Biodiversity Science ›› 2014, Vol. 22 ›› Issue (3): 401-406.doi: 10.3724/SP.J.1003.2014.13226

• Orginal Article • Previous Article     Next Article

First report of Gyrodinium fusiforme and G. moestrupii (Dinophyceae) in China Sea waters

Haifeng Gu1, *(), Zhaohe Luo1, Lili Liu2, Yue Gao3   

  1. 1. Third Institute of Oceanography, State Oceanic Administration, Xiamen, Fujian 361005
    2. Marine and Fishery Institute of Xiamen, Xiamen, Fujian 361005
    3. State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian 361005
  • Received:2013-10-22 Accepted:2014-02-26 Online:2014-06-04
  • Gu Haifeng

The athecate dinoflagellate genus Gyrodinium includes heterotrophic species that prey on other dinoflagellates, and thus play an important role in marine ecology. Information about the Gyrodinium diversity along the coast of China is limited. Here we report on the characteristics of two species, Gyrodinium fusiforme Kofoid & Swezy and Gyrodinium moestrupii Yoon, Kang, and Jeong that were isolated from a Karenia mikimotoi bloom sample in the East China Sea. The cells of G. fusiforme were fusiform with a length of 48.0-58.0 μm and a width of 18.0-23.0 μm. Cells of G. moestrupii were also fusiform and approximately 30 μm long and 15 μm wide. Partial large subunit (LSU) ribosomal DNA sequences were obtained from single cells of G. fusiforme and G. moestrupii and phylogenetic trees were built using maximum likelihood (ML) and Bayesian inference (BI). In the phylogenetic trees the genus Gyrodinium is monophyletic, and G. fusiforme groups together with G. fissum, but separates from G. spirale although they are similar in morphology. G. fusiforme and G. moestrupii can prey on Karenia mikimotoii and Prorocentrum dentatum respectively. The high abundance of G. fusiforme during K. mikimotoi bloom suggests it may play a role in bloom decline.

Key words: Gyrodinium fusiforme, Gyrodinium moestrupii, Karenia mikimotoi, LSU rDNA, harmful algal blooms

Fig. 1-10

Fig. 1-10 Morphological structure of Gyrodinium fusiforme and G. moestrupii under light microscopy (LM) and scanning electronic microscopy (SEM). 1, Ventral view of G. fusiforme, showing surface striations and cingulum displacement (LM); 2, The same cell in Fig. 1 in different focus, showing the ellopsoidal nucleus (N) and a prey inside (arrow) (LM); 3, Ventral view of G. fusiforme, showing surface striations and cingulum displacement (SEM); 4, Detail of the apical groove of G. fusiforme (arrow) (SEM); 5, Ventral view of G. fusiforme, showing surface striations and cingulum displacement (SEM); 6, Dorsal view of G. fusiforme, showing surface striations (SEM); 7, Detail of the sulcus of G. fusiforme (SEM); 8, G. fusiforme is preying on a Karenia mikimotoi cell (SEM); 9, A living cell of G. moestrupii (LM); 10, A DAPI stained G. moestrupii cell, showing the spherical nucleus (N) and a Prorocentrum dentatum cell inside (arrow) (LM)."

Fig. 11

Phylogeny of Gyrodinium fusiforme and G. moestrupii inferred from partial large subunit rDNA sequence based on Bayesian inference (BI). Alexandrium leei and A. taylori were selected as outgroups. Numbers at nodes represent the result of the ML bootstrap analysis (one thousand bootstraps performed) and Bayesian posterior probabilities (left: ML bootstrap support values; right: Bayesian posterior probabilities). Only ML bootstrap support value greater than 50 and Bayesian posterior probabilities greater than 0.7 were listed. * indicates maximal support."

[1] Bérard-Therriault L, Poulin M, Bossé L (1999) Guide d’identification du phytoplancton marin de l’estuaire et du golfe du Saint-Laurent incluant également certains protozoaires. Publication Speciale Canadienne des Sciences Halieutiques et Aquatiques CNRC, Ottawa.
[2] Daugbjerg N, Hansen G, Larsen J, Moestrup, Ø (2000) Phylogeny of some of the major genera of dinoflagellates based on ultrastructure and partial LSU rDNA sequence data, including the erection of three new genera of unarmoured dinoflagellates.Phycologia, 39, 302-317.
[3] Davidson K, Miller P, Wilding TA, Shutler J, Bresnan E, Kennington K, Swan S (2009) A large and prolonged bloom of Karenia mikimotoi in Scottish waters in 2006.Harmful Algae, 8, 349-361.
[4] Dodge JD (1982) Marine Dinoflagellates of the British Isles, 303 pp. Her Majesty's Stationery Office, London.
[5] Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput.Nucleic Acids Research, 32, 1792-1797.
[6] Gómez F (2012) A checklist and classification of living dinoflagellates (Dinoflagellata, Alveolata).CICIMAR Oceánides, 27, 65-140.
[7] Hansen G, Daugbjerg N (2004) Ultrastructure of Gyrodinium spirale, the type species of Gyrodinium (Dinophyceae), including a phylogeny of G. dominans, G. rubrum and G. spirale deduced from partial LSU rDNA sequences.Protist, 155, 271-294.
[8] Huang CJ (黄长江), Dong QX (董巧香) (2001) Taxonomic and biological studies on organisms causing a large scale red tide in Zhujiang River Estuary in spring, 1998. Ⅲ.Oceanologia et Limnologia Sinica(海洋与湖沼), 32, 1-6. (in Chinese with English abstract)
[9] Jeong HJ, Yoo YD, Kim JS, Seong KA, Kang NS, Kim TH (2010) Growth, feeding and ecological roles of the mixotrophic and heterotrophic dinoflagellates in marine planktonic food webs.Ocean Science Journal, 45(2), 65-91.
[10] Kofoid CA, Swezy O (1921) The free-living unarmored dinoflagellata.Memoirs of the University of California, 5, 1-564.
[11] Medlin L, Elwood HJ, Stickel S, Sogin ML (1988) The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions.Gene, 71, 491-499.
[12] Meunier A.1910. Microplancton des Mers de Barents et de Kara, 355 pp. Duc d’Orleans Campagne Arctique de 1907. Bulens, Bruxelles.
[13] Nakamura Y, Suzuki S, Hiromi J (1995) Population dynamics of heterotrophic dinoflagellates during a Gymnodinium mikimotoi red tide in the Seto Inland Sea.Marine Ecology Progress Series, 125, 269-277.
[14] Nakamura Y, Suzuki S, Hiromi J (1996) Development and collapse of a Gymnodinium mikimotoi red tide in the Seto Inland Sea.Aquatic Microbial Ecology, 10(2), 131-137.
[15] Posada D (2008) jModelTest: phylogenetic model averaging.Molecular Biology and Evolution, 25, 1253-1256.
[16] Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models.Bioinformatics, 19, 1572-1574.
[17] Scholin CA, Herzog M, Sogin M, Anderson DM (1994) Identification of group- and strain-specific genetic markers for globally distributed Alexandrium (Dinophyceae). II. Sequence analysis of a fragment of the LSU rRNA gene.Journal of Phycology, 30, 999-1011.
[18] Stamatakis A, Hoover P, Rougemont J (2008) A rapid bootstrap algorithm for the RAxML Web servers.Systematic Biology, 57, 758-771.
[19] Sun J (孙军), Wang XD (王小冬), Song SQ (宋书群) (2007) Selective feeding of Calanus sinicus on harmful algal blooms species in East China Sea in spring.Chinese Journal of Applied Ecology(应用生态学报), 18, 151-157. (in Chinese with English abstract)
[20] Takano Y, Horiguchi T (2004) Surface ultrastructure and molecular phylogenetics of four unarmored heterotrophic dinoflagellates, including the type species of the genus Gyrodinium (Dinophyceae).Phycological Research, 52, 107-116.
[21] Takayama H (1985) Apical grooves of unarmored dinoflagellates.Bulletin of Plankton Society of Japan, 32, 129-140.
[22] Wang JH (王金辉), Huang XQ (黄秀清) (2003) Ecological characteristics of Prorocentrum dentatum and the cause of harmful algal bloom formation in China Sea.Chinese Journal of Applied Ecology(应用生态学报), 14, 1065-1069. (in Chinese with English abstract)
[23] Yoo YD, Yoon EY, Jeong HJ, Lee KH, Hwang YJ, Seong KA, Kim JS, Park JY (2013) The newly described heterotrophic dinoflagellate Gyrodinium moestrupii, an effective protistan grazer of toxic dinoflagellates.Journal of Eukaryotic Microbiology, 60(1), 13-24.
[24] Yoon EY, Kang NS, Jeong HJ (2012) Gyrodinium moestrupii n. sp., a new planktonic heterotrophic dinoflagellate from the coastal waters of western Korea: morphology and ribosomal DNA gene sequence.Journal of Eukaryotic Microbiology, 59, 571-586.
No related articles found!
Full text