生物多样性 ›› 2024, Vol. 32 ›› Issue (6): 24088. DOI: 10.17520/biods.2024088
收稿日期:
2024-03-09
接受日期:
2024-04-20
出版日期:
2024-06-20
发布日期:
2024-04-28
通讯作者:
* E-mail: fang0424@163.com基金资助:
Suyan Ba, Chunyan Zhao, Yuan Liu, Qiang Fang*()()
Received:
2024-03-09
Accepted:
2024-04-20
Online:
2024-06-20
Published:
2024-04-28
Contact:
* E-mail: fang0424@163.com摘要:
传粉是生态系统中一项关键服务, 准确识别和分析传粉者携带的花粉对于理解植物‒传粉者交互作用以及传粉服务至关重要。传统的花粉识别方法依赖于显微镜下的人工直接观察, 这种方法耗时且需要专业知识, 限制了其在大规模应用中的效率, 在评估传粉效率和稀有植物‒传粉者连接方面存在局限性。针对此问题, 我们使用公共平台训练了基于河南洛阳市天池山国家森林公园14种同时开花植物的花粉识别人工智能(AI)模型, 通过比较人工显微镜观察和AI模型识别142只传粉者身体携带的花粉构成, 首次探讨了两种方法构建的植物‒传粉者互作网络的结构差异。结果表明AI模型在构建时能够达到96%的整体准确率。人工识别与AI模型在识别的连接数量、花粉数量以及图片一致率方面存在差异。AI模型在识别连接和花粉数量上略高于人工方法, 并且在第三方的一致性检验中, 超过半数的情况倾向于AI模型的结果。尽管存在一些独有连接的差异, 人工识别与AI模型构建的定量网络在结构特征上展现出高度的相似性。本研究揭示了AI图像识别技术对提高花粉分析效率和准确性的作用, 以及应用于植物‒传粉者互作研究的潜力, 这将有助于传粉网络研究的大规模开展, 为传粉生态学研究提供新的工具和视角。
巴苏艳, 赵春艳, 刘媛, 方强 (2024) 通过虫体花粉识别构建植物‒传粉者网络: 人工模型与AI模型高度一致. 生物多样性, 32, 24088. DOI: 10.17520/biods.2024088.
Suyan Ba, Chunyan Zhao, Yuan Liu, Qiang Fang (2024) Constructing a pollination network by identifying pollen on insect bodies: Consistency between human recognition and an AI model. Biodiversity Science, 32, 24088. DOI: 10.17520/biods.2024088.
模型选择 Model selection | 平均精度均值 mAP | 精确率 Precision | 召回率 Recall |
---|---|---|---|
图像分割 Image segmentation | 95.52% | 91.52% | 91.45% |
物体检测 Object detection | 99.25% | 97.20% | 93.92% |
表1 基于天池山花粉识别库进行的图像分割AI模型和物体检测AI模型训练结果比较。平均精度均值(mean Average Precision, mAP)为对所有类别的精确度的平均值, 范围0‒1, 越接近1说明模型效果越好。精确率为正确预测的物体数与预测物体总数之比)。召回率为正确预测的物体数与真实物体数之比。
Table 1 Comparison of the training results of AI models for image segmentation and object detection based on the pollen identification bank of Tianchi Mountain. mAP (mean Average Precision) measures the average precision across all categories, with a range from 0 to 1, higher values indicate better model performance. Precision is the ratio of correctly predicted objects to the total number of predicted objects. Recall is the ratio of correctly predicted objects to the total number of actual objects.
模型选择 Model selection | 平均精度均值 mAP | 精确率 Precision | 召回率 Recall |
---|---|---|---|
图像分割 Image segmentation | 95.52% | 91.52% | 91.45% |
物体检测 Object detection | 99.25% | 97.20% | 93.92% |
图1 AI模型的训练效果。(a)不同阈值下的模型准确率, 阈值为0.8时模型达到最高准确率96%。对某类别而言F1-score是指精确率和召回率的调和平均数, 此处为各类别F1-score的平均数。(b)‒(e) AI模型对不同物种花粉图像的识别准确率: (b)瓜木98.2%; (c)一年蓬87.5%; (d)繁缕96.4%; (e)花旗杆91.4%。
Fig. 1 AI model training effect. (a) Model accuracy under different thresholds, the highest accuracy of the model is 96% when the threshold is 0.8. F1-score refers to the harmonic average of accuracy and recall for a category, where the average of F1-score for each category is shown. (b)‒(e) The recognition accuracy of the AI model for pollen images of different species: (b) Alangium platanifolium, 98.2%; (c) Erigeron annuus, 87.5%; (d) Stellaria media, 96.4%; (e) Dontostemon dentatus, 91.4%.
网络指标 Network parameter | AI 模型 AI model | 人工识别 Human recognition |
---|---|---|
连接度 Connectance | 0.188 | 0.181 |
加权连接度 Weighted connectance | 0.045 | 0.045 |
物种连接量 Links per species | 2.100 | 2.014 |
特化值H2° Specialization value H2° | 0.643** | 0.641** |
加权嵌套度 wNODF | 13.847** | 14.298** |
聚类系数 Cluster coefficient | 0.143 | 0.143 |
连接密度 Linkage density | 3.185 | 3.132 |
Shannon指数 Shannon diversity | 3.350 | 3.298 |
表2 基于AI模型与人工识别的植物‒传粉者互作定量网络的参数比较。网络的连接度、加权嵌套度、特化值、聚类系数、Shannon指数等网络参数均差异较小。H2°和wNODF与随机构建的零模型网络进行比较, 评估了参数的显著性。**P < 0.01。
Table 2 Comparison of the parameters of weighted plant- pollinator interaction networks quantified by AI models and human recognition. There were no significant differences in network metrics such as connectivity, nestedness, specialization level, clustering coefficient, and Shannon index. The significance of parameters was evaluated by comparing H2° and weighted NODF (wNODF) with randomly constructed null model networks. **P < 0.01.
网络指标 Network parameter | AI 模型 AI model | 人工识别 Human recognition |
---|---|---|
连接度 Connectance | 0.188 | 0.181 |
加权连接度 Weighted connectance | 0.045 | 0.045 |
物种连接量 Links per species | 2.100 | 2.014 |
特化值H2° Specialization value H2° | 0.643** | 0.641** |
加权嵌套度 wNODF | 13.847** | 14.298** |
聚类系数 Cluster coefficient | 0.143 | 0.143 |
连接密度 Linkage density | 3.185 | 3.132 |
Shannon指数 Shannon diversity | 3.350 | 3.298 |
物种水平指数 Species-level index | Pearson相关性 Pearson correlation |
---|---|
传粉者 Pollinator | |
介数中心度 Betweenness centrality | 0.881** |
接近中心度 Closeness centrality | 0.878** |
特化值d° Specialization value d° | 0.943** |
植物 Plant | |
介数中心度 Betweenness centrality | 0.814** |
接近中心度 Closeness centrality | 0.875** |
特化值d° Specialisztion value d° | 0.980** |
表3 植物与传粉者在基于AI模型和人工识别花粉的定量植物‒传粉者互作网络中的位置相关性(Pearson correlation)。**P < 0.01。
Table 3 Pearson correlation of the positions of the plant and pollinator species in AI model and human recognition based on weighted pollination networks. **P < 0.01.
物种水平指数 Species-level index | Pearson相关性 Pearson correlation |
---|---|
传粉者 Pollinator | |
介数中心度 Betweenness centrality | 0.881** |
接近中心度 Closeness centrality | 0.878** |
特化值d° Specialization value d° | 0.943** |
植物 Plant | |
介数中心度 Betweenness centrality | 0.814** |
接近中心度 Closeness centrality | 0.875** |
特化值d° Specialisztion value d° | 0.980** |
图2 AI模型与人工识别的结果差异。(a)两种方法识别的相同与不同的花粉图像数量。识别不同的再经过第三方人工进行二次识别。(b)两种方法识别结果相同与不同的虫体携带花粉数量。识别不同的花粉, 再经过第三方人工进行二次识别。
Fig. 2 Differences between AI models and human recognition results. (a) The similarities and differences between AI models and human recognition of pollen images. The interaction difference between the AI model and the human recognition is then manually identified by a third party. (b) The similarities and differences in the number of pollen grains carried by insects as identified by AI model and human recognition. The pollen load difference between the AI model and the human identification is then manually identified by a third party.
图3 通过人工识别(a)和AI模型识别(b)构建的植物‒传粉者定性网络。图的上方表示传粉者种类(棕色: 鳞翅目; 红色: 膜翅目; 黄色: 鞘翅目; 紫色: 双翅目; 黑色: 其他); 下方表示植物物种, 中间连线代表植物‒传粉者存在互作关系: 灰色连线代表人工识别与AI模型识别连接相同, 红色代表该网络独有连接。物种缩写详见附录1。
Fig. 3 Qualitative plant‒pollinator network by human recognition (a) and by AI model (b). The top of the graph shows pollinator species (Brown: Lepidoptera; Red: Hymenoptera; Yellow: Coleoptera; Purple: Diptera; Black, Others). The bottom represents plant species and the middle line represents plant‒pollinator interaction. Grey lines represent interactions identified as the same by both human recognition and AI model, while red lines represent interactions unique to that network. For a detailed list of species abbreviations, see Appendix 1.
图4 通过人工识别(a)和AI模型识别(b)构建的植物‒传粉者定量网络。中间连线代表植物‒传粉者存在互作关系, 连线越宽,代表传粉者携带该植物花粉数量越多。图的上方表示传粉者种类(棕色: 鳞翅目; 红色: 膜翅目; 黄色: 鞘翅目; 紫色: 双翅目; 黑色: 其他), 下方表示植物物种, 物种缩写详见附录1。
Fig. 4 Quantitative plant‒pollinator network by human recognition (a) and by AI model (b). The middle lines represent the interaction between plants and pollinators, with wider lines indicating a greater quantity of pollen carried by the pollinator from that plant. The top of the graph shows pollinator species (Brown, Lepidoptera; Red, Hymenoptera; Yellow, Coleoptera; Purple, Diptera; Black, Others), the bottom represents plant species, and for a detailed list of species abbreviations, see Appendix 1.
[1] | Alarcón R (2010) Congruence between visitation and pollen-transport networks in a California plant-pollinator community. Oikos, 119, 35-44. |
[2] | Alarcón R, Waser NM, Ollerton J (2008) Year-to-year variation in the topology of a plant-pollinator interaction network. Oikos, 117, 1796-1807. |
[3] | Baldock KCR, Memmott J, Ruiz-Guajardo JC, Roze D, Stone GN (2011) Daily temporal structure in African savanna flower visitation networks and consequences for network sampling. Ecology, 92, 687-698. |
[4] | Barker DA, Arceo-Gómez G (2021) Pollen transport networks reveal highly diverse and temporally stable plant-pollinator interactions in an Appalachian floral community. AoB Plants, 13, plab062. |
[5] | Beil M, Horn H, Schwabe A (2008) Analysis of pollen loads in a wild bee community (Hymenoptera: Apidae)—A method for elucidating habitat use and foraging distances. Apidologie, 39, 456-467. |
[6] | Bosch J, González AM, Rodrigo A, Navarro D (2009) Plant- pollinator networks: Adding the pollinator’s perspective. Ecology Letters, 12, 409-419. |
[7] | Bourel B, Marchant R, de Garidel-Thoron T, Tetard M, Barboni D, Gally Y, Beaufort L (2020) Automated recognition by multiple convolutional neural networks of modern, fossil, intact and damaged pollen grains. Computers & Geosciences, 140, 104498. |
[8] |
Burkle LA, Alarcón R (2011) The future of plant-pollinator diversity: Understanding interaction networks across time, space, and global change. American Journal of Botany, 98, 528-538.
DOI PMID |
[9] | Cai XY, Hou YQ, Muhammad UJ, Wang H, Xu YC, Zheng J, Wang YH, Liu F, Zhou ZL, Hua JP, Wang KB (2023) The morphological diversity of pollen in the genus Gossypium. Journal of Cotton Research, 6, 6. |
[10] | CaraDonna PJ, Burkle LA, Schwarz B, Resasco J, Knight TM, Benadi G, Blüthgen N, Dormann CF, Fang Q, Fründ J, Gauzens B, Kaiser-Bunbury CN, Winfree R, Vázquez DP (2021) Seeing through the static: The temporal dimension of plant-animal mutualistic interactions. Ecology Letters, 24, 149-161. |
[11] | de Manincor N, Hautekèete N, Mazoyer C, Moreau P, Piquot Y, Schatz B, Schmitt E, Zélazny M, Massol F (2020) How biased is our perception of plant-pollinator networks? A comparison of visit- and pollen-based representations of the same networks. Acta Oecologica, 105, 103551. |
[12] | de Santiago-Hernández MH, Martén-Rodríguez S, Lopezaraiza-Mikel M, Oyama K, González-Rodríguez A, Quesada M (2019) The role of pollination effectiveness on the attributes of interaction networks: From floral visitation to plant fitness. Ecology, 100, e02803. |
[13] | Dormann CF, Fründ J, Blüthgen N, Gruber B (2009) Indices, graphs and null models: Analyzing bipartite ecological networks. The Open Ecology Journal, 2, 7-24. |
[14] | Dunker S, Motivans E, Rakosy D, Boho D, Mäder P, Hornick T, Knight TM (2021) Pollen analysis using multispectral imaging flow cytometry and deep learning. New Phytologist, 229, 593-606. |
[15] | Encinas-Viso F, Bovill J, Albrecht DE, Florez-Fernandez J, Lessard B, Lumbers J, Rodriguez J, Schmidt-Lebuhn A, Zwick A, Milla L (2023) Pollen DNA metabarcoding reveals cryptic diversity and high spatial turnover in alpine plant- pollinator networks. Molecular Ecology, 32, 6377-6393. |
[16] | Fan W, Liu HT, Zhang Y, Chen XL, Huang MG, Xu BQ (2024) Diagnostic value of artificial intelligence based on computed tomography (CT) density in benign and malignant pulmonary nodules: A retrospective investigation. PeerJ, 12, e16577. |
[17] |
Fang Q, Huang SQ (2016) Plant-pollinator interactions in a biodiverse meadow are rather stable and tight for 3 consecutive years. Integrative Zoology, 11, 199-206.
DOI PMID |
[18] |
Holt KA, Bennett KD (2014) Principles and methods for automated palynology. New Phytologist, 203, 735-742.
PMID |
[19] | Jędrzejewska-Szmek K, Zych M (2013) Flower-visitor and pollen transport networks in a large city: Structure and properties. Arthropod-Plant Interactions, 7, 503-516. |
[20] | Kaneko M, Tsuji K, Masuda K, Ueno K, Henmi K, Nakagawa S, Fujita R, Suzuki K, Inoue Y, Teramukai S, Konishi E, Takamatsu T, Ukimura O (2022) Urine cell image recognition using a deep-learning model for an automated slide evaluation system. BJU International, 130, 235-243. |
[21] | King C, Ballantyne G, Willmer PG (2013) Why flower visitation is a poor proxy for pollination: Measuring single-visit pollen deposition, with implications for pollination networks and conservation. Methods in Ecology and Evolution, 4, 811-818. |
[22] |
Klumpers SGT, Stang M, Klinkhamer PGL (2019) Foraging efficiency and size matching in a plant-pollinator community: The importance of sugar content and tongue length. Ecology Letters, 22, 469-479.
DOI PMID |
[23] |
Lázaro A, Hegland SJ, Totland Ø (2008) The relationships between floral traits and specificity of pollination systems in three Scandinavian plant communities. Oecologia, 157, 249-257.
DOI PMID |
[24] | Li X, Prebble JG, de Lange PJ, Raine JI, Newstrom-Lloyd L (2022) Discrimination of pollen of New Zealand mānuka (Leptospermum scoparium agg.) and Kānuka (Kunzea spp.) (Myrtaceae). PLoS ONE, 17, e0269361. |
[25] | Lomáscolo SB, Giannini N, Chacoff NP, Castro-Urgal R, Vázquez DP (2019) Inferring coevolution in a plant- pollinator network. Oikos, 128, 775-789. |
[26] |
Marcos JV, Nava R, Cristóbal G, Redondo R, Escalante- Ramírez B, Bueno G, Déniz Ó, González-Porto A, Pardo C, Chung F, Rodríguez T (2015) Automated pollen identification using microscopic imaging and texture analysis. Micron, 68, 36-46.
DOI PMID |
[27] |
Miele V, Ramos-Jiliberto R, Vázquez DP (2020) Core-periphery dynamics in a plant-pollinator network. Journal of Animal Ecology, 89, 1670-1677.
DOI PMID |
[28] | Ollerton J (2017) Pollinator diversity: Distribution, ecological function, and conservation. Annual Review of Ecology, Evolution, and Systematics, 48, 353-376. |
[29] | Olsson O, Karlsson M, Persson AS, Smith HG, Varadarajan V, Yourstone J, Stjernman M (2021) Efficient, automated and robust pollen analysis using deep learning. Methods in Ecology and Evolution, 12, 850-862. |
[30] |
Parra-Tabla V, Arceo-Gómez G (2021) Impacts of plant invasions in native plant-pollinator networks. New Phytologist, 230, 2117-2128.
DOI PMID |
[31] |
Persson AS, Mazier F, Smith HG (2018) When beggars are choosers—How nesting of a solitary bee is affected by temporal dynamics of pollen plants in the landscape. Ecology and Evolution, 8, 5777-5791.
DOI PMID |
[32] | Pichler M, Hartig F (2023) Machine learning and deep learning—A review for ecologists. Methods in Ecology and Evolution, 14, 994-1016. |
[33] | Pospiech M, Javůrková Z, Hrabec P, Štarha P, Ljasovská S, Bednář J, Tremlová B (2021) Identification of pollen taxa by different microscopy techniques. PLoS ONE, 16, e0256808. |
[34] | Schwarz B, Vázquez DP, CaraDonna PJ, Knight TM, Benadi G, Dormann CF, Gauzens B, Motivans E, Resasco J, Blüthgen N, Burkle LA, Fang Q, Kaiser-Bunbury CN, Alarcón R, Bain JA, Chacoff NP, Huang SQ, LeBuhn G, MacLeod M, Petanidou T, Rasmussen C, Simanonok MP, Thompson AH, Fründ J (2020) Temporal scale-dependence of plant-pollinator networks. Oikos, 129, 1289-1302. |
[35] | Sevillano V, Aznarte JL (2018) Improving classification of pollen grain images of the POLEN23E dataset through three different applications of deep learning convolutional neural networks. PLoS ONE, 13, e0201807. |
[36] | Sevillano V, Holt K, Aznarte JL (2020) Precise automatic classification of 46 different pollen types with convolutional neural networks. PLoS ONE, 15, e0229751. |
[37] | Thomson J (2021) How worthwhile are pollination networks? Journal of Pollination Ecology, 28, i-vi. |
[38] | Tong ZY, Wu LY, Feng HH, Zhang M, Armbruster WS, Renner SS, Huang SQ (2023) New calculations indicate that 90% of flowering plant species are animal-pollinated. National Science Review, 10, nwad219. |
[39] | Tourbez C, Gómez-Martínez C, González-Estévez MÁ, Lázaro A (2024) Pollen analysis reveals the effects of uncovered interactions, pollen-carrying structures, and pollinator sex on the structure of wild bee-plant networks. Insect Science, 31, 971-988. |
[40] |
Tsymbalyuk ZM, Celenk S, Mosyakin SL, Nitsenko LM (2021) Pollen morphology of some species of the genus Cephalaria Schrad. (Caprifoliaceae) and its significance for taxonomy. Microscopy Research and Technique, 84, 682-694.
DOI PMID |
[41] | Tu YL, Wang LP, Wang XL, Wang LL, Duan YW (2019) Status of invasive plants on local pollination networks: A case study of Tagetes minuta in Tibet based on pollen grains from pollinators. Biodiversity Science, 27, 306-313. (in Chinese with English abstract) |
[土艳丽, 王力平, 王喜龙, 王林林, 段元文 (2019) 利用昆虫携带的花粉初探西藏入侵植物印加孔雀草在当地传粉网络中的地位. 生物多样性, 27, 306-313.]
DOI |
|
[42] |
Vázquez DP, Blüthgen N, Cagnolo L, Chacoff NP (2009) Uniting pattern and process in plant-animal mutualistic networks: A review. Annals of Botany, 103, 1445-1457.
DOI PMID |
[43] |
Vázquez DP, Lomáscolo SB, Maldonado MB, Chacoff NP, Dorado J, Stevani EL, Vitale NL (2012) The strength of plant-pollinator interactions. Ecology, 93, 719-725.
PMID |
[44] | Wood TJ, Holland JM, Goulson D (2017) Providing foraging resources for solitary bees on farmland: Current schemes for pollinators benefit a limited suite of species. Journal of Applied Ecology, 54, 323-333. |
[45] | Xiong XH, Zhou XM, Li M, Xu B, Deng HN, Yu Q, Gao XF (2019) Pollen morphology in Rubus (Rosaceae) and its taxonomic implications. Plant Systematics and Evolution, 305, 705-716. |
[46] | Xu Q, Zhang M, Gu ZH, Pan G (2019) Overfitting remedy by sparsifying regularization on fully-connected layers of CNNs. Neurocomputing, 328, 69-74. |
[47] | Xu XL, Zheng YZ, Chen XC, Zhu FL, Miao XQ (2018) Identification of cattail pollen, pine pollen and bee pollen by Fourier transform infrared spectroscopy and two-dimensional correlation infrared spectroscopy. Journal of Molecular Structure, 1167, 78-81. |
[48] | Zhao YH, Lázaro A, Ren ZX, Zhou W, Li HD, Tao ZB, Xu K, Wu ZK, Wolfe LM, Li DZ, Wang H (2019) The topological differences between visitation and pollen transport networks: A comparison in species rich communities of the Himalaya-Hengduan Mountains. Oikos, 128, 551-562. |
[1] | 李柏灿, 张军国, 张长春, 王丽凤, 徐基良, 刘利. 基于TC-YOLO模型的北京珍稀鸟类识别方法[J]. 生物多样性, 2024, 32(5): 24056-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn