生物多样性 ›› 2016, Vol. 24 ›› Issue (9): 1039-1044. DOI: 10.17520/biods.2016116 cstr: 32101.14.biods.2016116
童浩杰1, 张凯龙1, 刘宇航1, 张立勋2, 赵伟2, 金园庭1,,A;*()
出版日期:
2016-09-20
发布日期:
2016-10-09
通讯作者:
金园庭
基金资助:
Haojie Tong1, Kailong Zhang1, Yuhang Liu1, Lixun Zhang2, Wei Zhao2, Yuanting Jin1,*()
Online:
2016-09-20
Published:
2016-10-09
Contact:
Jin Yuanting
摘要:
生存在不同基底颜色环境下的爬行动物种群通常表现出丰富的体色地理变异, 其体色变化的潜在机制具有多样性。变色沙蜥(Phrynocephalus versicolor)和草原沙蜥(P. frontalis)具有较近的遗传关系, 曾被认为与荒漠沙蜥(P. przewalskii)组成同一系统发育种组。本文应用光纤光谱仪(AvaSpec-2048), 通过记录沙蜥背部体表12个部位的皮肤光反射率, 定量比较在黑化环境下的深色变色沙蜥与非黑化环境下的浅色草原沙蜥自然体色变异, 研究其种群体色变异是否具有时间可逆性, 并探讨基底颜色对沙蜥体色的影响机制。研究结果表明, 黑化生境下的变色沙蜥体色显著深于非黑化枯黄色生境下的草原沙蜥。此外, 对黑化与非黑化样本开展的生境互换移植围栏实验, 即把枯黄色生境中非黑化的草原沙蜥移植于黑色的基底环境中饲养, 把黑化生境中黑化的变色沙蜥移植于枯黄色生境中饲养。结果表明, 饲养1周后黑化群体背部6个检测部位的光反射率显著变大, 其他部位均无显著变化; 而非黑化群体只有左后肢和背部右上方2个部位的皮肤光反射率发生显著变化, 其他部位反射率无显著变化。结果表明, 变色沙蜥体色变异能力比草原沙蜥强, 体色表型可能已经在两个近缘沙蜥物种中稳定遗传, 基底生境颜色的短期变化在统计学上能引起肉眼难以识别的轻微的体色变异, 个体发育相关的一些遗传因素可能对体色变异起控制 作用。
童浩杰, 张凯龙, 刘宇航, 张立勋, 赵伟, 金园庭 (2016) 基底颜色对两种沙蜥体色变异的影响. 生物多样性, 24, 1039-1044. DOI: 10.17520/biods.2016116.
Haojie Tong, Kailong Zhang, Yuhang Liu, Lixun Zhang, Wei Zhao, Yuanting Jin (2016) Effects of substrate color on the body color variation of two agamid lizards, Phrynocephalus versicolor and P. frontalis. Biodiversity Science, 24, 1039-1044. DOI: 10.17520/biods.2016116.
图1 沙蜥体色及体色测定点选择。(A)黑化的变色沙蜥采集自黑色基底的生境(上), 非黑化的草原沙蜥采集自枯黄色基底的生境(下); (B) M1至M12分别代表蜥蜴个体体色测量的12个部位, 包括头顶部中心(M1)、背部左上方(M2)、背部右上方(M3)、背中部左侧(M4)、背中部右侧(M5)、背部左下方(M6)、背部右下方(M7)、左前肢(M8)、右前肢(M9)、左后肢(M10)、右后肢(M11)和尾根部背侧(M12)。
Fig. 1 Body color of lizards and the selected sites for color measurement. (A) “Melanistic” P. versicolor were collected from black substrate habitat (above), “non-melanistic” P. frontalis were sampled from withered yellow substrate habitat (below); (B) M1-12 represent twelve color measuring sites for each lizard, including cranial center (M1), top left on the back (M2), top right on the back (M3), left side on the central back (M4), right side on the central back (M5), bottom left on the back (M6), bottom right on the back (M7), left forelimb (M8), right forelimb (M9), left hind limb (M10), right hind limb (M11), and tail root (M12).
检测部位 Sites | 非黑化草原沙蜥 “Non-melanistic” P. frontalis | 黑化变色沙蜥 “Melanistic” P. versicolor | |||||||
---|---|---|---|---|---|---|---|---|---|
第1天 1st day | 第8天 8th day | 第9天 9th day | 第10天 10th day | 第1天 1st day | 第8天 8th day | 第9天 9th day | 第10天 10th day | ||
M1 | 1.89±0.18 | 2.10±0.19 | 2.18±0.22 | 2.31±0.20 | 0.27±0.05 | 0.45±0.08 | 0.29±0.06 | 0.38±0.07 | |
M2 | 2.23±0.18 | 2.57±0.16 | 2.87±0.22 | 2.72±0.20 | 0.40±0.05 | 0.75±0.09 | 0.82±0.09 | 0.75±0.09 | |
M3 | 2.52±0.19 | 3.24±0.23 | 3.20±0.18 | 3.12±0.23 | 0.48±0.05 | 0.95±0.11 | 0.83±0.11 | 0.83±0.11 | |
M4 | 2.20±0.18 | 2.42±0.18 | 2.42±0.24 | 2.40±0.17 | 0.29±0.03 | 0.55±0.06 | 0.64±0.08 | 0.60±0.08 | |
M5 | 2.48±0.16 | 2.27±0.18 | 2.25±0.16 | 2.27±0.15 | 0.44±0.07 | 0.72±0.09 | 0.65±0.07 | 0.58±0.06 | |
M6 | 2.37±0.15 | 2.30±0.15 | 2.51±0.16 | 2.96±0.26 | 0.39±0.05 | 0.68±0.09 | 0.73±0.10 | 0.61±0.08 | |
M7 | 2.60±0.18 | 2.37±0.17 | 2.60±0.19 | 2.52±0.17 | 0.41±0.05 | 0.74±0.13 | 0.66±0.07 | 0.66±0.08 | |
M8 | 2.83±0.37 | 2.83±0.27 | 2.81±0.34 | 1.99±0.17 | 0.58±0.15 | 0.53±0.09 | 0.59±0.18 | 0.62±0.17 | |
M9 | 2.83±0.29 | 2.57±0.33 | 2.78±0.41 | 2.61±0.47 | 0.47±0.16 | 0.59±0.14 | 0.54±0.07 | 0.48±0.07 | |
M10 | 2.21±0.29 | 1.67±0.25 | 0.99±0.13 | 0.93±0.13 | 0.18±0.03 | 0.22±0.06 | 0.19±0.02 | 0.21±0.06 | |
M11 | 2.23±0.26 | 2.72±0.42 | 1.87±0.24 | 1.96±0.27 | 0.24±0.05 | 0.28±0.04 | 0.22±0.03 | 0.45±0.16 | |
M12 | 3.82±0.40 | 3.56±0.38 | 3.38±0.45 | 3.09±0.31 | 0.64±0.11 | 0.72±0.08 | 0.96±0.20 | 1.16±0.25 |
表1 黑化的变色沙蜥与非黑化的草原沙蜥各检测部位的反射率(平均值±标准误)
Table 1 Mean values of reflectivity of each site for both “melanistic” P. versicolor and “non-melanistic” P. frontalis
检测部位 Sites | 非黑化草原沙蜥 “Non-melanistic” P. frontalis | 黑化变色沙蜥 “Melanistic” P. versicolor | |||||||
---|---|---|---|---|---|---|---|---|---|
第1天 1st day | 第8天 8th day | 第9天 9th day | 第10天 10th day | 第1天 1st day | 第8天 8th day | 第9天 9th day | 第10天 10th day | ||
M1 | 1.89±0.18 | 2.10±0.19 | 2.18±0.22 | 2.31±0.20 | 0.27±0.05 | 0.45±0.08 | 0.29±0.06 | 0.38±0.07 | |
M2 | 2.23±0.18 | 2.57±0.16 | 2.87±0.22 | 2.72±0.20 | 0.40±0.05 | 0.75±0.09 | 0.82±0.09 | 0.75±0.09 | |
M3 | 2.52±0.19 | 3.24±0.23 | 3.20±0.18 | 3.12±0.23 | 0.48±0.05 | 0.95±0.11 | 0.83±0.11 | 0.83±0.11 | |
M4 | 2.20±0.18 | 2.42±0.18 | 2.42±0.24 | 2.40±0.17 | 0.29±0.03 | 0.55±0.06 | 0.64±0.08 | 0.60±0.08 | |
M5 | 2.48±0.16 | 2.27±0.18 | 2.25±0.16 | 2.27±0.15 | 0.44±0.07 | 0.72±0.09 | 0.65±0.07 | 0.58±0.06 | |
M6 | 2.37±0.15 | 2.30±0.15 | 2.51±0.16 | 2.96±0.26 | 0.39±0.05 | 0.68±0.09 | 0.73±0.10 | 0.61±0.08 | |
M7 | 2.60±0.18 | 2.37±0.17 | 2.60±0.19 | 2.52±0.17 | 0.41±0.05 | 0.74±0.13 | 0.66±0.07 | 0.66±0.08 | |
M8 | 2.83±0.37 | 2.83±0.27 | 2.81±0.34 | 1.99±0.17 | 0.58±0.15 | 0.53±0.09 | 0.59±0.18 | 0.62±0.17 | |
M9 | 2.83±0.29 | 2.57±0.33 | 2.78±0.41 | 2.61±0.47 | 0.47±0.16 | 0.59±0.14 | 0.54±0.07 | 0.48±0.07 | |
M10 | 2.21±0.29 | 1.67±0.25 | 0.99±0.13 | 0.93±0.13 | 0.18±0.03 | 0.22±0.06 | 0.19±0.02 | 0.21±0.06 | |
M11 | 2.23±0.26 | 2.72±0.42 | 1.87±0.24 | 1.96±0.27 | 0.24±0.05 | 0.28±0.04 | 0.22±0.03 | 0.45±0.16 | |
M12 | 3.82±0.40 | 3.56±0.38 | 3.38±0.45 | 3.09±0.31 | 0.64±0.11 | 0.72±0.08 | 0.96±0.20 | 1.16±0.25 |
检测部位Sites | 非黑化的草原沙蜥 “Non-melanistic” P. frontalis | 黑化的变色沙蜥 “Melanistic” P. versicolor | |||||
---|---|---|---|---|---|---|---|
第1天vs.第8天 1st day vs. 8th day | 第1天vs.第9天 1st day vs. 9th day | 第1天vs.第10天 1st day vs. 10th day | 第1天vs.第8天 1st day vs. 8th day | 第1天vs.第9天 1st day vs. 9th day | 第1天vs.第10天 1st day vs. 10th day | ||
M1 | t28 = 1.085, P = 0.287 | t27 = 1.346, P = 0.189 | t27 = 1.742, P = 0.093 | t28 = 1.660, P = 0.108 | t28 = 1.659, P = 0.109 | t27 = 1.646, P = 0.112 | |
M2 | t28 = 1.382, P = 0.178 | t27 = 1.724, P = 0.096 | t27 = 1.990, P = 0.057 | t28 = 3.598, P = 0.001* | t27 = 4.297, P < 0.001* | t27 = 3.099, P = 0.005* | |
M3 | t28 = 2.376, P = 0.025* | t27 = 3.773, P = 0.001* | t27 = 1.828, P = 0.079 | t27 = 4.385, P < 0.001* | t27 = 3.051, P = 0.005* | t27 = 2.995, P = 0.006* | |
M4 | t28 = 0.741, P = 0.465 | t27 = 0.530, P = 0.600 | t27 = 0.515, P = 0.611 | t28 = 3.669, P = 0.001* | t27 = 3.749, P = 0.001* | t27 = 3.438, P = 0.002* | |
M5 | t28 = -0.644, P = 0.525 | t28 = -0.909, P = 0.372 | t27 = -1.476, P = 0.152 | t28 = 2.473, P = 0.020* | t28 = 2.205, P = 0.036* | t27 = 1.611, P = 0.119 | |
M6 | t27 = -0.348, P = 0.731 | t26 = 0.467, P = 0.644 | t23 = 1.593, P = 0.126 | t27 = -2.686, P = 0.012* | t26 = -3.366, P = 0.002* | t23 = 2.248, P = 0.035* | |
M7 | t28 = -1.010, P = 0.321 | t28 = -0.383, P = 0.705 | t27 = -0.759, P = 0.455 | t28 = -2.472, P = 0.020* | t28 = -2.891, P = 0.007* | t27 = 2.686, P = 0.012* | |
M8 | t16 = -0.068, P = 0.947 | t16 = -0.111, P = 0.913 | t16 = -1.789, P = 0.095 | t16 = -0.527, P = 0.606 | t16 = -0.396, P = 0.698 | t16 = -0.100, P = 0.922 | |
M9 | t17 = 0.059, P = 0.954 | t17 = 0.552, P = 0.589 | t17 = 0.126, P = 0.902 | t17 = -0.208, P = 0.838 | t17 = 0.005, P = 0.996 | t17 = -0.229, P = 0.822 | |
M10 | t16 = -1.477, P = 0.162 | t16 = -4.168, P = 0.001* | t16 = -4.049, P = 0.001* | t16 = 0.639, P = 0.533 | t16 = 0.046, P = 0.663 | t16 = 0.564, P = 0.582 | |
M11 | t16 = 1.092, P = 0.293 | t16 = -0.899, P = 0.384 | t16 = -0.259, P = 0.799 | t16 = 0.349, P = 0.733 | t16 = -0.405, P = 0.691 | t16 = -1.018, P = 0.372 | |
M12 | t16 = -0.261, P = 0.798 | t16 = -0.605, P = 0.555 | t16 = -1.630, P = 0.125 | t16 = 1.428, P = 0.175 | t16 = -1.847, P = 0.086 | t16 = 2.235, P = 0.051 |
表2 黑化的变色沙蜥与非黑化的草原沙蜥各测量部位移植实验前后反射率的配对t检验
Table 2 Paired t test analyses on reflectivity for each site in lizards before and after transplantation
检测部位Sites | 非黑化的草原沙蜥 “Non-melanistic” P. frontalis | 黑化的变色沙蜥 “Melanistic” P. versicolor | |||||
---|---|---|---|---|---|---|---|
第1天vs.第8天 1st day vs. 8th day | 第1天vs.第9天 1st day vs. 9th day | 第1天vs.第10天 1st day vs. 10th day | 第1天vs.第8天 1st day vs. 8th day | 第1天vs.第9天 1st day vs. 9th day | 第1天vs.第10天 1st day vs. 10th day | ||
M1 | t28 = 1.085, P = 0.287 | t27 = 1.346, P = 0.189 | t27 = 1.742, P = 0.093 | t28 = 1.660, P = 0.108 | t28 = 1.659, P = 0.109 | t27 = 1.646, P = 0.112 | |
M2 | t28 = 1.382, P = 0.178 | t27 = 1.724, P = 0.096 | t27 = 1.990, P = 0.057 | t28 = 3.598, P = 0.001* | t27 = 4.297, P < 0.001* | t27 = 3.099, P = 0.005* | |
M3 | t28 = 2.376, P = 0.025* | t27 = 3.773, P = 0.001* | t27 = 1.828, P = 0.079 | t27 = 4.385, P < 0.001* | t27 = 3.051, P = 0.005* | t27 = 2.995, P = 0.006* | |
M4 | t28 = 0.741, P = 0.465 | t27 = 0.530, P = 0.600 | t27 = 0.515, P = 0.611 | t28 = 3.669, P = 0.001* | t27 = 3.749, P = 0.001* | t27 = 3.438, P = 0.002* | |
M5 | t28 = -0.644, P = 0.525 | t28 = -0.909, P = 0.372 | t27 = -1.476, P = 0.152 | t28 = 2.473, P = 0.020* | t28 = 2.205, P = 0.036* | t27 = 1.611, P = 0.119 | |
M6 | t27 = -0.348, P = 0.731 | t26 = 0.467, P = 0.644 | t23 = 1.593, P = 0.126 | t27 = -2.686, P = 0.012* | t26 = -3.366, P = 0.002* | t23 = 2.248, P = 0.035* | |
M7 | t28 = -1.010, P = 0.321 | t28 = -0.383, P = 0.705 | t27 = -0.759, P = 0.455 | t28 = -2.472, P = 0.020* | t28 = -2.891, P = 0.007* | t27 = 2.686, P = 0.012* | |
M8 | t16 = -0.068, P = 0.947 | t16 = -0.111, P = 0.913 | t16 = -1.789, P = 0.095 | t16 = -0.527, P = 0.606 | t16 = -0.396, P = 0.698 | t16 = -0.100, P = 0.922 | |
M9 | t17 = 0.059, P = 0.954 | t17 = 0.552, P = 0.589 | t17 = 0.126, P = 0.902 | t17 = -0.208, P = 0.838 | t17 = 0.005, P = 0.996 | t17 = -0.229, P = 0.822 | |
M10 | t16 = -1.477, P = 0.162 | t16 = -4.168, P = 0.001* | t16 = -4.049, P = 0.001* | t16 = 0.639, P = 0.533 | t16 = 0.046, P = 0.663 | t16 = 0.564, P = 0.582 | |
M11 | t16 = 1.092, P = 0.293 | t16 = -0.899, P = 0.384 | t16 = -0.259, P = 0.799 | t16 = 0.349, P = 0.733 | t16 = -0.405, P = 0.691 | t16 = -1.018, P = 0.372 | |
M12 | t16 = -0.261, P = 0.798 | t16 = -0.605, P = 0.555 | t16 = -1.630, P = 0.125 | t16 = 1.428, P = 0.175 | t16 = -1.847, P = 0.086 | t16 = 2.235, P = 0.051 |
[24] | Rosenblum EB, Hoekstra HE, Nachman MW (2004) Adaptive reptile color variation and the evolution of the Mc1r gene. Evolution, 58, 1794-1808. |
[25] | Rosenblum EB, Römpler H, Schöneberg T, Hoekstrac HE (2010) Molecular and functional basis of phenotypic convergence in white lizards at white sands. Proceedings of the National Academy of Sciences, USA, 107, 2113-2117. |
[26] | Schlichting CD, Pigliucci M (1999) Phenotypic evolution: a reaction norm perspective. American Journal of Physical Anthropology, 109, 144-146. |
[27] | Stegen JC, Gienger CM, Sun LX (2004) The control of color change in the Pacific tree frog, Hyla regilla. Canadian Journal of Zoology, 82, 889-896. |
[28] | Stuart-Fox DM, Moussalli A, Marshall NJ, Owens IPF (2003) Conspicuous males suffer higher predation risk: visual modelling and experimental evidence from lizards. Animal Behaviour, 66, 541-550. |
[29] | Stuart-Fox D, Moussalli A, Whiting MJ (2008) Predator- specific camouflage in chameleons. Biology Letters, 4, 326-329. |
[30] | Thurman CL (1988) Rhythmic physiological color change in crustacea: a review. Comparative Biochemistry & Phy- siology Part C. Comparative Pharmacology, 91, 171-185. |
[31] | Vignieri SN, Larson JG, Hoekstra HE (2010) The selective advantage of crypsis in mice. Evolution, 64, 2153-2158. |
[32] | Vroonen J, Vervust B, Fulgione D, Maselli V, Damme RV (2012) Physiological colour change in the Moorish gecko, Tarentola mauritanica (Squamata: Gekkonidae): effects of background, light, and temperature. Biological Journal of the Linnean Society, 107, 182-191. |
[33] | Wang YZ, Fu JZ (2004) Cladogenesis and vicariance patterns in the toad-headed lizard Phrynocephalus versicolor species complex. Copeia, 2004, 199-206. |
[34] | Woolley P (1957) Colour change in a chelonian. Nature, 179, 1255-1256. |
[35] | Yang CC, Cai Y, Liang W (2011) Analysis of the correlation between plumage color and male quality in yellow- throated buntings. Sichuan Journal of Zoology, 30(1), 1-5. (in Chinese with English abstract) |
[杨灿朝, 蔡燕, 梁伟 (2011) 黄喉鹀的羽色与雄鸟质量相关性分析. 四川动物, 30(1), 1-5.] | |
[36] | Yang CC, Liang W (2013) Using spectra and visual modeling to study animal coloration. Zoological Research, 34, 564-573. (in Chinese with English abstract) |
[杨灿朝, 梁伟 (2013) 通过光谱与视觉模型研究动物体色. 动物学研究, 34, 564-573.] | |
[37] | Zhao EM, Jiang YM, Huang QY, Hu SQ, Fei L, Ye CY (1998) Latin-Chinese-English Names of Amphibians and Reptiles. Science Press, Beijing. (in Chinese) |
[赵尔宓, 江跃明, 黄庆云, 胡淑琴, 费梁, 叶昌媛 (1998) 拉汉英两栖爬行动物名称. 科学出版社, 北京.] | |
[38] | Zhao EM, Zhao KT, Zhou KY (1999) Fauna Sinica, Reptilia Vol. 2, Squamata, Lacertilia. Science Press, Beijing. (in Chinese) |
[赵尔宓, 赵肯堂, 周开亚 (1999) 中国动物志, 爬行纲第二卷, 有鳞目, 蜥蜴亚目. 科学出版社, 北京.] | |
[39] | Zhao X, Bi JH, Liu R, He ZC, Chen SY (2013) The feeding habits of toad-headed lizard (Phrynocephalus frontalis) in autumn. Chinese Journal of Zoology, 48, 321-330. (in Chinese with English abstract) |
[赵雪, 毕俊怀, 刘睿, 何志超, 陈绍勇 (2013) 草原沙蜥秋季食性分析. 动物学杂志, 48, 321-330.] | |
[1] | Alibardi L (2013) Observations on the ultrastructure and distribution of chromatophores in the skin of chelonians. Acta Zoologica, 94, 222-232. |
[2] | Barlett PN, Gates DM (1966) The energy budget of a lizard on a tree trunk. Ecology, 48, 315-322. |
[3] | Bennett ATD, Cuthill IC (1994) Ultraviolet vision in birds: what is its function? Vision Research, 34, 1471-1478. |
[4] | Boback SM, Siefferman LM (2010) Variation in color and color change in island and mainland boas (Boa constrictor). Journal of Herpetology, 44, 506-515. |
[5] | Cai B (2014) Rapid color variation in reptile animals. Bull- etin of Biology, 49(12), 4-6. (in Chinese) |
[蔡波 (2014) 爬行动物体色的快速变化. 生物学通报, 49(12), 4-6.] | |
[6] | Chen Q, Han ZX, Song ZM (1993) A study on the reproduction of lizard Phrynocephalus versicolor. Journal of Lanzhou University, 29, 199-203. (in Chinese with English abstract) |
[陈强, 韩昭雪, 宋志明 (1993) 变色沙蜥繁殖的研究. 兰州大学学报, 29, 199-203.] | |
[7] | Choi N, Jang Y (2014) Background matching by means of dorsal color change in treefrog populations (Hyla japonica). Journal of Experimental Zoology Part A Ecological Genetics & Physiology, 321, 108-118. |
[8] | Cooper WE, Greenberg N (1992) Reptilian coloration and behavior. In: Biology of the Reptilia, Vol. 18. Physiology E: Hormones, Brain and Behavior (eds Gans C, Crews D), pp. 298-422. University of Chicago Press, Chicago. |
[9] | Cott HB (1940) Adaptive Coloration in Animals. Methuen and Co. Ltd., London. |
[10] | Devi SF, Adnan M (2009) Camouflage, communication and thermoregulation: lessons from colour changing org- anisms. Philosophical Transactions of the Royal Society B: Biological Sciences, 364, 463-470. |
[11] | Geen MRS, Johnston GR (2014) Coloration affects heating and cooling in three color morphs of the Australian bluetongue lizard, Tiliqua scincoides. Journal of Thermal Biology, 43, 54-60. |
[12] | Guo L, Zhao CG (2001) Study on the reproductive strategy of lizard Phrynocephalus frontalis. Acta Scientiarum Naturalium Universitatis Neimongol (Natural Science Edition), 32, 214-275. (in Chinese with English abstract) |
[郭砺, 赵辰光 (2001) 草原沙蜥(Phrynocephalus frontalis)生殖策略的研究. 内蒙古大学学报(自然科学版), 32, 214-275.] | |
[13] | Hanlon R (2007) Cephalopod dynamic camouflage. Current Biology, 17, 400-404. |
[14] | Hemmi JM, Marshall J, Pix W, Vorobyev M, Zeil J (2006) The variable colours of the fiddler crab Uca vomeris and their relation to background and predation. Journal of Experimental Biology, 209, 4140-4153. |
[15] | Jin YT, Liao PH (2015) An elevational trend of body size variation in a cold-climate agamid lizard, Phrynocephalus theobaldi. Current Zoology, 61, 444-453. |
[16] | Mäthger LM, Land MF, Siebeck UE, Marshall NJ (2003) Rapid colour changes in multilayer reflecting stripes in the paradise whiptail, Pentapodus paradiseus. Journal of Experimental Biology, 206, 3607-3613. |
[17] | Merilaita S, Lyytinen A, Mappes J (2001) Selection for cryptic coloration in a visually heterogeneous habitat. Proceedings of the Royal Society of London B: Biological Sciences, 268, 1925-1929. |
[18] | Moretz JA, Morris MR (2003) Evolutionarily labile responses to a signal of aggressive intent. Proceedings of the Royal Society B: Biological Sciences, 270, 2271-2277. |
[19] | Nery LEM, Castrucci AMDL (1997) Pigment cell signalling for physiological color change. Comparative Biochemistry & Physiology Part A Physiology, 118, 1135-1144. |
[20] | Norris KS (1965) Color adaptation in desert reptiles and its thermal relationships. In: Lizard Ecology: A Symposium (ed. Milstead WW), pp. 162-226. University of Missouri Press, Columbia, Missouri. |
[21] | Porter WP, Gates DM (1969) Thermodynamic equilibria of animals with environment. Ecological Monographs, 39, 227-244. |
[22] | Qu YF, Gao JF, Mao LX, Ji X (2011) Sexual dimorphism and female reproduction in two sympatric toad-headed lizards, Phrynocephalus frontalis and P. versicolor (Agamidae). Animal Biology, 61, 139-151. |
[23] | Quan RZ, Chen DF, Zhang JF (2006) Studies on the hunger-resistance and the feeding habit of Phrynocephalus versicolor. Journal of Shihezi University (Natural Science), 24, 436-438. (in Chinese with English abstract) |
[全仁哲, 陈道富, 张继锋 (2006) 变色沙蜥(Phryno- cephalus versicolor)的耐饥能力与食性研究. 石河子大学学报(自然科学版), 24, 436-438.] |
[1] | 陶夏秋,蒋志刚,吉晟男,初红军,李娜,杨道德,李春旺. 阿尔泰山前荒漠两种沙蜥体况指数特征及其与生态因子的关系[J]. 生物多样性, 2020, 28(4): 412-421. |
[2] | 陈哲, 张姜, 傅杭飞, 许争争, 邓坤正, 张加勇. 基于形态特征和线粒体COI基因探讨扶桑绵粉蚧物种的有效性并记述一体色变异型扶桑绵粉蚧[J]. 生物多样性, 2012, 20(4): 443-450. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn