Biodiversity Science ›› 2018, Vol. 26 ›› Issue (8): 878-891.doi: 10.17520/biods.2018051

Previous Article     Next Article

Ecological niche modeling with LiDAR data: A case study of modeling the distribution of fisher in the southern Sierra Nevada Mountains, California

Zhongyi Zhou1, Ran Liu1, Shuna Shi1, Yanjun Su2, Wenkai Li1, *(), Qinghua Guo2, 3   

  1. 1 School of Geography and Planning, Sun Yat-Sen University, Guangzhou 510275
    2 State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093
    3 University of Chinese Academy of Sciences, Beijing 100049
  • Received:2018-02-10 Accepted:2018-04-28 Online:2018-09-27
  • Li Wenkai
  • About author:# Co-first authors

Ecological niche modeling seeks to infer the relationship between occurrences of a species and environmental covariates and has been widely applied in biodiversity studies. Light detection and ranging (LiDAR) is a new active remote sensing technology that is being increasingly used for acquisition of 3D structural information of forests. However, its applications in ecological niche modeling are rarely studied. In this study, we wanted investigate the effectiveness of LiDAR in modeling the spatial distribution of fisher (Martes pennanti) in the southern Sierra Nevada Mountains, California. We used artificial neural networks, generalized linear model, generalized additive model, discriminative maximum entropy, and multivariate adaptive regression splines to implement the presence and background learning (PBL) method separately. We then combined all the models based on weighted average to create an ensemble model. The generative maximum entropy model was also considered for comparison. Area under the receiver operating characteristic curve (AUC) and Fpb based on presence and background data were used to evaluate the continuous and binary outputs, respectively. Our results show that the values of AUC and Fpb were 0.779 and 1.077, respectively, when only climate variables (such as temperature and precipitation) were included in the models, whereas the values of AUC and Fpb were 0.800 and 1.106, respectively, when both climate and LiDAR-derived variables (such as canopy bulk density, height to live canopy base, leaf area index, digital elevation model, slope, etc.) were included in the models. Therefore, we conclude that LiDAR-derived variables are helpful in modeling the spatial distribution of fisher, and has good potential in ecological niche modeling.

Key words: ecological niche model, light detection and ranging (LiDAR), fisher, presence and background learning (PBL), maximum entropy (MaxEnt)

Fig. 1

The study area and observed localities of fishers"

Table 1

8 climate variables for predicting the spatial distribution of fishers"

Variable code
Climate variables
Bio 1 1月降水量 Precipitation in January
Bio 2 4月降水量 Precipitation in April
Bio 3 7月降水量 Precipitation in July
Bio 4 10月降水量 Precipitation in October
Bio 5 1月平均温度 Mean temperature in January
Bio 6 4月平均温度 Mean temperature in April
Bio 7 7月平均温度 Mean temperature in July
Bio 8 10月平均温度 Mean temperature in October

Table 2

9 LiDAR-derived variables for predicting the spatial distribution of fishers"

Variable code
LiDAR-derived variables
Bio 9 冠层容重 Canopy bulk density (CBD)
Bio 10 冠盖度 Canopy cover
Bio 11 树木胸径 Diameter at breast height (DBH)
Bio 12 枝下高 Height to live canopy base (HTLCB)
Bio 13 叶面积指数 Leaf area index (LAI)
Bio 14 最大树高 Maximum tree height
Bio 15 平均树高 Mean tree height
Bio 16 坡度 Slope
Bio 17 数字高程模型 Digital elevation model (DEM)

Fig. 2

Flow chart of model development and accuracy assessment"

Fig. 3

The accuracies of different models based on different environmental variables. (a) The training sample size is 20%; (b) The training sample size is 40%; (c) The training sample size is 60%; (d) The training sample size is 80%; (e) The training sample size is 100%."

Table 3

P-value of models’ AUC accuracy based on different environmental variables"

Types of models
训练样本量 The training sample size
10% 20% 30% 40% 50%
Ensemble < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
MaxEnt < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
PBL-ANN < 0.001 < 0.001 < 0.001 0.001 0.030
PBL-GAM < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
PBL-GLM < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
PBL-MARS < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
PBL-MaxEnt < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

Table 4

P-value of models’ Fpb accuracy based on different environmental variables"

Types of models
训练样本量 The training sample size
10% 20% 30% 40% 50%
Ensemble 0.002 0.002 < 0.001 < 0.001 < 0.001
MaxEnt < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
PBL-ANN 0.001 < 0.001 0.073 0.277 0.736
PBL-GAM 0.025 0.002 < 0.001 < 0.001 < 0.001
PBL-GLM < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
PBL-MARS < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
PBL-MaxEnt < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

Fig. 4

The importance of environmental variables based on Jackknife analysis. The meanings of the variables are shown in Table 1 and Table 2."

Fig. 5

The predicted probabilities maps of fishers by different models with different environmental variables. (a) Climate variables; (b) Climate plus LiDAR-derived variables."

Fig. 6

The predicted binary maps of fishers by different models with different environmental variables. (a) Climate variables; (b) Climate plus LiDAR-derived variables."

[1] Abdukerim R, Zibibilla G, Xu ZL, Nabi E, Abliz A, Abdusalam D, Halik M (2016) Assessment of habitat suitability for Gazella subgutturosa in the Ebinur Reserve. Acta Ecologica Sinica, 36, 4171-4177. (in Chinese with English abstract)
[热木图拉•阿卜杜克热木, 古再努尔•孜比比拉, 许仲林, 艾孜孜江•乃比, 阿不都克依木•阿布力孜,迪力夏提•阿卜杜萨拉木,马合木提•哈力克 (2016) 基于生态位模型的艾比湖鹅喉羚生境评价. 生态学报, 36, 4171-4177.]
[2] Andersen HE, McGaughey RJ, Reutebuch SE (2005) Estimating forest canopy fuel parameters using LIDAR data. Remote Sensing of Environment, 94, 441-449.
[3] Berger AL, Pietra VJD, Pietra SAD (1996) A maximum entropy approach to natural language processing. Computational Linguistics, 22, 39-71.
[4] Cao Y, Miao QG, Liu JC, Gao L (2013) Advance and prospects of AdaBoost algorithm. Acta Automatica Sinica, 39, 745-758. (in Chinese with English abstract)
[曹莹, 苗启广, 刘家辰, 高琳 (2013) AdaBoost算法研究进展与展望. 自动化学报, 39, 745-758.]
[5] Carlton D (2005) Fuels Management Analyst Plus Software, Version 3.04. Fire Program Solutions, LLC & Acacia Services, Estacada, Oregon.
[6] Che L, Cao B, Bai CK, Wang JJ, Zhang LL (2014) Predictive distribution and habitat suitability assessment of Notholirion bulbuliferum based on MaxEnt and ArcGIS. Chinese Journal of Ecology, 33, 1623-1628. (in Chinese with English abstract)
[车乐, 曹博, 白成科, 王娟娟, 张琳琳 (2014) 基于MaxEnt和ArcGIS对太白米的潜在分布预测及适宜性评价. 生态学杂志, 33, 1623-1628.]
[7] Chen W, Yu XC, Zhang PQ, Wang ZC, Wang H (2011) Object recognition based on one-class support vector machine in hyperspectral image. Journal of Computer Applications, 31, 2092-2096. (in Chinese with English abstract)
[陈伟, 余旭初, 张鹏强, 王智超, 王鹤 (2011) 基于一类支持向量机的高光谱影像地物识别. 计算机应用, 31, 2092-2096.]
[8] Chen B, Zhang HX (2008) Dynamic combinatorial method of multiple classifiers on ensemble learning. Computer Engineering, 34, 218-220. (in Chinese with English abstract)
[陈冰, 张化祥 (2008) 集成学习的多分类器动态组合方法. 计算机工程, 34, 218-220.]
[9] Corcuera P, Zavala-Hurtado JA (2006) The influence of vegetation on bird distribution in dry forests and oak woodlands of western Mexico. Revista de Biología Tropical, 54, 657-672.
[10] Cui XY, Wang WJ, Yang XQ, Li S, Qin SY, Rong J (2016) Potential distribution of wild Camellia oleifera based on ecological niche modeling. Biodiversity Science, 24, 1117-1128. (in Chinese with English abstract)
[崔相艳, 王文娟, 杨小强, 李述, 秦声远, 戎俊 (2016) 基于生态位模型预测野生油茶的潜在分布. 生物多样性, 24, 1117-1128.]
[11] Davis FW, Seo C, Zielinski WJ (2007) Regional variation in home-range-scale habitat models for fisher (Martes pennanti) in California. Ecological Applications, 17, 2195-2213.
[12] Elith J, Graham CH (2009) Do they? How do they? WHY do they differ? On finding reasons for differing performances of species distribution models. Ecography, 32, 66-77.
[13] Elith J, Graham CH, Anderson RP, Dudík M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J, Lohmann LG, Loiselle BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton JM, Peterson AT, Phillips SJ, Richardson K, Scachetti-Pereira R, Schapire RE, Soberón J, Williams S, Wisz MS, Zimmermann NE (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29, 129-151.
[14] Gao B, Wei HY, Guo YL, Gu W (2015) Using GIS and MaxEnt to analyze the potential distribution of Abies chensiensis. Chinese Journal of Ecology, 34, 843-852. (in Chinese with English abstract)
[高蓓, 卫海燕, 郭彦龙, 顾蔚 (2015) 应用GIS和最大熵模型分析秦岭冷杉潜在地理分布. 生态学杂志, 34, 843-852.]
[15] Guo J, Liu XN, Ren ZC (2011) An improved method for spatial interpolation of meteorological data based on GIS modules—A case study in Gansu Province. Grassland and Turf, 31(4), 41-45. (in Chinese with English abstract)
[郭婧, 柳小妮, 任正超 (2011) 基于GIS模块的气象数据空间插值方法新改进——以甘肃省为例. 草原与草坪, 31(4), 41-45.]
[16] Guo QH, Liu J, Tao SL, Xue BL, Li L, Xu GC, Li WK, Wu FF, Li YM, Chen LH, Pang SX (2014) Perspectives and prospects of LiDAR in forest ecosystem monitoring and modeling. Chinese Science Bulletin, 59, 459-478. (in Chinese with English abstract)
[郭庆华, 刘瑾, 陶胜利, 薛宝林, 李乐, 徐光彩, 李文楷, 吴芳芳, 李玉美, 陈琳海, 庞树鑫 (2014) 激光雷达在森林生态系统监测模拟中的应用现状与展望. 科学通报, 59, 459-478.]
[17] Hsu KL, Gupta HV, Sorooshian S (1995) Artificial neural network modeling of the rainfall-runoff process. Water Resources Research, 31, 2517-2530.
[18] Ibarra JT, Martin K, Drever MC, Vergara G (2014) Occurrence patterns and niche relationships of sympatric owls in South American temperate forests: A multi-scale approach. Forest Ecology and Management, 331, 281-291.
[19] Jakubowksi MK, Guo QH, Collins B, Stephens S, Kelly M (2013) Predicting surface fuel models and fuel metrics using Lidar and CIR imagery in a dense, mountainous forest. Photogrammetric Engineering & Remote Sensing, 79, 37-49.
[20] Kulhanek SA, Leung B, Ricciardi A (2011) Using ecological niche models to predict the abundance and impact of invasive species: Application to the common carp. Ecological Applications, 21, 203-213.
[21] Leeuwen MV, Nieuwenhuis M (2010) Retrieval of forest structural parameters using LiDAR remote sensing. European Journal of Forest Research, 129, 749-770.
[22] Li HM, Han HX, Xue DY (2005) Prediction of potential geographic distribution areas for the pine bark scale, Matsucoccus matsumurae (Kuwana) (Homoptera: Margarodidae) in China using GARP modeling system. Acta Entomologica Sinica, 48, 95-100. (in Chinese with English abstract)
[李红梅, 韩红香, 薛大勇 (2005) 利用GARP生态位模型预测日本松干蚧在中国的地理分布. 昆虫学报, 48, 95-100.]
[23] Li WK, Guo QH, Charles E (2011) Can we model the probability of presence of species without absence data? Ecography, 34, 1096-1105.
[24] Li WK, Guo QH (2013) How to assess the prediction accuracy of species presence-absence models without absence data? Ecography, 36, 788-799.
[25] Lin CT, Ji LQ (2010) PSDS (predictive species distribution system) 2.0: A system based on GIS and multiple models for predicting potential distribution of species. Biodiversity Science, 18, 461-472. (in Chinese with English abstract)
[林聪田, 纪力强 (2010) PSDS 2.0: 一个基于GIS和多个模型的生物潜在分布地预测系统. 生物多样性, 18, 461-472.]
[26] Liu C, Berry P, Dawson TP, Pearson RG (2005) Selecting thresholds of occurrence in the prediction of species distributions. Ecography, 28, 385-393.
[27] Liu JY, Ma XG, Ma AM (2010) Potential distribution of Aedes sierrensis in China. Chinese Journal of Vector Biology and Control, 21, 33-35. (in Chinese with English abstract)
[刘静远, 马晓光, 马爱敏 (2010) Aedes sierrensis在中国的潜在分布预测. 中国媒介生物学及控制杂志, 21, 33-35.]
[28] Lou YJ, Gao CY, Pan YW, Xue ZS, Liu Y, Tang ZH, Jiang M, Lu XG, Rydin H (2017) Niche modelling of marsh plants based on occurrence and abundance data. Science of the Total Environment, 198, 616-617.
[29] Lucas RM, Cronin N, Lee A, Moghaddam M, Witte C, Tickle P (2006) Empirical relationships between AIRSAR backscatter and LiDAR-derived forest biomass, Queensland, Australia. Remote Sensing of Environment, 100, 407-425.
[30] Luo C, Xu WH, Zhou ZX, Ouyang ZY, Zhang L (2011) Habitat prediction for forest musk deer (Moschus berezovskii) in Qinling Mountain range based on niche model. Acta Ecologica Sinica, 31, 1221-1229. (in Chinese with English abstract)
[罗翀, 徐卫华, 周志翔, 欧阳志云, 张路 (2011) 基于生态位模型的秦岭山系林麝生境预测. 生态学报, 31, 1221-1229.]
[31] Magalhães-Júnior AJC, Moura GJB, Ribeiro LB, Azevedo- Júnior SM (2017) Potential distribution and conservation of the Colobosauroides carvalhoi Soares and Caramaschi, 1998: A rare and endemic lizard of Northeast Brazil. Brazilian Journal of Biology, 77, 686-695.
[32] Pal M (2005) Random forest classifier for remote sensing classification. International Journal of Remote Sensing, 26, 217-222.
[33] Peterson AT, Ortega-Huerta MA, Bartley J, Sánchez-Cordero V, Soberón J, Buddemeier RH, Stockwell DRB (2002) Future projections for Mexican faunas under global climate change scenarios. Nature, 416, 626-629.
[34] Phillips SJ (2012) Inferring prevalence from presence-only data: A response to ‘Can we model the probability of presence of species without absence data?’. Ecography, 35, 385-387.
[35] Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190, 231-259.
[36] Potter C (2015) Landscape patterns of vegetation canopy regrowth following wildfires in the Sierra Nevada Mountains of California. Open Journal of Forestry, 5, 723-732.
[37] Qi ZX, Xu WH, Xiong XY, Ouyang ZY, Zheng H, Gan DX (2011) Assessment of potential habitat for Ursus thibetanus in the Qinling Mountains. Biodiversity Science, 19, 343-352. (in Chinese with English abstract)
[齐增湘, 徐卫华, 熊兴耀, 欧阳志云, 郑华, 甘德欣 (2011) 基于MAXENT模型的秦岭山系黑熊潜在生境评价. 生物多样性, 19, 343-352.]
[38] Rakotomamonjy A (2003) Variable selection using SVM-based criteria. Journal of Machine Learning Research, 3, 1357-1370.
[39] Reinhardt E, Scott J, Gray K, Keane R (2006) Estimating canopy fuel characteristics in five conifer stands in the western United States using tree and stand measurements. Canadian Journal of Forest Research, 36, 2803-2814.
[40] Richardson JJ, Moskal LM, Kim SH (2009) Modeling approaches to estimate effective leaf area index from aerial discrete-return LIDAR. Agricultural and Forest Meteorology, 149, 1152-1160.
[41] Song HM, Zhang QF, Han XM, Xu Y, Xu RM (2004) CLIMEX: Professional biological software for predicting potential distribution of species. Entomological Knowledge, 41, 379-386. (in Chinese with English abstract)
[宋红敏, 张清芬, 韩雪梅, 徐岩, 徐汝梅 (2004) CLIMEX: 预测物种分布区的软件. 昆虫知识, 41, 379-386.]
[42] Su Y, Qi Y, Wang JH, Xu FN, Zhang JL (2017) Vegetation coverage classification and vegetation structure parameters extraction of Populus euphratica forest in Ejina Oasis by LiDAR data. Journal of Desert Research, 37, 689-697. (in Chinese with English abstract)
[苏阳, 祁元, 王建华, 徐菲楠, 张金龙 (2017) 基于LiDAR数据的额济纳绿洲胡杨 (Populus euphratica) 河岸林植被覆盖分类与植被结构参数提取. 中国沙漠, 37, 689-697.]
[43] Sweitzer R, Thompson C, Purcell K, Barrett R, Tempel D, Perry Z (2015) Final Report on the Sierra Nevada Adaptive Management Project to USDA Region 5 Forest Service (eds Hopkinson P,Battles JJ), pp. D1-D132. Center for Forestry, University of California, Berkeley, USA.
[44] Tempel DJ, Gutiérrez RJ, Battles JJ, Fry DL, Su YJ, Guo QH, Reetz MJ, Whitmore SA, Jones GM, Collins BM, Stephens SL, Kelly M, Berigan WJ, Peery MZ (2016) Evaluating short- and long-term impacts of fuels treatments and simulated wildfire on an old-forest species. Ecosphere, 6, 1-18.
[45] Thompson CM, Gese EM (2013) Influence of vegetation structure on the small mammal community in a shortgrass prairie ecosystem. Acta Theriologica, 58, 55-61.
[46] Waltari E, Guralnick RP (2009) Ecological niche modelling of montane mammals in the Great Basin, North America: Examining past and present connectivity of species across basins and ranges. Journal of Biogeography, 36, 148-161.
[47] Walsh MG, Wiethoelter A, Haseeb MA (2017) The impact of human population pressure on flying fox niches and the potential consequences for Hendra virus spillover. Scientific Reports, 7, 8226.
[48] Wang XZ, Xu WH, Ouyang ZY, Liu JG, Xiao Y, Chen YP, Zhao LJ, Huang JZ (2008) The application of ecological-niche factor analysis in giant pandas (Ailuropoda melanoleuca) habitat assessment. Acta Ecologica Sinica, 28, 821-828. (in Chinese with English abstract)
[王学志, 徐卫华, 欧阳志云, 刘建国, 肖燚, 陈佑平, 赵联军, 黄俊忠 (2008) 生态位因子分析在大熊猫 (Ailuropoda melanoleuca) 生境评价中的应用. 生态学报, 28, 821-828.]
[49] Wang YS, Xie BY, Wan FH, Xiao QM, Dai LY (2007) Application of ROC curve analysis in evaluating the performance of alien species’ potential distribution models. Biodiversity Science, 15, 365-372. (in Chinese with English abstract)
[王运生, 谢丙炎, 万方浩, 肖启明, 戴良英 (2007) ROC曲线分析在评价入侵物种分布模型中的应用. 生物多样性, 15, 365-372.]
[50] Wen ZM, He XH, Jiao F, Jiao JY (2008) The predictive distribution of Stipa bungeana in Yanhe River catchment: GAM model and its application. Acta Ecologica Sinica, 28, 192-201. (in Chinese with English abstract)
[温仲明, 赫晓慧, 焦峰, 焦菊英 (2008) 延河流域本氏针茅 (Stipa bungeana) 分布预测——广义相加模型及其应用. 生态学报, 28, 192-201.]
[51] Wu W, Li YH, Hu YM, Chen L, Li Y, Li ZM, Nie ZW, Chen T (2016) Suitable winter habitat for Cervus elaphus on the southern slope of the Lesser Xing’an Mountains. Biodiversity Science, 24, 20-29. (in Chinese with English abstract)
[吴文, 李月辉, 胡远满, 陈龙, 李悦, 李泽鸣, 聂志文, 陈探 (2016) 小兴安岭南麓马鹿冬季适宜生境评价. 生物多样性, 24, 20-29.]
[52] Xing YQ, Huo D, You HT, Tian X, Jiao YT, Xie J, Yao ST (2016) Estimation of birch forest LAI based on single laser penetration index of airborne LiDAR data. Chinese Journal of Applied Ecology, 27, 3469-3478. (in Chinese with English abstract)
[邢艳秋, 霍达, 尤号田, 田昕, 焦义涛, 谢杰, 姚松涛 (2016) 基于机载LiDAR单束激光穿透指数的白桦林LAI估测. 应用生态学报, 27, 3469-3478.]
[53] Zeng S, Du XM, Tan KX (2014) Evaluation of eco-environmental security for uranium mine based on generalized linear theory. Mining and Metallurgical Engineering, 34, 27-30. (in Chinese with English abstract)
[曾晟, 杜雪明, 谭凯旋 (2014) 基于广义线性理论的铀矿生态环境安全评价. 矿冶工程, 34, 27-30.]
[54] Zhang L, Liu SR, Sun PS, Wang TL (2011) Partitioning and mapping the sources of variations in the ensemble forecasting of species distribution under climate change: A case study of Pinus tabulaeformis. Acta Ecologica Sinica, 31, 5749-5761. (in Chinese with English abstract)
[张雷, 刘世荣, 孙鹏森, 王同立 (2011) 气候变化对物种分布影响模拟中的不确定性组分分割与制图——以油松为例. 生态学报, 31, 5749-5761.]
[55] Zhang RY, Pang Y, Li ZY, Bao YH (2016) Canopy closure estimation in a temperate forest using airborne LiDAR and LANDSAT ETM+ data. Chinese Journal of Plant Ecology, 40, 102-115. (in Chinese with English abstract)
[张瑞英, 庞勇, 李增元, 包玉海 (2016) 结合机载LiDAR和LANDSAT ETM+数据的温带森林郁闭度估测. 植物生态学报, 40, 102-115.]
[56] Zhang XA, Sui XY, Lü Z, Chen YF (2014) A prediction of the global habitat of two invasive fishes (Pseudorasbora parva and Carassius auratus) from East Asia using Maxent. Biodiversity Science, 22, 182-188. (in Chinese with English abstract)
[张熙骜, 隋晓云, 吕植, 陈毅峰 (2014) 基于Maxent的两种入侵性鱼类 (麦穗鱼和鲫) 的全球适生区预测. 生物多样性, 22, 182-188.]
[57] Zhang XM, Nan ZT, Wu JC, Du EJ, Wang T, You YH (2011) Modeling permafrost distribution in Wenquan area over Qinghai-Tibet Plateau by using multivariate adaptive regression splines. Journal of Glaciology and Geocryology, 33, 1088-1097. (in Chinese with English abstract)
[张秀敏, 南卓铜, 吴吉春, 杜二计, 王通, 游艳辉 (2011) 基于多元自适应回归样条的青藏高原温泉区域的冻土分布制图. 冰川冻土, 33, 1088-1097.]
[58] Zhao F, Sweitzer RA, Guo Q, Kelly M (2012) Characterizing habitats associated with fisher den structures in the Southern Sierra Nevada, California using discrete return lidar. Forest Ecology and Management, 280, 112-119.
[59] Zhong GP, Shen WJ, Wan WH, Wang JJ (2009) Potential distribution areas of Solanum rostratum in China: A prediction with GARP niche model. Chinese Journal of Ecology, 28, 162-166. (in Chinese with English abstract)
[钟艮平, 沈文君, 万文浩, 王进军 (2009) 用GARP生态位模型预测刺萼龙葵在中国的潜在分布区. 生态学杂志, 28, 162-166.]
[60] Zhou GL, Chen C, Ye J, Hu BS, Liu FQ (2007) Predicting potential ecological distribution of Bactrocera dorsalis in China using GARP ecological niche modeling. Acta Ecologica Sinica, 27, 3362-3369. (in Chinese with English abstract)
[周国梁, 陈晨, 叶军, 胡白石, 刘凤权 (2007) 利用GARP生态位模型预测桔小实蝇 (Bactrocera dorsalis) 在中国的适生区域. 生态学报, 27, 3362-3369.]
[61] Zhou W, Zhao H, Yang X (2012) Prediction of potential geographic distribution areas for Rana catesbiana and Mikania micrantha in China using GARP modeling system. Journal of Southwest Forestry University, 32, 51-55. (in Chinese with English abstract)
[周伟, 赵衡, 杨熙 (2012) 利用GARP生态位模型预测牛蛙和薇甘菊在中国的地理分布. 西南林业大学学报, 32, 51-55.]
[62] Zhu GP, Qiao HJ (2016) Effect of the Maxent model’s complexity on the prediction of species potential distributions. Biodiversity Science, 24, 1189-1196. (in Chinese with English abstract)
[朱耿平, 乔慧捷 (2016) Maxent模型复杂度对物种潜在分布区预测的影响. 生物多样性, 24, 1189-1196.]
[63] Zhu Y, Kang MY (2005) Application of ordination and GLM/GAM in the research of the relationship between plant species and environment. Chinese Journal of Ecology, 24, 807-811. (in Chinese with English abstract)
[朱源, 康慕谊 (2005) 排序和广义线性模型与广义可加模型在植物种与环境关系研究中的应用. 生态学杂志, 24, 807-811.]
[64] Zielinski WJ, Truex RL, Dunk JR, Gaman T (2006) Using forest inventory data to assess fisher resting habitat suitability in California. Ecological Applications, 16, 1010-1025.
[1] HU Wan,ZHANG Zhi-Yong,CHEN Lu-Dan,PENG Yan-Song,WANG Xu. (2020) Changes in potential geographical distribution of Tsoongiodendron odorum since the Last Glacial Maximum . Chin J Plant Ecol, 44(1): 44-55.
[2] Hu Yifeng, Yu Wenhua, Yue Yang, Huang Zhenglanyi, Li Yuchun, Wu Yi. (2019) Species diversity and potential distribution of Chiroptera on Hainan Island, China . Biodiv Sci, 27(4): 400-408.
[3] Fan Jingyu, Li Hanpeng, Yang Zhuo, Zhu Gengping. (2019) Selecting the best native individual model to predict potential distribution of Cabomba caroliniana in China . Biodiv Sci, 27(2): 140-148.
[4] Chenchen Ding,Yiming Hu,Chunwang Li,Zhigang Jiang. (2018) Distribution and habitat suitability assessment of the gaur Bos gaurus in China . Biodiv Sci, 26(9): 951-961.
[5] Qin ZHANG, Dong-Fang ZHANG, Ming-Li WU, Jie GUO, Cheng-Zhong SUN, Cai-Xiang XIE. (2017) Predicting the global areas for potential distribution of Gastrodia elata based on ecological niche models . Chin J Plan Ecolo, 41(7): 770-778.
[6] Junwei Ye, Yongge Yuan, Li Cai, Xiaojuan Wang. (2017) Research progress of phylogeographic studies of plant species in temperate coniferous and broadleaf mixed forests in Northeastern China . Biodiv Sci, 25(12): 1339-1349.
[7] Xiangyan Cui,Wenjuan Wang,Xiaoqiang Yang,Shu Li,Shengyuan Qin,Jun Rong. (2016) Potential distribution of wild Camellia oleifera based on ecological niche modeling . Biodiv Sci, 24(10): 1117-1128.
[8] Gengping Zhu,Huijie Qiao. (2016) Effect of the Maxent model’s complexity on the prediction of species potential distributions . Biodiv Sci, 24(10): 1189-1196.
[9] Enyuan Fan, Xiangguo Fan, Ying Liu, Zhengguang Zhu, Xiaomei Wang, Yingchun Xing, Baoxiang Liu, Sai He. (2015) Historical retrospect on “Introduction from the Sea” in CITES . Biodiv Sci, 23(1): 116-125.
[10] Huijie Qiao,Congtian Lin,Jiangning Wang,Liqiang Ji. (2014) Process-oriented ecological modeling approach and scientific workflow system . Biodiv Sci, 22(3): 277-284.
[11] Gengping Zhu,Qiang Liu,Yubao Gao. (2014) Improving ecological niche model transferability to predict the potential distribution of invasive exotic species . Biodiv Sci, 22(2): 223-230.
[12] Gengping Zhu,Guoqing Liu,Wenjun Bu,Yubao Gao. (2013) Ecological niche modeling and its applications in biodiversity conservation . Biodiv Sci, 21(1): 90-98.
[13] ZHOU Jing, LI Qiao-Yun, XIAO Liang, JIANG Jian-Xiong, and YI Zi-Li. (2012) Potential distribution of Miscanthus sinensis and M. floridulus in China . Chin J Plan Ecolo, 36(6): 504-510.
[14] Congtian Lin, Liqiang Ji. (2010) PSDS (predictive species distribution system) 2.0: a system based on GIS and multiple models for predicting potential distribution of species . Biodiv Sci, 18(5): 461-472.
[15] MA Song-Mei, ZHANG Ming-Li, ZHANG Hong-Xiang, MENG Hong-Hu, CHEN Xi. (2010) Predicting potential geographical distributions and patterns of the relic plant Gymnocarpos przewalskii using Maximum Entropy and Genetic Algorithm for Rule-set Prediction . Chin J Plan Ecolo, 34(11): 1327-1335.
Full text