生物多样性 ›› 2024, Vol. 32 ›› Issue (12): 24325. DOI: 10.17520/biods.2024325 cstr: 32101.14.biods.2024325
王斌1,2(), 钟艺倩1,2,3, 杨美雪1,2,3, 吴淼锐1,2, 王艳萍1,2,3, 陆芳1,2(
), 陶旺兰1,2, 李健星1,2(
), 赵弘明1,2, 刘晟源2,4, 向悟生1,2(
), 李先琨1,2,*(
)(
)
收稿日期:
2024-07-22
接受日期:
2024-11-15
出版日期:
2024-12-20
发布日期:
2025-01-14
通讯作者:
E-mail: 基金资助:
Bin Wang1,2(), Yiqian Zhong1,2,3, Meixue Yang1,2,3, Miaorui Wu1,2, Yanping Wang1,2,3, Fang Lu1,2(
), Wanglan Tao1,2, Jianxing Li1,2(
), Hongming Zhao1,2, Shengyuan Liu2,4, Wusheng Xiang1,2(
), Xiankun Li1,2,*(
)(
)
Received:
2024-07-22
Accepted:
2024-11-15
Online:
2024-12-20
Published:
2025-01-14
Contact:
E-mail: Supported by:
摘要: 非结构性碳水化合物(non-structural carbohydrates, NSC)是植物碳收支平衡与响应外界环境变化的重要指标。为明确北热带喀斯特季节性雨林优势植物NSC的空间变异及其生态驱动因素, 本研究以不同生境条件下共31个优势树种165株个体为研究对象, 对其叶片NSC及组分(可溶性糖、淀粉)含量进行分析。运用贝叶斯系统发育混合效应模型将NSC变异划分为与物种系统发育相关的和无关的两部分, 并探讨了这两部分变异与地形、土壤性质、生物群落特征及叶片功能性状之间的深层联系。结果表明: (1)优势树种叶片NSC及其组分含量在3个生境之间存在显著的空间差异性, 总体表现为山顶 > 中坡 > 洼地。(2)物种系统发育背景对NSC、淀粉及可溶性糖总变异的解释率分别为53.97%、58.23%和57.88%。生态因子对这三者总变异的解释率分别为48.85%、32.54%和32.64%。值得注意的是, 生态因子对可溶性糖变异的影响更多是通过系统发育相关途径(23.15%)实现, 而对淀粉变异的影响则更依赖于非系统发育相关途径(26.89%)。(3)叶片厚度、枝条木质密度、南北坡向、比叶面积、群落平均胸径、平均海拔和叶绿素含量等对NSC的积累有显著正向效应, 而群落胸高断面积之和与土壤总碳等有显著负向效应。综上所述, 喀斯特季节性雨林中优势树种叶片NSC的空间变异既受到物种遗传差异与进化历史的深刻影响, 也与一系列生态因子的综合作用密切相关。本研究结果体现了不同生境下植物在碳获取、储存及利用策略上的显著适应性分化, 为深入理解喀斯特生态系统的碳循环机制及植物的适应策略提供了新视角。
王斌, 钟艺倩, 杨美雪, 吴淼锐, 王艳萍, 陆芳, 陶旺兰, 李健星, 赵弘明, 刘晟源, 向悟生, 李先琨 (2024) 喀斯特季节性雨林优势树种叶片非结构性碳水化合物空间变异及生态驱动因素. 生物多样性, 32, 24325. DOI: 10.17520/biods.2024325.
Bin Wang, Yiqian Zhong, Meixue Yang, Miaorui Wu, Yanping Wang, Fang Lu, Wanglan Tao, Jianxing Li, Hongming Zhao, Shengyuan Liu, Wusheng Xiang, Xiankun Li (2024) Spatial variation of non-structural carbohydrates in the leaves of dominant tree species and ecological driving factors in a karst seasonal rainforest. Biodiversity Science, 32, 24325. DOI: 10.17520/biods.2024325.
序号 No. | 山顶 Peak | 中坡 Middle slope | 洼地 Depression |
---|---|---|---|
1 | 山榄叶柿 Diospyros siderophylla | 广西牡荆 Vitex kwangsiensis | 中国无忧花 Saraca dives |
2 | 毛叶铁榄 Sinosideroxylon pedunculatum var. pubifolium | 肥牛树 Cephalomappa sinensis | 假玉桂 Celtis timorensis |
3 | 清香木 Pistacia weinmanniifolia | 苹婆 Sterculia monosperma | 对叶榕 Ficus hispida |
4 | 细叶谷木 Memecylon scutellatum | 蚬木 Excentrodendron tonkinense | 广西棋子豆 Archidendron guangxiensis |
5 | 黄梨木 Boniodendron minus | 闭花木 Cleistanthus sumatranus | 日本五月茶 Antidesma japonicum |
6 | 鱼骨木 Psydrax dicocca | 密花核果木 Drypetes congestiflora | 假肥牛树 Cleistanthus petelotii |
7 | 剑叶龙血树 Dracaena cochinchinensis | 网脉核果木 Drypetes perreticulata | 海南大风子 Hydnocarpus hainanensis |
8 | 米念芭 Tirpitzia ovoidea | 割舌树 Walsura robusta | 三角车 Rinorea bengalensis |
9 | 齿叶黄皮 Clausena dunniana | 榕树 Ficus microcarpa | 甜菜树 Yunnanopilia longistaminea |
10 | 子楝树 Decaspermum grcilentum | 浆果楝 Cipadessa baccifera | 秋枫 Bischofia javanica |
11 | 金丝李 Garcinia paucinervis | 金丝李 Garcinia paucinervis | 金丝李 Garcinia paucinervis |
表1 喀斯特季节性雨林3种生境类型下的采样物种名录
Table 1 Sampled species list across the three habitat types in the karst seasonal rainforest
序号 No. | 山顶 Peak | 中坡 Middle slope | 洼地 Depression |
---|---|---|---|
1 | 山榄叶柿 Diospyros siderophylla | 广西牡荆 Vitex kwangsiensis | 中国无忧花 Saraca dives |
2 | 毛叶铁榄 Sinosideroxylon pedunculatum var. pubifolium | 肥牛树 Cephalomappa sinensis | 假玉桂 Celtis timorensis |
3 | 清香木 Pistacia weinmanniifolia | 苹婆 Sterculia monosperma | 对叶榕 Ficus hispida |
4 | 细叶谷木 Memecylon scutellatum | 蚬木 Excentrodendron tonkinense | 广西棋子豆 Archidendron guangxiensis |
5 | 黄梨木 Boniodendron minus | 闭花木 Cleistanthus sumatranus | 日本五月茶 Antidesma japonicum |
6 | 鱼骨木 Psydrax dicocca | 密花核果木 Drypetes congestiflora | 假肥牛树 Cleistanthus petelotii |
7 | 剑叶龙血树 Dracaena cochinchinensis | 网脉核果木 Drypetes perreticulata | 海南大风子 Hydnocarpus hainanensis |
8 | 米念芭 Tirpitzia ovoidea | 割舌树 Walsura robusta | 三角车 Rinorea bengalensis |
9 | 齿叶黄皮 Clausena dunniana | 榕树 Ficus microcarpa | 甜菜树 Yunnanopilia longistaminea |
10 | 子楝树 Decaspermum grcilentum | 浆果楝 Cipadessa baccifera | 秋枫 Bischofia javanica |
11 | 金丝李 Garcinia paucinervis | 金丝李 Garcinia paucinervis | 金丝李 Garcinia paucinervis |
生态因子 Ecological factors | 山顶 Peak | 中坡 Middle slope | 洼地 Depression |
---|---|---|---|
平均海拔 Average elevation (m) | 338.69 ± 11.53a | 273.76 ± 25.18b | 210.99 ± 20.13c |
南北坡向 North-south aspect (°) | 0.24 ± 0.26a | -0.04 ± 0.36b | -0.02 ± 0.60b |
土壤总碳 Total soil carbon (g/kg) | 66.24 ± 17.12a | 56.46 ± 9.36b | 53.91 ± 12.08b |
pH | 6.89 ± 0.34b | 6.92 ± 0.42b | 7.23 ± 0.26a |
群落丰富度 Community richness | 31.67 ± 4.58a | 26.87 ± 6.27b | 23.35 ± 6.06c |
群落平均胸径 Mean DBH of community (cm) | 5.44 ± 0.42a | 5.57 ± 0.83a | 5.27 ± 0.75a |
群落最大高度 Maximum community height (m) | 13.84 ± 2.96c | 16.59 ± 3.80b | 19.59 ± 3.76a |
群落胸高断面积之和 Sum of community basal area (cm2) | 10,434.27 ± 1,411.85b | 11,889.36 ± 3,434.34a | 9,890.07 ± 2,796.09b |
叶片厚度 Leaf thickness (mm) | 0.24 ± 0.11ab | 0.21 ± 0.08b | 0.28 ± 0.10a |
比叶面积 Specific leaf area (cm2/g) | 95.77 ± 62.11b | 117.18 ± 65.58ab | 128.9 ± 59.26a |
叶绿素含量 Chlorophyll content (SPAD) | 55.23 ± 10.88a | 49.97 ± 9.89b | 50.83 ± 8.31b |
植物高度 Plant height (m) | 5.9 ± 2.10a | 6.75 ± 3.54a | 6.99 ± 3.45a |
枝条木质密度 Wood density of branches (g/cm3) | 0.75 ± 0.10a | 0.56 ± 0.21b | 0.57 ± 0.18b |
表2 喀斯特季节性雨林3种生境中生态因子的差异(平均值 ± 标准差)
Table 2 Differences in ecological factors across the three habitat types in the karst seasonal rainforest (mean ± SD)
生态因子 Ecological factors | 山顶 Peak | 中坡 Middle slope | 洼地 Depression |
---|---|---|---|
平均海拔 Average elevation (m) | 338.69 ± 11.53a | 273.76 ± 25.18b | 210.99 ± 20.13c |
南北坡向 North-south aspect (°) | 0.24 ± 0.26a | -0.04 ± 0.36b | -0.02 ± 0.60b |
土壤总碳 Total soil carbon (g/kg) | 66.24 ± 17.12a | 56.46 ± 9.36b | 53.91 ± 12.08b |
pH | 6.89 ± 0.34b | 6.92 ± 0.42b | 7.23 ± 0.26a |
群落丰富度 Community richness | 31.67 ± 4.58a | 26.87 ± 6.27b | 23.35 ± 6.06c |
群落平均胸径 Mean DBH of community (cm) | 5.44 ± 0.42a | 5.57 ± 0.83a | 5.27 ± 0.75a |
群落最大高度 Maximum community height (m) | 13.84 ± 2.96c | 16.59 ± 3.80b | 19.59 ± 3.76a |
群落胸高断面积之和 Sum of community basal area (cm2) | 10,434.27 ± 1,411.85b | 11,889.36 ± 3,434.34a | 9,890.07 ± 2,796.09b |
叶片厚度 Leaf thickness (mm) | 0.24 ± 0.11ab | 0.21 ± 0.08b | 0.28 ± 0.10a |
比叶面积 Specific leaf area (cm2/g) | 95.77 ± 62.11b | 117.18 ± 65.58ab | 128.9 ± 59.26a |
叶绿素含量 Chlorophyll content (SPAD) | 55.23 ± 10.88a | 49.97 ± 9.89b | 50.83 ± 8.31b |
植物高度 Plant height (m) | 5.9 ± 2.10a | 6.75 ± 3.54a | 6.99 ± 3.45a |
枝条木质密度 Wood density of branches (g/cm3) | 0.75 ± 0.10a | 0.56 ± 0.21b | 0.57 ± 0.18b |
图1 不同生境优势树种叶片非结构性碳水化合物(NSC)及其组分含量的比较。* P < 0.05; ** P < 0.01; *** P < 0.001; **** P < 0.0001。
Fig. 1 Comparison of non-structural carbohydrates (NSC) and their component contents in leaves of dominant tree species across different habitats. * P < 0.05; ** P < 0.01; *** P < 0.001; **** P < 0.0001.
图2 金丝李叶片非结构性碳水化合物(NSC)及其组分含量在不同生境的比较。* P < 0.05; ** P < 0.01。
Fig. 2 Comparison of non-structural carbohydrates (NSC) and their component contents in Garcinia paucinervis leaves across different habitats. * P < 0.05; ** P < 0.01.
图4 与系统发育结构相关联的不同物种间叶片非结构性碳水化合物(NSC)的差异性。每个中心点代表随机截距多次估计值的平均值, 粗线为标准误, 细线为5%-95%置信区间。0值代表整体平均值, 正值代表比整体平均值大, 负值代表比整体平均值小。实心图形代表置信区间内不包含零(P < 0.05, 统计显著), 空心图形则相反(P ≥ 0.05, 统计不显著)。
Fig. 4 Differences in non-structural carbohydrates (NSC) in leaves among different species related to phylogenetic structure. Each center point indicates the mean of multiple estimates for a random intercept. Thick lines denote standard errors, and thin lines represent 5%-95% confidence intervals. A value of zero represents the overall mean; positive values indicate levels greater than the overall mean, and negative values indicate levels less than the overall mean. Solid symbols indicate confidence intervals that do not include zero (P < 0.05, statistically significant), while open symbols indicate the opposite (P ≥ 0.05, not statistically significant).
图5 生态因子对叶片非结构性碳水化合物(NSC)及其组分的影响。红色方块与线段表示与物种系统发育结构相关的生态因子的回归系数; 蓝色圆圈与线段表示与物种系统发育结构无关的生态因子的回归系数。中心点代表回归系数的平均值, 粗线为标准误, 细线为5%-95%置信区间。实心图形代表置信区间内不包含零(P < 0.05, 统计显著), 空心图形则相反(P ≥ 0.05, 统计不显著)。
Fig. 5 Effects of ecological factors on non-structural carbohydrates (NSC) and their component contents in leaves. Red squares with lines represent regression coefficients associated with species phylogenetic structure, while blue circles with lines show regression coefficients independent of species phylogenetic structure. Each center point indicates the mean of multiple estimates for a regression coefficient. Thick lines denote standard errors, and thin lines represent 5%-95% confidence intervals. Solid symbols indicate confidence intervals that do not include zero (P < 0.05, statistically significant), while open symbols indicate the opposite (P ≥ 0.05, not statistically significant).
[1] | Bai KD, Lü SH, Ning SJ, Zeng DJ, Guo YL, Wang B (2019) Leaf nutrient concentrations associated with phylogeny, leaf habit and soil chemistry in tropical karst seasonal rainforest tree species. Plant and Soil, 434, 305-326. |
[2] | Barrow NJ, Hartemink AE (2023) The effects of pH on nutrient availability depend on both soils and plants. Plant and Soil, 487, 21-37. |
[3] | Benito B (2023) collinear: R Package for Seamless Multicollinearity Management. https://blasbenito.github.io/collinear/. (accessed on 2024-09-01) |
[4] | Blumstein M, Gersony J, Martínez-Vilalta J, Sala AN (2023) Global variation in nonstructural carbohydrate stores in response to climate. Global Change Biology, 29, 1854-1869. |
[5] | Bürkner PC (2021) Bayesian item response modeling in R with brms and stan. Journal of Statistical Software, 100(5), 1-54. |
[6] | Buysse J, Merckx R (1993) An improved colorimetric method to quantify sugar content of plant tissue. Journal of Experimental Botany, 44, 1627-1629. |
[7] | Condit R (1998) Tropical Forest Census Plots: Methods and Results from Barro Colorado Island, Panama and a Comparison with Other Plots. Springer, Berlin. |
[8] | Dong YP, Wang B, Wei YL, He F, Lu F, Li DX, Huang FZ, Guo YL, Xiang WS, Li XK (2023) Leaf micromorphological, photosynthetic physiological characteristics and their ecological adaptability of dominant tree species in a karst seasonal rainforest in Guangxi, China. Guihaia, 43, 415-428. (in Chinese with English abstract) |
[董燕平, 王斌, 韦玉莲, 何凤, 陆芳, 李冬兴, 黄甫昭, 郭屹立, 向悟生, 李先琨 (2023) 喀斯特季节性雨林优势树种叶片微形态与光合生理特征及其生态适应性. 广西植物, 43, 415-428.] | |
[9] |
Dussarrat T, Decros G, Díaz FP, Gibon Y, Latorre C, Rolin D, Gutiérrez RA, Pétriacq P (2021) Another tale from the harsh world: How plants adapt to extreme environments. Annual Plant Reviews Online, 4, 551-603.
