生物多样性, 2023, 31(5): 23059 doi: 10.17520/biods.2023059

植物多样性

增温对东北温带次生林草本群落季节动态的影响

陈哲涵,1,2, 尹进,2, 叶吉2,5, 刘冬伟,2,3,4,5, 毛子昆,2,5, 房帅,2,5, 蔺菲,,2,5,*, 王绪高,2,5

1.辽宁大学生命科学院, 沈阳 110036

2.中国科学院沈阳应用生态研究所森林生态与管理重点实验室, 沈阳 110016

3.中国科学院清原森林生态系统观测研究站, 沈阳 110016

4.辽宁清原森林生态系统国家野外科学观测研究站, 沈阳 110016

5.辽宁省陆地生态系统碳中和重点实验室, 沈阳 110016

Effects of simulated warming on seasonal dynamics of herbaceous diversity in temperate secondary forests in Northeast China

Zhehan Chen,1,2, Jin Yin,2, Ji Ye2,5, Dongwei Liu,2,3,4,5, Zikun Mao,2,5, Shuai Fang,2,5, Fei Lin,,2,5,*, Xugao Wang,2,5

1. School of Life Sciences, Liaoning University, Shenyang 110036

2. CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences (CAS), Shenyang 110016

3. Qingyuan Forest Ecosystem Research Station of Chinese Academy of Sciences, Shenyang 110016

4. Qingyuan Forest, National Observation and Research Station, Liaoning Province, Shenyang 110016

5. Liaoning Province Key Laboratory of Terrestrial Ecosystem Carbon Neutrality, Shenyang 110016

通讯作者: * E-mail:linfei@iae.ac.cn

编委: 储诚进

责任编辑: 黄祥忠

收稿日期: 2023-02-21   接受日期: 2023-03-28  

基金资助: 国家重点研发计划(2022YFF130050103)
国家自然科学基金(31670632)
国家自然科学基金(32001121)

Corresponding authors: * E-mail:linfei@iae.ac.cn

Received: 2023-02-21   Accepted: 2023-03-28  

摘要

主要由人类活动造成的气候变暖导致陆地植物多样性和群落结构发生改变, 森林草本层作为森林生态系统植物多样性的主要贡献者, 对气候变暖的响应十分显著, 而目前仍缺乏相关研究。本研究基于中国科学院清原森林生态系统观测研究站搭建的红外线模拟增温平台, 分析了表层土壤(0-10 cm)增温2℃条件下林下草本层群落在生长季受到的影响。结果表明: 增温第4-5年间, 对照和增温处理下的草本植物多样性无显著差异, 但增温处理下各季节的多样性指数均较对照处理呈现减小趋势; 对照和增温处理下的草本层群落总体盖度和多度无显著差异, 但群落组成及结构发生显著改变。不同优势种对增温的响应趋势不同。年优势种中, 山茄子(Brachybotrys paridiformis)的响应最显著, 其重要值、多度和盖度在各季节均显著增加, 而龙头草(Meehania henryi)在各季节显著减少, 白花碎米荠(Cardamine leucantha)和荷青花(Hylomecon japonica)的响应不显著; 季节优势种中, 春季优势种单花韭(Allium monanthum)重要值显著降低, 五福花(Adoxa moschatellina)重要值显著增加, 夏季优势种珠芽艾麻(Laportea bulbifera)无显著响应。综上, 增温对该区森林草本植物多样性无明显影响, 但可能导致某些物种物候期提前, 改变群落内物种对光等资源的竞争关系, 或者影响某些物种的功能性状, 显著改变不同季节部分优势种的重要值、多度和盖度, 导致草本层群落组成和结构发生变化。

关键词: 红外线增温; 群落结构; 物种组成; 优势种; 季节动态

Abstract

Aims: Climate warming mainly caused by human activities has led to changes in terrestrial plant diversity and community structure. Forest herb layer, as the main contributor of plant diversity in forest ecosystem, has a significant response to climate warming, however, relevant studies are still lacking. This study explores the changes of herbaceous community in temperate forests in the context of climate warming, including diversity, community structure, and species composition, in order to provide scientific basis for the response of forest herbaceous layer to climate warming.
Method: This experiment was carried out in 2021 and 2022 on a simulated warming platform built by Qingyuan Forest Ecosystem Research Station of Chinese Academy of Sciences, which used an infrared ray to warm the surface soil by 2℃ during the growing season.
Results: The results showed that there was no significant change in herbaceous diversity under warming conditions, but the community diversity index of each season showed a decreasing trend. After warming, the overall coverage and abundance of the herbaceous community did not change significantly, but the composition and structure of the herbaceous community changed significantly. Specifically, the response trend of different dominant species to warming was different. Among the dominant species throughout the year, the response of Brachybotrys paridiformis was the most obvious, as its importance value, abundance, and coverage increased significantly, while that of Meehania henryi decreased significantly. Cardamine leucantha and Hylomecon japonica had no significant response. Lastly, the importance value of Allium monanthum, which is the seasonal dominant species, was significantly decreased, while that of Adoxa moschatellina was significantly increased.
Conclusion: Warming has no significant effect on herbaceous diversity in the forest in this study, but it may lead to the advancement of the phenological period of some species, change the competition between species in the community for resources such as light, or affect the development of functional traits of some species. Furthermore, it may change the importance value, abundance, and coverage of dominant species in different seasons, and lead to significant changes in the composition and structure of the herbaceous community.

Keywords: infrared warming; community structure; species composition; dominant species; seasonal dynamics

PDF (824KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

陈哲涵, 尹进, 叶吉, 刘冬伟, 毛子昆, 房帅, 蔺菲, 王绪高 (2023) 增温对东北温带次生林草本群落季节动态的影响. 生物多样性, 31, 23059. doi:10.17520/biods.2023059.

Zhehan Chen, Jin Yin, Ji Ye, Dongwei Liu, Zikun Mao, Shuai Fang, Fei Lin, Xugao Wang (2023) Effects of simulated warming on seasonal dynamics of herbaceous diversity in temperate secondary forests in Northeast China. Biodiversity Science, 31, 23059. doi:10.17520/biods.2023059.

联合国气候变化政府间专门委员会(IPCC)第六次评估报告指出: 2020年全球陆地表面温度比1850-1900年平均气温高1.09℃, 预计未来全球气候变暖或将超过1.5℃ (IPCC, 2021)。中国是气候变化的敏感区和影响显著区, 1951-2020年地表年平均温度上升速率为0.26℃/10年, 明显高于全球同期水平(中国气象局气候变化中心, 2021)。气候变暖能够导致植物产生不同的生长反应, 改变植物间的相互作用(Elmendorf et al, 2012)。这可能增加一些植物在群落中的优势度, 降低其他植物的重要程度, 进而造成植物群落结构及物种组成的变化以及生物多样性的下降, 甚至可能引起陆地生态系统中植物物种的局部或全球灭绝(Niu & Wan, 2008)。目前已有研究表明, 增温能够导致植物多样性降低和群落结构发生变化(Walker et al, 2006; Niu & Wan, 2008; 宗宁等, 2016; 马丽等, 2020); 然而, 也有研究发现尽管增温能够改变植物群落结构, 但是对植物多样性并无显著影响(李元恒, 2014; 杨晓艳等, 2018; 徐满厚等, 2021; 徐满厚和李晓丽, 2021), 尤其在森林生态系统。此外, 部分在高海拔、高纬度地区的长期观测实验甚至表明气候变暖会增加植物多样性(Salick et al, 2019; Wang et al, 2019), 这是由于气候变暖造成了植物适宜栖息地的改变, 使得其往高海拔、高纬度地区迁移造成的。

森林是陆地生态系统的主体, 具有丰富的生物多样性和强大的生态系统功能。草本层是森林生态系统的重要组成部分, 在北方典型温带森林生态系统中, 虽然其对森林生物量的贡献仅占0.2%, 但能提供4%的净初级生产力, 并占据80%的物种多样性(Gilliam, 2007; Spicer et al, 2022)。此外, 森林草本层植物更新周期短、适应能力强、对林下微环境变化敏感(Spicer et al, 2022), 在调节碳动态和能量流动等生态系统功能中发挥着重要作用(Gilliam, 2007; Jia et al, 2022)。草本层为森林提供了高达20%的凋落物, 且其凋落物的分解速率较林冠上层凋落物快两倍以上, 对森林生态系统的凋落物养分归还做出了很大贡献。草本植物叶片中含有较多的N、P、K、Mg等必需营养素, 其快速分解和高周转率等特点促进了森林中营养物质的有效循环(Gilliam, 2007; Landuyt et al, 2019)。

目前, 在我国高寒草甸及荒漠草原已开展了大量关于气候变暖对草本植物多样性、群落结构及功能的研究; 但在森林生态系统中, 植物对气候变暖的响应研究多集中在木本植物, 而对草本层的研究则相对匮乏(杨晓艳等, 2018; 徐满厚等, 2021; 籍烨等, 2022; Spicer et al, 2022)。本研究基于东北温带次生林红外线模拟增温平台, 通过分析土壤增温2℃条件下草本植物多样性及物种组成在不同季节的动态变化, 探讨了增温对草本层多样性及群落组成和结构的影响, 以期为森林草本层响应气候变暖的机制提供科学依据。

1 材料与方法

1.1 研究地概况

本研究样地设置于中国科学院清原森林生态系统观测研究站(41°51′ N, 124°54′ E)。研究站位于辽宁省东部山区, 属长白山余脉龙岗山脉北麓, 温带大陆性季风气候。该研究地四季分明, 雨热同期, 植物生长季在4-9月, 积雪覆盖期为11月下旬至次年3月下旬, 降水集中发生于5-9月, 年平均降水量811 mm, 其中降雪量不足6%, 年均温3.9-5.4℃, 日平均极端低温-37.6℃, 日平均极端高温36.5℃, 年无霜期为130 d (Zhu et al, 2007)。土壤多为粘壤土, 呈中性和酸性, pH值5.5-6.5 (陈庆达, 2020(①陈庆达 (2020) 野外增温对辽东山区胡桃楸幼苗生长的影响. 硕士学位论文, 沈阳农业大学, 沈阳.))。在过去60年中, 该地的平均气温每10年上升0.26℃ (Duan et al, 2022), 比全球地表平均上升温度(0.08℃)高出3倍以上(https://www.ncei.noaa.gov/access/monitoring/monthly-report/global)。

该区森林经历了大规模的人为破坏, 再经过次生演替形成了以次生林为主、嵌于其中的落叶松(Larix spp.)人工林为辅的东北次生林生态系统, 是典型的温带森林生态系统(高添等, 2020)。乔木层建群种包括胡桃楸(Juglans mandshurica)、落叶松、蒙古栎(Quercus mongolica); 灌木层优势种包括色木槭(Acer mono)、东北山梅花(Philadelphus schrenkii)、狗枣猕猴桃(Actinidia kolomikta)、卫矛(Euonymus alatus)、刺五加(Acanthopanax senticosus)等; 草本层优势种包括山茄子(Brachybotrys paridiformis)、龙头草(Meehania henryi)、荷青花(Hylomecon japonica)、白花碎米荠(Cardamine leucantha)等。

1.2 样地设置

2017年在辽宁省清原县山区建立开放式模拟增温平台, 设置了对照和增温2个处理, 每个处理3个重复, 每个样方大小为108 m2 (16 m × 8 m)。2017年进行预实验, 2018年开始增温。每年3月下旬至12月上旬采用联排红外辐射灯阵方法进行24 h增温, 结合控温系统使0-10 cm表层土壤稳定增温2℃ (Duan et al, 2022), 采用反馈控制系统中的热电偶连续监测地表土壤温度(每5 min测量1次), 并在每个样方(土壤5 cm深处)均匀且随机安置10个土壤湿度探头用于测量表层土壤湿度。

1.3 植被调查与数据采集

本研究于2021年4月、7月、8月和2022年5月、7月、8月分别进行春季、夏季、秋季的林下草本层植物调查。在每个样方内随机且均匀地选取9个1 m × 1 m的草本样方, 共计54个, 记录草本植物的物种名称、多度和盖度。

1.4 数据统计与分析

本研究通过以下指标来分析增温对草本群落的影响, 其中物种水平用重要值(IV)表征, 群落水平的指标包括Simpson指数(D) (Whittaker, 1972)、Shannon-Wiener指数(H′) (Whittaker, 1972)、Pielou指数(E) (Pielou, 1975)等, 计算公式如下:

重要值: $IV=\frac{RA+RC+RF}{3}\times 100$
Simpson指数: $D=1-\sum\limits_{i=1}^{s}{{{P}_{i}}^{2}}$
Shannon-Wiener指数: $H\prime =-\sum\limits_{i=1}^{s}{{{P}_{i}}\ln {{P}_{i}}}$
Pielou指数: $E=\frac{H\prime }{\ln S}$

式中, RA为相对多度, RC为相对盖度, RF为相对频度, Pi为种i个体数占全部物种个体数的比值, S为每个草本样方内的物种数。

在本研究中, 将重要值在春季、夏季、秋季均排名前5位的植物定义为年优势种, 在春季排名前5位的定义为春季优势种, 在夏季和秋季均排名前5位的定义为夏季优势种。以增温处理作为因变量, 对两年内各季节的多样性指数、群落多度和盖度及年优势种多度和盖度分别进行单因素方差分析。

不同处理下物种数据的统计与绘图使用Microsoft Excel 2019完成, 多样性指数和重要值计算及单因素方差分析使用R v4.1.3完成。

2 结果

2.1 增温处理后林下环境因子的变化

模拟增温显著提高了土壤表层(0-10 cm处)温度, 2021年生长季土壤温度平均升高1.96℃, 2022年平均升高1.84℃, 增温效果较为稳定(图1); 土壤湿度只在增温初期因表层积雪融化而短暂增加, 后续几乎无影响。

