Biodiversity Science ›› 2018, Vol. 26 ›› Issue (11): 1133-1146.doi: 10.17520/biods.2018098

• Original Papers • Previous Article     Next Article

Geographic patterns and environmental determinants of gymnosperm species diversity in China

Lisha Lü1, 2, Hongyu Cai2, Yong Yang3, Zhiheng Wang2, *(), Hui Zeng1   

  1. 1 School of Urban Planning and Design, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055
    2 Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing 100871
    3 State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093
  • Received:2018-04-02 Accepted:2018-05-21 Online:2019-01-08
  • Wang Zhiheng E-mail:zhiheng.wang@pku.edu.cn
  • About author:# Co-first authors

How large-scale patterns of species diversity emerge is a central yet controversial issue in ecology and biogeography. Despite the long history of studies the mechanisms driving species diversity patterns in space remain poorly known. Using distribution data of all gymnosperm species in China, we assessed the influence of environmental factors on spatial patterns of species diversity in China. Further, we evaluated the proportion of gymnosperms in local floras. We found that species diversity of gymnosperms decreases along a south-north axis. Hengduan Mountains, with the highest species diversity, is a hotspot of gymnosperms. Species diversity patterns differ significantly between the gymnosperm subclasses. In particular, the species diversity pattern of Pinidae is similar to that of all species combined, while the species diversity of Gnetidae is highest in the drylands of northwestern China. In contrast, Cycadidae is restricted to southern China. Environmental heterogeneity and precipitation are the best predictors of species diversity patterns of all gymnosperms combined, followed by temperature anomaly since the Last Glacial Maximum (LGM), elevational range and energy. That different factors predict species diversity patterns of different gymnosperm subclasses, may reflect the differences in their evolutionary history and physiological adaptions. The ratio of gymnosperm to angiosperm species diversity is lower in the warm and humid eastern and southern parts of China, and increases towards the drylands in western and northern parts. Environmental energy and precipitation were good predictors of the ratio of gymnosperms to angiosperms. Specifically, the ratio decreases with increase of energy and decrease of precipitation suggesting that angiosperms may have stronger competitive ability in warm and humid regions while gymnosperms adapt better to dry and cold environments.

Key words: Pinidae, Gnetidae, Cycadidae, contemporary climate hypothesis, past climate change, species diversity pattern

Fig. 1

Species diversity patterns of gymnosperms in China. (a) Species diversity of all gymnosperms; (b) Ratio of gymnosperms to angiosperms; (c) Species diversity of Pinidae; (d) Ratio of Pinidae to all gymnosperms; (e) Species diversity of Gnetidae; (f) Ratio of Gnetidae to all gymnosperms; (g) Species diversity of Cycadidae; (h) Ratio of Cycadidae to all gymnosperms."

Fig. 2

Species diversity patterns of gymnosperms in China. (a) Pinaceae; (b) Cupressaceae; (c) Podocarpaceae; (d) Taxaceae; (e) Ephedraceae; (f) Gnetaceae."

Table 1

Bivariate correlations (R) between species diversity of all gymnosperm species, species diversity of gymnosperms in different clades, ratio of all gymnosperms to angiosperms and environmental determinants in China"

环境变量
Environmental
determinants
全部All
gymno-
sperms
比例
Ratio
松柏亚纲
Pinidae
买麻藤亚纲
Gnetidae
苏铁亚纲
Cycadidae
松科
Pinaceae
柏科
Cupres-
saceae
罗汉松科
Podocar-
paceae
红豆杉科
Taxaceae
麻黄科
Ephed-
raceae
买麻藤科
Gnetaceae
MAT 0.278* -0.826* 0.501* -0.266* 0.455* 0.115 0.376* 0.421* 0.352* -0.198* 0.342*
MTCQ 0.338* -0.805* 0.504* -0.378* 0.535* 0.207* 0.417* 0.476* 0.366* -0.397* 0.394*
WI 0.232 -0.790* 0.429* -0.191* 0.467* 0.024 0.277* 0.429* 0.230* -0.084 0.346*
PET 0.212 -0.778* 0.426* -0.182* 0.426* 0.007 0.274* 0.395* 0.233* -0.076 0.274*
MAP 0.478* -0.706* 0.615* -0.423* 0.044 0.365* 0.449* 0.286* 0.313* -0.520* 0.105
PCQ 0.331* -0.117* 0.416* -0.288* -0.169* 0.113 0.323* 0.087 0.303* -0.291* -0.117*
MI 0.491* -0.469* 0.617* -0.465* -0.222* 0.529* 0.485* 0.028 0.230* -0.467* -0.132*
AET 0.391* -0.748* 0.555* -0.459* 0.403* 0.336* 0.350* 0.392* 0.246* -0.547* 0.291*
ER 0.484* 0.080 0.333* 0.006 -0.164* 0.335* 0.321* 0.066 0.187* 0.012 -0.088
TR 0.462* 0.089 0.313* -0.015 -0.140* 0.334* 0.306* 0.071 0.163* -0.014 -0.067
PR 0.556* -0.431* 0.614* -0.228* 0.092 0.412* 0.486* 0.068 0.166* -0.185* -0.139*
MATano -0.400* 0.517* -0.407* 0.047 -0.546* -0.042 -0.399* -0.551* -0.376* -0.120* -0.451*
MAPano 0.001 -0.099 0.020 -0.033 0.170* -0.079* -0.112* 0.501* -0.113* 0.132* 0.192*

Table 2

Environmental determinants of species diversity for all gymnosperm species, species diversity of gymnosperms in different clades and ratio of all gymnosperms to angiosperms in China from best-fit explanatory models"

校正后模型解释率
Adjust R2
能量
Energy factors
水分
Precipitation
factors
异质性
Environmental
heterogeneity
过去气候变化
Climate anomaly
裸子植物
All
gymnosperms
变量 Variables 0.436 PET MI ER MATano
偏决定系数 Partial R2 0.037 0.081 0.171 0.010
标准化系数
Standardized coefficient
0.228 0.255 0.464 -0.107
裸子植物/
被子植物
Ratio of gymnosperms to angiosperms
变量 Variables 0.734 MAT AET PR MAPano
偏决定系数 Partial R2 0.413 0.061 0.005 0.010
标准化系数
Standardized coefficient
-0.635 -0.257 -0.055 0.054
松柏亚纲
Pinidae
变量 Variables 0.526 MAT MI ER MATano
偏决定系数 Partial R2 0.135 0.172 0.119 0.001
标准化系数
Standardized coefficient
0.415 0.387 0.335 0.038
松科
Pinaceae
变量 Variables 0.331 MAT MI ER MATano
偏决定系数 Partial R2 0.008 0.194 0.057 0.033
标准化系数
Standardized coefficient
0.122 0.480 0.277 0.207
柏科
Cupressaceae
变量 Variables 0.360 MAT MI ER MAPano
偏决定系数 Partial R2 0.107 0.080 0.084 0.026
标准化系数
Standardized coefficient
0.314 0.290 0.311 -0.126
罗汉松科
Podocarpaceae
变量 Variables 0.370 PET MI TR MATano
偏决定系数 Partial R2 0.034 0.013 0.052 0.144
标准化系数
Standardized coefficient
0.366 0.169 0.408 -0.538
红豆杉科
Taxaceae
变量 Variables 0.282 MAT PCQ ER MAPano
偏决定系数 Partial R2 0.087 0.059 0.099 0.046
标准化系数 Standardized coefficient 0.454 0.220 0.498 -0.127
买麻藤亚纲
Gnetidae
变量 Variables 0.364 MTCQ MI PR MATano
偏决定系数 Partial R2 0.162 0.128 0.019 0.119
标准化系数
Standardized coefficient
-0.574 -0.468 0.160 -0.424
买麻藤科
Gnetaceae
变量 Variables 0.314 MTCQ PCQ ER MATano
偏决定系数 Partial R2 0.034 0.018 0.074 0.178
标准化系数
Standardized coefficient
0.551 -0.124 0.569 -0.704
麻黄科
Ephedraceae
变量 Variables 0.431 MTCQ AET PR MATano
偏决定系数 Partial R2 0.141 0.186 0.022 0.062
标准化系数
Standardized coefficient
-0.571 -0.830 0.156 -0.296
苏铁亚纲
Cyacadidae
变量 Variables 0.416 MTCQ PCQ PR MATano
偏决定系数 Partial R2 0.028 0.096 0.034 0.151
标准化系数
Standardized coefficient
0.478 -0.221 0.334 -0.663
[1] Araújo MB, Nogués-Bravo D, Diniz-Filho JAF, Haywood AM, Valdes PJ, Rahbek C (2008) Quaternary climate changes explain diversity among reptiles and amphibians. Ecography, 31, 8-15.
[2] Augusto L, Davies TJ, Delzon S, de Schrijver A (2014) The enigma of the rise of angiosperms: Can we untie the knot? Ecology Letters, 17, 1326-1338.
[3] Becker P (2000) Competition in the regeneration niche between conifers and angiosperms: Bond’s slow seedling hypothesis. Functional Ecology, 14, 401-412.
[4] Biffin E, Brodribb TJ, Hill RS, Thomas P, Lowe AJ (2012) Leaf evolution in Southern Hemisphere conifers tracks the angiosperm ecological radiation. Proceedings of the Royal Society B: Biological Sciences, 279, 341-348.
[5] Bond W (1989) The tortoise and the hare: Ecology of angiosperm dominance and gymnosperm persistence. Biological Journal of the Linnean Society, 36, 227-249.
[6] Brodribb TJ, Feild TS (2008) Evolutionary significance of a flat-leaved Pinus in Vietnamese rainforest. New Phytologist, 178, 201-209.
[7] Brodribb TJ, Pittermann J, Coomes DA (2012) Elegance versus speed: Examining the competition between conifer and angiosperm trees. International Journal of Plant Sciences, 173, 673-694.
[8] Chave J, Coomes D, Jansen S, Lewis SL, Swenson NG, Zanne AE (2009) Towards a worldwide wood economics spectrum. Ecology Letters, 12, 351-366.
[9] Chen S, Mao L, Zhang J, Zhou K, Gao J (2014) Environmental determinants of geographic butterfly richness pattern in eastern China. Biodiversity & Conservation, 23, 1453-1467.
[10] Condamine FL, Nagalingum NS, Marshall CR, Morlon H (2015) Origin and diversification of living cycads: A cautionary tale on the impact of the branching process prior in Bayesian molecular dating. BMC Evolutionary Biology, 15, 65-65.
[11] Coomes DA, Grubb PJ (2000) Impacts of root competition in forests and woodlands: A theoretical framework and review of experiments. Ecological Monographs, 70, 171-207.
[12] Cun YZ, Wang XQ (2010) Plant recolonization in the Himalaya from the southeastern Qinghai-Tibetan Plateau: Geographical isolation contributed to high population differentiation. Molecular Phylogenetics & Evolution, 56, 972-982.
[13] Currie DJ (1991) Energy and large-scale patterns of animal- and plant-species richness. The American Naturalist, 137, 27-49.
[14] Currie DJ, Mittelbach GG, Cornell HV, Field R, Guegan J, Hawkins BA, Kaufman DM, Kerr JT, Oberdorff T, Obrien EM, Turner JRG (2004) Predictions and tests of climate-based hypotheses of broad-scale variation in taxonomic richness. Ecology Letters, 7, 1121-1134.
[15] Dutilleul P, Clifford P, Richardson S, Hemon D (1993) Modifying the t test for assessing the correlation between two spatial processes. Biometrics, 49, 305-314.
[16] Fang JY, Yoda K (1990) Climate and vegetation in China. III. Water balance and distribution of vegetation. Ecological Research, 5, 9-23.
[17] Fang JY, Wang ZH, Tang ZY (2011) Atlas of Woody Plants in China: Distribution and Climate. Higher Education Press, Beijing & Springer, Berlin.
[18] Farjon A (2010) A Handbook of the World’s Conifers. Brill Academic Publishers, Netherlands.
[19] Fjeldså J, Bowie RCK, Rahbek C (2012) The role of mountain ranges in the diversification of birds. Annual Review of Ecology, Evolution, and Systematics, 43, 249-265.
[20] Fragnière Y, Bétrisey S, Cardinaux L, Stoffel M, Kozlowski G (2015) Fighting their last stand? A global analysis of the distribution and conservation status of gymnosperms. Journal of Biogeography, 42, 809-820.
[21] Gao JF, Ma KM, Feng ZW, Qi J, Feng Y (2009) Coupling effects of altitude and human disturbance on landscape and plant diversity in the vicinity of mountain villages of Beijing, China. Acta Ecologica Sinica, 29, 56-61.
[22] Gear AJ, Huntley B (1991) Rapid changes in the range limits of Scots Pine 4000 years ago. Science, 251, 544-547.
[23] Gerrienne P, Meyer-Berthaud B, Fairon-Demaret M, Streel M, Steemans P (2004) Runcaria, a Middle Devonian seed plant precursor. Science, 306, 856-858.
[24] Hacke UG, Sperry JS, Pockman WT, Davis SD (2001) Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia, 126, 457-461.
[25] Hawkins BA, Field R, Cornell HV, Currie DJ, Guegan J, Kaufman DM, Kerr JT, Mittelbach GG, Oberdorff T, O’brien EM, Porter EE, Turner JRG (2003) Energy, water, and broad-scale geographic patterns of species richness. Ecology, 84, 3105-3117.
[26] Hill K (2012) The Cycad Pages. . (accessed on 2018-03-01
[27] Hong SK (1998) Changes in landscape patterns and vegetation process in the Far-Eastern cultural landscapes: Human activity on pine-dominated secondary vegetations in Korea and Japan. Phytocoenologia, 28, 45-66.
[28] Hsieh L (1992) Origin and distribution of Ginkgo biloba. The Forestry Chronicle, 68, 612-613.
[29] Hu HH (1998) How Metasequoia, the “living fossil”, was discovered in China. Arnoldia, 58, 4-7.
[30] Jetz W, Rahbek C (2002) Geographic range size and determinants of avian species richness. Science, 297, 1548.
[31] Ji RS (2007) Forest changes in Inner Mongolia—Forest changes during geological times. Inner Mongolia Forestry Investigation and Design, (S1), 1-94, 106-108.
(in Chinese) [纪仁生 (2007) 内蒙古森林变迁——地史时期森林的变迁. 内蒙古林业调查设计, (S1), 1-94, 106-108.]
[32] Kozlowski G, Stoffel M, Betrisey S, Cardinaux L, Mota M (2015) Hydrophobia of gymnosperms: Myth or reality? A global analysis. Ecohydrology, 8, 105-112.
[33] Kreft H, Jetz W (2007) Global patterns and determinants of vascular plant diversity. Proceedings of the National Academy of Sciences, USA, 104, 5925-5930.
[34] Latham RE, Ricklefs RE (1993) Global patterns of tree species richness in moist forests: Energy-diversity theory does not account for variation in species richness. Oikos, 67, 325-333.
[35] Lennon JJ (2000) Red-shifts and red herrings in geographical ecology. Ecography, 23, 101-113.
[36] Leslie AB, Beaulieu JM, Rai HS, Crane PR, Donoghue MJ, Mathews S (2012) Hemisphere-scale differences in conifer evolutionary dynamics. Proceedings of the National Academy of Sciences, USA, 109, 16217-16221.
[37] Li G, Shen ZH, Ying TS, Fang JY (2009) The spatial pattern of species richness and diversity centers of gymnosperm in China. Biodiversity Science, 17, 272-279.
(in Chinese with English abstract) [李果, 沈泽昊, 应俊生, 方精云 (2009) 中国裸子植物物种丰富度空间格局与多样性中心. 生物多样性, 17, 272-279.]
[38] Li ZL (1981) Morphology and structure of drought vegetation. Biology Journal, (4), 9-12. (in Chinese)
[李正理 (1981) 旱生植物的形态和结构. 生物学通报, (4), 9-12.]
[39] Lin X, Wang ZH, Tang ZY, Zhao SQ, Fang JY (2009) Geographic patterns and environmental correlates of terrestrial mammal species richness in China. Biodiversity Science, 17, 652-663. (in Chinese with English abstract)
[林鑫, 王志恒, 唐志尧, 赵淑清, 方精云 (2009) 中国陆栖哺乳动物物种丰富度的地理格局及其与环境因子的关系. 生物多样性, 17, 652-663.]
[40] López-Pujol J, Zhang FM, Sun HQ, Ying TS, Ge S (2011) Mountains of southern China as “plant museums” and “plant cradles”: Evolutionary and conservation insights. Mountain Research and Development, 31, 261-269.
[41] Maurer BA, Rosenzweig ML (1996) Species Diversity in Space and Time. Ecology, 77, 1314.
[42] McCain CM (2009) Global analysis of bird elevational diversity. Global Ecology and Biogeography, 18, 346-360.
[43] Mou FJ, Li JP, Chen LP, Li YG (2016) The progress on the relationship between the morphological and anatomical character and the resistant. Journal of Fujian Forestry Science & Technology, 43, 237-243. (in Chinese with English abstract)
[牟凤娟, 李军萍, 陈丽萍, 李一果 (2016) 裸子植物形态解剖结构特征与抗旱性研究进展. 福建林业科技, 43, 237-243.]
[44] Nagalingum NS, Marshall CR, Quental TB, Rai HS, Little DP, Mathews S (2011) Recent synchronous radiation of a living fossil. Science, 334, 796-799.
[45] O’Brien EM (1998) Water-energy dynamics, climate, and prediction of woody plant species richness: An interim general model. Journal of Biogeography, 25, 379-398.
[46] Osorio F, Vallejos R, Cuevas F (2016) SpatialPack: Computing the association between two spatial processes. arXiv preprint arXiv:1611.05289.
[47] Palmer MW (1994) Variation in species richness: Towards a unification of hypotheses. Folia Geobotanica et Phytotaxonomica, 29, 511.
[48] Pittermann J, Sperry JS, Wheeler JK, Hacke UG, Sikkema EH (2006) Mechanical reinforcement of tracheids compromises the hydraulic efficiency of conifer xylem. Plant Cell & Environment, 29, 1618.
[49] Pittermann J, Stuart SA, Dawson TE, Moreau A (2012) Cenozoic climate change shaped the evolutionary ecophysiology of the Cupressaceae conifers. Proceedings of the National Academy of Sciences, USA, 109, 9647-9652.
[50] Qian H, Jin Y, Ricklefs RE (2017) Phylogenetic diversity anomaly in angiosperms between eastern Asia and eastern North America. Proceedings of the National Academy of Sciences, USA, 114, 11452-11457.
[51] Qin AL, Wang MM, Cun YZ, Yang FS, Wang SS, Ran JH, Wang XQ (2013) Phylogeographic evidence for a link of species divergence of Ephedra in the Qinghai-Tibetan Plateau and adjacent regions to the Miocene Asian Aridification. PLoS ONE, 8, e56243.
[52] Ran JH, Wei XX, Wang XQ (2006) Molecular phylogeny and biogeography of Picea (Pinaceae): Implications for phylogeographical studies using cytoplasmic haplotypes. Molecular Phylogenetics and Evolution, 41, 405-419.
[53] R Core Team (2016) R: A Language and Environment for Statistical Computing. . (accessed on 2018-01-01)
[54] Rosenzweig ML (1995) Species Diversity in Space and Time. Cambridge University Press, Cambridge.
[55] Rueda M, Godoy O, Hawkins BA (2017) Spatial and evolutionary parallelism between shade and drought tolerance explains the distributions of conifers in the conterminous United States. Global Ecology and Biogeography, 26, 31-42.
[56] Sandel B, Arge L, Dalsgaard B, Davies RG, Gaston KJ, Sutherland WJ, Svenning J (2011) The influence of Late Quaternary climate-change velocity on species endemism. Science, 334, 660-664.
[57] Sperry JS, Hacke UG, Pittermann J (2006) Size and function in conifer tracheids and angiosperm vessels. American Journal of Botany, 93, 1490-1500.
[58] Stein A, Gerstner K, Kreft H (2014) Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecology Letters, 17, 866-880.
[59] Stein A, Beck J, Meyer C, Waldmann E, Weigelt P, Kreft H (2015) Differential effects of environmental heterogeneity on global mammal species richness. Global Ecology and Biogeography, 24, 1072-1083.
[60] Sun H (2002) Evolution of Arctic-Tertiary flora in Himalayan-Hengduan Mountains. Acta Botanica Yunnanica, 24, 671-688. (in Chinese with English abstract)
[孙航 (2002) 北极—第三纪成分在喜马拉雅—横断山的发展及演化. 云南植物研究, 24, 671-688.]
[61] Svenning JC, Skov F (2007) Ice age legacies in the geographical distribution of tree species richness in Europe. Global Ecology and Biogeography, 16, 234-245.
[62] Taylor EL, Taylor TN, Krings M (2009) Paleobotany: The Biology and Evolution of Fossil Plants. Academic Press, Waltham.
[63] Thornthwaite CW, Hare FK (1955) Climatic classification in forest. Unasylva, 9, 51-59.
[64] Wan T, Liu ZM, Li LF, Leitch AR, Leitch IJ, Lohaus R, Liu ZJ, Xin HP, Gong YB, Liu Y, Wang WC, Chen LY, Yang Y, Kelly LJ, Yang J, Huang JL, Li Z, Liu P, Zhang L, Liu HM, Wang H, Deng SH, Liu M, Li J, Ma L, Liu Y, Lei Y, Xu W, Wu LQ, Liu F, Ma Q, Yu XR, Jiang Z, Zhang GQ, Li SH, Li RQ, Zhang SZ, Wang QF, de Peer YV, Zhang JB, Wang XM (2018) A genome for gnetophytes and early evolution of seed plants. Nature Plants, 4, 82-89.
[65] Wang XQ, Han Y, Hong DY (1998) A molecular systematic study of Cathaya, a relic genus of the Pinaceae in China. Plant Systematics and Evolution, 213, 165-172.
[66] Wang ZH, Fang JY, Tang ZY, Lin X (2011) Patterns, determinants and models of woody plant diversity in China. Proceedings of the Royal Society B: Biological Sciences, 278, 2122-2132.
[67] Wang ZH, Fang JY, Tang ZY, Shi L (2012a) Geographical patterns in the beta diversity of China’s woody plants: The influence of space, environment and range size. Ecography, 35, 1092-1102.
[68] Wang ZH, Fang JY, Tang ZY, Lin X (2012b) Relative role of contemporary environment versus history in shaping diversity patterns of China’s woody plants. Ecography, 35, 1124-1133.
[69] Wang ZH, Tang ZY, Fang JY (2009) The species-energy hypothesis as a mechanism for species richness patterns. Biodiversity Science 17, 613-624. (in Chinese with English abstract)
[王志恒, 唐志尧, 方精云 (2009) 物种多样性地理格局的能量假说. 生物多样性, 17, 613-624.]
[70] Wei XX, Wang XQ (2004) Recolonization and radiation in Larix (Pinaceae): Evidence from nuclear ribosomal DNA paralogues. Molecular Ecology, 13, 3115-3123.
[71] Wu Z, Raven P (1999) Flora of China, Vol. 4. Science Press, Beijing & Missouri Botanical Garden Press, St. Louis.
[72] Xiang XG, Cao M, Zhou ZK (2006) Fossil history and modern distribution of the genus Abies (Pinaceae). Acta Botanica Yunnanica, 28, 439-452. (in Chinese with English abstract)
[向小果, 曹明, 周浙昆 (2006) 松科冷杉属植物的化石历史和现代分布. 云南植物研究, 28, 439-452.]
[73] Xing YW, Ree RH (2017) Uplift-driven diversification in the Hengduan Mountains, a temperate biodiversity hotspot. Proceedings of the National Academy of Sciences, USA, 114, E3444.
[74] Yang Y, Wang ZH, Xu XT (2017) Taxonomy and Distribution of Global Gymnosperms. Shanghai Scientific and Technical Publishers, Shanghai. (in Chinese)
[杨永, 王志恒, 徐晓婷 (2017) 世界裸子植物的分类和地理分布. 上海科学技术出版社, 上海.]
[75] Yeaman S, Hodgins KA, Lotterhos KE, Suren H, Nadeau S, Degner JC, Nurkowski KA, Smets P, Wang T, Gray LK, Liepe KJ, Hamann A, Holliday J, Whitlock MC, Rieseberg LH, Aitken SN (2016) Convergent local adaptation to climate in distantly related conifers. Science, 353, 1431-1433.
[76] Ye JF, Chen ZD, Liu B, Qin HN, Yang Y (2012) Disjunct distribution of vascular plants between southwestern area and Taiwan area in China: Disjunct distribution of vascular plants between southwestern area and Taiwan area in China. Biodiversity Science, 20, 482-494. (in Chinese with English abstract)
[叶建飞, 陈之端, 刘冰, 覃海宁, 杨永 (2012) 中国西南与台湾地区维管植物的间断分布格局及形成机制. 生物多样性, 20, 482-494.]
[77] Ying J, Chen M, Zhang H (2003) Atlas of the Gymnosperms of China. China Science & Technology Press, Beijing.
[78] Zhang ZJ, Yan YJ, Tian Y, Li JS, He JS, Tang ZY (2015) Distribution and conservation of orchid species richness in China. Biological Conservation, 181, 64-72.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Wang Fu-Hsiung, Lee Shen-Chang, Chen Zu-Keng. The embryogeny of Taiwania in comparison with that of other genera of Taxodiaceae[J]. J Syst Evol, 1980, 18(2): 129 -137 .
[2] Organizing Committee of the Fourth Xishuangbanna International Symposium. The Xishuangbanna Declaration on Plant Conservation[J]. Biodiv Sci, 2019, 27(1): 114 -115 .
[3] Ki-Oug YOO, Su-Kil JANG. Infrageneric relationships of Korean Viola based on eight chloroplast markers[J]. J Syst Evol, 2010, 48(6): 474 -481 .
[4] LIN Fang, XU Zhi-Hong and XUE Hong-Wei. Phospholipases in Signalling Transduction of Higher Plants[J]. J Integr Plant Biol, 2001, 43(10): 991 -1002 .
[5] BI Zhi-Ming, WANG Zheng-Tao, XU Luo-Shan. Chemical Constituents of Dendrobium moniliforme[J]. J Integr Plant Biol, 2004, 46(1): 124 -126 .
[6] Bi Bojun. A Study of the Climatical Ecology and the Selection of the Suitable Land for the Cultivation of Panax ginseng[J]. Chin J Plan Ecolo, 1985, 9(2): 92 -100 .
[7] Jing Yan,Guoliang Zhang,Ruihai Zhang,Zhen Song,Xiaohong Zhao,Yusheng Liu,Weidong Fu. The effect of Flaveria bidentis litter decomposition on the structure of arthropod communities[J]. Biodiv Sci, 2016, 24(11): 1288 -1295 .
[8] SHEN Ze-Hao, ZHANG Xin-Shi, JIN Yi-Xing. Gradient Analysis of the Influence of Mountain Topography on Vegetation Pattern[J]. Chin J Plan Ecolo, 2000, 24(4): 430 -435 .
[9] LI Zong-Shan, LIU Guo-Hua, FU Ba-Jie, ZHANG Ji-Bing, HU Chan-Juan, LUO Chu-Zheng. Evaluation of temporal stability in tree growth-climate response in Wolong National Natural Reserve, western Sichuan, China[J]. Chin J Plan Ecolo, 2010, 34(9): 1045 -1057 .
[10] Chen Jia-You, Zhu Hui-Zhong. Amphiraphidales, a New Order of the Pennatae, Bacillariophyta[J]. J Syst Evol, 1983, 21(4): 449 -456 .