DOI |
[10] | Fan HK, Zeng T, Jin GZ, Liu ZL (2024) Leaf trait variation and trade-offs among growth types of broadleaf plants in Xiao Hinggan Mountains. Chinese Journal of Plant Ecology, 48, 364-376. (in Chinese with English abstract) |
[范宏坤, 曾涛, 金光泽, 刘志理 (2024) 小兴安岭不同生长型阔叶植物叶性状变异及权衡. 植物生态学报, 48, 364-376.]
DOI |
|
[11] | Guo YL, Wang B, Mallik AU, Huang FZ, Xiang WS, Ding T, Wen SJ, Lu SH, Li DX, He YL, Li XK (2017) Topographic species-habitat associations of tree species in a heterogeneous tropical karst seasonal rainforest, China. Journal of Plant Ecology, 10, 450-460. |
[12] |
Guo YL, Wang B, Xiang WS, Ding T, Lu SH, Huang YS, Huang FZ, Li DX, Li XK (2015) Spatial distribution of tree species in a tropical karst seasonal rainforest in Nonggang, Guangxi, southern China. Biodiversity Science, 23, 183-191. (in Chinese with English abstract)
DOI |
[郭屹立, 王斌, 向悟生, 丁涛, 陆树华, 黄俞淞, 黄甫昭, 李冬兴, 李先琨 (2015) 广西弄岗北热带喀斯特季节性雨林监测样地种群空间点格局分析. 生物多样性, 23, 183-191.]
DOI |
|
[13] |
Hartmann H, Trumbore S (2016) Understanding the roles of nonstructural carbohydrates in forest trees—From what we can measure to what we want to know. New Phytologist, 211, 386-403.
DOI PMID |
[14] | Huang FZ, Li DX, Wang B, Xiang WS, Guo YL, Wen SJ, Chen T, Li XK (2019) Foliar stable carbon isotope composition and water use efficiency of plant in the karst seasonal rainforest. Chinese Journal of Applied Ecology, 30, 1833-1839. (in Chinese with English abstract) |
[黄甫昭, 李冬兴, 王斌, 向悟生, 郭屹立, 文淑均, 陈婷, 李先琨 (2019) 喀斯特季节性雨林植物叶片碳同位素组成及水分利用效率. 应用生态学报, 30, 1833-1839.]
DOI |
|
[15] |
Jin Y, Qian H (2019) V.PhyloMaker: An R package that can generate very large phylogenies for vascular plants. Ecography, 42, 1353-1359.
DOI |
[16] | Katabuchi M (2015) LeafArea: An R package for rapid digital image analysis of leaf area. Ecological Research, 30, 1073-1077. |
[17] | King DA, Davies SJ, Nur Supardi MN, Tan S (2005) Tree growth is related to light interception and wood density in two mixed dipterocarp forests of Malaysia. Functional Ecology, 19, 445-453. |
[18] | Li SY, Zhang ZX, Rao LY (2022) Responses of non-structural carbohydrates and growth hormone in Morus alba seedlings to flooding stress. Chinese Journal of Plant Ecology, 46, 311-320. (in Chinese with English abstract) |
[李思源, 张照鑫, 饶良懿 (2022) 桑苗非结构性碳水化合物和生长激素对水淹胁迫的响应. 植物生态学报, 46, 311-320.]
DOI |
|
[19] | Li WB, Hartmann H, Adams HD, Zhang HX, Jin CJ, Zhao CY, Guan DX, Wang AZ, Yuan FH, Wu JB (2018) The sweet side of global change-dynamic responses of non-structural carbohydrates to drought, elevated CO2 and nitrogen fertilization in tree species. Tree Physiology, 38, 1706-1723. |
[20] | Liu B et al (2024) China Checklist of Higher Plants. In: Catalogueof Life China: 2024 Annual Checklist (ed. the Biodiversity Committee of Chinese Academy of Sciences). Beijing, China. http://col.especies.cn/. (accessed on 2024-09-01) |
[21] | Martínez-Vilalta J, Sala AN, Asensio D, Galiano L, Hoch G, Palacio S, Piper FI, Lloret F (2016) Dynamics of non-structural carbohydrates in terrestrial plants: A global synthesis. Ecological Monographs, 86, 495-516. |
[22] | Nakagawa S, Schielzeth H (2013) A general and simple method for obtaining R2 from generalized linear mixed- effects models. Methods in Ecology and Evolution, 4, 133-142. |
[23] | O’Brien MJ, Reynolds G, Ong R, Hector A (2017) Resistance of tropical seedlings to drought is mediated by neighbourhood diversity. Nature Ecology & Evolution, 1, 1643-1648. |
[24] | Pan QM, Han XG, Bai YF, Yang JC (2002) Advances in physiology and ecology studies on stored non-structure carbohydrates in plants. Chinese Bulletin of Botany, 19, 30-38. (in Chinese with English abstract) |
[潘庆民, 韩兴国, 白永飞, 杨景成 (2002) 植物非结构性贮藏碳水化合物的生理生态学研究进展. 植物学通报, 19, 30-38.] | |
[25] |
Paradis E, Schliep K (2019) ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics, 35, 526-528.
DOI PMID |
[26] |
Peng YK, Bloomfield KJ, Prentice IC (2020) A theory of plant function helps to explain leaf-trait and productivity responses to elevation. New Phytologist, 226, 1274-1284.
DOI PMID |
[27] | Ping XY, Zhou GS, Sun JS (2010) Advances in the study of photosynthate allocation and its controls. Chinese Journal of Plant Ecology, 34, 100-111. (in Chinese with English abstract) |
[平晓燕, 周广胜, 孙敬松 (2010) 植物光合产物分配及其影响因子研究进展. 植物生态学报, 34, 100-111.]
DOI |
|
[28] | Pinheiro J, Bates D, R Core Team (2024) nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1-167. https://CRAN.R-project.org/package=nlme. (accessed on 2024-09-01) |
[29] | Qin HJ, Jiao L, Zhou Y, Xue RH, Qi CL, Du DS (2022) Effects of altitudes on non-structural carbohydrate allocation in different dominate trees in Qilian Mountains, China. Chinese Journal of Plant Ecology, 46, 208-219. (in Chinese with English abstract) |
[秦慧君, 焦亮, 周怡, 薛儒鸿, 柒常亮, 杜达石 (2022) 祁连山优势树木碳水化合物资源分配的海拔和树种效应. 植物生态学报, 46, 208-219.]
DOI |
|
[30] | R Core Team (2024) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. (accessed on 2024-09-01) |
[31] |
Signori-Müller C, Oliveira RS, de Vasconcellos Barros F, Tavares JV, Gilpin M, Diniz FC, Marca Zevallos MJ, Salas Yupayccana CA, Acosta M, Bacca J, Cruz Chino RS, Aramayo Cuellar GM, Cumapa ERM, Martinez F, Pérez Mullisaca FM, Nina A, Bañon Sanchez JM, da Silva LF, Tello L, Tintaya JS, Martinez Ugarteche MT, Baker TR, Bittencourt PRL, Borma LS, Brum M, Castro W, Honorio Coronado EN, Cosio EG, Feldpausch TR, Fonseca LDM, Gloor E, Llampazo GF, Malhi Y, Mendoza AM, Moscoso VC, Araujo-Murakami A, Phillips OL, Salinas N, Silveira M, Talbot J, Vasquez R, Mencuccini M, Galbraith D (2021) Non-structural carbohydrates mediate seasonal water stress across Amazon forests. Nature Communications, 12, 2310.
DOI PMID |
[32] | Su ZM, Li XK, Ding T, Ning SJ, Chen WL, Mo XL (2014) Vegetation of Guangxi (Vol. 1). China Forestry Publishing House, Beijing. (in Chinese) |
[苏宗明, 李先琨, 丁涛, 宁世江, 陈伟烈, 莫新礼 (2014) 广西植被(第一卷). 中国林业出版社, 北京.] | |
[33] | Sun T, Mao ZJ, Dong LL, Hou LL, Song Y, Wang XW (2013) Further evidence for slow decomposition of very fine roots using two methods: Litterbags and intact cores. Plant and Soil, 366, 633-646. |
[34] |
Thalmann M, Santelia D (2017) Starch as a determinant of plant fitness under abiotic stress. New Phytologist, 214, 943-951.
DOI PMID |
[35] |
Tomasella M, Häberle KH, Nardini A, Hesse B, Machlet A, Matyssek R (2017) Post-drought hydraulic recovery is accompanied by non-structural carbohydrate depletion in the stem wood of Norway spruce saplings. Scientific Reports, 7, 14308.
DOI PMID |
[36] | Wang B, Ding T, Liu SY, Peng DR, Li DX, Lu MX, Nong ZQ, Nong CG, Nong SX, Guo YL, Xiang WS, Li XK (2024) Layer structure and species composition of primeval habitat forest communities that include the tallest tree in karst areas of China. Chinese Science Bulletin, 69, 912-924. (in Chinese with English abstract) |
[王斌, 丁涛, 刘晟源, 彭定人, 李冬兴, 陆茂新, 农正权, 农重刚, 农世新, 郭屹立, 向悟生, 李先琨 (2024) 中国喀斯特区最高树原生境森林群落的林层结构及物种组成. 科学通报, 69, 912-924.] | |
[37] |
Wang B, Huang YS, Li XK, Xiang WS, Ding T, Huang FZ, Lu SH, Han WH, Wen SJ, He LJ (2014) Species composition and spatial distribution of a 15 ha northern tropical karst seasonal rain forest dynamics study plot in Nonggang, Guangxi, southern China. Biodiversity Science, 22, 141-156. (in Chinese with English abstract)
DOI |
[王斌, 黄俞淞, 李先琨, 向悟生, 丁涛, 黄甫昭, 陆树华, 韩文衡, 文淑均, 何兰军 (2014) 弄岗北热带喀斯特季节性雨林15 ha监测样地的树种组成与空间分布. 生物多样性, 22, 141-156.]
DOI |
|
[38] | Wang B, Huang YS, Li XK, Xiang WS, Ding T, Liu SY, Liu Y, Lu SH, Nong CG, Lu MX, Han WH, Li DX (2016) Guangxi Nonggang Karst Seasonal Rain Forest:Tree Species and Their Distribution Patterns. China Forestry Publishing House, Beijing. (in Chinese) |
[王斌, 黄俞淞, 李先琨, 向悟生, 丁涛, 刘晟源, 刘演, 陆树华, 农重刚, 陆茂新, 韩文衡, 李冬兴 (2016) 广西弄岗喀斯特季节性雨林——树种及其分布格局. 中国林业出版社, 北京.] | |
[39] | Wang B, Jiang Y, Wang MC, Dong MY, Zhang YP (2015) Variations of non-structural carbohydrate concentration of Picea meyeri at different elevations of Luya Mountain, China. Chinese Journal of Plant Ecology, 39, 746-752. |
[王彪, 江源, 王明昌, 董满宇, 章异平(2015) 芦芽山不同海拔白杄非结构性碳水化合物含量动态. 植物生态学报, 39, 746-752.]
DOI |
|
[40] | Wang K, Xing SQ, Zhang RS, Liu JH (2024) Changes of non-structural carbohydrates of Pinus sylvestris var. mongolica under different stand densities. Chinese Journal of Ecology, 43, 2607-2614. (in Chinese with English abstract) |
[王凯, 邢仕奇, 张日升, 刘建华 (2024) 不同密度下樟子松非结构性碳水化合物变化规律. 生态学杂志, 43, 2607-2614.] | |
[41] | Wang SL, Cao WX, Wang XJ, Li W, Li XL, Wang JL (2019) Distribution of soil moisture and salt of Tamarix ramosissima plantation in desert saline-alkali land of Hexi Corridor Region, China. Chinese Journal of Applied Ecology, 30, 2531-2540. (in Chinese with English abstract) |
[王世林, 曹文侠, 王小军, 李文, 李小龙, 王金兰 (2019) 河西走廊荒漠盐碱地人工柽柳林土壤水盐分布. 应用生态学报, 30, 2531-2540.]
DOI |
|
[42] | Wei CY, Li YL, Jin ZX, Luo GY, Chen C, Shan FQ (2022) Effects of shading on photosynthetic characteristics and non-structural carbohydrate content of Heptacodium miconioides seedlings. Bulletin of Botanical Research, 42, 1096-1105. (in Chinese with English abstract) |
[魏春燕, 李月灵, 金则新, 罗光宇, 陈超, 单方权 (2022) 遮荫对七子花幼苗光合特性和非结构性碳水化合物含量的影响. 植物研究, 42, 1096-1105.]
DOI |
|
[43] | Westoby M, Yates L, Holland B, Halliwell B (2023) Phylogenetically conservative trait correlation: Quantification and interpretation. Journal of Ecology, 111, 2105-2117. |
[44] | Wills C, Wang B, Fang S, Wang YQ, Jin Y, Lutz J, Thompson J, Harms KE, Pulla S, Pasion B, Germain S, Liu HM, Smokey J, Su SH, Butt N, Chu CJ, Chuyong G, Chang-Yang CH, Dattaraja HS, Davies S, Ediriweera S, Esufali S, Fletcher CD, Gunatilleke N, Gunatilleke S, Hsieh CF, He FL, Hubbell S, Hao ZQ, Itoh A, Kenfack D, Li BH, Li XK, Ma KP, Morecroft M, Mi XC, Malhi Y, Ong P, Rodriguez LJ, Suresh HS, Sun IF, Sukumar R, Tan S, Thomas D, Uriarte M, Wang XH, Wang XG, Yao TL, Zimmermann J (2021) Interactions between all pairs of neighboring trees in 16 forests worldwide reveal details of unique ecological processes in each forest, and provide windows into their evolutionary histories. PLoS Computational Biology, 17, e1008853. |
[45] | Wu JM, Feng QH, Shi ZM, Liu S, Cao XW, Xu GX (2022) Response of leaf non-structural carbohydrate and nitrogen allocations to an elevation gradient in Buddleja davidii along Balang Mountain, Sichuan Province. Acta Ecologica Sinica, 42, 7278-7287. (in Chinese with English abstract) |
[乌佳美, 冯秋红, 史作民, 刘顺, 曹向文, 许格希 (2022) 巴郎山大叶醉鱼草叶片非结构性碳水化合物和氮分配的海拔响应. 生态学报, 42, 7278-7287.] | |
[46] |
Xue C, Li BK, Lei TY, Shan HY, Kong HZ (2022) Advances on the origin and evolution of biodiversity. Biodiversity Science, 30, 22460. (in Chinese with English abstract)
DOI |
[薛成, 李波卡, 雷天宇, 山红艳, 孔宏智 (2022) 生物多样性起源与进化研究进展. 生物多样性, 30, 22460.]
DOI |
|
[47] | Yu QS, Ni XF, Ji CJ, Zhu JL, Tang ZY, Fang JY (2024) Effects of 10-year nitrogen and phosphorus additions on leaf non-structural carbohydrates of dominant plants in tropical rainforests in the Jianfengling, Hainan. Chinese Journal of Plant Ecology, 48, 690-700. (in Chinese with English abstract) |
[俞庆水, 倪晓凤, 吉成均, 朱江玲, 唐志尧, 方精云 (2024) 10年氮磷添加对海南尖峰岭热带雨林优势植物叶片非结构性碳水化合物的影响. 植物生态学报, 48, 690-700.]
DOI |
|
[48] | Yuan DX (2001) Global comparison of karst ecosystems: Scientific objectives and implementation plan. Advances in Earth Science, 16, 461-466. (in Chinese with English abstract) |
[袁道先 (2001) 全球岩溶生态系统对比: 科学目标和执行计划. 地球科学进展, 16, 461-466.] | |
[49] | Yuan DX, Zhang C (2008) Karst dynamics theory in China and its practice. Acta Geoscientica Sinica, 29, 355-365. (in Chinese with English abstract) |
[袁道先, 章程 (2008) 岩溶动力学的理论探索与实践. 地球科学, 29, 355-365.] | |
[50] | Zhang S, Xu GR, Zhang YX, Zhang WF, Cao M (2023) Canopy height, rather than neighborhood effects, shapes leaf herbivory in a tropical rainforest. Ecology, 104, e4028. |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn