Biodiv Sci ›› 2010, Vol. 18 ›› Issue (2): 188-197. DOI: 10.3724/SP.J.1003.2010.201
Previous Articles Next Articles
Tingting Yao1,2, Tingting Meng1, Jian Ni1, Shun Yan3, Xiaohua Feng3, Guohong Wang1,*()
Received:
2009-11-30
Accepted:
2010-03-28
Online:
2010-03-20
Published:
2010-03-20
Contact:
Guohong Wang
Tingting Yao, Tingting Meng, Jian Ni, Shun Yan, Xiaohua Feng, Guohong Wang. Leaf functional trait variation and its relationship with plant phylogenic background and the climate in Xinjiang Junggar Basin, NW China[J]. Biodiv Sci, 2010, 18(2): 188-197.
样地 Sites | 经纬度 Latitude, Longitude | 海拔 Elevation (m) | 植被类型 Vegetation | 年均温度MAT (ºC) | 年均降水MAP (mm) | 水分可利 用性指数 α | 最热月温度 MTWA (ºC) | |
---|---|---|---|---|---|---|---|---|
X01 | 45°09.39′N, | 84°44.66′E | 277 | 盐爪爪荒漠 Kalidium foliatum desert | 9.3 | 140.1 | 0.181 | 27.87 |
X02 | 46°23.77′N, | 85°56.70′E | 701 | 合头草荒漠 Sympegma regelii desert | 5.9 | 190.6 | 0.252 | 21.63 |
X03 | 47°02.35′N, | 87°05.61′E | 620 | 短叶假木贼荒漠 Anabasis brevifolia desert | 5.4 | 197.5 | 0.248 | 21.3 |
X04 | 47°49.85′N, | 86°51.00′E | 499 | 灌木亚菊荒漠 Ajania fruticulosadesert | 5.4 | 205.0 | 0.221 | 21.96 |
X05 | 47°56.38′N, | 86°50.06′E | 481 | 红果沙拐枣荒漠 Calligonum rubicundum desert | 5.5 | 205.6 | 0.228 | 21.88 |
X06 | 48°09.99′N, | 87°04.83′E | 779 | 寸草苔草地 Carex duriuscula grassland | 3.4 | 235.5 | 0.333 | 17.6 |
X07 | 48°11.45′N, | 87°01.24′E | 1,199 | 欧亚绣线菊灌丛 Spiraea media shrubland | 1.2 | 262.9 | 0.347 | 17.33 |
X08 | 48°19.95′N, | 87°07.43′E | 1,599 | 寸草苔草地 Carex duriusculagrassland | -0.9 | 290.4 | 0.415 | 12.28 |
X09 | 47°43.14′N, | 87°01.03′E | 498 | 白刺荒漠 Nitraria tangutorumdesert | 5.6 | 198.1 | 0.209 | 22.19 |
X10 | 47°44.44′N, | 87°32.51′E | 521 | 无叶假木贼荒漠 Anabasis aphylladesert | 5.4 | 200.5 | 0.191 | 22.74 |
X11 | 47°09.33′N, | 88°42.14′E | 750 | 木地肤荒漠 Kochia prostratadesert | 4.7 | 200.1 | 0.236 | 22.41 |
X12 | 46°18.23′N, | 89°32.93′E | 885 | 驼绒藜荒漠 Ceratoides latens Desert | 5.0 | 180.3 | 0.264 | 21.64 |
X13 | 45°21.57′N, | 89°24.21′E | 1,068 | 盐爪爪荒漠 Kalidium foliatum desert | 5.2 | 167.5 | 0.316 | 21.06 |
X14 | 44°07.43′N, | 89°48.37′E | 513 | 红砂荒漠 Reaumuria soongarica desert | 9.3 | 101.3 | 0.213 | 23.85 |
X15 | 44°04.65′N, | 87°47.62′E | 583 | 红砂荒漠 Reaumuria soongarica desert | 9.0 | 116.1 | 0.242 | 25.59 |
X16 | 44°04.01′N, | 88°04.65′E | 852 | 小叶锦鸡儿荒漠 Caragana microphylla desert | 7.6 | 130.0 | 0.312 | 22.77 |
X17 | 43°59.69′N, | 88°03.85′E | 1,088 | 寸草苔草地 Carex duriuscula grassland | 7.0 | 133.7 | 0.306 | 22.61 |
X18 | 43°55.57′N, | 88°06.75′E | 1,423 | 小檗灌丛 Berberis amurensis shrubland | 5.3 | 153.9 | 0.343 | 21.58 |
X19 | 42°50.21′N, | 89°26.14′E | -88 | 骆驼刺荒漠 Alhagi sparsifolia desert | 14.1 | 23.5 | 0.020 | 32.58 |
X20 | 42°43.52′N, | 89°26.32′E | -136 | 黑果枸杞荒漠 Lycium ruthenicum desert | 14.4 | 18.7 | 0.017 | 33.06 |
X21 | 42°41.26′N, | 89°25.38′E | -146 | 盐穗木荒漠 Halostachys belangeriana desert | 14.5 | 17.5 | 0.014 | 33.51 |
X22 | 42°22.10′N, | 88°33.94′E | 1,721 | 木霸王荒漠 Zygophyllum xanthoxylondesert | 5.4 | 137.1 | 0.229 | 21.46 |
X23 | 42°13.07′N, | 87°45.51′E | 1,445 | 合头草荒漠 Sympegma regelii desert | 6.9 | 122.0 | 0.216 | 20.71 |
X24 | 41°48.40′N, | 86°14.92′E | 1,444 | 合头草荒漠 Sympegma regelii desert | 7.6 | 112.4 | 0.143 | 22.29 |
X25 | 40°30.78′N, | 84°18.99′E | 931 | 刚毛柽柳荒漠 Tamarix hispidadesert | 11.5 | 60.0 | 0.053 | 26.91 |
X26 | 40°49.62′N, | 84°17.40′E | 921 | 刚毛柽柳荒漠 Tamarix hispidadesert | 11.3 | 65.0 | 0.058 | 27.2 |
X27 | 41°29.04′N, | 84°12.61′E | 928 | 刚毛柽柳荒漠 Tamarix hispidadesert | 10.4 | 85.5 | 0.089 | 26.18 |
X28 | 41°29.96′N, | 84°30.33′E | 919 | 刚毛柽柳荒漠 Tamarix hispidadesert | 10.4 | 84.2 | 0.093 | 25.86 |
X29 | 41°39.35′N, | 84°53.34′E | 902 | 红砂荒漠 Reaumuria soongarica desert | 10.4 | 84.3 | 0.096 | 25.73 |
X30 | 42°14.84′N, | 88°13.95′E | 966 | 红砂荒漠 Reaumuria soongarica desert | 9.2 | 88.0 | 0.085 | 25.81 |
Table 1 Geographical locations, vegetation types, mean annual temperature (MAT), mean annual precipitation (MAP), plant water availability (α), temperature of the warmest month (MTWA) of the study sites in Junggar Basin, Xinjiang
样地 Sites | 经纬度 Latitude, Longitude | 海拔 Elevation (m) | 植被类型 Vegetation | 年均温度MAT (ºC) | 年均降水MAP (mm) | 水分可利 用性指数 α | 最热月温度 MTWA (ºC) | |
---|---|---|---|---|---|---|---|---|
X01 | 45°09.39′N, | 84°44.66′E | 277 | 盐爪爪荒漠 Kalidium foliatum desert | 9.3 | 140.1 | 0.181 | 27.87 |
X02 | 46°23.77′N, | 85°56.70′E | 701 | 合头草荒漠 Sympegma regelii desert | 5.9 | 190.6 | 0.252 | 21.63 |
X03 | 47°02.35′N, | 87°05.61′E | 620 | 短叶假木贼荒漠 Anabasis brevifolia desert | 5.4 | 197.5 | 0.248 | 21.3 |
X04 | 47°49.85′N, | 86°51.00′E | 499 | 灌木亚菊荒漠 Ajania fruticulosadesert | 5.4 | 205.0 | 0.221 | 21.96 |
X05 | 47°56.38′N, | 86°50.06′E | 481 | 红果沙拐枣荒漠 Calligonum rubicundum desert | 5.5 | 205.6 | 0.228 | 21.88 |
X06 | 48°09.99′N, | 87°04.83′E | 779 | 寸草苔草地 Carex duriuscula grassland | 3.4 | 235.5 | 0.333 | 17.6 |
X07 | 48°11.45′N, | 87°01.24′E | 1,199 | 欧亚绣线菊灌丛 Spiraea media shrubland | 1.2 | 262.9 | 0.347 | 17.33 |
X08 | 48°19.95′N, | 87°07.43′E | 1,599 | 寸草苔草地 Carex duriusculagrassland | -0.9 | 290.4 | 0.415 | 12.28 |
X09 | 47°43.14′N, | 87°01.03′E | 498 | 白刺荒漠 Nitraria tangutorumdesert | 5.6 | 198.1 | 0.209 | 22.19 |
X10 | 47°44.44′N, | 87°32.51′E | 521 | 无叶假木贼荒漠 Anabasis aphylladesert | 5.4 | 200.5 | 0.191 | 22.74 |
X11 | 47°09.33′N, | 88°42.14′E | 750 | 木地肤荒漠 Kochia prostratadesert | 4.7 | 200.1 | 0.236 | 22.41 |
X12 | 46°18.23′N, | 89°32.93′E | 885 | 驼绒藜荒漠 Ceratoides latens Desert | 5.0 | 180.3 | 0.264 | 21.64 |
X13 | 45°21.57′N, | 89°24.21′E | 1,068 | 盐爪爪荒漠 Kalidium foliatum desert | 5.2 | 167.5 | 0.316 | 21.06 |
X14 | 44°07.43′N, | 89°48.37′E | 513 | 红砂荒漠 Reaumuria soongarica desert | 9.3 | 101.3 | 0.213 | 23.85 |
X15 | 44°04.65′N, | 87°47.62′E | 583 | 红砂荒漠 Reaumuria soongarica desert | 9.0 | 116.1 | 0.242 | 25.59 |
X16 | 44°04.01′N, | 88°04.65′E | 852 | 小叶锦鸡儿荒漠 Caragana microphylla desert | 7.6 | 130.0 | 0.312 | 22.77 |
X17 | 43°59.69′N, | 88°03.85′E | 1,088 | 寸草苔草地 Carex duriuscula grassland | 7.0 | 133.7 | 0.306 | 22.61 |
X18 | 43°55.57′N, | 88°06.75′E | 1,423 | 小檗灌丛 Berberis amurensis shrubland | 5.3 | 153.9 | 0.343 | 21.58 |
X19 | 42°50.21′N, | 89°26.14′E | -88 | 骆驼刺荒漠 Alhagi sparsifolia desert | 14.1 | 23.5 | 0.020 | 32.58 |
X20 | 42°43.52′N, | 89°26.32′E | -136 | 黑果枸杞荒漠 Lycium ruthenicum desert | 14.4 | 18.7 | 0.017 | 33.06 |
X21 | 42°41.26′N, | 89°25.38′E | -146 | 盐穗木荒漠 Halostachys belangeriana desert | 14.5 | 17.5 | 0.014 | 33.51 |
X22 | 42°22.10′N, | 88°33.94′E | 1,721 | 木霸王荒漠 Zygophyllum xanthoxylondesert | 5.4 | 137.1 | 0.229 | 21.46 |
X23 | 42°13.07′N, | 87°45.51′E | 1,445 | 合头草荒漠 Sympegma regelii desert | 6.9 | 122.0 | 0.216 | 20.71 |
X24 | 41°48.40′N, | 86°14.92′E | 1,444 | 合头草荒漠 Sympegma regelii desert | 7.6 | 112.4 | 0.143 | 22.29 |
X25 | 40°30.78′N, | 84°18.99′E | 931 | 刚毛柽柳荒漠 Tamarix hispidadesert | 11.5 | 60.0 | 0.053 | 26.91 |
X26 | 40°49.62′N, | 84°17.40′E | 921 | 刚毛柽柳荒漠 Tamarix hispidadesert | 11.3 | 65.0 | 0.058 | 27.2 |
X27 | 41°29.04′N, | 84°12.61′E | 928 | 刚毛柽柳荒漠 Tamarix hispidadesert | 10.4 | 85.5 | 0.089 | 26.18 |
X28 | 41°29.96′N, | 84°30.33′E | 919 | 刚毛柽柳荒漠 Tamarix hispidadesert | 10.4 | 84.2 | 0.093 | 25.86 |
X29 | 41°39.35′N, | 84°53.34′E | 902 | 红砂荒漠 Reaumuria soongarica desert | 10.4 | 84.3 | 0.096 | 25.73 |
X30 | 42°14.84′N, | 88°13.95′E | 966 | 红砂荒漠 Reaumuria soongarica desert | 9.2 | 88.0 | 0.085 | 25.81 |
Fig. 1 Frequence distribution of plant water availability (α) and mean temperature of the warmest month (MTWA) of the sites in Xinjiang Junngar Basin, northwestern China
变异来源 Source | 叶干物质含量 LDMC | 叶比重 LMA | 叶质量氮 Nmass | 叶面积氮 Narea | |||||
---|---|---|---|---|---|---|---|---|---|
df | F | ss% | F | ss% | F | ss% | F | ss% | |
MTWA | 2 | 1.82 | 1.3 | 1.46 | 0.9 | 2.26 | 2.1 | 4.05 | 2.3* |
α | 2 | 0.48 | 0.3 | 33.08 | 20.8*** | 6.75 | 6.3** | 14.83 | 8.4*** |
FG | 2 | 10.48 | 7.5*** | 23.06 | 14.5*** | 2.21 | 2.1 | 21.64 | 12.2*** |
Family | 27 | 4.78 | 46.5*** | 2.16 | 18.4** | 1.63 | 20.4* | 3.69 | 28.2*** |
MTWA×α | 3 | 0.04 | 0.0 | 1.80 | 1.7 | 3.21 | 4.5* | 2.11 | 1.8 |
MTWA×FG | 4 | 0.12 | 0.2 | 0.19 | 0.2 | 0.64 | 1.2 | 0.10 | 0.1 |
MTWA×Family | 18 | 0.59 | 3.8 | 1.00 | 5.7 | 1.30 | 10.9 | 1.87 | 9.5* |
α×FG | 4 | 0.16 | 0.2 | 1.39 | 1.7 | 0.25 | 0.5 | 1.82 | 2.1 |
α×Family | 10 | 0.85 | 3.1 | 0.80 | 2.5 | 0.96 | 4.4 | 1.63 | 4.6 |
FG×Family | 4 | 0.40 | 0.6 | 1.31 | 1.7 | 0.51 | 0.9 | 2.00 | 2.3 |
Total | 178 | 54 | 53.7 | 31.2 | 60.6 |
Table 2 Summary of GLM detecting the main effects of plant family, functional group:FG) and bioclimatic factors (mean temperature in the warmest month: MTWA and water availability: α) as well as their interactions on leaf traits
变异来源 Source | 叶干物质含量 LDMC | 叶比重 LMA | 叶质量氮 Nmass | 叶面积氮 Narea | |||||
---|---|---|---|---|---|---|---|---|---|
df | F | ss% | F | ss% | F | ss% | F | ss% | |
MTWA | 2 | 1.82 | 1.3 | 1.46 | 0.9 | 2.26 | 2.1 | 4.05 | 2.3* |
α | 2 | 0.48 | 0.3 | 33.08 | 20.8*** | 6.75 | 6.3** | 14.83 | 8.4*** |
FG | 2 | 10.48 | 7.5*** | 23.06 | 14.5*** | 2.21 | 2.1 | 21.64 | 12.2*** |
Family | 27 | 4.78 | 46.5*** | 2.16 | 18.4** | 1.63 | 20.4* | 3.69 | 28.2*** |
MTWA×α | 3 | 0.04 | 0.0 | 1.80 | 1.7 | 3.21 | 4.5* | 2.11 | 1.8 |
MTWA×FG | 4 | 0.12 | 0.2 | 0.19 | 0.2 | 0.64 | 1.2 | 0.10 | 0.1 |
MTWA×Family | 18 | 0.59 | 3.8 | 1.00 | 5.7 | 1.30 | 10.9 | 1.87 | 9.5* |
α×FG | 4 | 0.16 | 0.2 | 1.39 | 1.7 | 0.25 | 0.5 | 1.82 | 2.1 |
α×Family | 10 | 0.85 | 3.1 | 0.80 | 2.5 | 0.96 | 4.4 | 1.63 | 4.6 |
FG×Family | 4 | 0.40 | 0.6 | 1.31 | 1.7 | 0.51 | 0.9 | 2.00 | 2.3 |
Total | 178 | 54 | 53.7 | 31.2 | 60.6 |
Fig. 2 Species-level variation in LDMC, LMA, Nmass and Narea among shrubs, forbs and grasses (Mean+Standard Deviation). Bars marked with different letters means that the difference is significant at P<0.05.
Fig. 3 A biplot for redundancy analysis showing the relationships between leaf traits (LDMC, LMA, Nmass and Narea) and climatic factors (MTWA and plant water availability: α) as well as leaf trait variation within a single site. Sites were used as dummy variables to interpret trait variations.
Fig. 4 Variations in LDMC, LMA, Nmass and Narea at the community level (across functional groups: FGs) and in shrubs, forbs and grasses in the climatic space defined by the mean temperature in the warmest month (MTWA) and plant water availability (α).
[1] | Ackerly DD, Dudley SA, Sultan SE, Schmitt J, Coleman JS, Linder CR, Sandquist DR, Geber MA, Evans AS, Dawson TE, Lechowicz MJ (2000) The evolution of plant ecophysiological traits: recent advances and future directions. BioScience, 50,979-995. |
[2] | Bailey IW, Sinnott EW (1916) The climatic distribution of certain types of angiosperm leaves. American Journal of Botany, 3,24-39. |
[3] | Barboni D, Harrison SP, Bartlein PJ, Jalut G, New M, Prentice IC, Sanchez-Goñi M.-F Spessa A Davis B Stevenson AC (2004) Relationships between plant traits and climate in the Mediterranean region: a pollen data analysis. Journal of Vegetation Science, 15,635-646. |
[4] |
Canadell J, Jackson RB, Ehleringer JR, Mooney HA, Sala OE, Schulze ED (1996) Maximum rooting depth of vegetation types at global scale. Oecologia, 108,583-595.
DOI URL PMID |
[5] | Cronquist A (1968) Evolution and Classification of Flowering Plants. Houghton Mifflin, Boston. |
[6] | Cunningham SA, Summerhayes B, Westoby M (1999) Evolutionary divergences in leaf structure and chemistry, comparing rainfall and soil nutrient gradients. Ecological Monographs, 69,569-588. |
[7] | Eller BM, Ferrari S (1997) Water use efficiency of two succulents with contrasting CO 2 fixation pathways . Plant, Cell and Environment, 20,93-100. |
[8] | Givnish TJ (1987) Comparative studies of leaf form: assessing the relative roles of selective pressures and phylogenetic constraints. New Phytologist, 106 (Suppl.),131-160. |
[9] | Greenwood DR (2005) Leaf form and the reconstruction of past climates. New Phytologist, 166,355-357. |
[10] | Haxeltine A, Prentice IC (1996) BIOME3, an equilibrium terrestrial biosphere model based on ecophysiological constraints, resource availability, and competition among plant functional types. Global Biogeochemical Cycles, 10,693-709. |
[11] |
He J, Fang J, Wang Z, Guo D, Flynn DFB, Geng Z (2006b) Stoichiometry and large-scale patterns of leaf carbon and nitrogen in the grassland biomes of China. Oecologia, 149,115-122.
DOI URL PMID |
[12] | He J, Wang Z, Wang X, Schmid B, Zuo W, Zhou M, Zheng C, Wang M, Fang J (2006a) A test of the generality of leaf trait relationships on the Tibetan Plateau. New Phytologist, 170,835-848. |
[13] | Loreau M (2000) Biodiversity and ecosystem functioning: recent theoretical advances. Oikos, 91,3-17. |
[14] |
Loreau M, Hector A (2001) Partitioning selection and complementarity in biodiversity experiments. Nature, 412,72-76.
DOI URL PMID |
[15] |
Meng TT, Ni J, Harrison SP (2009) Plant morphometric traits and climate gradients in northern China: a meta-analysis using quadrat and flora data. Annals of Botany, 104,1217-1229.
DOI URL PMID |
[16] | Niinemets Ü (2001) Global-scale climatic controls of leaf dry mass per area, density, and thickness in trees and shrubs. Ecology, 82,453-469. |
[17] | Pearcy RW, Ehleringer J (1984) Comparative ecophysiology of C3 and C4plants . Plant,Cell and Environment , 7,1-13. |
[18] | Prentice IC, Cramer W, Harrison SP, Leemans R, Monserud RA, Solomon AM (1992) A global biome model based on plant physiology and dominance, soil properties and climate. Journal of Biogeography, 19,117-134. |
[19] | Raunkiaer C (1934) The Life Forms of Plants and Statistical Plant Geography. Claredon Press, Oxford. |
[20] | Reich PB, Oleksyn J (2004) Global patterns of plant leaf N and P in relation to temperature and latitude. Proceedings of the National Academy of Sciences, USA, 101,11001-11006. |
[21] | Rotondi A, Rossi F, Asunis C, Cesaraccio C (2003) Leaf xeromorphic adaptations of some plants of a coastal Mediterranean macchia ecosystem. Journal of Mediterranean Ecology, 4,25-35. |
[22] | Schmidt PA (1989) Beitrag zur Systematik und Evolution der Gattung Picea A. Dietr . Flora, 182,435-461. (in German). |
[23] | Shipley B, Vu TT (2002) Dry matter content as a measure of dry matter concentration in plants and their parts. New Phytologist, 153,359-364. |
[24] | Tang HP (唐海萍), Liu SR (刘书润) (2001) A list of C4 plants in Inner Mongolia. Journal of Inner Mongolia University (内蒙古大学学报), 32,431-438. (in Chinese with English abstract) |
[25] | Traiser C, Klotz S, Uhl D, Mosbrugger V (2005) Environmental signals from leaves-a physiognomic analysis of European vegetation. New Phytologist, 166,465-484. |
[26] | Turner IM (1994) A quantitative analysis of leaf form in woody plants from the world’s major broadleaved forest types. Journal of Biogeography, 21,413-419. |
[27] | von Willert DJ, Eller BM, Werger MJA, Brinckmann E, Ihlenfeldt HD (1992) Life Strategies of Succulents in Deserts with Special Reference to the Namib Desert. Cambridge University Press, London. |
[28] | Wang GH (2007) Leaf trait covariation, responses and effects in a chronosequence. Journal of Vegetation Science, 18,563-570. |
[29] |
Webb CO (2000) Exploring the phylogenetic structure of ecological communities: an example for rain forest trees. The American Naturalist, 156,145-155.
DOI URL PMID |
[30] | Weiher E, Clarke GDP, Keddy PA (1998) Community assembly rules, morphological dispersion, and the coexistence of plant species. Oikos, 81,309-322. |
[31] | Weiher E, Keddy PA (1995) Assembly rules, null models, and trait dispersion: new questions front old patterns. Oikos, 74,159-164. |
[32] |
Westoby M, Wright IJ (2006) Land-plant ecology on the basis of functional traits. Trends in Ecology and Evolution, 21,261-268.
DOI URL PMID |
[33] | Xinjiang Comprehensive Scientific Survey of the Chinese Academy of Sciences (中国科学院新疆综合考察队), Institute of Botany, the Chinese Academy of Sciences (中国科学院植物研究所) (1978) Vegetation of Xinjiang and Its Use (新疆植被及其利用). Science Press, Beijing. (in Chinese) |
[34] | Xiong Y (熊毅), Li QK (李庆逵) (1987) Soil of China (中国土壤),2nd edn. Science Press, Beijing. (in Chinese) |
[35] | Zhang XS (2001) Ecological restoration and sustainable agricultural paradigm of mountain-Oasis-Ecotone-desert system in the north of Tianshan Mountains. Acta Botanica Sinica, 43,1294-1299. |
[1] | Chen Shao, Yaoqi Li, Ao Luo, Zhiheng Wang, Zhenxiang Xi, Jianquan Liu, Xiaoting Xu. Relationship between functional traits and genome size variation of angiosperms with different life forms [J]. Biodiv Sci, 2021, 29(5): 575-585. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Biodiversity Science
Editorial Office of Biodiversity Science, 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn