生物多样性 ›› 2025, Vol. 33 ›› Issue (9): 25336.  DOI: 10.17520/biods.2025336  cstr: 32101.14.biods.2025336

• 综述 • 上一篇    下一篇

极端耐干苔藓齿肋赤藓的耐干适应机制与作物改 良启示

杨启林1,2,3, 李小双1,2,3*, 杨瑞瑞1,2,3, 刘秀瑾1,2,3, 梁玉青1,2,3, 张欢1,2,3, 银芳柳1,2,3, 张道远1,2,3*   

  1. 1. 中国科学院新疆生态与地理研究所干旱区生态安全与可持续发展全国重点实验室, 乌鲁木齐 830011; 2. 中国科学院新疆生态与地理研 究所新疆抗逆植物基因资源保育与利用重点实验室, 乌鲁木齐 830011; 3. 中国科学院大学, 北京 100049
  • 收稿日期:2025-08-22 修回日期:2025-09-25 接受日期:2025-09-26 出版日期:2025-09-20 发布日期:2025-10-31
  • 通讯作者: 李小双, 张道远
  • 基金资助:
    新疆科技创新领军人才项目(2022TSYCLJ0049); 中国科学院稳定支持基础研究领域青年团队(YSBR-119)

Desiccation tolerance mechanisms of the extremely tolerant moss Syntrichia caninervis and its implications for crop improvement

Qilin Yang1,2,3, Xiaoshuang Li1,2,3*, Ruirui Yang1,2,3, Xiujin Liu1,2,3, Yuqing Liang1,2,3, Huan Zhang1,2,3, Fangliu Yin1,2,3, Daoyuan Zhang1,2,3*   

  1. 1 State Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China 

    2 Xinjiang Key Laboratory of Conservation and Utilization of Plant Stress Resistance Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China 

    3 University of Chinese Academy of Sciences, Beijing 100049, China

  • Received:2025-08-22 Revised:2025-09-25 Accepted:2025-09-26 Online:2025-09-20 Published:2025-10-31
  • Contact: Xiaoshuang Li, Daoyuan Zhang
  • Supported by:
    Xinjiang Science and Technology Innovation Leading Talent Project(2022TSYCLJ0049); Stable Support for Youth Teams in Basic Research Field of the Chinese Academy of Sciences(YSBR-119)

摘要: 耐干性(desiccation tolerance, DT)是植物应对极端水分胁迫的独特生存策略, 赋予植物在相对含水量低于30%甚至接近 完全失水状态下存活并在复水后迅速恢复生理活性的能力。苔藓植物作为早期陆地开拓者, 进化出了精密的耐干策略, 其中, 荒漠模式植物齿肋赤藓(Syntrichia caninervis)因其卓越的耐干能力而备受关注。本综述系统阐述了齿肋赤藓耐干适应策略的 研究进展。首先, 在形态结构层面, 叶片背卷、表面疣状突起及白色芒尖等特征共同构成了其适应干旱环境的第一道防线。 其次, 在生理生化响应上, 高效的渗透调节系统(如可溶性糖和脯氨酸积累)、强大的抗氧化防御体系以及在失水状态下对叶 绿体等细胞器结构的保护机制, 使其能快速恢复光合活性。第三, 多组学(基因组、转录组、蛋白质组和代谢组)研究揭示, 齿 肋赤藓在脱水过程中以细胞保护和代谢抑制(进入休眠)为主要策略, 而在复水过程中则迅速启动细胞修复与代谢恢复机制。 LEAELIP等关键基因家族的显著扩张和串联重复, 以及多种转录因子(如AP2/ERFABIbHLHMYB)的协同调控, 构成了 其耐干性的分子基础。高效遗传转化体系的建立为基因功能验证提供了有力工具, 已鉴定的60余个抗逆基因在模式植物及作 物中展现出改良抗旱、耐盐等性状的巨大潜力。本文最后展望了未来研究方向, 包括极端水分变化的感知与信号转导、复杂 调控网络的精细解析以及耐干基因资源的深度挖掘与应用, 旨在为理解植物耐干机制的进化与适应提供新视角, 并为培育 “智慧型”抗旱作物提供理论依据和基因宝库。

关键词: 耐干性, 齿肋赤藓, 生理适应, 分子机制, 基因资源, 作物抗旱育种

Abstract

Background & Aims: Desiccation tolerance (DT) is a remarkable survival strategy in plants, allowing them to withstand extreme water deficits and resume full metabolic function upon rehydration. While this trait is crucial for life in arid environments, its underlying mechanisms vary significantly across the plant kingdom. As pioneers of terrestrial ecosystems, bryophytes exhibit exceptional DT, with the desert moss Syntrichia caninervis representing a model organism for its extraordinary resilience. Despite growing interest in its stress physiology, systematic syntheses addressing its integrated adaptive strategies across multiple biological levels remain limited. A comprehensive analysis of DT in S. caninervis is thus critical to unraveling its role in shaping plant evolution, optimizing survival in harsh climates, and providing novel genetic resources for crop improvement. 

Progress: This review presents a systematic elucidation of the multi-level adaptive strategies for DT in S. caninervis. Morphologically, features such as inward leaf curling, surface papillae, and hyaline awns constitute a first line of defense. Physiologically, the moss employs an efficient osmotic adjustment system, a robust antioxidant defense network, and mechanisms for protecting subcellular structures, which collectively enable the rapid recovery of photosynthesis. Multi-omics analyses have revealed a two-phase survival strategy: entering a quiescent state via cellular protection and metabolic depression during dehydration, followed by the rapid activation of cellular repair and metabolic recovery upon rehydration. The molecular basis of this tolerance is linked to the significant expansion and tandem duplication of key gene families, such as late embryogenesis abundant proteins (LEA) and early light-inducible proteins (ELIP), alongside synergistic regulation by diverse transcription factors. Furthermore, the establishment of an efficient genetic transformation system has validated the function of over 60 stress-responsive genes with proven potential for enhancing drought and salt tolerance in crops. 

Prospects: Current research on the DT mechanisms of S. caninervis is advancing rapidly, yet critical knowledge gaps persist in understanding its genetic architecture, signaling pathways, and evolutionary trajectories. Addressing these fundamental questions requires multidisciplinary approaches integrating genomics, proteomics, metabolomics, and developmental biology. This line of investigation holds significant implications for elucidating the evolutionary innovation of plant stress tolerance, identifying the drivers of adaptation to extreme environments, and deciphering the intricate regulatory networks governing cellular survival. Systematic exploration of S. caninervis will ultimately provide both a theoretical framework for plant adaptation and a valuable gene repository for breeding “climate-smart” drought-resistant crops.

Key words: desiccation tolerance, Syntrichia caninervis, physiological adaptation, molecular mechanism, genetic resources, crop drought breeding