[an error occurred while processing this directive] [an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]
生物入侵专题

基于飞机草历史分布数据拟合的物种分布模型及其预测能力

  • 原雪姣 ,
  • 张渊媛 ,
  • 张衍亮 ,
  • 胡璐祎 ,
  • 桑卫国 ,
  • 杨峥 ,
  • 陈颀
展开
  • 1.中央民族大学生命与环境科学学院, 北京 100081
    2.北京麋鹿生态实验中心, 北京 100076
    3.北京生物多样性保护研究中心, 北京 100076

收稿日期: 2024-07-01

  录用日期: 2024-09-30

  网络出版日期: 2025-01-24

基金资助

北京市科学技术研究院财政资助项目(11000024T000002940734)

Investigating the prediction ability of the species distribution model fitted with the historical distribution records of Chromolaena odorata

  • Xuejiao Yuan ,
  • Yuanyuan Zhang ,
  • Yanliang Zhang ,
  • Luyi Hu ,
  • Weiguo Sang ,
  • Zheng Yang ,
  • Qi Chen
Expand
  • 1. College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
    2. Beijing Milu Ecological Research Center, Beijing 100076, China
    3. Beijing Biodiversity Conservation Research Center, Beijing 100076, China.

Received date: 2024-07-01

  Accepted date: 2024-09-30

  Online published: 2025-01-24

Supported by

Financial Program of Beijing Academy of Science and Technology(11000024T000002940734)

摘要

物种分布模型常被用于预测和管理入侵物种。然而, 这些预测工作假设物种现实生态位保持稳定, 但实际在入侵过程中是不确定的, 因此基于早期的分布数据预测后期的真实分布具有挑战性。本文基于我国重点管理的外来入侵植物——飞机草(Chromolaena odorata) 1934-2024年原产地及我国的分布记录和环境变量, 采用NicheA和COUE (centroid shift, overlap, unfilling, and expansion)框架分析其现实生态位的时空变化, 结合时间序列物种分布模型(过去4个阶段及2040时段未来气候情境)和物种扩散能力, 分析了飞机草的时空分布格局。使用优化后的MaxEnt模型, 将每一时期的模型投影至下个时期, 由于物种记录已知, 因此可检测模型的预测与飞机草在我国的实际扩张是否一致。 结果显示: (1) 1989年前飞机草在我国的现实气候生态位稳定性最高(niche stability = 1), 1989年后生态位略有扩张(1934-2009年: niche expansion (NE) = 0.08, 1934-2024年: NE = 0.09), 生态位扩张来源于台湾省的分布数据, 其余各省的现实气候生态位仍保持稳定。(2)基于过去物种记录的模型能够较好地预测出飞机草已知的分布(测试数据AUC为0.873-0.887, 10%训练数据下的遗漏率为0.131-0.152), 不同时期的物种分布模型产生了相似的潜在分布。在入侵早期阶段, 开发的物种分布模型提供了有用的见解, 但与后期阶段构建的模型相比, 也往往低估了潜在范围, 与1969年前相比, 飞机草在中国的适宜分布范围增加了71.8%-77.3%, 向北扩散至贵州南部、广西和广东北部及江西北部, 向东扩散至福建省。(3)基于未来气候变化情境和飞机草的扩散能力拟合的物种分布模型显示, 到2040年, 飞机草向北将到达重庆与四川交界处, 向东将扩散至浙江南部部分地区及江西东部。本研究可为入侵生物物种分布模型的拟合过程和飞机草在我国的管理提供参考。

本文引用格式

原雪姣 , 张渊媛 , 张衍亮 , 胡璐祎 , 桑卫国 , 杨峥 , 陈颀 . 基于飞机草历史分布数据拟合的物种分布模型及其预测能力[J]. 生物多样性, 2024 , 32(11) : 24288 . DOI: 10.17520/biods.2024288

Abstract

Aims: pecies distribution models (SDMs) are commonly employed to predict and manage invasive species. However, these prediction efforts often assume the stability of a species’ realized niche, which does not hold true during the invasion process. As a result, predicting the actual distribution of the invasive species based on early distribution data presents a challenge. Our study investigated the ability of the SDMs, fitted with the historical distribution records of Chromolaena odorata, to predict its distribution.

Methods: Based on the native and Chinese distribution records of C. odorata from 1934 to 2024, covering both its native range and its distribution in China, the temporal and spatial shifts in the species’ realized niche were analyzed using the NicheA and COUE (centroid shift, overlap, unfilling, and expansion) frameworks. A series of SDMs, encompassing both past distribution periods and a future climate scenario for 2040, were constructed to analyze the species’ spatial and temporal distribution patterns of C. odorata, incorporating its dispersal capabilities.

Results(1) The stability of the realized climatic niche of C. odorata in China exhibited the highest stability prior to 1989 (niche stability = 1), with a slight niche expanded observed after 1989 (1934-2009: niche expansion (NE) = 0.08; 1934-2024: NE = 0.09), mainly originating from Taiwan Province, while the realized climatic niche in other provinces remained stable. (2) The SDMs based on past species records accurately predicted the known distribution of C. odorata (test data AUC: 0.873-0.887, omission rate: 0.131-0.152). Different time-period models produced similar potential distributions. Compared to pre-1969 period, the potential distribution of C. odorata in China has increased by 71.8%-77.3%, with northward expansion into southern Guizhou Province, north of Guangxi and Guangdong provinces, and northern Jiangxi Province, and eastward expansion into Fujian. (3) Under future climate scenarios and considering both short- and long-distance dispersal capability, by 2040, C. odorata is expected to reach the border of Chongqing and Sichuan, and expand further into southern Zhejiang and eastern Jiangxi.

Conclusion: Over the 90 years since C. odorata invaded China, its realized climate niche has remained stable. SDMs developed during the early invasion stages provided valuable insights, although they tended to underestimate the potential distribution compared to models built in later stages. This study provides a reference for constructing SDMs and highlights priorities for managing C. odorata in China.

[an error occurred while processing this directive]

参考文献

[1] Atwater DZ, Barney JN (2021) Climatic niche shifts in 815 introduced plant species affect their predicted distributions. Global Ecology and Biogeography, 30, 1671-1684.
[2] Bang A, Cuthbert RN, Haubrock PJ, Fernandez RD, Moodley D, Diagne C, Turbelin AJ, Renault D, Dalu T, Courchamp F (2022) Massive economic costs of biological invasions despite widespread knowledge gaps: A dual setback for India. Biological Invasions, 24, 2017-2039.
[3] Barbet-Massin M, Rome Q, Villemant C, Courchamp F (2018) Can species distribution models really predict the expansion of invasive species? PLoS ONE, 13, e0193085.
[4] Blackburn TM, Bellard C, Ricciardi A (2019) Alien versus native species as drivers of recent extinctions. Frontiers in Ecology and the Environment, 17, 203-207.
[5] Boria RA, Olson LE, Goodman SM, Anderson RP (2014) Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecological Modelling, 275, 73-77.
[6] Broennimann O, Fitzpatrick MC, Pearman PB, Petitpierre B, Pellissier L, Yoccoz NG, Thuiller W, Fortin MJ, Randin C, Zimmermann NE, Graham CH, Guisan A (2012) Measuring ecological niche overlap from occurrence and spatial environmental data. Global Ecology and Biogeography, 21, 481-497.
[7] Briscoe Runquist RD, Lake T, Tiffin P, Moeller DA (2019) Species distribution models throughout the invasion history of Palmer amaranth predict regions at risk of future invasion and reveal challenges with modeling rapidly shifting geographic ranges. Scientific Reports, 9, 2426.
[8] Cola VD, Broennimann O, Petitpierre B, Breiner FT, D’Amen M, Randin C, Engler R, Pottier J, Pio D, Dubuis A, Pellissier L, Mateo RG, Hordijk W, Salamin N, Guisan A (2017) ecospat: An R package to support spatial analyses and modeling of species niches and distributions. Ecography, 40, 774-787.
[9] Courchamp F, Fournier A, Bellard C, Bertelsmeier C, Bonnaud E, Jeschke JM, Russell JC (2017) Invasion biology: Specific problems and possible solutions. Trends in Ecology & Evolution, 32, 13-22.
[10] Cuthbert RN, Pattison Z, Taylor NG, Verbrugge L, Diagne C, Ahmed DA, Leroy B, Angulo E, Briski E, Capinha C, Catford JA, Dalu T, Essl F, Gozlan RE, Haubrock PJ, Kourantidou M, Kramer AM, Renault D, Wasserman RJ, Courchamp F (2021) Global economic costs of aquatic invasive alien species. Science of the Total Environment, 775, 145238.
[11] Diagne C, Leroy B, Vaissière AC, Gozlan RE, Roiz D, Jari? I, Salles JM, Bradshaw CJA, Courchamp F (2021) High and rising economic costs of biological invasions worldwide. Nature, 592, 571-576.
[12] Engler R, Hordijk W, Guisan A (2012) The MIGCLIM R package-seamless integration of dispersal constraints into projections of species distribution models. Ecography, 35, 872-878.
[13] Essl F, Lenzner B, Bacher S, Bailey S, Capinha C, Daehler C, Dullinger S, Genovesi P, Hui C, Hulme PE, Jeschke JM, Katsanevakis S, Kühn I, Leung B, Liebhold A, Liu CL, MacIsaac HJ, Meyerson LA, Nu?ez MA, Pauchard A, Py?ek P, Rabitsch W, Richardson DM, Roy HE, Ruiz GM, Russell JC, Sanders NJ, Sax DF, Scalera R, Seebens H, Springborn M, Turbelin A, van Kleunen M, von Holle B, Winter M, Zenni RD, Mattsson BJ, Roura-Pascual N (2020) Drivers of future alien species impacts: An expert-based assessment. Global Change Biology, 26, 4880-4893.
[14] Gan QL (2007) A malignant invasive plant Chromolaena odorata was found in Zhuxi. Hubei Daily, 2007-09-07, 004. (in Chinese)
  [甘啟良 (2007) 竹溪发现恶性入侵植物飞机草. 湖北日报, 2007年09月07日, 第004版.]
[15] Guareschi S, Cancellario T, Oficialdegui FJ, Clavero M (2024) Insights from the past: Invasion trajectory and niche trends of a global freshwater invader. Global Change Biology, 30, e17059.
[16] Guisan A, Petitpierre B, Broennimann O, Daehler C, Kueffer C (2014) Unifying niche shift studies: Insights from biological invasions. Trends in Ecology & Evolution, 29, 260-269.
[17] Guisan A, Theurillat JP (2000) Equilibrium modeling of alpine plant distribution: How far can we go? Phytocoenologia, 30, 353-384.
[18] Hijmans RJ, Phillips S, Leathwick J, Elith J (2020) Dismo: Species distribution modeling. R Package Version 1.3-3. https://CRAN.Rproject.org/package=dismo/. (accessed on 2024-04-22)
[19] Hill MP, Gallardo B, Terblanche JS (2017) A global assessment of climatic niche shifts and human influence in insect invasions. Global Ecology and Biogeography, 26, 679-689.
[20] Hulme PE (2017) Climate change and biological invasions: Evidence, expectations, and response options. Biological Reviews, 92, 1297-1313.
[21] Intergovernmental Panel on Climate Change (IPCC) (2021) Climate change 2021:The physical science basis. In: Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte V, Zhai P, Pirani A, Connors SL, Péan C, Berger S, Caud N, Chen Y, Goldfarb L, Gomis MI, Huang M, Leitzell K, Lonnoy E, Matthews JBR, Maycock TK, Waterfield T, Yelek?i O, Yu R, Zhou B). Cambridge University Press, Cambridge.
[22] Kumschick S, Gaertner M, Vilà M, Essl F, Jeschke JM, Py?ek P, Ricciardi A, Bacher S, Blackburn TM, Dick JTA, Evans T, Hulme PE, Kühn I, Mruga?a A, Pergl J, Rabitsch W, Richardson DM, Sendek A, Winter M (2015) Ecological impacts of alien species: Quantification, scope, caveats, and recommendations. BioScience, 65, 55-63.
[23] Liu CL, Wolter C, Xian WW, Jeschke JM (2020) Most invasive species largely conserve their climatic niche. Proceedings of the National Academy of Sciences, USA, 117, 23643-23651.
[24] Liu CL, Wolter C, Courchamp F, Roura-Pascual N, Jeschke JM (2022) Biological invasions reveal how niche change affects the transferability of species distribution models. Ecology, 103, e3719.
[25] Lu P, Sang WG, Ma KP (2006) Activity of antioxidant enzymes in the invasive plant Eupatorium odoratum under various environmental stresses. Acta Ecologica Sinica, 26, 3578-3585. (in Chinese with English abstract)
  [鲁萍, 桑卫国, 马克平 (2006) 外来入侵种飞机草在不同环境胁迫下抗氧化酶系统的变化. 生态学报, 26, 3578-3585.]
[26] Lustenhouwer N, Parker IM (2022) Beyond tracking climate: Niche shifts during native range expansion and their implications for novel invasions. Journal of Biogeography, 49, 1481-1493.
[27] Maiorano L, Cheddadi R, Zimmermann NE, Pellissier L, Petitpierre B, Pottier J, Laborde H, Hurdu BI, Pearman PB, Psomas A, Singarayer JS, Broennimann O, Vittoz P, Dubuis A, Edwards ME, Binney HA, Guisan A (2013) Building the niche through time: Using 13,000 years of data to predict the effects of climate change on three tree species in Europe. Global Ecology and Biogeography, 22, 302-317.
[28] Marchioro CA, Krechemer FS (2024) Reconstructing the biological invasion of Tuta absoluta: Evidence of niche shift and its consequences for invasion risk assessment. Journal of Pest Science, 97, 127-141.
[29] Merow C, Smith MJ, Silander JA Jr (2013) A practical guide to MaxEnt for modeling species’ distributions: What it does, and why inputs and settings matter. Ecography, 36, 1058-1069.
[30] Muscarella R, Galante PJ, Soley-Guardia M, Boria RA, Kass JM, Uriarte M, Anderson RP (2014) ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for MaxEnt ecological niche models. Methods in Ecology and Evolution, 5, 1198-1205.
[31] Peterson AT (2003) Predicting the geography of species’ invasions via ecological niche modeling. The Quarterly Review of Biology, 78, 419-433.
[32] Petitpierre B, Kueffer C, Broennimann O, Randin C, Daehler C, Guisan A (2012) Climatic niche shifts are rare among terrestrial plant invaders. Science, 335, 1344-1348.
[33] Phillips SJ, Anderson RP, Dudík M, Schapire RE, Blair ME (2017) Opening the black box: An open-source release of MaxEnt. Ecography, 40, 887-893.
[34] Qiao HJ, Peterson AT, Campbell LP, Soberón J, Ji LQ, Escobar LE (2016) NicheA: Creating virtual species and ecological niches in multivariate environmental scenarios. Ecography, 39, 805-813.
[35] Quan GM, Zhang JE, Xu HQ, Mao DJ, Xie JF (2009) Biological characteristics and control strategies of alien invasive plant Eupatorium odoratum. Chinese Agricultural Science Bulletin, 25(9), 236-243. (in Chinese with English abstract)
  [全国明, 章家恩, 徐华勤, 毛丹鹃, 谢俊芳 (2009) 外来入侵植物飞机草的生物学特性及控制策略. 中国农学通报, 25(9), 236-243.]
[36] R Core Team (2020) R: A Language and Environment for Statistical Computing. R foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. (accessed on 2024-01-20)
[37] Seebens H, Bacher S, Blackburn TM, Capinha C, Dawson W, Dullinger S, Genovesi P, Hulme PE, van Kleunen M, Kühn I, Jeschke JM, Lenzner B, Liebhold AM, Pattison Z, Pergl J, Py?ek P, Winter M, Essl F (2021) Projecting the continental accumulation of alien species through to 2050. Global Change Biology, 27, 970-982.
[38] Shrestha UB, Shrestha BB (2019) Climate change amplifies plant invasion hotspots in Nepal. Diversity and Distributions, 25, 1599-1612.
[39] Simberloff D (2021) Maintenance management and eradication of established aquatic invaders. Hydrobiologia, 848, 2399-2420.
[40] Soberón J, Nakamura M (2009) Niches and distributional areas: Concepts methods and assumptions. Proceedings of the National Academy of Sciences, USA, 106, 19644-19650.
[41] Vaissi S, Rezaei S (2023) Climatic niche dynamics in the invasive nutria, Myocastor coypus: Global assessment under climate change. Biological Invasions, 25, 2763-2774.
[42] Veloz SD (2009) Spatially autocorrelated sampling falsely inflates measures of accuracy for presence-only niche models. Journal of Biogeography, 36, 2290-2299.
[43] Wang R (2006) Historical Reconstruction of Invasion and Expansion and Potential Spread of Some Threatening Invasive Alien Species in China. PhD dissertation, Institute of Botany, Chinese Academy of Sciences, Beijing. (in Chinese with English abstract)
  [王瑞 (2006) 我国严重威胁性外来入侵植物入侵与扩散历史过程重建及其潜在分布区的预测. 博士学位论文, 中国科学院植物研究所, 北京.]
[44] Wang R, Wang YZ (2006) Invasion dynamics and potential spread of the invasive alien plant species Ageratina adenophora (Asteraceae) in China. Diversity and Distributions, 12, 397-408.
[45] Warren DL, Seifert SN (2011) Ecological niche modeling in MaxEnt: The importance of model complexity and the performance of model selection criteria. Ecological Applications, 21, 335-342.
[46] Wei B, Liu LS, Gu CJ, Yu HB, Zhang YL, Zhang BH, Cui BH, Gong DQ, Tu YL (2022) The climate niche is stable and the distribution area of Ageratina adenophora is predicted to expand in China. Biodiversity Science, 30, 21443 (in Chinese with English abstract)
  [魏博, 刘林山, 谷昌军, 于海彬, 张镱锂, 张炳华, 崔伯豪, 宫殿清, 土艳丽 (2022) 紫茎泽兰在中国的气候生态位稳定且其分布范围仍有进一步扩展的趋. 生物多样性, 30, 21443.]
[47] Wei TY, Simko V (2021) R Package ’Corrplot’: Visualization of a Correlation Matrix. https://github.com/taiyun/corrplot/. (accessed on 2024-04-22)
[48] Ye WH, Mu HP, Cao HL, Ge XJ (2004) Genetic structure of the invasive Chromolaena odorata in China. Weed Research, 44, 129-135.
[49] Yu FK, Akin-Fajiye M, Thapa Magar K, Ren J, Gurevitch J, Rejmanek M (2016) A global systematic review of ecological field studies on two major invasive plant species, Ageratina adenophora and Chromolaena odorata. Diversity and Distributions, 22, 1174-1185.
[50] Yu XQ, Feng YL, Li QM (2010) Review of research advances and prospects of invasive Chromolaena odorata. Chinese Journal of Plant Ecology, 34, 591-600. (in Chinese with English abstract)
  [余香琴, 冯玉龙, 李巧明 (2010) 外来入侵植物飞机草的研究进展与展望. 植物生态学报, 34, 591-600.]
[51] Zhang LY, Zhu M, Wan Y, Liu XF (2023) Multiple invasion trajectories induce niche dynamics inconsistency and increase risk uncertainty of a plant invader. Ecosphere, 14, e4483.
[52] Zhu GP, Illan GJ, Looney C, Crowder DW (2020) Assessing the ecological niche and invasion potential of the Asian giant hornet. Proceedings of the National Academy of Sciences, USA, 117, 24646-24648.
[53] Zhu GP, Liu Q, Gao YB (2014) Improving ecological niche model transferability to predict the potential distribution of invasive exotic species. Biodiversity Science, 22, 223-230. (in Chinese with English abstract)
  [朱耿平, 刘强, 高玉葆 (2014) 提高生态位模型转移能力来模拟入侵物种的潜在分布. 生物多样性, 22, 223-230.]
文章导航

/

[an error occurred while processing this directive]