生物多样性 ›› 2014, Vol. 22 ›› Issue (3): 401-406.doi: 10.3724/SP.J.1003.2014.13226

• • 上一篇    下一篇

中国近海甲藻环沟藻属2个新记录种:纺锤环沟藻和莫氏环沟藻

顾海峰1, , A;*(), 罗肇河1, 刘丽丽2, 高越3   

  1. 1 .国家海洋局第三海洋研究所, 福建厦门 361005
    2 .厦门市海洋与渔业研究所, 福建厦门 361005
    3 .厦门大学近海海洋环境科学国家重点实验室, 福建厦门 361005
  • 收稿日期:2013-10-22 接受日期:2014-02-26 出版日期:2014-05-20
  • 通讯作者: 顾海峰 E-mail:haifenggu@yahoo.com
  • 基金项目:
    福建省自然科学基金(2012J01135)

First report of Gyrodinium fusiforme and G. moestrupii (Dinophyceae) in China Sea waters

Haifeng Gu1, *(), Zhaohe Luo1, Lili Liu2, Yue Gao3   

  1. 1. Third Institute of Oceanography, State Oceanic Administration, Xiamen, Fujian 361005
    2. Marine and Fishery Institute of Xiamen, Xiamen, Fujian 361005
    3. State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian 361005
  • Received:2013-10-22 Accepted:2014-02-26 Online:2014-05-20
  • Contact: Gu Haifeng E-mail:haifenggu@yahoo.com

甲藻环沟藻属于一类无色素体、表面有脊的裸甲藻, 因可捕食一些重要的赤潮生物而在海洋生态系统中扮演着重要的角色。有关中国近海环沟藻属的物种多样性信息非常有限。本文报道了2个新记录种——纺锤环沟藻(Gyrodinium fusiforme)和莫氏环沟藻(G. moestrupii)。纺锤环沟藻细胞呈纺锤形, 长48.0-58.0 μm, 宽18.0-23.0 μm, 长宽比为2.4-3.0, 和模式种相比体型和长宽比都较小。莫氏环沟藻细胞也呈纺锤形, 长约30 μm, 宽约15 μm。我们测定了纺锤环沟藻和莫氏环沟藻大亚基的部分序列, 并根据大亚基序列利用最大似然法和贝叶斯法建立了系统发育树。结果显示环沟藻属是单源的, 纺锤环沟藻和裂缝环沟藻(G. fissum)聚合在一起, 但是与螺旋环沟藻(G. spirale)分离。纺锤环沟藻和莫氏环沟藻分别可以摄食米氏凯伦藻(Karenia mikimotoi)和具齿原甲藻(Prorocentrum dentatum), 前者在米氏凯伦藻赤潮中的大量出现显示它可以促进赤潮的消退。

关键词: Gyrodinium fusiforme, Gyrodinium moestrupii, Karenia mikimotoi, 大亚基, 赤潮

The athecate dinoflagellate genus Gyrodinium includes heterotrophic species that prey on other dinoflagellates, and thus play an important role in marine ecology. Information about the Gyrodinium diversity along the coast of China is limited. Here we report on the characteristics of two species, Gyrodinium fusiforme Kofoid & Swezy and Gyrodinium moestrupii Yoon, Kang, and Jeong that were isolated from a Karenia mikimotoi bloom sample in the East China Sea. The cells of G. fusiforme were fusiform with a length of 48.0-58.0 μm and a width of 18.0-23.0 μm. Cells of G. moestrupii were also fusiform and approximately 30 μm long and 15 μm wide. Partial large subunit (LSU) ribosomal DNA sequences were obtained from single cells of G. fusiforme and G. moestrupii and phylogenetic trees were built using maximum likelihood (ML) and Bayesian inference (BI). In the phylogenetic trees the genus Gyrodinium is monophyletic, and G. fusiforme groups together with G. fissum, but separates from G. spirale although they are similar in morphology. G. fusiforme and G. moestrupii can prey on Karenia mikimotoii and Prorocentrum dentatum respectively. The high abundance of G. fusiforme during K. mikimotoi bloom suggests it may play a role in bloom decline.

Key words: Gyrodinium fusiforme, Gyrodinium moestrupii, Karenia mikimotoi, LSU rDNA, harmful algal blooms

图1-10

图1-10 纺锤环沟藻(1-8)和莫氏环沟藻(9-10)的形态学观察结果。1: 纺锤环沟藻腹面观, 示表面的脊和横沟偏移(LM); 2: 图1中的细胞位于不同的聚焦点, 示椭圆形的细胞核(N)和摄食的一个猎物(箭头)(LM); 3: 纺锤环沟藻腹面观, 示表面的脊和横沟偏移(SEM); 4: 纺锤环沟藻的顶沟(箭头)(SEM); 5: 纺锤环沟藻腹面观, 示表面的脊和横沟偏移(SEM); 6: 纺锤环沟藻背面观, 示表面的脊(SEM); 7: 纺锤环沟藻的纵沟(SEM); 8: 纺锤环沟藻正在摄食一个米氏凯伦藻细胞(SEM); 9: 一个活体莫氏环沟藻细胞(LM) ;10: 一个DAPI染色的莫氏环沟藻细胞, 示球形的细胞核(N)和摄食的一个具齿原甲藻细胞(箭头)(LM)。"

图11

基于部分大亚基序列用贝叶斯法建立的纺锤环沟藻和莫氏环沟藻的系统发育树。李氏亚历山大藻和泰勒亚历山大藻作为系统发育分析的外源类群。节点的数字是最大似然法分析重复抽样分析(1,000次)和贝叶斯的后验概率(左: 最大似然法的重复抽样支持度; 右: 贝叶斯的后验概率)。最大似然法支持度小于50和贝叶斯概率小于0.7的数字未列出。*表示最大支持度。"

[1] Bérard-Therriault L, Poulin M, Bossé L (1999) Guide d’identification du phytoplancton marin de l’estuaire et du golfe du Saint-Laurent incluant également certains protozoaires. Publication Speciale Canadienne des Sciences Halieutiques et Aquatiques CNRC, Ottawa.
[2] Daugbjerg N, Hansen G, Larsen J, Moestrup, Ø (2000) Phylogeny of some of the major genera of dinoflagellates based on ultrastructure and partial LSU rDNA sequence data, including the erection of three new genera of unarmoured dinoflagellates.Phycologia, 39, 302-317.
[3] Davidson K, Miller P, Wilding TA, Shutler J, Bresnan E, Kennington K, Swan S (2009) A large and prolonged bloom of Karenia mikimotoi in Scottish waters in 2006.Harmful Algae, 8, 349-361.
[4] Dodge JD (1982) Marine Dinoflagellates of the British Isles, 303 pp. Her Majesty's Stationery Office, London.
[5] Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput.Nucleic Acids Research, 32, 1792-1797.
[6] Gómez F (2012) A checklist and classification of living dinoflagellates (Dinoflagellata, Alveolata).CICIMAR Oceánides, 27, 65-140.
[7] Hansen G, Daugbjerg N (2004) Ultrastructure of Gyrodinium spirale, the type species of Gyrodinium (Dinophyceae), including a phylogeny of G. dominans, G. rubrum and G. spirale deduced from partial LSU rDNA sequences.Protist, 155, 271-294.
[8] Huang CJ (黄长江), Dong QX (董巧香) (2001) Taxonomic and biological studies on organisms causing a large scale red tide in Zhujiang River Estuary in spring, 1998. Ⅲ.Oceanologia et Limnologia Sinica(海洋与湖沼), 32, 1-6. (in Chinese with English abstract)
[9] Jeong HJ, Yoo YD, Kim JS, Seong KA, Kang NS, Kim TH (2010) Growth, feeding and ecological roles of the mixotrophic and heterotrophic dinoflagellates in marine planktonic food webs.Ocean Science Journal, 45(2), 65-91.
[10] Kofoid CA, Swezy O (1921) The free-living unarmored dinoflagellata.Memoirs of the University of California, 5, 1-564.
[11] Medlin L, Elwood HJ, Stickel S, Sogin ML (1988) The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions.Gene, 71, 491-499.
[12] Meunier A.1910. Microplancton des Mers de Barents et de Kara, 355 pp. Duc d’Orleans Campagne Arctique de 1907. Bulens, Bruxelles.
[13] Nakamura Y, Suzuki S, Hiromi J (1995) Population dynamics of heterotrophic dinoflagellates during a Gymnodinium mikimotoi red tide in the Seto Inland Sea.Marine Ecology Progress Series, 125, 269-277.
[14] Nakamura Y, Suzuki S, Hiromi J (1996) Development and collapse of a Gymnodinium mikimotoi red tide in the Seto Inland Sea.Aquatic Microbial Ecology, 10(2), 131-137.
[15] Posada D (2008) jModelTest: phylogenetic model averaging.Molecular Biology and Evolution, 25, 1253-1256.
[16] Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models.Bioinformatics, 19, 1572-1574.
[17] Scholin CA, Herzog M, Sogin M, Anderson DM (1994) Identification of group- and strain-specific genetic markers for globally distributed Alexandrium (Dinophyceae). II. Sequence analysis of a fragment of the LSU rRNA gene.Journal of Phycology, 30, 999-1011.
[18] Stamatakis A, Hoover P, Rougemont J (2008) A rapid bootstrap algorithm for the RAxML Web servers.Systematic Biology, 57, 758-771.
[19] Sun J (孙军), Wang XD (王小冬), Song SQ (宋书群) (2007) Selective feeding of Calanus sinicus on harmful algal blooms species in East China Sea in spring.Chinese Journal of Applied Ecology(应用生态学报), 18, 151-157. (in Chinese with English abstract)
[20] Takano Y, Horiguchi T (2004) Surface ultrastructure and molecular phylogenetics of four unarmored heterotrophic dinoflagellates, including the type species of the genus Gyrodinium (Dinophyceae).Phycological Research, 52, 107-116.
[21] Takayama H (1985) Apical grooves of unarmored dinoflagellates.Bulletin of Plankton Society of Japan, 32, 129-140.
[22] Wang JH (王金辉), Huang XQ (黄秀清) (2003) Ecological characteristics of Prorocentrum dentatum and the cause of harmful algal bloom formation in China Sea.Chinese Journal of Applied Ecology(应用生态学报), 14, 1065-1069. (in Chinese with English abstract)
[23] Yoo YD, Yoon EY, Jeong HJ, Lee KH, Hwang YJ, Seong KA, Kim JS, Park JY (2013) The newly described heterotrophic dinoflagellate Gyrodinium moestrupii, an effective protistan grazer of toxic dinoflagellates.Journal of Eukaryotic Microbiology, 60(1), 13-24.
[24] Yoon EY, Kang NS, Jeong HJ (2012) Gyrodinium moestrupii n. sp., a new planktonic heterotrophic dinoflagellate from the coastal waters of western Korea: morphology and ribosomal DNA gene sequence.Journal of Eukaryotic Microbiology, 59, 571-586.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed