研究报告: 动物多样性

澜沧江流域水生昆虫群落分类多样性和功能多样性海拔格局的空间尺度依赖性

  • 魏慧玉 ,
  • 陈凯 ,
  • 王备新
展开
  • 南京农业大学植物保护学院昆虫系昆虫分类与水生昆虫实验室, 南京 210095

收稿日期: 2019-11-08

  录用日期: 2020-02-10

  网络出版日期: 2020-03-08

基金资助

国家自然科学基金(51509159);中央高校基本科研业务费专项基金(KYZ201820)

The spatial scale dependency of elevational patterns of taxonomic and functional diversity in aquatic insects in the Lancang River, Yunnan, China

  • Huiyu Wei ,
  • Kai Chen ,
  • Beixin Wang
Expand
  • Laboratory of Insect Taxonomy & Aquatic Insects, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095

Received date: 2019-11-08

  Accepted date: 2020-02-10

  Online published: 2020-03-08

摘要

群落分类多样性和功能多样性的海拔格局研究, 是了解生物多样性空间分布现状、揭示多样性维持和变化机制的重要途径。当前对水生昆虫分类多样性和功能多样性沿海拔梯度分布格局, 及其尺度依赖性依旧缺乏深入研究。本文基于2013-2018年在云南澜沧江流域500-3,900 m海拔梯度共149个溪流点位的水生昆虫群落调查数据, 利用线性或二次回归模型探索并比较了局部尺度(点位尺度)和不同区域尺度(100 m、150 m、200 m、250 m海拔段)的分类多样性指数(物种丰富度指数、Simpson多样性指数和物种均匀度指数)和功能多样性指数(树状图功能多样性指数(dbFD)、Rao二次熵指数(RaoQ)和功能均匀度指数(FEve))的海拔格局。结果表明, 在局部尺度, 物种丰富度指数和dbFD指数沿海拔梯度均无显著分布特征, Simpson多样性指数、RaoQ指数、物种均匀度指数和FEve指数沿海拔梯度呈现U型或者单调递减趋势。在区域尺度, 随着区域海拔带宽度的增加, 物种丰富度指数沿海拔呈不显著的单调递减格局, 但dbFD指数沿海拔分布由U型转变为单调递减趋势; Simpson多样性指数和RaoQ指数沿海拔梯度由显著U型趋势转变为无显著分布特征; 物种均匀度指数沿海拔梯度无显著分布特征, 但FEve指数呈显著增加的海拔格局。综上, 群落分类多样性指数和功能多样性指数沿海拔梯度分布存在局部和区域尺度的空间差异, 但区域尺度下二者海拔格局随海拔带宽度的增加存在一定程度的一致性。

本文引用格式

魏慧玉 , 陈凯 , 王备新 . 澜沧江流域水生昆虫群落分类多样性和功能多样性海拔格局的空间尺度依赖性[J]. 生物多样性, 2020 , 28(4) : 504 -514 . DOI: 10.17520/biods.2019359

Abstract

Elevational patterns of taxonomic and functional diversity are important aspects of biodiversity maintenance and changes. However, the spatial scale dependency of elevational patterns on taxonomic and functional diversity of aquatic insect assemblages remains unclear. Using data collected from 149 stream sites along elevational gradients ranging between 500-3,900 m during 2013-2018 in the upper basin of Lancang River in Yunnan Province, China, we examined how elevational patterns of taxonomic and functional diversity of aquatic insect assemblages differed across local and regional scales among multiple elevational bands (i.e., 100, 150, 200, and 250 m). We used linear or quadratic regression models to explore the elevational patterns of taxonomic richness index, Simpson diversity index, evenness index, dendrogram- based functional diversity index (dbFD), Rao’s Quadratic index (RaoQ), and functional evenness index (FEve). At the local scale, taxonomic richness index and dbFD index show no significant elevational patterns; while Simpson diversity index, RaoQ index, evenness index, and FEve index show either U-shaped or monotonically decreasing trends along elevation gradients. At the regional scale with increasing elevation, taxonomic richness index decreases (NS) while dbFD index changes from U-shaped to a monotonically decreasing trend along the elevational gradient. Both Simpson diversity index and RaoQ index change from a significant U-shaped to no significant regional elevational patterns. Taxonomic evenness index and FEve index have no significant relationship with and significantly increased with regional elevations, respectively. Our results show that aquatic insect taxonomic and functional diversity are scale dependent across elevations. However, we observed a degree of consistency in elevational patterns for each taxonomic and functional diversity index across elevational bands at regional scales.

参考文献

[1] Cárcamo JR, Contador T, Ga?án M, Troncoso CP, Márquez AM, Convey P, Kennedy J, Rozzi R (2019) Altitudinal gradients in Magellanic sub-Antarctic lagoons: The effect of elevation on freshwater macroinvertebrate diversity and distribution. PeerJ, 7, e7128.
[2] Carvajal-Quintero JD, Escobar F, Alvarado F, Villa-Navarro FA, Jaramillo-Villa ú, Maldonado-Ocampo JA (2015) Variation in freshwater fish assemblages along a regional elevation gradient in the northern Andes, Colombia. Ecology and Evolution, 5, 2608-2620.
[3] Castro DMP, Callisto M, Solar RRC, Macedo DR, Fernandes GW (2019) Beta diversity of aquatic invertebrates increases along an altitudinal gradient in a Neotropical mountain. Biotropica, 51, 399-411.
[4] Cheng B, Wang X, Xu YQ, Yang ZJ, Liu DF, Ma J (2018) Bacterioplankton community structure in the Lancang River Basin and analysis of driving environmental factors. Environmental Science, 39, 186-196. (in Chinese with English abstract)
[4] [ 程豹, 望雪, 徐雅倩, 杨正健, 刘德富, 马骏 (2018) 澜沧江流域浮游细菌群落结构特征及驱动因子分析. 环境科学, 39, 186-196.]
[5] Chen J, Jiang WX, He SS, Wang HK, Zhuo LL, Chen Q (2018) Study of macroinvertebrate species and functional diversity in the New Xue River, Shandong Province, China. Acta Ecologica Sinica, 38, 340-348. (in Chinese with English abstract)
[5] [ 陈静, 蒋万祥, 贺诗水, 王洪凯, 卓丽玲, 陈青 (2018) 新薛河底栖动物物种多样性与功能多样性研究. 生态学报, 38, 340-348.]
[6] Colzani E, Siqueira T, Suriano MT, Roque FO (2013) Responses of aquatic insect functional diversity to landscape changes in Atlantic Forest. Biotropica, 45, 343-350.
[7] Covich AP, Palmer MA, Crowl TA (1999) The role of benthic invertebrate species in freshwater ecosystems: Zoobenthic species influence energy flows and nutrient cycling. BioScience, 49, 119-127.
[8] Cressa C, Maldonado V, Segnini S, Chacon MM (2008) Size variation with elevation in adults and larvae of some Venezuelan stoneflies (Insecta: Plecoptera: Perlidae). Aquatic Insects, 30, 127-134.
[9] de Bello F, Lep? J, Sebastià MT (2006) Variations in species and functional plant diversity along climatic and grazing gradients. Ecography, 29, 801-810.
[10] de Mendoza G, Traunspurger W, Palomo A, Catalan J (2017) Nematode distributions as spatial null models for macroinvertebrate species richness across environmental gradients: A case from mountain lakes. Ecology and Evolution, 7, 3016-3028.
[11] Ding N, Yang WF, Zhou YL, González-Bergonzoni I, Zhang J, Chen K, Vidal N, Jeppesen E, Liu ZW, Wang BX (2017) Different responses of functional traits and diversity of stream macroinvertebrates to environmental and spatial factors in the Xishuangbanna watershed of the upper Mekong River Basin, China. Science of the Total Environment, 574, 288-299.
[12] Dohet A, Hlúbiková D, Wetzel CE, L’Hoste L, Iffly JF, Hoffmann L, Ector L (2015) Influence of thermal regime and land use on benthic invertebrate communities inhabiting headwater streams exposed to contrasted shading. Science of the Total Environment, 505, 1112-1126.
[13] Edie SM, Jablonski D, Valentine JW (2018) Contrasting responses of functional diversity to major losses in taxonomic diversity. Proceedings of the National Academy of Sciences, USA, 115, 732-737.
[14] Feng JM, Mao GQ, Li ZG (2012) Latitudinal patterns of floristic elements of seed plants in Lancang River in Yunnan, Southwest China. Ecology and Environmental Sciences, 21, 1928-1934. (in Chinese with English abstract)
[14] [ 冯建孟, 毛光权, 李珍贵 (2012) 澜沧江流域(云南段)种子植物区系成分的纬度分布格局. 生态环境学报, 21, 1928-1934.]
[15] Flowers RW (1991) Diversity of stream-living insects in northwestern Panamá. Journal of the North American Benthological Society, 10, 322-334.
[16] Füreder L, Ettinger R, Boggero A, Thaler B, Thies H (2006) Macroinvertebrate diversity in Alpine lakes: Effects of altitude and catchment properties. Hydrobiologia, 562, 123-144.
[17] Gaston KJ (2000) Global patterns in biodiversity. Nature, 405, 220-227.
[18] Gill BA, Harrington RA, Kondratieff BC, Zamudio KR, LeRoy PN, Chris FW (2014) Morphological taxonomy, DNA barcoding, and species diversity in southern Rocky Mountain headwater streams. Freshwater Science, 33, 288-301.
[19] González-Maya JF, Víquez-R LR, Arias-Alzate A, Belant JL, Ceballos G (2016) Spatial patterns of species richness and functional diversity in Costa Rican terrestrial mammals: Implications for conservation. Diversity and Distributions, 22, 43-56.
[20] He YL, Zhang YP (2004) The climate characteristics and change trends on basins of Lancangjiang valley in Yunnan Province. Journal of Mountain Science, 22, 539-548. (in Chinese with English abstract)
[20] [ 何云玲, 张一平 (2004) 澜沧江干流河谷盆地气候特征及变化趋势. 山地学报, 22, 539-548.]
[21] Hu B, Cui BS, Yang ZF, Wang J, Zhai HJ, Yao M (2006) Calculation of ecological water requirements for in-stream in the Lancang River, Yunnan Province, China. Acta Ecologica Sinica, 26, 163-173. (in Chinese with English abstract)
[21] [ 胡波, 崔保山, 杨志峰, 王娟, 翟红娟, 姚敏 (2006) 澜沧江(云南段)河道生态需水量计算. 生态学报, 26, 163-173.]
[22] Hughes RM, Peck DV (2008) Acquiring data for large aquatic resource surveys: The art of compromise among science, logistics, and reality. Journal of the North American Benthological Society, 27, 837-859.
[23] Jacobsen D (2003) Altitudinal changes in diversity of macroinvertebrates from small streams in the Ecuadorian Andes. Archiv für Hydrobiologie, 158, 145-167.
[24] Jacobsen D (2004) Contrasting patterns in local and zonal family richness of stream invertebrates along an Andean altitudinal gradient. Freshwater Biology, 49, 1293-1305.
[25] Jiang Y, Gao JX, Ou XK (2006) Change of land use pattern and analysis of environment impact of Lancang watershed in Yunnan. Research of Environmental Sciences, 19, 46-51. (in Chinese with English abstract)
[25] [ 姜昀, 高吉喜, 欧晓昆 (2006) 澜沧江流域云南段土地利用格局变化及环境影响分析. 环境科学研究, 19, 46-51.]
[26] Jyv?sj?rvi J, Virtanen R, Ilmonen J, Paasivirta L, Muotka T (2018) Identifying taxonomic and functional surrogates for spring biodiversity conservation. Conservation Biology, 32, 883-893.
[27] Laiolo P, Pato J, Obeso JR (2018) Ecological and evolutionary drivers of the elevational gradient of diversity. Ecology Letters, 21, 1022-1032.
[28] Laiolo P, Seoane J, Obeso JR, Illera JC (2017) Ecological divergence among young lineages favours sympatry, but convergence among old ones allows coexistence in syntopy: The scale of limiting similarity. Global Ecology and Biogeography, 26, 601-608.
[29] Laliberté E, Legendre P (2010) A distance-based framework for measuring functional diversity from multiple traits. Ecology, 91, 299-305.
[30] Li FQ, Chung N, Bae MJ, Kwon YS, Park YS (2012) Relationships between stream macroinvertebrates and environmental variables at multiple spatial scales. Freshwater Biology, 57, 2107-2124.
[31] Li QY, Wang XP (2013) Elevational pattern of species richness in the Three Gorges region of the Yangtze River: Effect of climate, geometric constraints, area and topographical heterogeneity. Biodiversity Science, 21, 141-152. (in Chinese with English abstract)
[31] [ 李巧燕, 王襄平 (2013) 长江三峡库区物种多样性的垂直分布格局: 气候、几何限制、面积及地形异质性的影响. 生物多样性, 21, 141-152.]
[32] Li SL, Yi MH, Chen K, Ding N, Wang BX, Yao HR (2018) Differences in responses of macroinvertebrate traits and functional diversity to environmental variables at different spatial scales between ecoregions in the Wei River basin, China. Acta Ecologica Sinica, 38, 2566-2578. (in Chinese with English abstract)
[32] [ 李胜利, 易茂红, 陈凯, 丁宁, 王备新, 姚花荣 (2018) 渭河底栖动物性状和功能对空间尺度环境变量响应的生态区差异性. 生态学报, 38, 2566-2578.]
[33] Li ZF, Jiang XM, Wang J, Meng XJ, Heino J, Xie ZC (2019) Multiple facets of stream macroinvertebrate alpha diversity are driven by different ecological factors across an extensive altitudinal gradient. Ecology and Evolution, 9, 1306-1322.
[34] Lu MM, Huang XC, Ci XQ, Yang GP, Li J (2014) Phylogenetic community structure of subtropical forests along elevational gradients in Ailao Mountains of southwest China. Biodiversity Science, 22, 438-448. (in Chinese with English abstract)
[34] [ 卢孟孟, 黄小翠, 慈秀芹, 杨国平, 李捷 (2014) 沿海拔梯度变化的哀牢山亚热带森林群落系统发育结构. 生物多样性, 22, 438-448.]
[35] Mason NWH, Mouillot D, Lee WG, Wilson JB (2005) Functional richness, functional evenness and functional divergence: The primary components of functional diversity. Oikos, 111, 112-118.
[36] Mayor J, Sanders N, Classen A, Bardgett RD, Cle?ment JC, Fajardo A, Lavorel S, Sundqvist MK, Bahn M, Chisholm C, Cieraad E, Gedalof Z, Grigulis K, Kudol G, Oberski DL, Wardle DA (2017) Elevation alters ecosystem properties across temperate treelines globally. Nature, 542, 91-95.
[37] McConkey KR, O’Farrill G (2015) Cryptic function loss in animal populations. Trends in Ecology & Evolution, 30, 182-189.
[38] McGill BJ (2010) Matters of scale. Science, 328, 575-576.
[39] McGill BJ, Dornelas M, Gotelli NJ, Magurran AE (2015) Fifteen forms of biodiversity trend in the Anthropocene. Trends in Ecology & Evolution, 30, 104-113.
[40] Mejias TAC (2011) Benthic Macroinvertebrates of Temperate, Sub-Antarctic Streams: The Effects of Altitudinal Zoning and Temperature on the Phenology of Aquatic Insects Associated to the Robalo River, Navarino Island (55°S), Chile. PhD dissertation, University of North Texas, Denton.
[41] Mermillod-Blondin F (2011) The functional significance of bioturbation and biodeposition on biogeochemical processes at the water-sediment interface in freshwater and marine ecosystems. Journal of the North American Benthological Society, 30, 770-778.
[42] Morse JC, Yang LF, Tian LX (1994) Aquatic Insects of China Useful for Monitoring Water Quality. Hohai University Press, Nanjing.
[43] Mouchet MA, Villéger S, Mason NW, Mouillot D (2010) Functional diversity measures: An overview of their redundancy and their ability to discriminate community assembly rules. Functional Ecology, 24, 867-876.
[44] Natalia MRC, Miguel BS, Lavariega M, Moreno CE (2019) Spatial incongruence in the species richness and functional diversity of cricetid rodents. PLoS ONE, 14, e0217154.
[45] Petchey OL, Gaston KJ (2002) Functional diversity (FD), species richness and community composition. Ecology Letters, 5, 402-411.
[46] Pielou EC (1966) The measurement of diversity in different types of biological collections. Journal of Theoretical Biology, 13, 131-144.
[47] Poff NL, Olden JD, Vieira NKM, Finn DS, Simmons MP, Kondratieff BC (2006) Functional trait niches of North American lotic insects: Traits-based ecological applications in light of phylogenetic relationships. Journal of the North American Benthological Society, 25, 730-755.
[48] Rahbek C (2005) The role of spatial scale and the perception of large-scale species-richness patterns. Ecology Letters, 8, 224-239.
[49] Shimatani K (2001) On the measurement of species diversity incorporating species differences. Oikos, 93, 135-147.
[50] Simpson EH (1949) Measurement of diversity. Nature, 163, 688.
[51] Song PQ, Lin LS, Li Y, Zhong ZH, Zhang R (2015) Species composition and stability of nekton community structure in Sandu Bay, Fujian Province. Biodiversity Science, 23, 519-526. (in Chinese with English abstract)
[51] [ 宋普庆, 林龙山, 李渊, 钟指挥, 张然 (2015) 福建三都澳游泳动物种类组成及群落结构稳定性. 生物多样性, 23, 519-526.]
[52] Sundqvist MK, Sanders NJ, Wardle DA (2013) Community and ecosystem responses to elevational gradients: Processes, mechanisms, and insights for global change. Annual Review of Ecology, Evolution, and Systematics, 44, 261-280.
[53] Szava-Kovats RC, Argo R, Meelis P (2013) Pattern without bias: Local-regional richness relationship revisited. Ecology, 94, 1986-1992.
[54] Tang ZY, Fang JY (2004) A review on the elevational patterns of plant species diversity. Biodiversity Science, 12, 20-28. (in Chinese with English abstract)
[54] [ 唐志尧, 方精云 (2004) 植物物种多样性的垂直分布格局. 生物多样性, 12, 20-28.]
[55] Tinoco BA, Santillán VE, Graham CH (2018) Land use change has stronger effects on functional diversity than taxonomic diversity in tropical Andean hummingbirds. Ecology and Evolution, 8, 3478-3490.
[56] Usseglio-Polatera P, Bournaud M, Richoux P, Tachet H (2000) Biological and ecological traits of benthic freshwater macroinvertebrates: Relationships and definition of groups with similar traits. Freshwater Biology, 43, 175-205.
[57] Vamosi SM, Naydani CJ, Vamosi JC (2007) Body size and species richness along geographical gradients in Albertan diving beetle (Coleoptera: Dytiscidae) communities. Canadian Journal of Zoology, 85, 443-449.
[58] Villéger S, Mason NWH, Mouillot D (2008) New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology, 89, 2290-2301.
[59] Villéger S, Miranda JR, Hernández DF, Mouillot D (2010) Contrasting changes in taxonomic vs. functional diversity of tropical fish communities after habitat degradation. Ecological Applications, 20, 1512-1522.
[60] Vinson MR, Hawkins CP (2003) Broad-scale geographical patterns in local stream insect genera richness. Ecography, 26, 751-767.
[61] Wang C, Li B, Xie SG, Jin L, Zhang YG (2013) The macrobenthic communities and distribution of the Lancang River. Freshwater Fisheries, 43, 37-43. (in Chinese with English abstract)
[61] [ 王川, 李斌, 谢嗣光, 金丽, 张耀光 (2013) 澜沧江大型底栖动物群落结构及分布格局. 淡水渔业, 43, 37-43.]
[62] Wang JJ, Soininen J, Zhang Y, Wang BX, Yang XD, Shen J (2011) Contrasting patterns in elevational diversity between microorganisms and macroorganisms. Journal of Biogeography, 38, 595-603.
[63] Wang J, Jiang XM, Li ZF, Meng XL, Heino J, Xie ZC, Wang XM, Yu J (2018) Changes in multiple facets of macroinvertebrate alpha diversity are linked to afforestation in a subtropical riverine natural reserve. Environmental Science and Pollution Research, 25, 36124-36135.
[64] Wong MC, Dowd M (2015) Patterns in taxonomic and functional diversity of macrobenthic invertebrates across seagrass habitats: A case study in Atlantic Canada. Estuaries and Coasts, 38, 2323-2336.
[65] Yamaoka K, Nakagawa T, Uno T (1978) Application of Akaike’s information criterion (AIC) in the evaluation of linear pharmacokinetic equations. Journal of Pharmacokinetics and Biopharmaceutics, 6, 165-175.
[66] Yang Y, Han J, Liu Y, Zhongyong CR, Shi SL, Sina CL, Xu Y, Ying LX, Zhang WJ, Shen ZH (2016) A comparison of the altitudinal patterns in plant species diversity within the dry valleys of the Three Parallel Rivers region, northwestern Yunnan. Biodiversity Science, 24, 440-452. (in Chinese with English abstract)
[66] [ 杨阳, 韩杰, 刘晔, 忠永茨仁, 石松林, 斯那此里, 许玥, 应凌霄, 张婉君, 沈泽昊 (2016) 三江并流地区干旱河谷植物物种多样性海拔梯度格局比较. 生物多样性, 24, 440-452.]
[67] Zhang JH, Feng ZM, Jiang LG, Yang YZ (2015) Analysis of the correlation between NDVI and climate factors in the Lancang River basin. Journal of Natural Resources, 30, 1425-1435. (in Chinese with English abstract)
[67] [ 张景华, 封志明, 姜鲁光, 杨艳昭 (2015) 澜沧江流域植被NDVI与气候因子的相关性分析. 自然资源学报, 30, 1425-1435.]
文章导航

/

005-0094/bottom_cn.htm"-->