增温对东北温带次生林草本群落季节动态的影响
Effects of simulated warming on seasonal dynamics of herbaceous diversity in temperate secondary forests in Northeast China
通讯作者: * E-mail:linfei@iae.ac.cn
编委: 储诚进
责任编辑: 黄祥忠
收稿日期: 2023-02-21 接受日期: 2023-03-28
基金资助: |
|
Corresponding authors: * E-mail:linfei@iae.ac.cn
Received: 2023-02-21 Accepted: 2023-03-28
主要由人类活动造成的气候变暖导致陆地植物多样性和群落结构发生改变, 森林草本层作为森林生态系统植物多样性的主要贡献者, 对气候变暖的响应十分显著, 而目前仍缺乏相关研究。本研究基于中国科学院清原森林生态系统观测研究站搭建的红外线模拟增温平台, 分析了表层土壤(0-10 cm)增温2℃条件下林下草本层群落在生长季受到的影响。结果表明: 增温第4-5年间, 对照和增温处理下的草本植物多样性无显著差异, 但增温处理下各季节的多样性指数均较对照处理呈现减小趋势; 对照和增温处理下的草本层群落总体盖度和多度无显著差异, 但群落组成及结构发生显著改变。不同优势种对增温的响应趋势不同。年优势种中, 山茄子(Brachybotrys paridiformis)的响应最显著, 其重要值、多度和盖度在各季节均显著增加, 而龙头草(Meehania henryi)在各季节显著减少, 白花碎米荠(Cardamine leucantha)和荷青花(Hylomecon japonica)的响应不显著; 季节优势种中, 春季优势种单花韭(Allium monanthum)重要值显著降低, 五福花(Adoxa moschatellina)重要值显著增加, 夏季优势种珠芽艾麻(Laportea bulbifera)无显著响应。综上, 增温对该区森林草本植物多样性无明显影响, 但可能导致某些物种物候期提前, 改变群落内物种对光等资源的竞争关系, 或者影响某些物种的功能性状, 显著改变不同季节部分优势种的重要值、多度和盖度, 导致草本层群落组成和结构发生变化。
关键词:
Aims: Climate warming mainly caused by human activities has led to changes in terrestrial plant diversity and community structure. Forest herb layer, as the main contributor of plant diversity in forest ecosystem, has a significant response to climate warming, however, relevant studies are still lacking. This study explores the changes of herbaceous community in temperate forests in the context of climate warming, including diversity, community structure, and species composition, in order to provide scientific basis for the response of forest herbaceous layer to climate warming.
Method: This experiment was carried out in 2021 and 2022 on a simulated warming platform built by Qingyuan Forest Ecosystem Research Station of Chinese Academy of Sciences, which used an infrared ray to warm the surface soil by 2℃ during the growing season.
Results: The results showed that there was no significant change in herbaceous diversity under warming conditions, but the community diversity index of each season showed a decreasing trend. After warming, the overall coverage and abundance of the herbaceous community did not change significantly, but the composition and structure of the herbaceous community changed significantly. Specifically, the response trend of different dominant species to warming was different. Among the dominant species throughout the year, the response of Brachybotrys paridiformis was the most obvious, as its importance value, abundance, and coverage increased significantly, while that of Meehania henryi decreased significantly. Cardamine leucantha and Hylomecon japonica had no significant response. Lastly, the importance value of Allium monanthum, which is the seasonal dominant species, was significantly decreased, while that of Adoxa moschatellina was significantly increased.
Conclusion: Warming has no significant effect on herbaceous diversity in the forest in this study, but it may lead to the advancement of the phenological period of some species, change the competition between species in the community for resources such as light, or affect the development of functional traits of some species. Furthermore, it may change the importance value, abundance, and coverage of dominant species in different seasons, and lead to significant changes in the composition and structure of the herbaceous community.
Keywords:
本文引用格式
陈哲涵, 尹进, 叶吉, 刘冬伟, 毛子昆, 房帅, 蔺菲, 王绪高 (2023)
Zhehan Chen, Jin Yin, Ji Ye, Dongwei Liu, Zikun Mao, Shuai Fang, Fei Lin, Xugao Wang (2023)
联合国气候变化政府间专门委员会(IPCC)第六次评估报告指出: 2020年全球陆地表面温度比1850-1900年平均气温高1.09℃, 预计未来全球气候变暖或将超过1.5℃ (IPCC, 2021)。中国是气候变化的敏感区和影响显著区, 1951-2020年地表年平均温度上升速率为0.26℃/10年, 明显高于全球同期水平(中国气象局气候变化中心, 2021)。气候变暖能够导致植物产生不同的生长反应, 改变植物间的相互作用(Elmendorf et al, 2012)。这可能增加一些植物在群落中的优势度, 降低其他植物的重要程度, 进而造成植物群落结构及物种组成的变化以及生物多样性的下降, 甚至可能引起陆地生态系统中植物物种的局部或全球灭绝(Niu & Wan, 2008)。目前已有研究表明, 增温能够导致植物多样性降低和群落结构发生变化(Walker et al, 2006; Niu & Wan, 2008; 宗宁等, 2016; 马丽等, 2020); 然而, 也有研究发现尽管增温能够改变植物群落结构, 但是对植物多样性并无显著影响(李元恒, 2014; 杨晓艳等, 2018; 徐满厚等, 2021; 徐满厚和李晓丽, 2021), 尤其在森林生态系统。此外, 部分在高海拔、高纬度地区的长期观测实验甚至表明气候变暖会增加植物多样性(Salick et al, 2019; Wang et al, 2019), 这是由于气候变暖造成了植物适宜栖息地的改变, 使得其往高海拔、高纬度地区迁移造成的。
森林是陆地生态系统的主体, 具有丰富的生物多样性和强大的生态系统功能。草本层是森林生态系统的重要组成部分, 在北方典型温带森林生态系统中, 虽然其对森林生物量的贡献仅占0.2%, 但能提供4%的净初级生产力, 并占据80%的物种多样性(Gilliam, 2007; Spicer et al, 2022)。此外, 森林草本层植物更新周期短、适应能力强、对林下微环境变化敏感(Spicer et al, 2022), 在调节碳动态和能量流动等生态系统功能中发挥着重要作用(Gilliam, 2007; Jia et al, 2022)。草本层为森林提供了高达20%的凋落物, 且其凋落物的分解速率较林冠上层凋落物快两倍以上, 对森林生态系统的凋落物养分归还做出了很大贡献。草本植物叶片中含有较多的N、P、K、Mg等必需营养素, 其快速分解和高周转率等特点促进了森林中营养物质的有效循环(Gilliam, 2007; Landuyt et al, 2019)。
1 材料与方法
1.1 研究地概况
本研究样地设置于中国科学院清原森林生态系统观测研究站(41°51′ N, 124°54′ E)。研究站位于辽宁省东部山区, 属长白山余脉龙岗山脉北麓, 温带大陆性季风气候。该研究地四季分明, 雨热同期, 植物生长季在4-9月, 积雪覆盖期为11月下旬至次年3月下旬, 降水集中发生于5-9月, 年平均降水量811 mm, 其中降雪量不足6%, 年均温3.9-5.4℃, 日平均极端低温-37.6℃, 日平均极端高温36.5℃, 年无霜期为130 d (Zhu et al, 2007)。土壤多为粘壤土, 呈中性和酸性, pH值5.5-6.5 (陈庆达, 2020①(①陈庆达 (2020) 野外增温对辽东山区胡桃楸幼苗生长的影响. 硕士学位论文, 沈阳农业大学, 沈阳.))。在过去60年中, 该地的平均气温每10年上升0.26℃ (Duan et al, 2022), 比全球地表平均上升温度(0.08℃)高出3倍以上(
该区森林经历了大规模的人为破坏, 再经过次生演替形成了以次生林为主、嵌于其中的落叶松(Larix spp.)人工林为辅的东北次生林生态系统, 是典型的温带森林生态系统(高添等, 2020)。乔木层建群种包括胡桃楸(Juglans mandshurica)、落叶松、蒙古栎(Quercus mongolica); 灌木层优势种包括色木槭(Acer mono)、东北山梅花(Philadelphus schrenkii)、狗枣猕猴桃(Actinidia kolomikta)、卫矛(Euonymus alatus)、刺五加(Acanthopanax senticosus)等; 草本层优势种包括山茄子(Brachybotrys paridiformis)、龙头草(Meehania henryi)、荷青花(Hylomecon japonica)、白花碎米荠(Cardamine leucantha)等。
1.2 样地设置
2017年在辽宁省清原县山区建立开放式模拟增温平台, 设置了对照和增温2个处理, 每个处理3个重复, 每个样方大小为108 m2 (16 m × 8 m)。2017年进行预实验, 2018年开始增温。每年3月下旬至12月上旬采用联排红外辐射灯阵方法进行24 h增温, 结合控温系统使0-10 cm表层土壤稳定增温2℃ (Duan et al, 2022), 采用反馈控制系统中的热电偶连续监测地表土壤温度(每5 min测量1次), 并在每个样方(土壤5 cm深处)均匀且随机安置10个土壤湿度探头用于测量表层土壤湿度。
1.3 植被调查与数据采集
本研究于2021年4月、7月、8月和2022年5月、7月、8月分别进行春季、夏季、秋季的林下草本层植物调查。在每个样方内随机且均匀地选取9个1 m × 1 m的草本样方, 共计54个, 记录草本植物的物种名称、多度和盖度。
1.4 数据统计与分析
式中, RA为相对多度, RC为相对盖度, RF为相对频度, Pi为种i个体数占全部物种个体数的比值, S为每个草本样方内的物种数。
在本研究中, 将重要值在春季、夏季、秋季均排名前5位的植物定义为年优势种, 在春季排名前5位的定义为春季优势种, 在夏季和秋季均排名前5位的定义为夏季优势种。以增温处理作为因变量, 对两年内各季节的多样性指数、群落多度和盖度及年优势种多度和盖度分别进行单因素方差分析。
不同处理下物种数据的统计与绘图使用Microsoft Excel 2019完成, 多样性指数和重要值计算及单因素方差分析使用R v4.1.3完成。
2 结果
2.1 增温处理后林下环境因子的变化
模拟增温显著提高了土壤表层(0-10 cm处)温度, 2021年生长季土壤温度平均升高1.96℃, 2022年平均升高1.84℃, 增温效果较为稳定(图1); 土壤湿度只在增温初期因表层积雪融化而短暂增加, 后续几乎无影响。
图1
图1
2021年和2022年生长季内对照和增温处理下的土壤温度和土壤湿度
Fig. 1
Soil temperature and humidity under control and warming treatments during the growing seasons in 2021 and 2022
2.2 增温对草本层物种多样性的影响
表1 对照和增温处理下东北温带次生林草本层的植物物种组成
Table 1
物种 Species | 科 Family | 属 Genus | 处理独有 Unique of treatment | 优势种 Dominant species |
---|---|---|---|---|
白花碎米荠 Cardamine leucantha | 十字花科 Brassicaceae | 碎米荠属 Cardamine | 年优势种 Annual dominant species | |
齿瓣延胡索 Corydalis turtschaninovii | 罂粟科 Papaveraceae | 紫堇属 Corydalis | 非优势种 Non-dominant species | |
穿龙薯蓣 Dioscorea nipponica | 薯蓣科 Dioscoreaceae | 薯蓣属 Dioscorea | 对照 Control | 非优势种 Non-dominant species |
单花韭 Allium monanthum | 百合科 Liliaceae | 葱属 Allium | 春季优势种 Spring dominant species | |
东北百合 Lilium distichum | 百合科 Liliaceae | 百合属 Lilium | 对照 Control | 非优势种 Non-dominant species |
东北天南星 Arisaema amurense | 天南星科 Araceae | 天南星属 Arisaema | 非优势种 Non-dominant species | |
东北羊角芹 Aegopodium alpestre | 伞形科 Umbelliferae | 羊角芹属 Aegopodium | 非优势种 Non-dominant species | |
短果茴芹 Pimpinella brachycarpa | 伞形科 Umbelliferae | 茴芹属 Pimpinella | 增温 Warming | 非优势种 Non-dominant species |
多被银莲花 Anemone raddeana | 毛茛科 Ranunculaceae | 银莲花属 Anemone | 非优势种 Non-dominant species | |
二叶舞鹤草 Maianthemum bifolium | 百合科 Liliaceae | 舞鹤草属 Maianthemum | 对照 Control | 非优势种 Non-dominant species |
孩儿参 Pseudostellaria heterophylla | 石竹科 Caryophyllaceae | 孩儿参属 Pseudostellaria | 非优势种 Non-dominant species | |
和尚菜 Adenocaulon himalaicum | 菊科 Compositae | 和尚菜属 Adenocaulon | 非优势种 Non-dominant species | |
荷青花 Hylomecon japonica | 罂粟科 Papaveraceae | 荷青花属 Hylomecon | 年优势种 Annual dominant species | |
猴腿蹄盖蕨 Athyrium multidentatum | 蹄盖蕨科 Athyriaceae | 蹄盖蕨属 Athyrium | 非优势种 Non-dominant species | |
黄精 Polygonatum sibiricum | 百合科 Liliaceae | 黄精属 Polygonatum | 非优势种 Non-dominant species | |
鸡腿堇菜 Viola acuminata | 堇菜科 Violaceae | 堇菜属 Viola | 增温 Warming | 非优势种 Non-dominant species |
老鹳草 Geranium wilfordii | 牻牛儿苗科 Geraniaceae | 老鹤草属 Geranium | 非优势种 Non-dominant species | |
林茜草 Rubia sylvatica | 茜草科 Rubiaceae | 茜草属 Rubia | 非优势种 Non-dominant species | |
龙头草 Meehania henryi | 唇形科 Lamiacea | 龙头草属Meehania | 年优势种 Annual dominant species | |
鹿药 Smilacina japonica | 百合科 Liliaceae | 鹿药属 Smilacina | 非优势种 Non-dominant species | |
球果堇菜 Viola collina | 堇菜科 Violaceae | 堇菜属 Viola | 非优势种 Non-dominant species | |
全叶延胡索 Corydalis repens | 罂粟科 Papaveraceae | 紫堇属 Corydalis | 非优势种 Non-dominant species | |
山花拉拉藤 Galium spurium | 茜草科 Rubiaceae | 拉拉藤属 Galium | 非优势种 Non-dominant species | |
山茄子 Brachybotrys paridiformis | 紫草科 Boraginaceae | 山茄子属 Brachybotrys | 年优势种 Annual dominant species | |
深山毛茛 Ranunculus franchetii | 毛茛科 Ranunculaceae | 毛茛属 Ranunculus | 对照 Control | 非优势种 Non-dominant species |
升麻 Cimicifuga foetida | 毛茛科 Ranunculaceae | 升麻属 Cimicifuga | 增温 Warming | 非优势种 Non-dominant species |
水金凤 Impatiens nolitangere | 凤仙花科 Balsaminaceae | 凤仙花属 Impatiens | 非优势种 Non-dominant species | |
路边青 Geum aleppicum | 茜草科 Rubiaceae | 路边青属 Geum | 增温 Warming | 非优势种 Non-dominant species |
薹草 Carex spp. | 莎草科 Cyperaceae | 薹草属 Carex | 非优势种 Non-dominant species | |
透骨草 Phryma leptostachya subsp. asiatica | 透骨草科 Hrymataceae | 透骨草属 Phryma | 对照 Control | 非优势种 Non-dominant species |
菟葵 Eranthis stellata | 毛茛科 Ranunculaceae | 菟葵属 Ranunculus | 非优势种 Non-dominant species | |
乌头 Aconitum carmichaeli | 毛茛科 Ranunculaceae | 乌头属 Aconitum | 非优势种 Non-dominant species | |
五福花 Adoxa moschatellina | 五福花科 Adoxaceae | 五福花属 Adoxa | 春季优势种 Spring dominant species | |
舞鹤草 Maianthemum bifolium | 百合科 Liliaceae | 舞鹤草属 Maianthemum | 对照 Control | 非优势种 Non-dominant species |
西山堇菜 Viola hancockii | 堇菜科 Violaceae | 堇菜属 Viola | 非优势种 Non-dominant species | |
野芝麻 Lamium barbatum | 唇形科 Lamiaceae | 野芝麻属 Lamium | 对照 Control | 非优势种 Non-dominant species |
珠芽艾麻 Laportea bulbifera | 荨麻科 Urticaceae | 艾麻属 Laportea | 夏季优势种 Summer dominant species |
图2
图2
2021年和2022年生长季对照和增温处理下东北温带次生林草本层的多样性指数(平均值 ± SE)
Fig. 2
Diversity indices of herbaceous layer in temperate secondary forest in Northeast China under control and warming treatments during growing seasons in 2021 and 2022 (mean ± SE)
图3
图3
2021年和2022年生长季对照和增温处理下东北温带次生林草本层的群落盖度和多度(平均值 ± SE)
Fig. 3
Community coverage and abundance of herbaceous layer in temperate secondary forest in Northeast China under control and warming treatments during growing seasons in 2021 and 2022 (mean ± SE)
表2 增温对东北温带次生林草本层群落多度和盖度及4个年优势种多度和盖度影响的单因素方差分析结果
Table 2
物种 Species | 季节 Season | 多度 Abundance | 盖度 Coverage | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2021 | 2022 | 2021 | 2022 | ||||||||||
df | F | P | df | F | P | df | F | P | df | F | P | ||
白花碎米荠 Cardamine leucantha | 春季 Spring | 1,41 | 2.862 | 0.099 | 1,42 | 1.563 | 0.219 | 1,41 | 0.793 | 0.395 | 1,42 | 1.138 | 0.292 |
夏季 Summer | 1,41 | 3.431 | 0.071 | 1,43 | 0.251 | 0.624 | 1,41 | 4.691 | 0.036 | 1,43 | 0.929 | 0.342 | |
秋季 Autumn | 1,36 | 0.148 | 0.702 | 1,23 | 2.392 | 0.136 | 1,36 | 0.002 | 0.96 | 1,23 | 4.535 | 0.044 | |
荷青花 Hylomecon japonica | 春季 Spring | 1,40 | 0.753 | 0.391 | 1,42 | 0.498 | 0.482 | 1,40 | 3.436 | 0.039 | 1,42 | 0.645 | 0.069 |
夏季 Summer | 1,20 | 1.459 | 0.241 | 1,30 | 0.321 | 0.575 | 1,20 | 4.624 | 0.044 | 1,30 | 3.165 | 0.478 | |
秋季 Autumn | - | - | - | 1,15 | 0.801 | 0.386 | - | - | - | 1,15 | 0.749 | 0.558 | |
龙头草 Meehania henryi | 春季 Spring | 1,45 | 8.001 | 0.015 | 1,46 | 11.424 | 0.001 | 1,45 | 3.056 | 0.162 | 1,46 | 5.006 | 0.046 |
夏季 Summer | 1,48 | 9.879 | 0.003 | 1,45 | 5.748 | 0.041 | 1,48 | 5.124 | 0.028 | 1,45 | 6.856 | 0.006 | |
秋季 Autumn | 1,48 | 9.272 | 0.004 | 1,33 | 0.571 | 0.456 | 1,48 | 3.58 | 0.065 | 1,33 | 0.002 | 0.968 | |
山茄子 Brachybotrys paridiformis | 春季 Spring | 1,24 | 8.333 | 0.001 | 1,31 | 5.084 | 0.015 | 1,24 | 8.219 | 0.0001 | 1,31 | 4.709 | 0.038 |
夏季 Summer | 1,30 | 3.032 | 0.092 | 1,31 | 4.701 | 0.001 | 1,30 | 0.733 | 0.399 | 1,31 | 3.251 | < 0.001 | |
秋季 Autumn | 1,29 | 13.601 | < 0.001 | 1,25 | 4.742 | 0.004 | 1,29 | 9.747 | 0.001 | 1,25 | 2.634 | 0.117 | |
群落 Community | 春季 Spring | 1,52 | 0.054 | 0.729 | 1,52 | 0.009 | 0.836 | 1,52 | 3.006 | 0.071 | 1,52 | 1.668 | 0.459 |
夏季 Summer | 1,52 | 2.397 | 0.128 | 1,52 | 0.629 | 0.401 | 1,52 | 0.054 | 0.817 | 1,52 | 0.005 | 0.696 | |
秋季 Autumn | 1,52 | 1.664 | 0.203 | 1,52 | 0.867 | 0.545 | 1,52 | 1.134 | 0.301 | 1,52 | 1.981 | 0.11 |
2.3 增温对草本层群落组成及结构的影响
2.3.1 物种组成的重要值变化
根据物种在各季节的重要值排名, 本研究样地内的年优势种为白花碎米荠、荷青花、龙头草、山茄子; 春季优势种为单花韭(仅对照样地)、五福花(仅增温样地), 夏季优势种为珠芽艾麻(Laportea bulbifera)。增温后草本层年优势种、季节优势种和非优势种的重要值在各季节发生了不同变化。增温后, 优势种重要值增加, 在春季由71.1%增至81.7%, 夏季由77.1%增至83.6%, 秋季由74.7%增至79.5% (表3)。山茄子的重要值在增温后明显增加, 春季由10.7%增加至26.1%, 夏季由14.5%增加至36.7%, 秋季增幅最大, 由9.4%增至37.6%; 龙头草和白花碎米荠的重要值在各季节增温后均呈现减小趋势; 仅荷青花在各季节均无明显变化。
表3 2022年生长季内对照和增温处理下东北温带次生林草本层植物的重要值
Table 3
春季 Spring | 夏季 Summer | 秋季 Autumn | ||||
---|---|---|---|---|---|---|
对照 Control | 增温 Warming | 对照 Control | 增温 Warming | 对照 Control | 增温 Warming | |
白花碎米荠 Cardamine leucantha | 10.7% | 8.3% | 13.0% | 7.2% | 12.6% | 4.5% |
荷青花 Hylomecon japonica | 21.8% | 19.7% | 14.5% | 13.3% | 5.6% | 8.2% |
龙头草 Meehania henryi | 13.3% | 8.2% | 17.8% | 10.8% | 19.9% | 10.7% |
山茄子 Brachybotrys paridiformis | 10.7% | 26.1% | 14.5% | 36.7% | 9.4% | 37.6% |
五福花 Adoxa moschatellina | 1.6% | 16.3% | - | - | - | - |
单花韭 Allium monanthum | 13.0% | 3.2% | - | - | - | - |
珠芽艾麻 Laportea bulbifera | - | - | 17.3% | 15.6% | 27.2% | 18.5% |
非优势种 Non-dominant species | 28.9% | 18.3% | 22.9% | 16.4% | 25.3% | 20.5% |
季节性优势种的重要值对增温的响应各不相同。例如, 增温后春季五福花由非优势种变为优势种, 重要值由1.6%增至16.3%, 单花韭由优势种变为非优势种, 重要值由13.0%减少至3.2%; 夏季优势种珠芽艾麻的重要值对增温的响应不明显, 但秋季比夏季略为明显, 由27.2%减少至18.5% (表3)。
2.3.2 年优势种盖度和多度的变化
表4 2021年和2022年对照和增温处理下东北温带次生林草本层年优势种的多度和盖度
Table 4
物种 Species | 季节 Season | 多度 Abundance | 盖度 Coverage (%) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
2021 | 2022 | 2021 | 2022 | |||||||
对照 Control | 增温 Warming | 对照 Control | 增温 Warming | 对照 Control | 增温 Warming | 对照 Control | 增温 Warming | |||
白花碎米荠 Cardamine leucantha | 春季 Spring | 21 | 10 | 8 | 5 | 3 | 2 | 4 | 3 | |
夏季 Summer | 8 | 5 | 5 | 5 | 7 | 4 | 5 | 3 | ||
秋季 Autumn | 4 | 4 | 3 | 2 | 5 | 5 | 3 | 2 | ||
荷青花 Hylomecon japonica | 春季 Spring | 28 | 37 | 30 | 23 | 3 | 6 | 10 | 8 | |
夏季 Summer | 2 | 3 | 12 | 10 | 2 | 3 | 10 | 4 | ||
秋季 Autumn | - | - | 7 | 5 | - | - | 4 | 3 | ||
龙头草 Meehania henryi | 春季 Spring | 20 | 9 | 12 | 4 | 2 | 2 | 4 | 2 | |
夏季 Summer | 12 | 6 | 7 | 4 | 8 | 4 | 5 | 2 | ||
秋季 Autumn | 11 | 6 | 5 | 6 | 8 | 5 | 4 | 4 | ||
山茄子 Brachybotrys paridiformis | 春季 Spring | 3 | 17 | 11 | 23 | 1 | 5 | 9 | 23 | |
夏季 Summer | 9 | 16 | 9 | 19 | 17 | 22 | 16 | 30 | ||
秋季 Autumn | 2 | 15 | 4 | 16 | 5 | 20 | 7 | 20 |
3 讨论
3.1 增温对草本层物种多样性的影响
在本研究中, 增温对草本层群落植物丰富度和多样性指数均无显著影响, 群落多度和盖度对增温的响应也不显著, 仅在各季节的变化趋势略有不同。由于不同地区温度对植物生长限制性程度差别较大, 因此不同地区物种多样性对增温的响应具有较大差异。目前增温对草原、草甸或森林草本层植物丰富度的影响有增加、减少或无显著影响3种结果; 本研究中, 因为实验年限以及土壤中种子库的影响, 增温对草本群落的影响还不足以体现在多样性的改变上, 这一结果与马丽等(2020)在高寒草甸的研究结果一致; 而与其他高海拔和干旱地区进行的实验结果不一致(李元恒, 2014; 姜炎彬等, 2017)。以往研究表明, 增温造成的荒漠草原和高寒草甸等生态系统土壤水分下降会限制植物生长, 物种丰富度下降(Zhang et al, 2017; 刘晓迪, 2020); 除了增温造成的水分变化以外, 温度增加也会使高寒地区植物丰富度发生变化, 一些研究表明升温后使得适应物种增加(Salick et al, 2019), 这一结果是由于低海拔地区冷适应物种向高海拔地区迁移造成的, 而高海拔地区的一些冷适应种将面临灭绝(Classen et al, 2015)。温带森林草本植物通常是耐阴种和春季短命草本植物(Govaert et al, 2021a), 它们的主要环境限制因子为光照和温度(Blondeel et al, 2020a), 在本研究中并未发现增温造成土壤水分变化而影响草本群落的多样性和多度。温度增加使植物春季物候提前(Fu et al, 2015; Piao et al, 2019; Wang et al, 2021), 这使得对温度敏感的草本植物早一步获取有效光资源。不过, 由于林下草本层植物群落早已适应春季的高光照可用性和夏季的遮阴(Valladares et al, 2016; De Pauw et al, 2021), 部分植物物候提前导致的其他植物可利用光降低也不会影响其生长。由于光照可利用性在各季节存在差异, 温带森林草本层对气候变暖的响应也随之存在差异, 即增温在春季、秋季对植物生长的影响大于夏季。
3.2 增温对草本层群落组成及结构的影响
本研究结果表明增温对东北温带次生林草本层植物群落组成及结构的影响显著。增温条件下, 草本层群落总多度、盖度无显著变化, 但群落内各物种重要值、盖度、多度发生了不同程度的改变。增温可能改变群落内的种间竞争关系或者影响某些物种功能性状, 从而导致群落组成及结构发生变化。以往的研究表明, 群落内的优势种通常对环境变化的敏感性更高(Wasof et al, 2018), 这与本研究的结果是一致的。山茄子作为群落内的年优势种, 其对增温的响应极为显著, 增温后其重要值、盖度和多度均显著增加。山茄子是一种株高叶大的快速定植草本植物, 其种子很轻, 有利于快速传播和资源获取(Blondeel et al, 2020b), 春季增温使其物候期提前, 从而能更好地获取光资源, 成为该群落的绝对优势种。研究区域草本群落已显现出以山茄子为主、其他物种为辅的群落结构趋势。增温使部分植物物候提前, 这打破了春季草本层植物对有效光资源的竞争平衡(Govaert et al, 2021b)。本研究中, 增温后年优势种龙头草显著减少。龙头草是根状茎的矮小植物, 其营养器官十分强大(徐敏敏等, 2016), 但叶片较小, 这种植物属于古老的多年生森林慢植草本植物, 通常将更多的营养投入到其根部和种子中以促进繁殖, 这就导致其传播能力较弱(Blondeel et al, 2020b), 对环境变化的适应能力较差, 因此对增温产生负响应。而白花碎米荠和荷青花的盖度和多度在各季节受增温的影响均不大, 这两种植物的叶片大小和叶形相似, 植株和叶片大小在4个年优势种中占据中间地位, 增温对于其对有效光资源的获取无较大影响。
季节优势种也对增温有不同的响应, 如增温后春季短命植物单花韭的重要值显著降低, 五福花的重要值显著增加, 这是因为春季短命植物对增温更敏感(Wolkovich et al, 2012)。单花韭在本研究区的生长期为4月初至5月底, 增温可能使其提前结束生长期, 所以在2022年5月的重要值表现为增温后显著降低; 五福花为喜暖的矮小植物, 由于春季遮阴度较低, 因此它在春季的生长受温度的影响最大, 势必对温度的增加产生正响应。
依托清原温带次生林野外红外辐射增温平台, 本研究发现连续5年的生长季增温对林下草本多样性没有显著影响, 但已显著改变优势种的盖度、多度和重要值, 引起草本群落物种组成和结构发生显著变化。考虑到气候变暖将长期影响温带森林, 未来研究将深入探讨增温对林下草本多样性及其群落物种组成和结构的长期影响。
致谢
感谢中国科学院清原森林生态系统观测研究站方晓明老师为本研究野外实验给予的所有帮助; 感谢中国科学院沈阳应用生态研究所天然林生态组的所有师生为本研究提出的建议和帮助!
参考文献
Individualistic responses of forest herb traits to environmental change
DOI:10.1111/plb.v22.4 URL [本文引用: 1]
Light and warming drive forest understorey community development in different environments
DOI:10.1111/gcb.v26.3 URL [本文引用: 2]
Direct and indirect effects of climate change on soil microbial and soil microbial-plant interactions: What lies ahead?
DOI:10.1890/ES15-00217.1 URL [本文引用: 1]
The use of open-top chambers in forests for evaluating warming effects on herbaceous understorey plants
DOI:10.1007/s11284-009-0640-3 URL [本文引用: 1]
Forest understorey communities respond strongly to light in interaction with forest structure, but not to microclimate warming
DOI:10.1111/nph.17803
PMID:34664731
[本文引用: 1]
Forests harbour large spatiotemporal heterogeneity in canopy structure. This variation drives the microclimate and light availability at the forest floor. So far, we do not know how light availability and sub-canopy temperature interactively mediate the impact of macroclimate warming on understorey communities. We therefore assessed the functional response of understorey plant communities to warming and light addition in a full factorial experiment installed in temperate deciduous forests across Europe along natural microclimate, light and macroclimate gradients. Furthermore, we related these functional responses to the species' life-history syndromes and thermal niches. We found no significant community responses to the warming treatment. The light treatment, however, had a stronger impact on communities, mainly due to responses by fast-colonizing generalists and not by slow-colonizing forest specialists. The forest structure strongly mediated the response to light addition and also had a clear impact on functional traits and total plant cover. The effects of short-term experimental warming were small and suggest a time-lag in the response of understorey species to climate change. Canopy disturbance, for instance due to drought, pests or logging, has a strong and immediate impact and particularly favours generalists in the understorey in structurally complex forests.This article is protected by copyright. All rights reserved.
Design and performance of an ecosystem-scale forest soil warming experiment with infrared heater arrays
DOI:10.1111/mee3.v13.9 URL [本文引用: 2]
Global assessment of experimental climate warming on tundra vegetation: Heterogeneity over space and time
DOI:10.1111/j.1461-0248.2011.01716.x
PMID:22136670
[本文引用: 1]
Understanding the sensitivity of tundra vegetation to climate warming is critical to forecasting future biodiversity and vegetation feedbacks to climate. In situ warming experiments accelerate climate change on a small scale to forecast responses of local plant communities. Limitations of this approach include the apparent site-specificity of results and uncertainty about the power of short-term studies to anticipate longer term change. We address these issues with a synthesis of 61 experimental warming studies, of up to 20 years duration, in tundra sites worldwide. The response of plant groups to warming often differed with ambient summer temperature, soil moisture and experimental duration. Shrubs increased with warming only where ambient temperature was high, whereas graminoids increased primarily in the coldest study sites. Linear increases in effect size over time were frequently observed. There was little indication of saturating or accelerating effects, as would be predicted if negative or positive vegetation feedbacks were common. These results indicate that tundra vegetation exhibits strong regional variation in response to warming, and that in vulnerable regions, cumulative effects of long-term warming on tundra vegetation - and associated ecosystem consequences - have the potential to be much greater than we have observed to date.© 2011 Blackwell Publishing Ltd/CNRS.
Declining global warming effects on the phenology of spring leaf unfolding
DOI:10.1038/nature15402 [本文引用: 1]
Functions and applications of multi-tower platform of Qingyuan Forest Ecosystem Research Station of Chinese Academy of Sciences
DOI:10.13287/j.1001-9332.202003.040
[本文引用: 1]
The relationship between the structure and function of forest ecosystems is the main intere-sts in the research area of forest ecology and management. However, over complex terrains in particular, these studies had been challenged as uneasy tasks due to the limitations in the forest survey and measurement techniques and other supporting technologies. Chinese Academy of Sciences (CAS) funded “Multi-Tower LiDAR/ECFlux Platform for Monitoring the Structure and Function of Secondary Forest Ecosystems” (Multi-Tower Platform, MTP) as a field station network corner-stone research infrastructure project, which was completed by Qingyuan Forest CERN (Chinese Ecosystem Research Network). In a distinctively-bounded and monitored-outlet watershed, the MTP was integrated by light detection and ranging (LiDAR) scanners, eddy covariance (EC) flux instrument systems, whole- and sub-watershed hydrology station network, long-term forest plot arrays, and live data center. Using LiDAR scanning, the MTP can get cloud data for holographic information on canopy structure. The EC-flux instrument system and hydrology station network along with forest plot arrays could ensure the reliability of water and carbon observations over this complex terrain, which allows to verify the studies on flux measurement technologies and methods, as well as to understand the processes of ecohydrology and CO<sub>2</sub> exchange between forest ecosystem and the atmosphere. Further, we can also assess the primary ecosystem services, including water conservation and carbon sequestration. All the data from “tower-station” were streamed through wireless network, which would facilitate data monitoring, management, and sharing. There are three tasks of MTP team: 1) defining innovative methods and descriptors to quantify three-dimensional forest structure; 2) developing theories and techniques to measure CO<sub>2</sub>/H<sub>2</sub>O fluxes and other trace gases over complex terrains; 3) understanding the relationship between structure and function of forest ecosystems, providing information and rationales for forest management practices to assure broad and sustainable benefits from forests.
中国科学院清原森林生态系统观测研究站塔群平台的功能和应用
DOI:10.13287/j.1001-9332.202003.040
[本文引用: 1]
森林生态系统结构与生态服务功能关系是森林生态学和林学的永恒研究主题。受传统森林调查方法及技术手段的限制,对复杂地形下森林生态系统结构和功能的监测及二者关系的研究面临诸多挑战。在中国科学院野外站网络重点科技基础设施建设项目的支持下,中国科学院清原森林生态系统观测研究站在独立流域内建成了以观测塔群(三座观测塔覆盖各自子流域代表性森林类型)为主体,集激光雷达(LiDAR)、通量仪器、水文站网、固定标准地和数据中心为综合体的“次生林生态系统塔群激光雷达监测平台”(简称塔群平台)。塔群平台采用激光雷达扫描获取森林点云数据,描述森林生态系统的全息三维结构;依托独立流域/子流域内的通量监测系统、水文监测站网和通量源区内的长期固定标准地,可保证碳-水过程观测的可靠性,并用于验证复杂地形下的通量监测技术与方法,揭示森林生态水文与碳交换过程,准确估算森林生态系统主体生态服务功能(水源涵养和固碳)。所有“塔-站”数据通过无线网络实时汇集于数据中心,便于数据监视、管理与共享。此外,塔群平台将侧重研究森林生态系统结构量化的新方法和新指标,探索复杂地形森林生态系统中H<sub>2</sub>O/CO<sub>2</sub>/痕量气体通量观测的理论与方法,为阐明森林结构与功能的关系、服务于森林生态系统管理提供基础数据。
The ecological significance of the herbaceous layer in temperate forest ecosystems
DOI:10.1641/B571007 URL [本文引用: 3]
Forest understorey plant responses to long-term experimental warming, light and nitrogen addition
DOI:10.1111/plb.v23.6 URL [本文引用: 1]
Rapid thermophilization of understorey plant communities in a 9 year-long temperate forest experiment
DOI:10.1111/jec.v109.6 URL [本文引用: 1]
Effects of short-term warming on species diversity of understory vegetation in subtropical evergreen broad-leaved forest
短期增温对亚热带常绿阔叶林林下植被物种多样性的影响
The effects of natural enemies on herb diversity in a temperate forest depend on species traits and neighbouring tree composition
DOI:10.1111/jec.v110.11 URL [本文引用: 1]
Effect of short-term warming on plant community features of alpine meadow in Northern Tibet
短期增温对藏北高寒草甸植物群落特征的影响
青藏高原是全球变化的敏感区域,过去几十年以来,在全球气候变暖的背景下,藏北高原增温明显。本研究在藏北典型高寒草甸区采用开顶式生长室(OTC)模拟增温的方法,根据OTC的不同高度设置了4个增温梯度(40、60、80和100 cm),分析了植物群落的生长、结构和组成以及生物量对增温的响应。结果表明:不同高度的OTC作用使得年平均空气温度增加了1.13~2.72 ℃,且OTC的高度越高,其增温效果越明显;伴随着温度的升高,空气湿度以及土壤湿度均有所降低;高山嵩草在所有群落中占有绝对优势,梯度增温作用使得其重要值不断下降;随着温度的升高,莎草类植物的盖度逐渐下降;对整个群落而言,增温幅度较低时,增温对群落的生长和生物量的积累以及多样性都会有明显的促进作用,当温度升高超过一定值,这种促进作用会逐渐减弱甚至变成抑制作用。本研究表明,藏北高寒草甸对增温作用具有敏感而迅速的响应,温度升高使该地区的气候朝着暖干化趋势发展,而一定程度的升温会促进植物群落的生长,但温度升高超过一定幅度时,会导致草地生产力下降,草地退化加剧。
The functional role of temperate forest understorey vegetation in a changing world
DOI:10.1111/gcb.14756
PMID:31301199
[本文引用: 1]
Temperate forests cover 16% of the global forest area. Within these forests, the understorey is an important biodiversity reservoir that can influence ecosystem processes and functions in multiple ways. However, we still lack a thorough understanding of the relative importance of the understorey for temperate forest functioning. As a result, understoreys are often ignored during assessments of forest functioning and changes thereof under global change. We here compiled studies that quantify the relative importance of the understorey for temperate forest functioning, focussing on litter production, nutrient cycling, evapotranspiration, tree regeneration, pollination and pathogen dynamics. We describe the mechanisms driving understorey functioning and develop a conceptual framework synthesizing possible effects of multiple global change drivers on understorey-mediated forest ecosystem functioning. Our review illustrates that the understorey's contribution to temperate forest functioning is significant but varies depending on the ecosystem function and the environmental context, and more importantly, the characteristics of the overstorey. To predict changes in understorey functioning and its relative importance for temperate forest functioning under global change, we argue that a simultaneous investigation of both overstorey and understorey functional responses to global change will be crucial. Our review shows that such studies are still very scarce, only available for a limited set of ecosystem functions and limited to quantification, providing little data to forecast functional responses to global change.© 2019 John Wiley & Sons Ltd.
Responses of Plant Community Structure and Function to Warming and Nitrogen Addition in a Desert Steppe of Inner Mongolia
内蒙古荒漠草原植物群落结构和功能对增温和氮素添加的响应
Responses of Plant Communities to Climatic Warming and the Mechanisms in a Desert Steppe
荒漠草原植物群落对气候变暖的响应及其机制
Effects of gradient warming on species diversity and biomass in alpine meadows
梯度增温对高寒草甸物种多样性和生物量的影响
DOI:10.11733/j.issn.1007-0435.2020.05.026
[本文引用: 2]
本研究以青藏高原高寒草甸为试验对象,利用开顶室增温装置(Open-Top-Chambers,OTCs),探讨4种增温幅度对物种多样性和生物量的影响。结果表明:群落盖度在高度增温下显著减少(PPPP<0.05),0~10 cm处地下生物量在高度增温下下减幅最大,20~30 cm处地下生物量在低度增温下增幅最大。本研究表明,在研究周期内物种丰富度对梯度增温响应不敏感,高度增温减少地上生物量的积累,地下生物量在不同幅度的增温处理下没有显著的变化规律性,响应并不敏感。
Warming changes plant competitive hierarchy in a temperate steppe in northern China
DOI:10.1093/jpe/rtn003 URL [本文引用: 2]
Plant phenology and global climate change: Current progresses and challenges
DOI:10.1111/gcb.14619
PMID:30884039
[本文引用: 1]
Plant phenology, the annually recurring sequence of plant developmental stages, is important for plant functioning and ecosystem services and their biophysical and biogeochemical feedbacks to the climate system. Plant phenology depends on temperature, and the current rapid climate change has revived interest in understanding and modeling the responses of plant phenology to the warming trend and the consequences thereof for ecosystems. Here, we review recent progresses in plant phenology and its interactions with climate change. Focusing on the start (leaf unfolding) and end (leaf coloring) of plant growing seasons, we show that the recent rapid expansion in ground- and remote sensing- based phenology data acquisition has been highly beneficial and has supported major advances in plant phenology research. Studies using multiple data sources and methods generally agree on the trends of advanced leaf unfolding and delayed leaf coloring due to climate change, yet these trends appear to have decelerated or even reversed in recent years. Our understanding of the mechanisms underlying the plant phenology responses to climate warming is still limited. The interactions between multiple drivers complicate the modeling and prediction of plant phenology changes. Furthermore, changes in plant phenology have important implications for ecosystem carbon cycles and ecosystem feedbacks to climate, yet the quantification of such impacts remains challenging. We suggest that future studies should primarily focus on using new observation tools to improve the understanding of tropical plant phenology, on improving process-based phenology modeling, and on the scaling of phenology from species to landscape-level.© 2019 John Wiley & Sons Ltd.
Rapid changes in eastern Himalayan alpine flora with climate change
Evidence for long-term shift in plant community composition under decadal experimental warming
DOI:10.1111/1365-2745.12449 URL [本文引用: 1]
Herbaceous plant diversity in forest ecosystems: Patterns, mechanisms, and threats
DOI:10.1007/s11258-021-01202-9 [本文引用: 3]
Shedding light on shade: Ecological perspectives of understorey plant life
Plant community responses to experimental warming across the tundra biome
Contrasting temporal variations in responses of leaf unfolding to daytime and nighttime warming
DOI:10.1111/gcb.15777
PMID:34263513
[本文引用: 1]
Earlier spring phenological events have been widely reported in plants under global warming. Recent studies reported a slowdown in the warming-induced advanced spring phenology in temperate regions. However, previous research mainly focused on daily mean temperature, thus neglecting the asymmetric phenological responses to daytime and nighttime temperature. Using long-term records of leaf unfolding in eight deciduous species at 1300 sites across central Europe, we assessed and compared the effects of daytime temperature, nighttime temperature, and photoperiod on leaf unfolding during 1951-1980 and 1981-2013. Although leaf unfolding was advanced by daytime warming during 1951-2013, the advancing responses of leaf unfolding significantly decreased from 1951-1980 to 1981-2013 due to a lower accumulation of chilling units by daytime warming. Nighttime warming delayed leaf unfolding during 1951-1980 but advanced it during 1981-2013 due to a higher accumulation of chilling units by nighttime warming. In contrast, critical daylength and plasticity of leaf unfolding dates remained unchanged between 1951 and 2013. Our study provided evidence that daytime warming instead of nighttime warming accounts for the slowdown in the advancing spring phenology and implied that nighttime warming-induced earlier spring phenology may be buffering the slowdown of the advanced spring phenology by daytime warming. The response of spring phenology to nighttime temperature may override that to daytime temperature under the actual trends in global warming.© 2021 John Wiley & Sons Ltd.
Richness of plant communities plays a larger role than climate in determining responses of species richness to climate change
DOI:10.1111/1365-2745.13148
[本文引用: 1]
Experimental warming in situ suggests that warming could lead to a loss of biodiversity. However, species that remain in situ and experience climate change will interact with species tracking climate change, which could also affect patterns of biodiversity. The relative contribution of species gains and losses to net changes in species richness is still unclear. We use transplanted plant communities to test the hypothesis that both the change in climate and ecological communities tracking climate change will influence how species richness responds to climate change. Three intact alpine plant communities were reciprocally transplanted to create scenarios in which species experienced warmer and wetter conditions (transferred to lower elevations) and cooler and drier conditions (transferred to higher elevations) over 10 years on the Tibetan Plateau. Communities transplanted into the same elevation as controls represent species tracking climate change. Transferring to lower elevations generally caused a net increase in richness and a higher rate of gains relative to the control plots; the magnitude of this effect depended on the specific elevation. Transferring to higher elevations lead to either net increases or decreases in richness and gains, depending on elevation. Species gains predicted much more variation in changes in species richness (50%) than did species loss (9%). Species richness at the receptor site and the donor site were both important predictors of variation in species richness, and the abiotic environment did not explain additional variation. Changes in cover of dominant plant species in response to transfers did not predict changes in species richness, species gain or species loss. Our results suggest that species gains from species tracking climate change at the receptor sites, rather than species loss from the donor sites, predicted changes in species richness. Synthesis. Warming experiments with physical barriers to dispersal may overestimate the negative effect of warming on plant diversity by not accounting for species gains. Our study highlights the importance of biotic factors in addition to the abiotic environment, when considering how climate change will affect plant diversity.
Dominance of individual plant species is more important than diversity in explaining plant biomass in the forest understorey
DOI:10.1111/jvs.2018.29.issue-3 URL [本文引用: 1]
Evolusion and measurement of species diversity
DOI:10.2307/1218190 URL [本文引用: 2]
Warming experiments underpredict plant phenological responses to climate change
DOI:10.1038/nature11014 [本文引用: 1]
Effects of climate change and N deposition on plant diversity in grassland in China
增温和增/减水及氮沉降对中国草地植物多样性影响的研究进展
Response of plants to simulated warming in under-canopy herbaceous layers on the guancen mountain
管涔山林下草本层植物对模拟增温的响应
Review of response of grassland community stability to global warming based on correlation between species biodiversity and biomass
基于物种多样性与生物量关系的草地群落稳定性对全球变暖的响应研究进展
Biomass distribution research of florescence organs of Meehania fargesii
荨麻叶龙头草花期器官生物量分配研究
Spatial pattern of herbaceous plant species diversity and its changes due to simulated warming in the forest community of the Lüliang Mountains
吕梁山森林群落草本层植物物种多样性的空间格局及其对模拟增温的响应
Transplants, open top chambers (OTCs) and gradient studies ask different questions in climate change effects studies
DOI:10.3389/fpls.2018.01574
PMID:30450107
[本文引用: 1]
Long-term monitoring, space-for-time substitutions along gradients, and in situ temperature manipulations are common approaches to understand effects of climate change on alpine and arctic plant communities. Although general patterns emerge from studies using different approaches, there are also some inconsistencies. To provide better estimates of plant community responses to future warming across a range of environments, there have been repeated calls for integrating different approaches within single studies. Thus, to examine how different methods in climate change effect studies may ask different questions, we combined three climate warming approaches in a single study in the Hengduan Mountains of southwestern China. We monitored plant communities along an elevation gradient using the space-for-time approach, and conducted warming experiments using open top chambers (OTCs) and plant community transplantation toward warmer climates along the same gradient. Plant species richness and abundances were monitored over 5 years addressing two questions: (1) how do plant communities respond to the different climate warming approaches? (2) how can the combined approaches improve predictions of plant community responses to climate change? The general trend across all three approaches was decreased species richness with climate warming at low elevations. This suggests increased competition from immigrating lowland species, and/or from the species already growing inside the plots, as indicated by increased biomass, vegetation height or proportion of graminoids. At the coldest sites, species richness decreased in OTCs and along the gradient, but increased in the transplants, suggesting that plant communities in colder climates are more open to invasion from lowland species, with slow species loss. This was only detected in the transplants, showing that different approaches, may yield different results. Whereas OTCs may constrain immigration of new species, transplanted communities are rapidly exposed to new neighbors that can easily colonize the small plots. Thus, different approaches ask slightly different questions, in particular regarding indirect climate change effects, such as biotic interactions. To better understand both direct and indirect effects of climate change on plant communities, we need to combine approaches in future studies, and if novel interactions are of particular interest, transplants may be a better approach than OTCs.
Recovery of plant species diversity during long-term experimental warming of a species-rich alpine meadow community on the Qinghai-Tibet Plateau
DOI:10.1016/j.biocon.2017.07.019 URL [本文引用: 1]
Plant diversity of secondary forests in response to anthropogenic disturbance levels in montane regions of northeastern China
DOI:10.1007/s10310-007-0033-9 URL [本文引用: 1]
Responses of plant community structure and species composition to warming and N addition in an alpine meadow, northern Tibetan Plateau, China
DOI:10.13287/j.1001-9332.201612.007
[本文引用: 2]
Global climate warming and increasing nitrogen (N) deposition, as controversial global environmental issues, may distinctly affect the functions and processes of terrestrial ecosystems. It has been reported that the Qinghai-Tibet Plateau has been experiencing significant warming in recent decades, especially in winter. Previous studies have mainly focused on the effects of warming all the year round; however, few studies have tested the effects of winter warming. To investigate the effects of winter warming and N addition on plant community structure and species composition of alpine meadow, long-term N addition and simulated warming experiment was conducted in alpine meadow from 2010 in Damxung, northern Tibet. The experiment consisted of three warming patterns: Year-round warming (YW), winter warming (WW) and control (NW), crossed respectively with five N gradients: 0, 10, 20, 40, 80 kg N·hm<sup>-2</sup>·a<sup>-1</sup>. From 2012 to 2014, both warming and N addition significantly affected the total coverage of plant community. Specifically, YW significantly decreased the total coverage of plant community. Without N addition, WW remarkably reduced the vegetation coverage. However, with N addition, the total vegetation coverage gradually increased with the increase of N level. Warming and N addition had different effects on plants from different functional groups. Warming significantly reduced the plant coverage of grasses and sedges, while N addition significantly enhanced the plant coverage of grasses. Regression analyses showed that the total coverage of plant community was positively related to soil water content in vigorous growth stages, indicating that the decrease in soil water content resulted from warming during dry seasons might be the main reason for the decline of total community coverage. As soil moisture in semi-arid alpine meadow is mainly regulated by rainfalls, our results indicated that changes in spatial and temporal patterns of rainfalls under the future climate change scenarios would dramatically influence the vegetation coverage and species composition. Additionally, the effects of increasing atmospheric N deposition on vegetation community might also depend on the change of rainfall patterns.
藏北高寒草甸群落结构与物种组成对增温与施氮的响应
DOI:10.13287/j.1001-9332.201612.007
[本文引用: 2]
气候变暖和氮沉降增加作为全球环境问题,将严重影响陆地生态系统的结构与功能.研究发现,近几十年来青藏高原增温显著,其中冬季升温最明显.而已有的研究更多关注全年增温,对冬季增温研究较少.本文基于高寒草甸地区增温和氮素添加影响研究的不足,在青藏高原高寒草甸区开展模拟增温和氮添加试验,研究长期增温与氮添加对高寒草甸群落结构与物种组成的影响.试验布设于2010年7月,地点在西藏当雄高寒草甸区,共有3种增温方式:对照、全年增温、冬季增温;每种增温处理下设置5个氮素添加梯度:0、10、20、40、80 kg N·hm<sup>-2</sup>·a<sup>-1</sup>,系统研究气候变暖与氮添加对高寒草甸生态系统群落结构与物种组成的影响.结果表明: 2012—2014年,增温与施氮处理均显著影响群落总盖度:全年增温处理降低了群落总盖度;在不施氮处理下,冬季增温降低了群落盖度,但在施氮处理下,随着氮剂量的提高群落盖度逐渐升高.增温与施氮对不同功能群植物的影响不同,增温处理降低了禾草与莎草植物盖度,而施氮提高了禾草植物盖度.相关分析表明,植被群落总盖度与生长旺盛期土壤含水量呈正相关关系,推测在降雨较少的季节增温导致的土壤含水量降低是群落盖度降低的主要原因.半干旱区高寒草甸土壤水分主要受降雨的调控,未来气候变化情景下,降雨时空格局的改变会显著影响植被群落盖度及组成,且大气氮沉降的增加对植被群落的影响也依赖于降雨条件的变化.
/
〈 |
|
〉 |
