论坛

何谓高等或低等生物——澄清《物种起源》所蕴含的生物等级性的涵义及其成立性

  • 孙亚君
展开
  • 上海对外经贸大学会展与传播学院, 上海 201620

收稿日期: 2024-09-07

  录用日期: 2025-01-23

  网络出版日期: 2025-02-02

基金资助

教育部人文社会科学研究项目(21YJCZH144)

What do higher or lower organisms mean—Clarify the meaning and validity of the biological ladder implied by On the Origin of Species

  • Yajun Sun
Expand
  • School of Event and Communication, Shanghai University of International Business and Economics, Shanghai 201620, China

Received date: 2024-09-07

  Accepted date: 2025-01-23

  Online published: 2025-02-02

Supported by

Humanities and Social Sciences Research Program of the Ministry of Education(21YJCZH144)

摘要

何谓高等生物或低等生物, 即, 不同生物间有没有等级性, 是一个大问题, 既是生命科学的问题, 也是实践哲学的问题。要回答这个问题, 必须回到它的起点——达尔文的《物种起源》。本文通过梳理《物种起源》, 发现达尔文使用了大量的蕴含某种“生物等级性”的论述, 分别指向7个不同的方面或指标: (1)形态固化与功能分化的程度, (2)性状定向发育的程度, (3)生物形态的复杂程度, (4)竞争力的强弱, (5)系统发育之分化时间的早晚, (6)演化速率的高低, (7)生物分类阶元的高低。进一步的剖析显示, 这些不同的指向性, 除了指标(7), 在达尔文的演化论体系中, 彼此间大体可保持协调性与统一性, 即, 以竞争之生物关系推动的生物之系统发育的种种体现。在此框架中, 生物等级性的逻辑性是可以被理解的。但是, 进一步的考察表明, 这一理解面临着两大挑战: (1)生命科学规律的或然性, (2)宏观、动态的大演化图式(受制于外在环境的变化)之于达尔文的中观、静态的(以生物作用为主导因素)演化论的修正。在可变环境中, 演化没有目的性, 也没有方向性; 既没有先定的, 也没有可预期的; 既没有事实的, 也没有应然的。因此, 就宏观演化而言, 所谓的“生物等级性”, 往往只是一种权宜的喻象表述, 并无实体性意义, 更不存在价值意味。这个结论也构成了我们之于社会达尔文主义与自然主义环境伦理学在本体层面的批判。

本文引用格式

孙亚君 . 何谓高等或低等生物——澄清《物种起源》所蕴含的生物等级性的涵义及其成立性[J]. 生物多样性, 2025 , 33(1) : 24394 . DOI: 10.17520/biods.2024394

Abstract

Aims: What do higher or lower organisms mean, or, is there any hierarchy among different organisms, is a big question, not only of life sciences, but also of practical philosophy. To answer this question, we must return to its starting point, Darwin’s On the Origin of Species.

Progress: In this article I show that Darwin in his masterpiece used a lot of expressions that imply some meaning of “biological hierarchy” (a ladder of life), referring to seven different aspects or indicators: (1) the degrees of morphological rigidity and functional differentiation, (2) the degree of directional development of traits, (3) morphological complexity, (4) competitive strength, (5) the time of phylogenetic differentiation, (6) evolutionary rate, and (7) taxonomic rank. Further analysis demonstrates that these different indicators, except indicator (7), can generally keep consistent with each other within Darwin’s theory of evolution, that is, they are various manifestations of the phylogenetic tree driven by the biological interaction of competition. In this framework, the logic of a biological ladder can be understood.

Conclusion: Further investigation, however, shows that this understanding faces two major challenges: (1) probabilistic uncertainty pertaining to any law of life sciences and (2) a revision of Darwin’s mesoscopic-static theory of evolution, which is dominated by biological interactions, taking into account the macroscopic-dynamic evolutionary schema, which is subject to changes in the external environment. In a considerably variable environment, evolution has no goal or direction, whether predetermined or predictable, factual or desirable. Therefore, with respect to macroscopic evolution, what could be called “biological ladder” tends to be an expedient metaphorical expression with little substantial meaning, let alone axiological implications. This conclusion also constitutes the criticism of Social Darwinism and naturalistic environmental ethics on the ontological level.

参考文献

[1] Apata M, Arriaza B, Llop E, Moraga M (2017) Human adaptation to arsenic in Andean populations of the Atacama Desert. American Journal of Physical Anthropology, 163, 192-199.
[2] Bertrand OC, Shelley SL, Williamson TE, Wible JR, Chester SGB, Flynn JJ, Holbrook LT, Lyson TR, Meng J, Miller IM, Püschel HP, Smith T, Spaulding M, Tseng ZJ, Brusatte SL (2022) Brawn before brains in placental mammals after the end-Cretaceous extinction. Science, 376, 80-85.
[3] Bhullar BS (2017) Catastrophe triggers diversification. Nature, 542, 304-305.
[4] Bolnick DI, Stutz WE (2017) Frequency dependence limits divergent evolution by favouring rare immigrants over residents. Nature, 546, 285-288.
[5] Callicott JB (1989) In Defense of the Land Ethic:Essays in Environmental Philosophy. State University of New York Press, Albany, New York.
[6] Callicott JB (1999) Beyond the Land Ethic:More Essays in Environmental Philosophy. State University of New York Press, Albany, New York.
[7] Claeys G (2000) The “survival of the fittest” and the origins of Social Darwinism. Journal of the History of Ideas, 61, 223-240.
[8] Cooney CR, Bright JA, Capp EJR, Chira AM, Hughes EC, Moody CJA, Nouri LO, Varley ZK, Thomas GH (2017) Mega-evolutionary dynamics of the adaptive radiation of birds. Nature, 542, 344-347.
[9] Damuth J (1981) Population density and body size in mammals. Nature, 290, 699-700.
[10] Darwin C (2009 [1859]) On the Origin of Species by Means of Natural Selection or the Preservation of Favoured Races in the Struggle for Life. Penguin Books Ltd, London.
[11] Eldredge N, Gould SJ (1972) Punctuated equilibria:An alternative to phyletic gradualism. In: Models in Paleobiology (ed. Schopf TJM), pp. 82-115. Freeman Cooper & Co., San Francisco.
[12] Elton C (2001 [1927]) Animal Ecology. University of Chicago Press, Chicago.
[13] Field Y, Boyle EA, Telis N, Gao ZY, Gaulton KJ, Golan D, Yengo L, Rocheleau G, Froguel P, McCarthy MI, Pritchard JK (2016) Detection of human adaptation during the past 2000 years. Science, 354, 760-764.
[14] Fox D (2016) What sparked the Cambrian explosion? Nature, 530, 268-270.
[15] Givnish TJ, Millam KC, Mast AR, Paterson TB, Theim TJ, Hipp AL, Henss JM, Smith JF, Wood KR, Sytsma KJ (2009) Origin, adaptive radiation and diversification of the Hawaiian lobeliads (Asterales:Campanulaceae). Proceedings of the Royal Society B: Biological Sciences, 276, 407-416.
[16] Goswami A, Noirault E, Coombs EJ, Clavel J, Fabre AC, Halliday TJD, Churchill M, Curtis A, Watanabe A, Simmons NB, Beatty BL, Geisler JH, Fox DL, Felice RN (2022) Attenuated evolution of mammals through the Cenozoic. Science, 378, 377-383.
[17] Hardin G (1960) The competitive exclusion principle. Science, 131, 1292-1297.
[18] Ho?feld U, Watts E, Levit GS (2017) The first Darwinian phylogenetic tree of plants. Trends in Plant Science, 22, 99-102.
[19] Hughes KA, Houde AE, Price AC, Rodd FH (2013) Mating advantage for rare males in wild guppy populations. Nature, 503, 108-110.
[20] Ksepka DT, Stidham TA, Williamson TE (2017) Early Paleocene landbird supports rapid phylogenetic and morphological diversification of crown birds after the K-Pg mass extinction. Proceedings of the National Academy of Sciences, USA, 114, 8047-8052.
[21] Kuhn TS (2012 [1962]) The Structure of Scientific Revolutions. The University of Chicago Press, Chicago.
[22] Leonard TC (2009) Origins of the myth of Social Darwinism: The ambiguous legacy of Richard Hofstadter’s Social Darwinism in American thought. Journal of Economic Behavior & Organization, 71, 37-51.
[23] Lerner HRL, Meyer M, James HF, Hofreiter M, Fleischer RC (2011) Multilocus resolution of phylogeny and timescale in the extant adaptive radiation of Hawaiian honeycreepers. Current Biology, 21, 1838-1844.
[24] Liu LY, Zheng GM, Ma LL, He ZW, Zhao KT, Du NS (1997) General Zoology, 3rd edn. Higher Education Press, Beijing. (in Chinese)
  [刘凌云, 郑光美, 马莱龄, 和振武, 赵肯堂, 堵南山 (1997) 普通动物学, 第3版. 高等教育出版社, 北京.]
[25] Lu SW, Xu XS, Shen MJ (1991) Botany (Volume I), 2nd edn. Higher Education Press, Beijing. (in Chinese)
  [陆时万, 徐祥生, 沈敏健 (1991) 植物学(上册), 第2版. 高等教育出版社, 北京.]
[26] Mack RN, Simberloff D, Lonsdale WM, Evans H, Clout M, Bazzaz F (2000) Biotic invasions: Causes, epidemiology, global consequences, and control. Ecological Applications, 10, 689-710.
[27] Marshall LG, Webb SD, Sepkoski JJ, Raup DM (1982) Mammalian evolution and the great American interchange. Science, 215, 1351-1357.
[28] McEntee JP, Pe?alba JV, Werema C, Mulungu E, Mbilinyi M, Moyer D, Hansen L, Fjelds? J, Bowie RCK (2016) Social selection parapatry in afrotropical sunbirds. Evolution, 70, 1307-1321.
[29] Nietzsche F (translated by Faber M, Lehmann S (1996) Human, All Too Human. University of Nebraska Press, Lincoln, Nebraska.
[30] O’Donovan C, Meade A, Venditti C (2018) Dinosaurs reveal the geographical signature of an evolutionary radiation. Nature Ecology & Evolution, 2, 452-458.
[31] Olsen JL, Rouzé P, Verhelst B, Lin YC, Bayer T, Collen J, Dattolo E, De Paoli E, Dittami S, Maumus F, Michel G, Kersting A, Lauritano C, Lohaus R, T?pel M, Tonon T, Vanneste K, Amirebrahimi M, Brakel J, Bostr?m C, Chovatia M, Grimwood J, Jenkins JW, Jueterbock A, Mraz A, Stam WT, Tice H, Bornberg-Bauer E, Green PJ, Pearson GA, Procaccini G, Duarte CM, Schmutz J, Reusch TBH, Van de Peer Y (2016) The genome of the seagrass Zostera marina reveals angiosperm adaptation to the sea. Nature, 530, 331-335.
[32] Raup DM, Sepkoski JJ (1982) Mass extinctions in the marine fossil record. Science, 215, 1501-1503.
[33] Rolston H (1988) Environmental Ethics:Duties to and Values in the Natural World. Temple University Press, Philadelphia.
[34] Scholl JP, Wiens JJ (2016) Diversification rates and species richness across the tree of life. Proceedings of the Royal Society B: Biological Sciences, 283, 20161334.
[35] Sun YJ (2022) Supplementary notes on the scientificity of On the Origin of Species. Biodiversity Science, 30, 22243. (in Chinese)
  [孙亚君 (2022) 关于《物种起源》之科学性的补充说明. 生物多样性, 30, 22243.]
[36] Wang RW, Li ML, Han JX, Wang C (2022) Fitness relativity and path-dependent selection. Biodiversity Science, 30, 21323. (in Chinese with English abstract)
  [王瑞武, 李敏岚, 韩嘉旭, 王超 (2022) 适合度的相对性与路径依赖的自然选择. 生物多样性, 30, 21323.]
[37] Wang RW, Yu YY, Zhu QK, Wang C, Li ML, Han JX (2024) Path-dependent selection—Integrating natural selection and neutral selection. Biodiversity Science, 32, 24120. (in Chinese with English abstract)
  [王瑞武, 于云云, 朱其凯, 王超, 李敏岚, 韩嘉旭 (2024) 路径依赖的选择——统一自然选择与中性选择. 生物多样性, 32, 24120.]
[38] Wu GF, Feng ZJ, Ma WL, Zhou XJ, Lang KC, Hu RL, Wang CZ, Li RG (1992) Botany (Volume II), 2nd edn. Higher Education Press, Beijing. (in Chinese)
  [吴国芳, 冯志坚, 马炜梁, 周秀佳, 朗奎昌, 胡人亮, 王策箴, 李茹光 (1992) 植物学(下册), 第2版. 高等教育出版社, 北京.]
[39] Xue C, Li BK, Lei TY, Shan HY, Kong HZ (2022) Advances on the origin and evolution of biodiversity. Biodiversity Science, 30, 22460. (in Chinese with English abstract)
  [薛成, 李波卡, 雷天宇, 山红艳, 孔宏智 (2022) 生物多样性起源与进化研究进展. 生物多样性, 30, 22460.]
[40] Yang C, Rooney AD, Condon DJ, Li XH, Grazhdankin DV, Bowyer FT, Hu CL, MacDonald FA, Zhu MY (2021) The tempo of Ediacaran evolution. Science Advances, 7, eabi9643.
[41] Yang YS, Servedio MR, Richards-Zawacki CL (2019) Imprinting sets the stage for speciation. Nature, 574, 99-102.
[42] Zhang DX (2016) Why is it so difficult to reach a consensus in species concept? Biodiversity Science, 24, 1009-1013. (in Chinese with English abstract)
  [张德兴 (2016) 为什么在物种概念上难以达成共识? 生物多样性, 24, 1009-1013.]
文章导航

/