图1

图1   2021年和2022年生长季内对照和增温处理下的土壤温度和土壤湿度

Fig. 1   Soil temperature and humidity under control and warming treatments during the growing seasons in 2021 and 2022


2.2 增温对草本层物种多样性的影响

本研究两年内共调查到37种草本植物, 对照和增温样地分别调查到33种和30种(表1)。其中, 对照样地春季、夏季、秋季分别为23种、21种、17种, 增温样地分别为23种、23种、19种。Simpson指数、Shannon-Wiener指数、Pielou指数在各季节增温后均无显著变化(P > 0.05), 但总体呈现减小的趋势(图2)。增温后, 草本层植物群落各季节的盖度和多度均无显著变化(P > 0.05) (图3, 表2)。但盖度在本研究的两年内相同季节呈现了相似的变化趋势, 即春季和秋季呈现增加趋势, 夏季无显著差别。

表1   对照和增温处理下东北温带次生林草本层的植物物种组成

Table 1  Plant species composition of herbaceous layer in temperate secondary forest in Northeast China under control and warming treatments

物种
Species

Family

Genus
处理独有 Unique of treatment优势种
Dominant species
白花碎米荠 Cardamine leucantha十字花科 Brassicaceae碎米荠属 Cardamine 年优势种 Annual dominant species
齿瓣延胡索 Corydalis turtschaninovii罂粟科 Papaveraceae紫堇属 Corydalis 非优势种 Non-dominant species
穿龙薯蓣 Dioscorea nipponica薯蓣科 Dioscoreaceae薯蓣属 Dioscorea对照 Control非优势种 Non-dominant species
单花韭 Allium monanthum百合科 Liliaceae葱属 Allium春季优势种 Spring dominant species
东北百合 Lilium distichum百合科 Liliaceae百合属 Lilium对照 Control非优势种 Non-dominant species
东北天南星 Arisaema amurense天南星科 Araceae天南星属 Arisaema非优势种 Non-dominant species
东北羊角芹 Aegopodium alpestre伞形科 Umbelliferae羊角芹属 Aegopodium非优势种 Non-dominant species
短果茴芹 Pimpinella brachycarpa伞形科 Umbelliferae茴芹属 Pimpinella增温 Warming非优势种 Non-dominant species
多被银莲花 Anemone raddeana毛茛科 Ranunculaceae银莲花属 Anemone非优势种 Non-dominant species
二叶舞鹤草 Maianthemum bifolium百合科 Liliaceae舞鹤草属 Maianthemum对照 Control非优势种 Non-dominant species
孩儿参 Pseudostellaria heterophylla石竹科 Caryophyllaceae孩儿参属 Pseudostellaria非优势种 Non-dominant species
和尚菜 Adenocaulon himalaicum菊科 Compositae和尚菜属 Adenocaulon非优势种 Non-dominant species
荷青花 Hylomecon japonica罂粟科 Papaveraceae荷青花属 Hylomecon年优势种 Annual dominant species
猴腿蹄盖蕨 Athyrium multidentatum蹄盖蕨科 Athyriaceae蹄盖蕨属 Athyrium非优势种 Non-dominant species
黄精 Polygonatum sibiricum百合科 Liliaceae黄精属 Polygonatum非优势种 Non-dominant species
鸡腿堇菜 Viola acuminata堇菜科 Violaceae堇菜属 Viola 增温 Warming非优势种 Non-dominant species
老鹳草 Geranium wilfordii牻牛儿苗科 Geraniaceae老鹤草属 Geranium非优势种 Non-dominant species
林茜草 Rubia sylvatica 茜草科 Rubiaceae茜草属 Rubia 非优势种 Non-dominant species
龙头草 Meehania henryi唇形科 Lamiacea龙头草属Meehania年优势种 Annual dominant species
鹿药 Smilacina japonica百合科 Liliaceae鹿药属 Smilacina非优势种 Non-dominant species
球果堇菜 Viola collina堇菜科 Violaceae堇菜属 Viola非优势种 Non-dominant species
全叶延胡索 Corydalis repens罂粟科 Papaveraceae紫堇属 Corydalis非优势种 Non-dominant species
山花拉拉藤 Galium spurium 茜草科 Rubiaceae拉拉藤属 Galium非优势种 Non-dominant species
山茄子 Brachybotrys paridiformis紫草科 Boraginaceae山茄子属 Brachybotrys年优势种 Annual dominant species
深山毛茛 Ranunculus franchetii毛茛科 Ranunculaceae毛茛属 Ranunculus对照 Control非优势种 Non-dominant species
升麻 Cimicifuga foetida毛茛科 Ranunculaceae升麻属 Cimicifuga增温 Warming非优势种 Non-dominant species
水金凤 Impatiens nolitangere凤仙花科 Balsaminaceae凤仙花属 Impatiens非优势种 Non-dominant species
路边青 Geum aleppicum茜草科 Rubiaceae路边青属 Geum增温 Warming非优势种 Non-dominant species
薹草 Carex spp.莎草科 Cyperaceae薹草属 Carex非优势种 Non-dominant species
透骨草 Phryma leptostachya subsp. asiatica透骨草科 Hrymataceae透骨草属 Phryma对照 Control非优势种 Non-dominant species
菟葵 Eranthis stellata毛茛科 Ranunculaceae菟葵属 Ranunculus非优势种 Non-dominant species
乌头 Aconitum carmichaeli毛茛科 Ranunculaceae乌头属 Aconitum非优势种 Non-dominant species
五福花 Adoxa moschatellina五福花科 Adoxaceae五福花属 Adoxa春季优势种 Spring dominant species
舞鹤草 Maianthemum bifolium百合科 Liliaceae舞鹤草属 Maianthemum对照 Control非优势种 Non-dominant species
西山堇菜 Viola hancockii堇菜科 Violaceae堇菜属 Viola非优势种 Non-dominant species
野芝麻 Lamium barbatum唇形科 Lamiaceae野芝麻属 Lamium对照 Control非优势种 Non-dominant species
珠芽艾麻 Laportea bulbifera荨麻科 Urticaceae艾麻属 Laportea夏季优势种 Summer dominant species

新窗口打开| 下载CSV


图2

图2   2021年和2022年生长季对照和增温处理下东北温带次生林草本层的多样性指数(平均值 ± SE)

Fig. 2   Diversity indices of herbaceous layer in temperate secondary forest in Northeast China under control and warming treatments during growing seasons in 2021 and 2022 (mean ± SE)


图3

图3   2021年和2022年生长季对照和增温处理下东北温带次生林草本层的群落盖度和多度(平均值 ± SE)

Fig. 3   Community coverage and abundance of herbaceous layer in temperate secondary forest in Northeast China under control and warming treatments during growing seasons in 2021 and 2022 (mean ± SE)


表2   增温对东北温带次生林草本层群落多度和盖度及4个年优势种多度和盖度影响的单因素方差分析结果

Table 2  Result of one-way analysis of variance on effects of warming on abundance and coverage of herbaceous layer in temperate secondary forest in Northeast China and four annual dominant species

物种
Species
季节
Season
多度 Abundance盖度 Coverage
2021202220212022
dfFPdfFPdfFPdfFP
白花碎米荠
Cardamine leucantha
春季 Spring1,412.8620.0991,421.5630.2191,410.7930.3951,421.1380.292
夏季 Summer1,413.4310.0711,430.2510.6241,414.6910.0361,430.9290.342
秋季 Autumn1,360.1480.7021,232.3920.1361,360.0020.961,234.5350.044
荷青花
Hylomecon japonica
春季 Spring1,400.7530.3911,420.4980.4821,403.4360.0391,420.6450.069
夏季 Summer1,201.4590.2411,300.3210.5751,204.6240.0441,303.1650.478
秋季 Autumn---1,150.8010.386---1,150.7490.558
龙头草
Meehania henryi
春季 Spring1,458.0010.0151,4611.4240.0011,453.0560.1621,465.0060.046
夏季 Summer1,489.8790.0031,455.7480.0411,485.1240.0281,456.8560.006
秋季 Autumn1,489.2720.0041,330.5710.4561,483.580.0651,330.0020.968
山茄子
Brachybotrys paridiformis
春季 Spring1,248.3330.0011,315.0840.0151,248.2190.00011,314.7090.038
夏季 Summer1,303.0320.0921,314.7010.0011,300.7330.3991,313.251< 0.001
秋季 Autumn1,2913.601< 0.0011,254.7420.0041,299.7470.0011,252.6340.117
群落
Community
春季 Spring1,520.0540.7291,520.0090.8361,523.0060.0711,521.6680.459
夏季 Summer1,522.3970.1281,520.6290.4011,520.0540.8171,520.0050.696
秋季 Autumn1,521.6640.2031,520.8670.5451,521.1340.3011,521.9810.11

新窗口打开| 下载CSV


2.3 增温对草本层群落组成及结构的影响

2.3.1 物种组成的重要值变化

根据物种在各季节的重要值排名, 本研究样地内的年优势种为白花碎米荠、荷青花、龙头草、山茄子; 春季优势种为单花韭(仅对照样地)、五福花(仅增温样地), 夏季优势种为珠芽艾麻(Laportea bulbifera)。增温后草本层年优势种、季节优势种和非优势种的重要值在各季节发生了不同变化。增温后, 优势种重要值增加, 在春季由71.1%增至81.7%, 夏季由77.1%增至83.6%, 秋季由74.7%增至79.5% (表3)。山茄子的重要值在增温后明显增加, 春季由10.7%增加至26.1%, 夏季由14.5%增加至36.7%, 秋季增幅最大, 由9.4%增至37.6%; 龙头草和白花碎米荠的重要值在各季节增温后均呈现减小趋势; 仅荷青花在各季节均无明显变化。

表3   2022年生长季内对照和增温处理下东北温带次生林草本层植物的重要值

Table 3  Importance values of herbaceous layer plants in temperate secondary forest in Northeast China under control and warming treatments during growing season in 2022

春季 Spring夏季 Summer秋季 Autumn
对照 Control增温 Warming对照 Control增温 Warming对照 Control增温 Warming
白花碎米荠 Cardamine leucantha10.7%8.3%13.0%7.2%12.6%4.5%
荷青花 Hylomecon japonica21.8%19.7%14.5%13.3%5.6%8.2%
龙头草 Meehania henryi13.3%8.2%17.8%10.8%19.9%10.7%
山茄子 Brachybotrys paridiformis10.7%26.1%14.5%36.7%9.4%37.6%
五福花 Adoxa moschatellina1.6%16.3%----
单花韭 Allium monanthum13.0%3.2%----
珠芽艾麻 Laportea bulbifera--17.3%15.6%27.2%18.5%
非优势种 Non-dominant species28.9%18.3%22.9%16.4%25.3%20.5%

新窗口打开| 下载CSV


季节性优势种的重要值对增温的响应各不相同。例如, 增温后春季五福花由非优势种变为优势种, 重要值由1.6%增至16.3%, 单花韭由优势种变为非优势种, 重要值由13.0%减少至3.2%; 夏季优势种珠芽艾麻的重要值对增温的响应不明显, 但秋季比夏季略为明显, 由27.2%减少至18.5% (表3)。

2.3.2 年优势种盖度和多度的变化

年优势种的盖度对增温的响应不同, 且随季节发生变化(表2, 表4)。增温后, 山茄子的盖度呈现明显的增加趋势, 在2021年春季、秋季和2022年春季、夏季达到显著水平(P < 0.05); 龙头草和白花碎米荠的盖度均呈现减小的趋势, 龙头草的盖度在2021年夏季和2022年春季、夏季均显著减少(P < 0.05), 而白花碎米荠盖度的变化幅度在各季节均未达到显著水平(P > 0.05); 荷青花的盖度在 2021年和2022年呈现不同的变化趋势, 2021年各季节呈现增加趋势, 且春季时达到显著水平(P < 0.05), 2022年各季节呈现减小趋势, 但并不显著(P > 0.05)。

表4   2021年和2022年对照和增温处理下东北温带次生林草本层年优势种的多度和盖度

Table 4  Abundance and coverage of annual dominant species in the herbaceous layer of temperate secondary forest in Northeast China under control and warming treatments in 2021 and 2022

物种
Species
季节
Season
多度 Abundance盖度 Coverage (%)
2021202220212022
对照
Control
增温
Warming
对照
Control
增温
Warming
对照
Control
增温
Warming
对照
Control
增温
Warming
白花碎米荠
Cardamine leucantha
春季 Spring2110853243
夏季 Summer85557453
秋季 Autumn44325532
荷青花
Hylomecon japonica
春季 Spring2837302336108
夏季 Summer23121023104
秋季 Autumn--75--43
龙头草
Meehania henryi
春季 Spring2091242242
夏季 Summer126748452
秋季 Autumn116568544
山茄子
Brachybotrys paridiformis
春季 Spring317112315923
夏季 Summer91691917221630
秋季 Autumn215416520720

新窗口打开| 下载CSV


增温对年优势种多度的影响也随物种及季节变化而不同(表2, 表4), 与盖度变化趋势较为相似。增温后, 山茄子多度显著增加, 除了2021年夏季未达到显著水平, 2022年春季达到显著水平(P < 0.05)其余季节均极显著增加(P < 0.01); 龙头草多度显著减少, 除2022年秋季外, 其余季节均显著减少(P < 0.01); 白花碎米荠的多度在各季节均呈现减少趋势, 但未达到显著水平(P > 0.05); 荷青花多度在2021年呈现增加趋势, 2022年呈现减少趋势, 但未达到显著(P > 0.05)。

3 讨论

3.1 增温对草本层物种多样性的影响

在本研究中, 增温对草本层群落植物丰富度和多样性指数均无显著影响, 群落多度和盖度对增温的响应也不显著, 仅在各季节的变化趋势略有不同。由于不同地区温度对植物生长限制性程度差别较大, 因此不同地区物种多样性对增温的响应具有较大差异。目前增温对草原、草甸或森林草本层植物丰富度的影响有增加、减少或无显著影响3种结果; 本研究中, 因为实验年限以及土壤中种子库的影响, 增温对草本群落的影响还不足以体现在多样性的改变上, 这一结果与马丽等(2020)在高寒草甸的研究结果一致; 而与其他高海拔和干旱地区进行的实验结果不一致(李元恒, 2014; 姜炎彬等, 2017)。以往研究表明, 增温造成的荒漠草原和高寒草甸等生态系统土壤水分下降会限制植物生长, 物种丰富度下降(Zhang et al, 2017; 刘晓迪, 2020); 除了增温造成的水分变化以外, 温度增加也会使高寒地区植物丰富度发生变化, 一些研究表明升温后使得适应物种增加(Salick et al, 2019), 这一结果是由于低海拔地区冷适应物种向高海拔地区迁移造成的, 而高海拔地区的一些冷适应种将面临灭绝(Classen et al, 2015)。温带森林草本植物通常是耐阴种和春季短命草本植物(Govaert et al, 2021a), 它们的主要环境限制因子为光照和温度(Blondeel et al, 2020a), 在本研究中并未发现增温造成土壤水分变化而影响草本群落的多样性和多度。温度增加使植物春季物候提前(Fu et al, 2015; Piao et al, 2019; Wang et al, 2021), 这使得对温度敏感的草本植物早一步获取有效光资源。不过, 由于林下草本层植物群落早已适应春季的高光照可用性和夏季的遮阴(Valladares et al, 2016; De Pauw et al, 2021), 部分植物物候提前导致的其他植物可利用光降低也不会影响其生长。由于光照可利用性在各季节存在差异, 温带森林草本层对气候变暖的响应也随之存在差异, 即增温在春季、秋季对植物生长的影响大于夏季。

以往的增温实验多表明增温会降低多样性指数(宗宁等, 2016; 姜炎彬等, 2017; 籍烨等, 2022), 与本研究结果不同, 这主要是由于本研究中优势种间“此消彼长”的效应抵消了多样性的变化。本研究对照样地和增温样地共出现37个草本物种, 其中对照样地33种, 增温样地30种, 其中共有种26种。仅在对照样地出现的物种共7种, 多为春季短命植物和耐阴植物, 仅在增温样地出现的物种有4种(表1), 多为夏季萌发物种, 但由于它们的多度和频度都极小, 并不能说明该结果是增温导致的。

除了不同生态系统对增温响应不同以外, 增温方式不同也是导致结果不同的一个重要原因。草地生态系统广泛使用的开顶箱增温法阻挡了昆虫进入, 同时降低了风速和光照, 进而影响种子传播等, 因而在开顶箱进行的增温实验会在短期内导致物种丰富度快速下降(De Frenne et al, 2010; Yang et al, 2018; 夏露等, 2022), 而本研究使用的红外增温法往往对植物丰富度无影响或仅使其小幅度降低(Shi et al, 2015)。

3.2 增温对草本层群落组成及结构的影响

本研究结果表明增温对东北温带次生林草本层植物群落组成及结构的影响显著。增温条件下, 草本层群落总多度、盖度无显著变化, 但群落内各物种重要值、盖度、多度发生了不同程度的改变。增温可能改变群落内的种间竞争关系或者影响某些物种功能性状, 从而导致群落组成及结构发生变化。以往的研究表明, 群落内的优势种通常对环境变化的敏感性更高(Wasof et al, 2018), 这与本研究的结果是一致的。山茄子作为群落内的年优势种, 其对增温的响应极为显著, 增温后其重要值、盖度和多度均显著增加。山茄子是一种株高叶大的快速定植草本植物, 其种子很轻, 有利于快速传播和资源获取(Blondeel et al, 2020b), 春季增温使其物候期提前, 从而能更好地获取光资源, 成为该群落的绝对优势种。研究区域草本群落已显现出以山茄子为主、其他物种为辅的群落结构趋势。增温使部分植物物候提前, 这打破了春季草本层植物对有效光资源的竞争平衡(Govaert et al, 2021b)。本研究中, 增温后年优势种龙头草显著减少。龙头草是根状茎的矮小植物, 其营养器官十分强大(徐敏敏等, 2016), 但叶片较小, 这种植物属于古老的多年生森林慢植草本植物, 通常将更多的营养投入到其根部和种子中以促进繁殖, 这就导致其传播能力较弱(Blondeel et al, 2020b), 对环境变化的适应能力较差, 因此对增温产生负响应。而白花碎米荠和荷青花的盖度和多度在各季节受增温的影响均不大, 这两种植物的叶片大小和叶形相似, 植株和叶片大小在4个年优势种中占据中间地位, 增温对于其对有效光资源的获取无较大影响。

季节优势种也对增温有不同的响应, 如增温后春季短命植物单花韭的重要值显著降低, 五福花的重要值显著增加, 这是因为春季短命植物对增温更敏感(Wolkovich et al, 2012)。单花韭在本研究区的生长期为4月初至5月底, 增温可能使其提前结束生长期, 所以在2022年5月的重要值表现为增温后显著降低; 五福花为喜暖的矮小植物, 由于春季遮阴度较低, 因此它在春季的生长受温度的影响最大, 势必对温度的增加产生正响应。

依托清原温带次生林野外红外辐射增温平台, 本研究发现连续5年的生长季增温对林下草本多样性没有显著影响, 但已显著改变优势种的盖度、多度和重要值, 引起草本群落物种组成和结构发生显著变化。考虑到气候变暖将长期影响温带森林, 未来研究将深入探讨增温对林下草本多样性及其群落物种组成和结构的长期影响。

致谢

感谢中国科学院清原森林生态系统观测研究站方晓明老师为本研究野外实验给予的所有帮助; 感谢中国科学院沈阳应用生态研究所天然林生态组的所有师生为本研究提出的建议和帮助!

参考文献

Blondeel H, Perring MP, De Lombaerde E, Depauw L, Landuyt D, Govaert S, Maes SL, Vangansbeke P, De Frenne P, Verheyen K (2020a)

Individualistic responses of forest herb traits to environmental change

Plant Biology, 22, 601-614.

DOI:10.1111/plb.v22.4      URL     [本文引用: 1]

Blondeel H, Perring MP, Depauw L, De Lombaerde E, Landuyt D, De Frenne P, Verheyen K (2020b)

Light and warming drive forest understorey community development in different environments

Global Change Biology, 26, 1681-1696.

DOI:10.1111/gcb.v26.3      URL     [本文引用: 2]

Classen AT, Sundqvist MK, Henning JA, Newman GS, Moore JAM, Cregger MA, Moorhead LC, Patterson CM (2015)

Direct and indirect effects of climate change on soil microbial and soil microbial-plant interactions: What lies ahead?

Ecosphere, 6, art130.

DOI:10.1890/ES15-00217.1      URL     [本文引用: 1]

Climate Change Centre of China Meteorological Administration (2021) Blue Book on Climate Change in China (2021). Science Press, Beijing. (in Chinese)

[本文引用: 1]

[中国气象局气候变化中心 (2021) 中国气候变化蓝皮书 (2021). 科学出版社, 北京.]

[本文引用: 1]

De Frenne P, De Schrijver A, Graae BJ, Gruwez R, Tack W, Vandelook F, Hermy M, Verheyen K (2010)

The use of open-top chambers in forests for evaluating warming effects on herbaceous understorey plants

Ecological Research, 25, 163-171.

DOI:10.1007/s11284-009-0640-3      URL     [本文引用: 1]

De Pauw K, Sanczuk P, Meeussen C, Depauw L, De Lombaerde E, Govaert S, Vanneste T, Brunet J, Cousins S, Gasperini C, Hedwall PO, Iacopetti G, Lenoir J, Plue J, Selvi F, Spicher F, Uria-Diez J, Verheyen K, Vangansbeke P, De Frenne P (2021)

Forest understorey communities respond strongly to light in interaction with forest structure, but not to microclimate warming

New Phytologist, 233, 219-235.

DOI:10.1111/nph.17803      PMID:34664731      [本文引用: 1]

Forests harbour large spatiotemporal heterogeneity in canopy structure. This variation drives the microclimate and light availability at the forest floor. So far, we do not know how light availability and sub-canopy temperature interactively mediate the impact of macroclimate warming on understorey communities. We therefore assessed the functional response of understorey plant communities to warming and light addition in a full factorial experiment installed in temperate deciduous forests across Europe along natural microclimate, light and macroclimate gradients. Furthermore, we related these functional responses to the species' life-history syndromes and thermal niches. We found no significant community responses to the warming treatment. The light treatment, however, had a stronger impact on communities, mainly due to responses by fast-colonizing generalists and not by slow-colonizing forest specialists. The forest structure strongly mediated the response to light addition and also had a clear impact on functional traits and total plant cover. The effects of short-term experimental warming were small and suggest a time-lag in the response of understorey species to climate change. Canopy disturbance, for instance due to drought, pests or logging, has a strong and immediate impact and particularly favours generalists in the understorey in structurally complex forests.This article is protected by copyright. All rights reserved.

Duan YH, Liu DW, Huang K, Shou WK, Zhu FF, Liu YQ, Yu HM, Gundersen P, Kang RH, Wang A, Han SJ, Wang ZM, Zhu JJ, Zhu WX, Fang YT (2022)

Design and performance of an ecosystem-scale forest soil warming experiment with infrared heater arrays

Methods in Ecology and Evolution, 13, 2065-2077.

DOI:10.1111/mee3.v13.9      URL     [本文引用: 2]

Elmendorf SC, Henry GHR, Hollister RD, Björk RG, Bjorkman AD, Callaghan TV, Collier LS, Cooper EJ, Cornelissen JHC, Day TA, Fosaa AM, Gould WA, Grétarsdóttir J, Harte J, Hermanutz L, Hik DS, Hofgaard A, Jarrad F, Jónsdóttir IS, Wookey PA (2012)

Global assessment of experimental climate warming on tundra vegetation: Heterogeneity over space and time

Ecology Letters, 15, 164-175.

DOI:10.1111/j.1461-0248.2011.01716.x      PMID:22136670      [本文引用: 1]

Understanding the sensitivity of tundra vegetation to climate warming is critical to forecasting future biodiversity and vegetation feedbacks to climate. In situ warming experiments accelerate climate change on a small scale to forecast responses of local plant communities. Limitations of this approach include the apparent site-specificity of results and uncertainty about the power of short-term studies to anticipate longer term change. We address these issues with a synthesis of 61 experimental warming studies, of up to 20 years duration, in tundra sites worldwide. The response of plant groups to warming often differed with ambient summer temperature, soil moisture and experimental duration. Shrubs increased with warming only where ambient temperature was high, whereas graminoids increased primarily in the coldest study sites. Linear increases in effect size over time were frequently observed. There was little indication of saturating or accelerating effects, as would be predicted if negative or positive vegetation feedbacks were common. These results indicate that tundra vegetation exhibits strong regional variation in response to warming, and that in vulnerable regions, cumulative effects of long-term warming on tundra vegetation - and associated ecosystem consequences - have the potential to be much greater than we have observed to date.© 2011 Blackwell Publishing Ltd/CNRS.

Fu YH, Zhao HF, Piao SL, Peaucelle M, Peng SS, Zhou GY, Ciais P, Huang MT, Menzel A, Peñuelas J, Song Y, Vitasse Y, Zeng ZZ, Janssens IA (2015)

Declining global warming effects on the phenology of spring leaf unfolding

Nature, 526, 104-107.

DOI:10.1038/nature15402      [本文引用: 1]

Gao T, Yu LZ, Yu FY, Wang XC, Yang K, Lu DL, Li XF, Yan QL, Sun YR, Liu LF, Xu S, Zhen XJ, Ni ZD, Zhang JX, Wang GF, Wei XH, Zhou XH, Zhu JJ (2020)

Functions and applications of multi-tower platform of Qingyuan Forest Ecosystem Research Station of Chinese Academy of Sciences

Chinese Journal of Applied Ecology, 31, 695-705. (in Chinese with English abstract)

DOI:10.13287/j.1001-9332.202003.040      [本文引用: 1]

The relationship between the structure and function of forest ecosystems is the main intere-sts in the research area of forest ecology and management. However, over complex terrains in particular, these studies had been challenged as uneasy tasks due to the limitations in the forest survey and measurement techniques and other supporting technologies. Chinese Academy of Sciences (CAS) funded “Multi-Tower LiDAR/ECFlux Platform for Monitoring the Structure and Function of Secondary Forest Ecosystems” (Multi-Tower Platform, MTP) as a field station network corner-stone research infrastructure project, which was completed by Qingyuan Forest CERN (Chinese Ecosystem Research Network). In a distinctively-bounded and monitored-outlet watershed, the MTP was integrated by light detection and ranging (LiDAR) scanners, eddy covariance (EC) flux instrument systems, whole- and sub-watershed hydrology station network, long-term forest plot arrays, and live data center. Using LiDAR scanning, the MTP can get cloud data for holographic information on canopy structure. The EC-flux instrument system and hydrology station network along with forest plot arrays could ensure the reliability of water and carbon observations over this complex terrain, which allows to verify the studies on flux measurement technologies and methods, as well as to understand the processes of ecohydrology and CO<sub>2</sub> exchange between forest ecosystem and the atmosphere. Further, we can also assess the primary ecosystem services, including water conservation and carbon sequestration. All the data from “tower-station” were streamed through wireless network, which would facilitate data monitoring, management, and sharing. There are three tasks of MTP team: 1) defining innovative methods and descriptors to quantify three-dimensional forest structure; 2) developing theories and techniques to measure CO<sub>2</sub>/H<sub>2</sub>O fluxes and other trace gases over complex terrains; 3) understanding the relationship between structure and function of forest ecosystems, providing information and rationales for forest management practices to assure broad and sustainable benefits from forests.

[高添, 于立忠, 于丰源, 王兴昌, 杨凯, 卢德亮, 李秀芬, 闫巧玲, 孙一荣, 刘利芳, 徐爽, 甄晓杰, 倪震东, 张金鑫, 王高峰, 魏晓华, 周新华, 朱教君 (2020)

中国科学院清原森林生态系统观测研究站塔群平台的功能和应用

应用生态学报, 31, 695-705.]

DOI:10.13287/j.1001-9332.202003.040      [本文引用: 1]

森林生态系统结构与生态服务功能关系是森林生态学和林学的永恒研究主题。受传统森林调查方法及技术手段的限制,对复杂地形下森林生态系统结构和功能的监测及二者关系的研究面临诸多挑战。在中国科学院野外站网络重点科技基础设施建设项目的支持下,中国科学院清原森林生态系统观测研究站在独立流域内建成了以观测塔群(三座观测塔覆盖各自子流域代表性森林类型)为主体,集激光雷达(LiDAR)、通量仪器、水文站网、固定标准地和数据中心为综合体的“次生林生态系统塔群激光雷达监测平台”(简称塔群平台)。塔群平台采用激光雷达扫描获取森林点云数据,描述森林生态系统的全息三维结构;依托独立流域/子流域内的通量监测系统、水文监测站网和通量源区内的长期固定标准地,可保证碳-水过程观测的可靠性,并用于验证复杂地形下的通量监测技术与方法,揭示森林生态水文与碳交换过程,准确估算森林生态系统主体生态服务功能(水源涵养和固碳)。所有“塔-站”数据通过无线网络实时汇集于数据中心,便于数据监视、管理与共享。此外,塔群平台将侧重研究森林生态系统结构量化的新方法和新指标,探索复杂地形森林生态系统中H<sub>2</sub>O/CO<sub>2</sub>/痕量气体通量观测的理论与方法,为阐明森林结构与功能的关系、服务于森林生态系统管理提供基础数据。

Gilliam FS (2007)

The ecological significance of the herbaceous layer in temperate forest ecosystems

BioScience, 57, 845-858.

DOI:10.1641/B571007      URL     [本文引用: 3]

Govaert S, Vangansbeke P, Blondeel H, De Lombaerde E, Verheyen K, De Frenne P (2021a)

Forest understorey plant responses to long-term experimental warming, light and nitrogen addition

Plant Biology, 23, 1051-1062.

DOI:10.1111/plb.v23.6      URL     [本文引用: 1]

Govaert S, Vangansbeke P, Blondeel H, Steppe K, Verheyen K, De Frenne P (2021b)

Rapid thermophilization of understorey plant communities in a 9 year-long temperate forest experiment

Journal of Ecology, 109, 2434-2447.

DOI:10.1111/jec.v109.6      URL     [本文引用: 1]

IPCC (2021) The physical science basis. In: Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte V, Zhai P, Pirani A, Connors SL, Péan C, Berger S, Caud N, Chen Y, Goldfarb L, Gomis MI, Huang M, Leitzell K, Lonnoy E, Matthews JBR, Maycock TK, Waterfield T, Yelekçi O, Yu R, Zhou B). Cambridge University Press, Cambridge.

[本文引用: 1]

Ji Y, Chen SD, Xiong DC, Xu C, Liu XF, He ZM, Yang ZJ (2022)

Effects of short-term warming on species diversity of understory vegetation in subtropical evergreen broad-leaved forest

Journal of Tropical and Subtropical Botany, 31(2), 153-162. (in Chinese with English abstract)

[本文引用: 2]

[籍烨, 陈仕东, 熊德成, 胥超, 刘小飞, 何宗明, 杨智杰 (2022)

短期增温对亚热带常绿阔叶林林下植被物种多样性的影响

热带亚热带植物学报, 31(2), 153-162.]

[本文引用: 2]

Jia SH, Wang XG, Hao ZQ, Bagchi R (2022)

The effects of natural enemies on herb diversity in a temperate forest depend on species traits and neighbouring tree composition

Journal of Ecology, 110, 2615-2627.

DOI:10.1111/jec.v110.11      URL     [本文引用: 1]

Jiang YB, Fan M, Zhang YJ (2017)

Effect of short-term warming on plant community features of alpine meadow in Northern Tibet

Chinese Journal of Ecology, 36, 616-622. (in Chinese with English abstract)

[本文引用: 2]

[姜炎彬, 范苗, 张扬建 (2017)

短期增温对藏北高寒草甸植物群落特征的影响

生态学杂志, 36, 616-622.]

[本文引用: 2]

青藏高原是全球变化的敏感区域,过去几十年以来,在全球气候变暖的背景下,藏北高原增温明显。本研究在藏北典型高寒草甸区采用开顶式生长室(OTC)模拟增温的方法,根据OTC的不同高度设置了4个增温梯度(40、60、80和100 cm),分析了植物群落的生长、结构和组成以及生物量对增温的响应。结果表明:不同高度的OTC作用使得年平均空气温度增加了1.13~2.72 ℃,且OTC的高度越高,其增温效果越明显;伴随着温度的升高,空气湿度以及土壤湿度均有所降低;高山嵩草在所有群落中占有绝对优势,梯度增温作用使得其重要值不断下降;随着温度的升高,莎草类植物的盖度逐渐下降;对整个群落而言,增温幅度较低时,增温对群落的生长和生物量的积累以及多样性都会有明显的促进作用,当温度升高超过一定值,这种促进作用会逐渐减弱甚至变成抑制作用。本研究表明,藏北高寒草甸对增温作用具有敏感而迅速的响应,温度升高使该地区的气候朝着暖干化趋势发展,而一定程度的升温会促进植物群落的生长,但温度升高超过一定幅度时,会导致草地生产力下降,草地退化加剧。

Landuyt D, De Lombaerde E, Perring MP, Hertzog LR, Ampoorter E, Maes SL, De Frenne P, Ma SY, Proesmans W, Blondeel H, Sercu BK, Wang B, Wasof S, Verheyen K (2019)

The functional role of temperate forest understorey vegetation in a changing world

Global Change Biology, 25, 3625-3641.

