eDNA技术在两栖动物调查中的应用: 以湖南莽山国家级自然保护区为例
收稿日期: 2024-12-08
录用日期: 2025-04-22
网络出版日期: 2025-05-26
基金资助
国家林业和草原局野生动植物保护项目(2024-HN001);湖南省2024年中央财政国家重点保护野生动植物补助项目(HNYB2024-001)
Application of eDNA technology in amphibian surveys: A case study of Hunan Mangshan National Nature Reserve
Received date: 2024-12-08
Accepted date: 2025-04-22
Online published: 2025-05-26
Supported by
National Forestry and Grassland Administration Wildlife and Flora Protection Project(2024-HN001);Hunan Province 2024 Central Government Finance Subsidy Project for National Key Protected Wildlife and Flora(HNYB2024-001)
关键词: 两栖动物; 物种多样性调查; 环境DNA技术; 多样性指数; 湖南莽山国家级自然保护区
彭文 , 邓泽帅 , 郑文宝 , 龚凌轩 , 曾玉枫 , 孟昊 , 陈军 , 杨道德 . eDNA技术在两栖动物调查中的应用: 以湖南莽山国家级自然保护区为例[J]. 生物多样性, 2025 , 33(6) : 24552 . DOI: 10.17520/biods.2024552
Aims: Scientific protection and effective management of wildlife highly rely on baseline data regarding biological resources, and the precision of survey methods directly affects the objectivity and accuracy of resource assessments. Environmental DNA (eDNA) technology has been widely used in monitoring of fish community, but its application in amphibian surveys still remains relatively limited and is mostly focused on detecting specific species. This study takes Hunan Mangshan National Nature Reserve as a case study to evaluate the detection efficiency and accuracy of eDNA technology in amphibian surveys.
Methods: eDNA test samples were collected from 19 water sampling sites within the reserve between July to August 2023. eDNA data were then compared with data collected during the same period using traditional transect survey methods. By calculating α and β diversity, a comprehensive evaluation of the two methods results was conducted.
Results: Both methods detected 34 amphibian species, with 24 species identified by both approaches. Significant differences (P < 0.05) were observed between the two methods in terms of the Shannon-Wiener diversity index, Simpson dominance index, and Pielou evenness index. PCoA and ANOSIM analysis showed significant differences in species composition between the two methods (P < 0.05), potentially influenced by species behavior, sampling location and timing, and environmental disturbances.
Conclusion: This study demonstrates that while eDNA technology offers clear advantages in amphibian resource survey, it cannot yet completely replace traditional transect method. It is suggested that eDNA techniques be integrated with traditional approaches to obtain more comprehensive and accurate baseline data on amphibian resources, thereby supporting more informed conservation and management efforts.
[1] | Che J, Chen HM, Yang JX, Jin JQ, Jiang K, Yuan ZY, Murphy RW, Zhang YP (2012) Universal COI primers for DNA barcoding amphibians. Molecular Ecology Resources, 12, 247-258. |
[2] | Chen Z, Song N, Yuan LW, Wu QQ, Gao TX (2020) Establishment of environmental DNA acquisition methods for water samples in the coastal waters of Zhoushan. Acta Hydrobiologica Sinica, 44, 50-58. (in Chinese with English abstract) |
[陈治, 宋娜, 源利文, 邬倩倩, 高天翔 (2020) 舟山近海水样环境DNA获取方法的建立. 水生生物学报, 44, 50-58.] | |
[3] | Deiner K, Bik HM, M?chler E, Seymour M, Lacoursière-Roussel A, Altermatt F, Creer S, Bista I, Lodge DM, de Vere N, Pfrender ME, Bernatchez L (2017) Environmental DNA metabarcoding: Transforming how we survey animal and plant communities. Molecular Ecology, 26, 5872-5895. |
[4] | Deng ZS, Li Y, Gao ZW, Zhang ZQ, Yang DD (2024) Genetic diversity and haplotype distribution patterns analysis of cytb and RAG2 sequences in Rana hanluica from Southern China. Frontiers in Genetics, 15, 1374263. |
[5] | Doi H, Katano I, Sakata Y, Souma R, Kosuge T, Nagano M, Ikeda K, Yano K, Tojo K (2017) Detection of an endangered aquatic heteropteran using environmental DNA in a wetland ecosystem. Royal Society Open Science, 4, 170568. |
[6] | Duarte S, Sim?es L, Costa FO (2023) Current status and topical issues on the use of eDNA-based targeted detection of rare animal species. Science of the Total Environment, 904, 166675. |
[7] | Evans NT, Olds BP, Renshaw MA, Turner CR, Li YY, Jerde CL, Mahon AR, Pfrender ME, Lamberti GA, Lodge DM (2016) Quantification of mesocosm fish and amphibian species diversity via environmental DNA metabarcoding. Molecular Ecology Resources, 16, 29-41. |
[8] | Everts T, Van Driessche C, Neyrinck S, Haegeman A, Ruttink T, Jacquemyn H, Brys R (2024) Phenological mismatches mitigate the ecological impact of a biological invader on amphibian communities. Ecological Applications, 34, e3017. |
[9] | Fei L, Ye CY, Jiang JP (2012) Color Atlas of Amphibians in China and Their Distribution. Sichuan Science and Technology Press, Chengdu. (in Chinese) |
[费梁, 叶昌媛, 江建平 (2012) 中国两栖动物及其分布彩色图鉴. 四川科学技术出版社, 成都.] | |
[10] | Gao EH, Wang ZC, Wang WS, Chen DF, Ma GQ, Tang XP (2014) General Framework of the Second National Terrestrial Wildlife Resources Survey. Chinese Journal of Wildlife, 35, 238-240. (in Chinese with English abstract) |
[郜二虎, 王志臣, 王维胜, 陈涤非, 马国青, 唐小平 (2014) 全国第二次陆生野生动物资源调查总体思路. 野生动物学报, 35, 238-240.] | |
[11] | Gao ZW, Qian TY, Jiang JP, Hou DJ, Deng XJ, Yang DD (2022) Species diversity and distribution of amphibians and reptiles in Hunan Province, China. Biodiversity Science, 30, 21290. (in Chinese with English abstract) |
[高志伟, 钱天宇, 江建平, 侯德佳, 邓学建, 杨道德 (2022) 湖南省两栖、爬行动物物种多样性及其地理分布. 生物多样性, 30, 21290.] | |
[12] | Garlapati D, Charankumar B, Ramu K, Madeswaran P, Ramana Murthy MV (2019) A review on the applications and recent advances in environmental DNA (eDNA) metagenomics. Reviews in Environmental Science and Biotechnology, 18, 389-411. |
[13] | Gu SY, Chen K, Jin XW, Li WP, Chen XF, Xiong J, Tang MZ, Jiang CQ, Xiong J, Li T, Zhang Q, Cui YD, Zeng HH, He SP, Wang YY, Miao W (2024) Development, applications, and standardization of environmental DNA monitoring technology for aquatic organisms. Acta Hydrobiologica Sinica, 48, 1443-1458. (in Chinese with English abstract) |
[谷思雨, 陈凯, 金小伟, 李文攀, 陈晓飞, 熊晶, 汤敏喆, 姜传奇, 熊杰, 李涛, 张琪, 崔永德, 曾宏辉, 何舜平, 王业耀, 缪炜 (2024) 水生生物环境DNA监测技术的发展、应用与标准化. 水生生物学报, 48, 1443-1458.] | |
[14] | Guo NN, Shen M, Xiao NW, Gao XQ, Guo XC, Li JS (2023) Distribution characteristics of autumn fish diversity in the Chishui River based on environmental DNA technology. Acta Ecologica Sinica, 43, 1676-1690. (in Chinese with English abstract) |
[郭宁宁, 沈梅, 肖能文, 高晓奇, 郭晓晨, 李俊生 (2023) 基于环境DNA技术的赤水河秋季鱼类多样性分布特征. 生态学报, 43, 1676-1690.] | |
[15] | Harrison JB, Sunday JM, Rogers SM (2019) Predicting the fate of eDNA in the environment and implications for studying biodiversity. Proceedings of the Royal Society B: Biological Sciences, 286, 20191409. |
[16] | Li B, Zhang W, Shu XX, Mo YM, Pei EL, Yuan X, Wang TH (2017) Distribution characteristic of amphibian in three typical habitats of rural Shanghai. Resources and Environment in the Yangtze Basin, 26, 824-831. (in Chinese with English abstract) |
[李贲, 张伟, 束潇潇, 莫英敏, 裴恩乐, 袁晓, 王天厚 (2017) 上海郊区三类典型生境的两栖类分布特征. 长江流域资源与环境, 26, 824-831.] | |
[17] | Li C, Jiang JP, Xie F, Zhao T, Che J, Li YM, Du WG, Yang WK, Xu F (2023) Progress and prospect of Chinese biodiversity monitoring of amphibians and reptiles. Biodiversity Science, 31, 23382. (in Chinese with English abstract) |
[李成, 江建平, 谢锋, 赵天, 车静, 李义明, 杜卫国, 杨维康, 徐峰 (2023) 中国两栖爬行动物多样性监测进展与展望. 生物多样性, 31, 23382.] | |
[18] | Li CH, Ling LX, Tan J, Lin XL, Wang H, Sun BJ, Li Z (2023) Challenge, breakthrough and future perspectives of environmental DNA technology in monitoring aquatic organisms. Journal of Shanghai Ocean University, 32, 564-574. (in Chinese with English abstract) |
[李晨虹, 凌岚馨, 谭娟, 林晓龙, 王辉, 孙冰皎, 李曌 (2023) 环境DNA技术在水生生物监测中的挑战、突破和发展前景. 上海海洋大学学报, 32, 564-574.] | |
[19] | Li M, Wei TT, Shi BY, Hao XY, Xu HG, Sun HY (2019) Biodiversity monitoring of freshwater benthic macroin- vertebrates using environmental DNA. Biodiversity Science, 27, 480-490. (in Chinese with English abstract) |
[李萌, 尉婷婷, 史博洋, 郝希阳, 徐海根, 孙红英 (2019) 环境DNA技术在淡水底栖大型无脊椎动物多样性监测中的应用. 生物多样性, 27, 480-490.] | |
[20] | Li SZ, Liu J, Ke XC, Cheng G, Wang B (2024) A new species of Amolops (Amphibia, Anura, Ranidae) from Guizhou Province, China. ZooKeys, 1189, 33-54. |
[21] | Li TY, Wu SR, Zhao HL, Tang Y, Liu BX, Fang DA (2025) Fish diversity in the Nanjing section of the Yangtze River by fish larvae survey and eDNA technology. Chinese Journal of Ecology, http://kns.cnki.net/kcms/detail/21.1148.q.20250114.0951.004.html. (in Chinese with English abstract) |
[李天佑, 吴思燃, 赵华丽, 唐阅, 刘宝兴, 方弟安 (2025) 基于鱼类早期资源调查和eDNA技术揭示长江南京段鱼类资源多样性. 生态学杂志, http://kns.cnki.net/kcms/detail/21.1148.q.20250114.0951.004.html.] | |
[22] | Li WH, Hou XL, Xu CX, Qin MS, Wang SP, Wei L, Wang YP, Liu X, Li YM (2021) Validating eDNA measurements of the richness and abundance of anurans at a large scale. Journal of Animal Ecology, 90, 1466-1479. |
[23] | Li WH, Hou XL, Zhu YL, Du JC, Xu CX, Yang JY, Li YM (2024) eDNA metabarcoding reveals the species-area relationship of amphibians on the Zhoushan Archipelago. Animals, 14, 1519. |
[24] | Ling LX, Liang LY, Wang HF, Lin XL, Li CH (2024) Real-time monitoring on the Chinese giant salamander using RPA-LFD. International Journal of Molecular Sciences, 25, 4946. |
[25] | Liu SL, Qiu N, Zhang SY, Zhao ZN, Zhou X (2022) Application of genomics technology in biodiversity conservation research. Biodiversity Science, 30, 22441. (in Chinese with English abstract) |
[刘山林, 邱娜, 张纾意, 赵竹楠, 周欣 (2022) 基因组学技术在生物多样性保护研究中的应用. 生物多样性, 30, 22441.] | |
[26] | Liu ZY, Hu C, You WH, Li SX, Wu YS, Liang YY, Chu L, Yan YZ, Zhang C (2024) Comparison between environmental DNA metabarcoding and traditional survey methods to identify community composition and assembly of stream fish. Ecology and Evolution, 14, e70627. |
[27] | López-de Sancha A, Boix D, Benejam L, Briggs L, Davidson TA, Fahy JC, Frutos-Aragón V, Greaves HM, Lemmens P, Mehner T, Martín L, Oertli B, Sayer C, Brucet S (2025) Amphibian conservation in Europe: The importance of pond condition. Biodiversity and Conservation, 34, 1559-1574. |
[28] | Luedtke JA, Chanson J, Neam K, Hobin L, Maciel AO, Catenazzi A, Borzée A, Hamidy A, Aowphol A, Jean A, Sosa-Bartuano á, Fong G A, de Silva A, Fouquet A, Angulo A, Kidov AA, Mu?oz Saravia A, Diesmos AC, Tominaga A, Shrestha B, Gratwicke B, Tjaturadi B, Martínez Rivera CC, Vásquez Almazán CR, Se?aris C, Chandramouli SR, Strüssmann C, Cortez Fernández CF, Azat C, Hoskin CJ, Hilton-Taylor C, Whyte DL, Gower DJ, Olson DH, Cisneros-Heredia DF, Santana DJ, Nagombi E, Najafi-Majd E, Quah ESH, Bola?os F, Xie F, Brusquetti F, álvarez FS, Andreone F, Glaw F, Casta?eda FE, Kraus F, Parra-Olea G, Chaves G, Medina-Rangel GF, González-Durán G, Ortega-Andrade HM, Machado IF, Das I, Dias IR, Urbina-Cardona JN, Crnobrnja-Isailovi? J, Yang JH, Jiang JP, Wangyal JT, Rowley JJL, Measey J, Vasudevan K, Chan KO, Gururaja KV, Ovaska K, Warr LC, Canseco-Márquez L, Toledo LF, Díaz LM, Khan MMH, Meegaskumbura M, Acevedo ME, Napoli MF, Ponce MA, Vaira M, Lampo M, Yánez-Mu?oz MH, Scherz MD, R?del MO, Matsui M, Fildor M, Kusrini MD, Ahmed MF, Rais M, Kouamé NG, García N, Gonwouo NL, Burrowes PA, Imbun PY, Wagner P, Kok PJR, Joglar RL, Auguste RJ, Brand?o RA, Ibá?ez R, May RV, Hedges SB, Biju SD, Ganesh SR, Wren S, Das S, Flechas SV, Ashpole SL, Robleto-Hernández SJ, Loader SP, Incháustegui SJ, Garg S, Phimmachak S, Richards SJ, Slimani T, Osborne-Naikatini T, Abreu-Jardim TPF, Condez TH, De Carvalho TR, Cutajar TP, Pierson TW, Nguyen TQ, Kaya U, Yuan ZY, Long B, Langhammer P, Stuart SN (2023) Ongoing declines for the world’s amphibians in the face of emerging threats. Nature, 622, 308-314. |
[29] | Lyu ZT, Dai KY, Li Y, Wan H, Liu ZY, Qi S, Lin SM, Wang J, Li YL, Zeng YJ, Li PP, Pang H, Wang YY (2020a) Comprehensive approaches reveal three cryptic species of genus Nidirana (Anura, Ranidae) from China. ZooKeys, 914, 127-159. |
[30] | Lyu ZT, Li YQ, Zeng ZC, Zhao J, Liu ZY, Guo GX, Wang YY (2020b) Four new species of Asian horned toads (Anura, Megophryidae, Megophrys) from Southern China. ZooKeys, 942, 105-140. |
[31] | Lyu ZT, Zeng ZC, Wan H, Li Q, Tominaga A, Nishikawa K, Matsui M, Li SZ, Jiang ZW, Liu Y, Wang YY (2024) Contrasting nidification behaviors facilitate diversification and colonization of the Music frogs under a changing paleoclimate. Communications Biology, 7, 638. |
[32] | Mu YW, Zhang JW, Yang JH, Wu J, Zhang Y, Yu HX, Zhang XW (2024) Enhancing amphibian biomonitoring through eDNA metabarcoding. Molecular Ecology Resources, 24, e13931. |
[33] | Palumbi S, Martin A, Romano S, McMillan WO, Stice L, Grabowski G (1991) The Simple Fool’s Guide to PCR, version 2.0. Department of Zoology, University of Hawaii, Honolulu. |
[34] | Quilumbaquin W, Carrera-Gonzalez A, Van der Heyden C, Ortega-Andrade HM (2023) Environmental DNA and visual encounter surveys for amphibian biomonitoring in aquatic environments of the Ecuadorian Amazon. PeerJ, 11, e15455. |
[35] | Ramli FF, Munian K, Othman N, Hartini Sariyati N, Abdullah-Fauzi NAF, Ilham-Norhakim ML, Abdul-Latiff MAB (2024) A comparative assessment of 16S ribosomal RNA and Cytochrome C Oxidase Subunit I (COI) Primers for Amphibian DNA Barcoding. BIO Web of Conferences, 94, 01003. |
[36] | Rees HC, Maddison BC, Middleditch DJ, Patmore JRM, Gough KC (2014) The detection of aquatic animal species using environmental DNA—A review of eDNA as a survey tool in ecology. Journal of Applied Ecology, 51, 1450-1459. |
[37] | Riaz T, Shehzad W, Viari A, Pompanon F, Taberlet P, Coissac E (2011) ecoPrimers: Inference of new DNA barcode markers from whole genome sequence analysis. Nucleic Acids Research, 39, e145. |
[38] | Saeed M, Rais M, Akram A, Williams MR, Kellner KF, Hashsham SA, Davis DR (2022) Development and validation of an eDNA protocol for monitoring endemic Asian spiny frogs in the Himalayan region of Pakistan. Scientific Reports, 12, 5624. |
[39] | Shen YH, Yang DD, Mo XY, Li HH, Chen D (2014) Fauna of Hunan:Amphibia. Hunan Science and Technology Press, Changsha. (in Chinese) |
[沈猷慧, 杨道德, 莫小阳, 黎红辉, 陈丹 (2014) 湖南动物志·两栖纲. 湖南科学技术出版社, 长沙.] | |
[40] | Socolar JB, Gilroy JJ, Kunin WE, Edwards DP (2016) How should beta-diversity inform biodiversity conservation? Trends in Ecology & Evolution, 31, 67-80. |
[41] | Stoeckle BC, Beggel S, Cerwenka AF, Motivans E, Kuehn R, Geist J (2017) A systematic approach to evaluate the influence of environmental conditions on eDNA detection success in aquatic ecosystems. PLoS ONE, 12, e0189119. |
[42] | Strickler KM, Fremier AK, Goldberg CS (2015) Quantifying effects of UV-B, temperature, and pH on eDNA degradation in aquatic microcosms. Biological Conservation, 183, 85-92. |
[43] | Sun XX, Guo NN, Gao JN, Xiao NW (2024) Using eDNA to survey amphibians: Methods, applications, and challenges. Biotechnology and Bioengineering, 121, 456-471. |
[44] | Sun XX, Xiao NW, Guo NN, Gao XQ, Zhang S, Chu ZS (2024) Exploring diversity and distribution characteristics of amphibians in Chaohu Lake based on environmental DNA. Research of Environmental Sciences, 37, 2310-2323. (in Chinese with English abstract) |
[孙晓萱, 肖能文, 郭宁宁, 高晓奇, 张硕, 储昭升 (2024) 基于环境DNA方法探究巢湖两栖动物多样性及分布特征. 环境科学研究, 37, 2310-2323.] | |
[45] | Svenningsen AKN, Pertoldi C, Bruhn D (2022) eDNA metabarcoding benchmarked towards conventional survey methods in amphibian monitoring. Animals, 12, 763. |
[46] | Wang J, Liu P, Chang J, Li C, Xie F, Jiang JP (2022) Development of an eDNA metabarcoding tool for surveying the world’s largest amphibian. Current Zoology, 68, 608-614. |
[47] | Wang J, Lyu ZT, Liu ZY, Liao CK, Zeng ZC, Zhao J, Li YL, Wang YY (2019) Description of six new species of the subgenus Panophrys within the genus Megophrys (Anura, Megophryidae) from southeastern China based on molecular and morphological data. ZooKeys, 851, 113-164. |
[48] | Wang W, Feng CT, Liu FZ, Li JS (2020) Biodiversity conservation in China: A review of recent studies and practices. Environmental Science and Ecotechnology, 2, 100025. |
[49] | Wu DY, Lee P, Chen HM, Yan F, Huang JY, He YH, Wu RY, Yuan ZY (2024) Validation and development of eDNA metabarcoding primers for comprehensive assessment of Chinese amphibians. Integrative Zoology, 20, 504-519. |
[50] | Xia X, Li Y, Yang DD, Pi YY (2022) Habitat characteristics and main factors influencing habitat selection of Rana hanluica during breeding period. Chinese Journal of Ecology, 41, 1740-1745. (in Chinese with English abstract) |
[夏昕, 李媛, 杨道德, 皮扬焱 (2022) 寒露林蛙繁殖期生境特征及影响其生境选择的主要因子. 生态学杂志, 41, 1740-1745.] | |
[51] | Xiao ZH, Dong SS, Zhang ZH, Zhang DN, Song ZP (2023) Advances in the application of environmental DNA in amphibians monitoring. Acta Ecologica Sinica, 43, 7861-7873. (in Chinese with English abstract) |
[肖泽华, 董姗姗, 张振华, 章嫡妮, 宋志平 (2023) 环境DNA在两栖动物监测中的应用研究进展. 生态学报, 43, 7861-7873.] | |
[52] | Xu W, Wu YH, Zhou WW, Chen HM, Zhang BL, Chen JM, Xu WH, Rao DQ, Zhao HP, Yan F, Yuan ZY, Jiang K, Jin JQ, Hou M, Zou DH, Wang LJ, Zheng YC, Li JT, Jiang JP, Zeng XM, Chen YH, Liao ZY, Li C, Li XY, Gao W, Wang K, Zhang DR, Lu CQ, Yin TT, Ding ZL, Zhao GG, Chai J, Zhao WG, Zhang YP, Wiens JJ, Che J (2024) Hidden hotspots of amphibian biodiversity in China. Proceedings of the National Academy of Sciences, USA, 121, e2320674121. |
[53] | Yan KC, Li JC, Tian YJ, Liu CL, Zhang YL, Li ZX, Ding ZC (2023) Comparison of fish biodiversity in western south Yellow Sea based on environmental DNA metabarcoding and trawl survey. Periodical of Ocean University of China, 53(5), 71-81. (in Chinese with English abstract) |
[言柯程, 李建超, 田永军, 刘纯琳, 张玉磊, 李志新, 丁兆成 (2023) 基于环境DNA metabarcoding和底拖网调查的南黄海西部鱼类多样性比较. 中国海洋大学学报(自然科学版), 53(5), 71-81.] | |
[54] | Yang DD, Ding BZ, Yu XL, Li YH (2023) Biodiversity Research and Conservation in Mangshan National Nature Reserve, Hunan Province. Hunan Science and Technology Press, Changsha. (in Chinese) |
[杨道德, 丁邦柱, 喻勋林, 李永辉 (2023) 湖南莽山国家级自然保护区生物多样性研究与保护. 湖南科学技术出版社, 长沙.] | |
[55] | Yang HL, Du H, Qi HF, Yu LX, Hou XD, Zhang H, Li JY, Wu JM, Wang CY, Zhou Q, Wei QW (2021) Effectiveness assessment of using riverine water eDNA to simultaneously monitor the riverine and riparian biodiversity information. Scientific Reports, 11, 24241. |
[56] | Yang L, Tan ZQ, Wang DR, Xue L, Guan MX, Huang TS, Li RH (2014) Species identification through mitochondrial rRNA genetic analysis. Scientific Reports, 4, 4089. |
[57] | Zhang B, Ding XY, Jiang JP, Li LH, Yang DD (2022) Metagenomic analysis of Mangshan pit viper (Protobothrops mangshanensis) gut microbiota reveals differences among wild and captive individuals linked to hibernating behaviors. Asian Herpetological Research, 13, 251-268. |
[58] | Zhang B, Wu BX, Yang DD, Tao XQ, Zhang M, Hu SS, Chen J, Zheng M (2020) Habitat association in the critically endangered Mangshan pit viper (Protobothrops mangshanensis), a species endemic to China. PeerJ, 8, e9439. |
[59] | Zhang HB, Wang XY, Zhong LP, Chen Z, Gao TX (2024) Study on fish diversity in the offshore waters of Xixuan Island based on environmental DNA metabarcoding. Progress in Fishery Sciences, 45(2), 173-185. (in Chinese with English abstract) |
[张浩博, 王晓艳, 钟兰萍, 陈治, 高天翔 (2024) 基于环境DNA metabarcoding的西轩岛近海鱼类多样性研究. 渔业科学进展, 45(2), 173-185.] | |
[60] | Zhang RZ (2011) Zoogeography of China, 2nd edn. Science Press, Beijing. (in Chinese) |
[张荣祖 (2011) 中国动物地理(第二版). 科学出版社, 北京.] | |
[61] | Zhang Y, Pavlovska M, Stoica E, Prekrasna I, Yang JH, Slobodnik J, Zhang XW, Dykyi E (2020) Holistic pelagic biodiversity monitoring of the Black Sea via eDNA metabarcoding approach: From bacteria to marine mammals. Environment International, 135, 105307. |
[62] | Zhou Q, Du H, Wang J, Shao Y, Yan ZG (2024) Distribution characteristics of Chinese sturgeon in the Yangtze River based on environmental DNA. Journal of Environmental Engineering Technology, 14, 71-78. (in Chinese with English abstract) |
[周权, 杜浩, 王洁, 邵芸, 闫振广 (2024) 基于环境DNA的长江中华鲟分布特征探究. 环境工程技术学报, 14, 71-78.] | |
[63] | Zhou Q, Wang C, Zhang MY, Deng ZY, Xie YX, Mao P, Ma J, Xiang HM, Wei Y, Jiang WS (2025) Exploration of an eDNA procedure for surveying Chinese giant salamanders: A comparison with conventional field methods. Biodiversity and Conservation, 34, 841-858. |
/
〈 |
|
〉 |