worldwide declines in human fertility and of policies and programs that influence human migration.

Cleaveland S, Borner M, Gislason M (2014)

Ecology and conservation: Contributions to One Health

Revue Scientifique et Technique (International Office of Epizootics), 33, 615-627.

[本文引用: 1]

Cleaveland S, Laurenson MK, Taylor LH (2001)

Diseases of humans and their domestic mammals: Pathogen characteristics, host range and the risk of emergence

Philosophical Transactions of the Royal Society of London Series B: Biological Sciences, 356, 991-999.

DOI:10.1098/rstb.2001.0889      URL     PMID:11516377      [本文引用: 1]

Pathogens that can be transmitted between different host species are of fundamental interest and importance from public health, conservation and economic perspectives, yet systematic quantification of these pathogens is lacking. Here, pathogen characteristics, host range and risk factors determining disease emergence were analysed by constructing a database of disease-causing pathogens of humans and domestic mammals. The database consisted of 1415 pathogens causing disease in humans, 616 in livestock and 374 in domestic carnivores. Multihost pathogens were very prevalent among human pathogens (61.6%) and even more so among domestic mammal pathogens (livestock 77.3%, carnivores 90.0%). Pathogens able to infect human, domestic and wildlife hosts contained a similar proportion of disease-causing pathogens for all three host groups. One hundred and ninety-six pathogens were associated with emerging diseases, 175 in humans, 29 in livestock and 12 in domestic carnivores. Across all these groups, helminths and fungi were relatively unlikely to emerge whereas viruses, particularly RNA viruses, were highly likely to emerge. The ability of a pathogen to infect multiple hosts, particularly hosts in other taxonomic orders or wildlife, were also risk factors for emergence in human and livestock pathogens. There is clearly a need to understand the dynamics of infectious diseases in complex multihost communities in order to mitigate disease threats to public health, livestock economies and wildlife.

Dornelas M, Gotelli NJ, McGill B, Shimadzu H, Moyes F, Sievers C, Magurran AE (2014)

Assemblage time series reveal biodiversity change but not systematic loss

Science, 344, 296-299.

DOI:10.1126/science.1248484      URL     PMID:24744374      [本文引用: 1]

The extent to which biodiversity change in local assemblages contributes to global biodiversity loss is poorly understood. We analyzed 100 time series from biomes across Earth to ask how diversity within assemblages is changing through time. We quantified patterns of temporal alpha diversity, measured as change in local diversity, and temporal beta diversity, measured as change in community composition. Contrary to our expectations, we did not detect systematic loss of alpha diversity. However, community composition changed systematically through time, in excess of predictions from null models. Heterogeneous rates of environmental change, species range shifts associated with climate change, and biotic homogenization may explain the different patterns of temporal alpha and beta diversity. Monitoring and understanding change in species composition should be a conservation priority.

FAO, OIE, WHO, UN System Influenza Coordination, UNICEF, the World Bank (2008)

Contributing to One World, One Health: A Strategic Framework for Reducing Risks of Infectious Diseases at the Animal-Human-Ecosystems Interface

Geneva.

[本文引用: 1]

Gibbs EPJ (2005)

Emerging zoonotic epidemics in the interconnected global community

Veterinary Record, 157, 673-679.

URL     PMID:16311375      [本文引用: 1]

Gibbs EPJ (2014)

The evolution of One Health: A decade of progress and challenges for the future

Veterinary Record, 174, 85-91.

DOI:10.1136/vr.g143      URL     PMID:24464377      [本文引用: 5]

The One Health concept is gathering momentum and, over the next 12 months, Veterinary Record will be publishing a series of articles to help encourage that process. Written by specialists in a range of fields, the articles will consider the meaning of One Health, the interactions between animal and human health and how a collaborative and interdisciplinary approach could help to solve emerging global problems. To set the scene, Paul Gibbs outlines the recent history of One Health, discusses current challenges and muses on what the future might hold.

Gilbert M, Golding N, Zhou H, Wint GRW, Robinson TP, Tatem AJ, Lai S, Zhou S, Jiang H, Guo D, Huang Z, Messina JP, Xiao X, Linard C, Boeckel TP, Martin V, Bhatt S, Gething PW, Farrar JJ, Hay SI, Yu HJ (2014)

Predicting the risk of avian influenza a H7N9 infection in live-poultry markets across Asia

Nature Communications, 5, 4116.

DOI:10.1038/ncomms5116      URL     PMID:24937647      [本文引用: 1]

Two epidemic waves of an avian influenza A (H7N9) virus have so far affected China. Most human cases have been attributable to poultry exposure at live-poultry markets, where most positive isolates were sampled. The potential geographic extent of potential re-emerging epidemics is unknown, as are the factors associated with it. Using newly assembled data sets of the locations of 8,943 live-poultry markets in China and maps of environmental correlates, we develop a statistical model that accurately predicts the risk of H7N9 market infection across Asia. Local density of live-poultry markets is the most important predictor of H7N9 infection risk in markets, underscoring their key role in the spatial epidemiology of H7N9, alongside other poultry, land cover and anthropogenic predictor variables. Identification of areas in Asia with high suitability for H7N9 infection enhances our capacity to target biosurveillance and control, helping to restrict the spread of this important disease.

Hahn MB, Gangnon RE, Barcellos C, Asner GP, Patz JA (2014)

Influence of deforestation, logging, and fire on Malaria in the Brazilian Amazon

PLoS ONE, 9, e85725.

DOI:10.1371/journal.pone.0085725      URL     PMID:24404206      [本文引用: 1]

Malaria is a significant public health threat in the Brazilian Amazon. Previous research has shown that deforestation creates breeding sites for the main malaria vector in Brazil, Anopheles darlingi, but the influence of selective logging, forest fires, and road construction on malaria risk has not been assessed. To understand these impacts, we constructed a negative binomial model of malaria counts at the municipality level controlling for human population and social and environmental risk factors. Both paved and unpaved roadways and fire zones in a municipality increased malaria risk. Within the timber production states where 90% of deforestation has occurred, compared with areas without selective logging, municipalities where 0-7% of the remaining forests were selectively logged had the highest malaria risk (1.72, 95% CI 1.18-2.51), and areas with higher rates of selective logging had the lowest risk (0.39, 95% CI 0.23-0.67). We show that roads, forest fires, and selective logging are previously unrecognized risk factors for malaria in the Brazilian Amazon and highlight the need for regulation and monitoring of sub-canopy forest disturbance.

Huxham M, Kumara MP, Jayatissa LP, Krauss KW, Kairo J, Langat J, Mencuccini M, Skov MW, Kirui B (2010)

Intra- and interspecific facilitation in mangroves may increase resilience to climate change threats

Philosophical Transactions of the Royal Society B: Biological Sciences, 365, 2127-2135.

DOI:10.1098/rstb.2010.0094      URL     [本文引用: 1]

Jones KE, Patel NG, Levy MA, Storeygard A, Balk D, Gittleman JL, Daszak P (2008)

Global trends in emerging infectious diseases

Nature, 451, 990-993.

DOI:10.1038/nature06536      URL     PMID:18288193      [本文引用: 1]

Emerging infectious diseases (EIDs) are a significant burden on global economies and public health. Their emergence is thought to be driven largely by socio-economic, environmental and ecological factors, but no comparative study has explicitly analysed these linkages to understand global temporal and spatial patterns of EIDs. Here we analyse a database of 335 EID 'events' (origins of EIDs) between 1940 and 2004, and demonstrate non-random global patterns. EID events have risen significantly over time after controlling for reporting bias, with their peak incidence (in the 1980s) concomitant with the HIV pandemic. EID events are dominated by zoonoses (60.3% of EIDs): the majority of these (71.8%) originate in wildlife (for example, severe acute respiratory virus, Ebola virus), and are increasing significantly over time. We find that 54.3% of EID events are caused by bacteria or rickettsia, reflecting a large number of drug-resistant microbes in our database. Our results confirm that EID origins are significantly correlated with socio-economic, environmental and ecological factors, and provide a basis for identifying regions where new EIDs are most likely to originate (emerging disease 'hotspots'). They also reveal a substantial risk of wildlife zoonotic and vector-borne EIDs originating at lower latitudes where reporting effort is low. We conclude that global resources to counter disease emergence are poorly allocated, with the majority of the scientific and surveillance effort focused on countries from where the next important EID is least likely to originate.

Karpinets TV, Vancheswaran G, Wargo J, Futreal AP, Christopher WS, Zhang J (2018)

Linking associations of rare low-abundance species to their environments by association networks

Frontiers in Microbiology, 9, 297.

DOI:10.3389/fmicb.2018.00297      URL     PMID:29563898      [本文引用: 2]

Studies of microbial communities by targeted sequencing of rRNA genes lead to recovering numerous rare low-abundance taxa with unknown biological roles. We propose to study associations of such rare organisms with their environments by a computational framework based on transformation of the data into qualitative variables. Namely, we analyze the sparse table of putative species or OTUs (operational taxonomic units) and samples generated in such studies, also known as an OTU table, by collecting statistics on co-occurrences of the species and on shared species richness across samples. Based on the statistics we built two association networks, of the rare putative species and of the samples respectively, using a known computational technique, Association networks (Anets) developed for analysis of qualitative data. Clusters of samples and clusters of OTUs are then integrated and combined with metadata of the study to produce a map of associated putative species in their environments. We tested and validated the framework on two types of microbiomes, of human body sites and that of the Populus tree root systems. We show that in both studies the associations of OTUs can separate samples according to environmental or physiological characteristics of the studied systems.

Keesing F, Belden LK, Daszak P, Dobson A, Harvell CD, Holt RD, Hudson P, Jolles A, Jones KE, Mitcell CE, Myers SS, Bogich T, Ostfeld RS (2010)

Impacts of biodiversity on the emergence and transmission of infectious diseases

Nature, 468, 647-652.

DOI:10.1038/nature09575      URL     PMID:21124449      [本文引用: 1]

Current unprecedented declines in biodiversity reduce the ability of ecological communities to provide many fundamental ecosystem services. Here we evaluate evidence that reduced biodiversity affects the transmission of infectious diseases of humans, other animals and plants. In principle, loss of biodiversity could either increase or decrease disease transmission. However, mounting evidence indicates that biodiversity loss frequently increases disease transmission. In contrast, areas of naturally high biodiversity may serve as a source pool for new pathogens. Overall, despite many remaining questions, current evidence indicates that preserving intact ecosystems and their endemic biodiversity should generally reduce the prevalence of infectious diseases.

Lajaunie C, Mazzega P (2016)

One Health and biodiversity conventions

The emergence of health issues in biodiversity conventions. IUCN Academy of Environmental Law eJournal, 7, 105-121.

[本文引用: 4]

Lajaunie C, Morand S (2015)

A legal tool for participatory methods in land systems science: The Thai model of Health Impact Assessment and the consideration of zoonotic diseases concerns into policies

GLP Newsletter, 11, 30-33.

[本文引用: 1]

Mace GM, Norris K, Fitter AH (2012)

Biodiversity and ecosystem services: A multilayered relationship

Trends in Ecology and Evolution, 27, 19-26.

DOI:10.1016/j.tree.2011.08.006      URL     PMID:21943703      [本文引用: 1]

The relationship between biodiversity and the rapidly expanding research and policy field of ecosystem services is confused and is damaging efforts to create coherent policy. Using the widely accepted Convention on Biological Diversity definition of biodiversity and work for the U.K. National Ecosystem Assessment we show that biodiversity has key roles at all levels of the ecosystem service hierarchy: as a regulator of underpinning ecosystem processes, as a final ecosystem service and as a good that is subject to valuation, whether economic or otherwise. Ecosystem science and practice has not yet absorbed the lessons of this complex relationship, which suggests an urgent need to develop the interdisciplinary science of ecosystem management bringing together ecologists, conservation biologists, resource economists and others.

Markevych I, Tiesler CM, Fuertes E, Romanos M, Dadvand P, Nieuwenhuijsen MJ, Berdel D, Koletzko S, Heinrich J (2014)

Access to urban green spaces and behavioural problems in children: Results from the GINIplus and LISAplus studies

Environment International, 71, 29-35.

DOI:10.1016/j.envint.2014.06.002      URL     [本文引用: 1]

Aim: We investigated whether objectively measured access to urban green spaces is associated with behavioural problems in 10-year old children living in Munich and its surrounding areas.
Methods: Behavioural problems were assessed in the GINIplus and LISAplus 10-year follow-up between 2006 and 2009 using the Strengths and Difficulties Questionnaire. Access to green spaces was defined using the distance from a child's residence to the nearest urban green space. Associations between access to urban green spaces and behavioural problems were assessed using proportional odds and logistic regression models in 1932 children with complete exposure, outcome and covariate data.
Results: The distance between a child's residence and the nearest urban green space was positively associated with the odds of hyperactivity/inattention, especially among children with abnormal values compared to children with borderline or normal values (odds ratio (OR) = 1.20 (95% confidence interval (CI) = 1.01-1.42) per 500 m increase in distance). When stratified by sex, this association was only statistically significant among males. Children living further than 500 m away from urban green spaces had more overall behavioural problems than those living within 500 m of urban green spaces (proportional OR = 1.41 (95% CI = 1.06-1.87)). Behavioural problems were not associated with the distance to forests or with residential surrounding greenness.
Conclusion: Poor access to urban green spaces was associated with behavioural problems in 10-year old children. Results were most consistent with hyperactivity/inattention problems. (C) 2014 Elsevier Ltd.

McIvor AL, Möller I, Spencer T, Spalding M (2013)

Mangroves as a sustainable coastal defence

In: Proceeding of the 7th International Conference on Asian and Pacific Coasts, APAC 2013, pp. 956-963. Bali, Indonesia.

[本文引用: 1]

McShane TO, Hirsch PD, Trung TC, Songorwa AN, Kinzig A, Monteferri B, Mutekanga D, Thang HV, Dammert JL, Pulgar-Vidal M, Welch-Devine M, Brosius JP, Coppolillo P, O’Connor S (2011)

Hard choices: Making trade-offs between biodiversity conservation and human well-being

Biological Conservation, 144, 966-972.

DOI:10.1016/j.biocon.2010.04.038      URL     [本文引用: 1]

Win-win solutions that both conserve biodiversity and promote human well-being are difficult to realize. Trade-offs and the hard choices they entail are the norm. Since 2008, the Advancing Conservation in a Social Context (ACSC) research initiative has been investigating the complex trade-offs that exist between human well-being and biodiversity conservation goals, and between conservation and other economic, political and social agendas across multiple scales. Resolving trade-offs is difficult because social problems - of which conservation is one - can be perceived and understood in a variety of disparate ways, influenced (in part at least) by how people are raised and educated, their life experiences, and the options they have faced. Pre-existing assumptions about the "right" approach to conservation often obscure important differences in both power and understanding, and can limit the success of policy and programmatic interventions. The new conservation debate challenges conservationists to be explicit about losses, costs, and hard choices so they can be openly discussed and honestly negotiated. Not to do so can lead to unrealized expectations, and ultimately to unresolved conflict. This paper explores the background and limitations of win-win approaches to conservation and human well-being, discusses the prospect of approaching conservation challenges in terms of trade-offs and hard choices, and presents a set of guiding principles that can serve to orient strategic analysis and communication regarding trade-offs. (C) 2010 Elsevier Ltd.

Nie EQ, Xia Y, Wang T, Lu JH (2016)

One Health—A new approach to control emerging infectious diseases

Journal of Microbes and Infection, 11, 3-7. (in Chinese with English abstract)

[本文引用: 3]

[ 聂恩琼, 夏尧, 汪涛, 陆家海 (2016)

One Health——应对新发传染病的新理念

微生物与感染, 11, 3-7.]

[本文引用: 3]

Olson SH, Reed P, Cameron, KN, Ssebide BJ, Johnson CK, Morse SS, Karesh WB, Mazet JAK, Joly DO (2012)

Dead or alive: Animal sampling during Ebola hemorrhagic fever outbreaks in humans

Emerging Health Threats Journal, 5, 9134.

DOI:10.3402/ehtj.v5i0.9134      URL     [本文引用: 1]

Orlando EF, Guillette JLJ (2007)

Sexual dimorphic responses in wildlife exposed to endocrine disrupting chemicals

Environmental Research, 104, 163-173.

DOI:10.1016/j.envres.2006.06.002      URL     PMID:16890221      [本文引用: 1]

Understanding the gender similarities and differences in how organisms respond following exposure to environmental chemicals is important if we are to determine the relative risk of these agents to wildlife and human populations. In this paper, we have chosen to focus on the sex determination and differentiation of fishes, amphibians, and reptiles, because of their close association with the environment and the number of environmental factors (e.g., temperature and endocrine disrupting chemicals) that are known to affect these phenomena in these taxa. We have discussed examples of gender differences in response to exposure to endocrine disrupting chemicals and found gender similarities about as often as we found differences. We found that most studies examined either one sex exclusively, or the experimental design did not include examining the effect of sex as a variable. Given the central role of sex steroid hormones in the sex determination and sexual differentiation of fishes, amphibians, and reptiles, we recommend that future research purposefully include sex as a factor, so that risk assessment by government agencies can address the probable gender differences in effects from exposure to chemicals in the environment.

Ostfeld RS, Keesing F (2000)

The function of biodiversity in the ecology of vector-borne zoonotic diseases

Canadian Journal of Zoology, 78, 2061-2078.

DOI:10.1139/z00-172      URL     [本文引用: 1]

Pang SF, Yuan LP (2015)

Version and practice of OIE “One Health”

China Animal Health Inspection, 32(10), 58-60. (in Chinese with English abstract)

[本文引用: 1]

[ 庞素芬, 袁丽萍 (2015)

世界动物卫生组织“同一健康”理念和实践

中国动物检疫, 32(10), 58-60.]

[本文引用: 1]

Patz J, Corvalan C, Horwitz P, Campbell-Lendrum D, Watts N, Maiero M, Olson S, Hales J, Miller C, Campbell K, Romanelli C, Cooper D (2012)

Our Planet, Our Health, Our Future. Human health and the Rio conventions: Biological diversity, climate change and desertification

WHO. Geneva.

[本文引用: 2]

Rohr JR, Civitello DJ, Halliday FW, Hudson PJ, Lafferty KD, Wood CL, Mordecai EA (2020)

Towards common ground in the biodiversity-disease debate

Nature Ecology and Evolution, 4, 24-33.

DOI:10.1038/s41559-019-1060-6      URL     PMID:31819238      [本文引用: 1]

The disease ecology community has struggled to come to consensus on whether biodiversity reduces or increases infectious disease risk, a question that directly affects policy decisions for biodiversity conservation and public health. Here, we summarize the primary points of contention regarding biodiversity-disease relationships and suggest that vector-borne, generalist wildlife and zoonotic pathogens are the types of parasites most likely to be affected by changes to biodiversity. One synthesis on this topic revealed a positive correlation between biodiversity and human disease burden across countries, but as biodiversity changed over time within these countries, this correlation became weaker and more variable. Another synthesis-a meta-analysis of generally smaller-scale experimental and field studies-revealed a negative correlation between biodiversity and infectious diseases (a dilution effect) in various host taxa. These results raise the question of whether biodiversity-disease relationships are more negative at smaller spatial scales. If so, biodiversity conservation at the appropriate scales might prevent wildlife and zoonotic diseases from increasing in prevalence or becoming problematic (general proactive approaches). Further, protecting natural areas from human incursion should reduce zoonotic disease spillover. By contrast, for some infectious diseases, managing particular species or habitats and targeted biomedical approaches (targeted reactive approaches) might outperform biodiversity conservation as a tool for disease control. Importantly, biodiversity conservation and management need to be considered alongside other disease management options. These suggested guiding principles should provide common ground that can enhance scientific and policy clarity for those interested in simultaneously improving wildlife and human health.

Romanelli C, Cooper D, Campbell-Lendrum D, Maiero M, Karesh WB, Hunter D, Golden CD (2015)

Connecting Global Priorities: Biodiversity and Human Health: A State of Knowledge Review

World Health Organistion & Secretariat of the UN Convention on Biological Diversity.

[本文引用: 20]

Romanelli C, Cooper HD, de Souza Diaz BF (2014)

The integration of biodiversity into One Health

Revue Scientifique et Technique, 33, 487-496.

DOI:10.20506/rst.33.2.2291      URL     PMID:25707179      [本文引用: 1]

A better understanding of the links between biodiversity, health and disease presents major opportunities for policy development, and can enhance our understanding of how health-focused measures affect biodiversity, and conservation measures affect health. The breadth and complexity of these relationships, and the socio-economic drivers by which they are influenced, in the context of rapidly shifting global trends, reaffirm the need for an integrative, multidisciplinary and systemic approach to the health of people, livestock and wildlife within the ecosystem context. Loss of biodiversity, habitat fragmentation and the loss of natural environments threaten the full range of life-supporting services provided by ecosystems at all levels of biodiversity, including species, genetic and ecosystem diversity. The disruption of ecosystem services has direct and indirect implications for public health, which are likely to exacerbate existing health inequities, whether through exposure to environmental hazards or through the loss of livelihoods. One Health provides a valuable framework for the development of mutually beneficial policies and interventions at the nexus between health and biodiversity, and it is critical that One Health integrates biodiversity into its strategic agenda.

Sandifer PA, Sutton-Grier AE, Ward BP (2015)

Exploring connections among nature, biodiversity, ecosystem services, and human health and well-being: Opportunities to enhance health and biodiversity conservation

Ecosystem Services, 12, 1-15.

DOI:10.1016/j.ecoser.2014.12.007      URL     [本文引用: 1]

Shwartz A, Turbe A, Simon L, Julliard R (2014)

Enhancing urban biodiversity and its influence on city-dwellers: An experiment

Biological Conservation, 171, 82-90.

DOI:10.1016/j.biocon.2014.01.009      URL     [本文引用: 1]

Urbanization is presenting a growing problem for biodiversity conservation, notably by increasingly isolating over half of the world's population from the experience of nature. This separation of people from nature is an important environmental issue, as it could fundamentally influence the way people value nature and their willingness to conserve it. Here we provide the first experimental study that jointly explores how urban biodiversity can be enhanced and how these changes may influence some aspects of people-biodiversity interactions.
We significantly increased the diversity of flowers, birds and pollinators in small public gardens (Paris, France) by providing additional resources (i.e., planting flower-meadows and placing nesting-boxes). Semi-structured interviews were conducted in situ with 1116 regular garden users before and after the manipulation. Close-ended questionnaires were completed exploring the respondents' biodiversity perception and their sensitivity to the changes in biodiversity. Our results highlight a people-biodiversity paradox between people's perceptions and biodiversity awareness. Respondents expressed a strong preference for a rich diversity of species (excluding insects) and related this diversity to their well-being in the gardens. However, they did not notice the diversity of species. Respondents underestimated species richness and only noticed the changes in native flower richness in those gardens where advertisement and public involvement were organized. More experimental interdisciplinary studies are needed to further explore the people-biodiversity interactions. This would help expose the role that urban biodiversity plays in people's daily life and the importance of this interaction for raising public support for general conservation policies. (C) 2014 Elsevier Ltd.

Von Hertzen L, Ilkka H, Tari H (2011)

Natural immunity

EMBO Reports 12, 11, 1089-1093.

[本文引用: 1]

Wells NM (2014)

The role of nature in children’s resilience: Cognitive and social processes

In: Greening in the Red Zone (eds Tidball KG, Krasny ME), pp. 95-109. Springer, Dordrecht.

[本文引用: 1]

Wilcox BA, Gubler DJ (2005)

Disease ecology and the global emergence of zoonotic pathogens

Environmental Health and Preventive Medicine, 10, 263-272.

DOI:10.1007/BF02897701      URL     [本文引用: 1]

The incidence and frequency of epidemic transmission of zoonotic diseases, both known and newly recognized, has increased dramatically in the past 30 years. It is thought that this dramatic disease emergence is primarily the result of the social, demographic, and environmental transformation that has occurred globally since World War II. However, the causal linkages have not been elucidated. Investigating emerging zoonotic pathogens as an ecological phenomenon can provide significant insights as to why some of these pathogens have jumped species and caused major epidemics in humans. A review of concepts and theory from biological ecology and of causal factors in disease emergence previously described suggests a general model of global zoonotic disease emergence. The model links demographic and societal factors to land use and land cover change whose associated ecological factors help explain disease emergence. The scale and magnitude of these changes are more significant than those associated with climate change, the effects of which are largely not yet understood. Unfortunately, the complex character and non-linear behavior of the human-natural systems in which host-pathogen systems are embedded makes specific incidences of disease emergence or epidemics inherently difficult to predict. Employing a complex systems analytical approach, however, may show how a few key ecological variables and system properties, including the adaptive capacity of institutions, explains the emergence of infectious diseases and how an integrated, multi-level approach to zoonotic disease control can reduce risk.

Wood CL, Lafferty KD (2013)

Biodiversity and disease: A synthesis of ecological perspectives on Lyme disease transmission

Trends in Ecology and Evolution, 28, 239-247.

DOI:10.1016/j.tree.2012.10.011      URL     PMID:23182683      [本文引用: 1]

Recent reviews have argued that disease control is among the ecosystem services yielded by biodiversity. Lyme disease (LD) is commonly cited as the best example of the 'diluting' effect of biodiversity on disease transmission, but many studies document the opposite relationship, showing that human LD risk can increase with forestation. Here, we unify these divergent perspectives and find strong evidence for a positive link between biodiversity and LD at broad spatial scales (urban to suburban to rural) and equivocal evidence for a negative link between biodiversity and LD at varying levels of biodiversity within forests. This finding suggests that, across zoonotic disease agents, the biodiversity-disease relationship is scale dependent and complex.

Wood CL, Lafferty KD, DeLeo G, Young HS, Hudson PJ, Kuris AM (2014)

Does biodiversity protect humans against infectious disease?

Ecology, 95, 817-832.

DOI:10.1890/13-1041.1      URL     [本文引用: 1]

Control of human infectious disease has been promoted as a valuable ecosystem service arising from the conservation of biodiversity. There are two commonly discussed mechanisms by which biodiversity loss could increase rates of infectious disease in a landscape. First, loss of competitors or predators could facilitate an increase in the abundance of competent reservoir hosts. Second, biodiversity loss could disproportionately affect non-competent, or less competent reservoir hosts, which would otherwise interfere with pathogen transmission to human populations by, for example, wasting the bites of infected vectors. A negative association between biodiversity and disease risk, sometimes called the "dilution effect hypothesis," has been supported for a few disease agents, suggests an exciting win-win outcome for the environment and society, and has become a pervasive topic in the disease ecology literature. Case studies have been assembled to argue that the dilution effect is general across disease agents. Less touted are examples in which elevated biodiversity does not affect or increases infectious disease risk for pathogens of public health concern. In order to assess the likely generality of the dilution effect, we review the association between biodiversity and public health across a broad variety of human disease agents. Overall, we hypothesize that conditions for the dilution effect are unlikely to be met for most important diseases of humans. Biodiversity probably has little net effect on most human infectious diseases but, when it does have an effect, observation and basic logic suggest that biodiversity will be more likely to increase than to decrease infectious disease risk.

World Health Organization (WHO) (2013)

Mental Health Action Plan 2013-2020

World Health Organization, Geneva.

[本文引用: 1]

Wu J, Liu L, Wang G, Lu J (2016)

One Health in China

Infection Ecology & Epidemiology, 6, 33843.

DOI:10.3402/iee.v6.33843      URL     PMID:27906124      [本文引用: 2]

As a result of rapid economic growth over the previous three decades, China has become the second largest economy worldwide since 2010. However, as a developing country with the largest population, this rapid economic growth primarily based on excessive consumption and waste of resources. Thus, China has been facing particularly severe ecological and environmental problems in speeding up industrialization and urbanization. The impact of the health risk factors is complex and difficult to accurately predict. Therefore, it is critical to investigate potential threats in the context of the human-animal-environment interface to protect human and animal health. The

Zowalaty ME, Järhult JD (2020)

From SARS to COVID-19: A previously unknown SARS-CoV-2 virus of pandemic potential infecting humans—Call for a One Health approach

One Health, 100124.

DOI:10.1016/j.onehlt.2020.100124      URL     PMID:32195311      [本文引用: 1]

Human coronaviruses continue to pose a threat to human health. The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in December 2019 which causes coronavirus disease-2019 (COVID-19), an acute respiratory disease marked the third introduction of a highly pathogenic coronavirus into the human population in the twenty-first century. This recent emergence of a previously unknown coronavirus in China leads to huge impacts on humans globally. Covid-19 is a challenge to global public health. Here, we discuss the COVID-19 outbreak in a one health context, highlighting the need for the implementation of one health measures and practices to improve human health and reduce the emergence of pandemic viruses.

/