DOI:10.1111/gcb.14756      PMID:31301199      [本文引用: 1]

Temperate forests cover 16% of the global forest area. Within these forests, the understorey is an important biodiversity reservoir that can influence ecosystem processes and functions in multiple ways. However, we still lack a thorough understanding of the relative importance of the understorey for temperate forest functioning. As a result, understoreys are often ignored during assessments of forest functioning and changes thereof under global change. We here compiled studies that quantify the relative importance of the understorey for temperate forest functioning, focussing on litter production, nutrient cycling, evapotranspiration, tree regeneration, pollination and pathogen dynamics. We describe the mechanisms driving understorey functioning and develop a conceptual framework synthesizing possible effects of multiple global change drivers on understorey-mediated forest ecosystem functioning. Our review illustrates that the understorey's contribution to temperate forest functioning is significant but varies depending on the ecosystem function and the environmental context, and more importantly, the characteristics of the overstorey. To predict changes in understorey functioning and its relative importance for temperate forest functioning under global change, we argue that a simultaneous investigation of both overstorey and understorey functional responses to global change will be crucial. Our review shows that such studies are still very scarce, only available for a limited set of ecosystem functions and limited to quantification, providing little data to forecast functional responses to global change.© 2019 John Wiley & Sons Ltd.

Li YH (2014)

Responses of Plant Community Structure and Function to Warming and Nitrogen Addition in a Desert Steppe of Inner Mongolia

PhD dissertation, Inner Mongolia Agricultural University, Hohhot. (in Chinese with English abstract)

[本文引用: 2]

[李元恒 (2014)

内蒙古荒漠草原植物群落结构和功能对增温和氮素添加的响应

博士学位论文, 内蒙古农业大学, 呼和浩特.]

[本文引用: 2]

Liu XD (2020)

Responses of Plant Communities to Climatic Warming and the Mechanisms in a Desert Steppe

PhD dissertation, Institute of Botany, Chinese Academy of Sciences, Beijing. (in Chinese with English abstract)

[本文引用: 1]

[刘晓迪 (2020)

荒漠草原植物群落对气候变暖的响应及其机制

博士学位论文, 中国科学院植物研究所, 北京.]

[本文引用: 1]

Ma L, Zhang Q, Zhang ZH, Guo J, Yang XY, Zhou BR, Deng YF, Wang F, She YD, Zhou HK (2020)

Effects of gradient warming on species diversity and biomass in alpine meadows

Acta Agrestia Sinica, 28, 1395-1402. (in Chinese with English abstract)

[本文引用: 2]

[马丽, 张骞, 张中华, 郭婧, 杨晓渊, 周秉荣, 邓艳芳, 王芳, 佘延娣, 周华坤 (2020)

梯度增温对高寒草甸物种多样性和生物量的影响

草地学报, 28, 1395-1402.]

DOI:10.11733/j.issn.1007-0435.2020.05.026      [本文引用: 2]

本研究以青藏高原高寒草甸为试验对象,利用开顶室增温装置(Open-Top-Chambers,OTCs),探讨4种增温幅度对物种多样性和生物量的影响。结果表明:群落盖度在高度增温下显著减少(PPPP<0.05),0~10 cm处地下生物量在高度增温下下减幅最大,20~30 cm处地下生物量在低度增温下增幅最大。本研究表明,在研究周期内物种丰富度对梯度增温响应不敏感,高度增温减少地上生物量的积累,地下生物量在不同幅度的增温处理下没有显著的变化规律性,响应并不敏感。

Niu SL, Wan SQ (2008)

Warming changes plant competitive hierarchy in a temperate steppe in northern China

Journal of Plant Ecology, 1, 103-110.

DOI:10.1093/jpe/rtn003      URL     [本文引用: 2]

Piao SL, Liu Q, Chen AP, Janssens IA, Fu YS, Dai JH, Liu LL, Lian X, Shen MG, Zhu XL (2019)

Plant phenology and global climate change: Current progresses and challenges

Global Change Biology, 25, 1922-1940.

DOI:10.1111/gcb.14619      PMID:30884039      [本文引用: 1]

Plant phenology, the annually recurring sequence of plant developmental stages, is important for plant functioning and ecosystem services and their biophysical and biogeochemical feedbacks to the climate system. Plant phenology depends on temperature, and the current rapid climate change has revived interest in understanding and modeling the responses of plant phenology to the warming trend and the consequences thereof for ecosystems. Here, we review recent progresses in plant phenology and its interactions with climate change. Focusing on the start (leaf unfolding) and end (leaf coloring) of plant growing seasons, we show that the recent rapid expansion in ground- and remote sensing- based phenology data acquisition has been highly beneficial and has supported major advances in plant phenology research. Studies using multiple data sources and methods generally agree on the trends of advanced leaf unfolding and delayed leaf coloring due to climate change, yet these trends appear to have decelerated or even reversed in recent years. Our understanding of the mechanisms underlying the plant phenology responses to climate warming is still limited. The interactions between multiple drivers complicate the modeling and prediction of plant phenology changes. Furthermore, changes in plant phenology have important implications for ecosystem carbon cycles and ecosystem feedbacks to climate, yet the quantification of such impacts remains challenging. We suggest that future studies should primarily focus on using new observation tools to improve the understanding of tropical plant phenology, on improving process-based phenology modeling, and on the scaling of phenology from species to landscape-level.© 2019 John Wiley & Sons Ltd.

Pielou EC (1975)

Ecological diversity

Limnology Oceanography, 22, 172-174.

[本文引用: 1]

Salick J, Fang ZD, Hart R (2019)

Rapid changes in eastern Himalayan alpine flora with climate change

Botany, 106, 520-530.

[本文引用: 2]

Shi Z, Sherry R, Xu X, Hararuk O, Souza L, Jiang LF, Xia JY, Liang JY, Luo YQ (2015)

Evidence for long-term shift in plant community composition under decadal experimental warming

Journal of Ecology, 103, 1131-1140.

DOI:10.1111/1365-2745.12449      URL     [本文引用: 1]

Spicer ME, Radhamoni HVN, Duguid MC, Queenborough SA, Comita LS (2022)

Herbaceous plant diversity in forest ecosystems: Patterns, mechanisms, and threats

Plant Ecology, 223, 117-129.

DOI:10.1007/s11258-021-01202-9      [本文引用: 3]

Valladares F, Laanisto L, Niinemets Ü, Zavala MA (2016)

Shedding light on shade: Ecological perspectives of understorey plant life

Plant Ecology & Diversity, 9, 237-251.

[本文引用: 1]

Walker MD, Wahren CH, Hollister RD, Henry GHR, Ahlquist LE, Alatalo JM, Bret MS, Calef MP, Callaghan TV, Carroll AB, Epstein HE, Jónsdóttir IS, Klein JA, Magnússon B, Molau U, Oberbauer SF, Rewa SP, Robinson CH, Shaver GR, Suding KN, Thompson CC, Tolvanen A, Totland Ø, Turner PL, Tweedie CE, Webber PJ, Wookey PA (2006)

Plant community responses to experimental warming across the tundra biome

Proceedings of the National Academy of Sciences, USA, 103, 1342-1346.

[本文引用: 1]

Wang JM, Xi ZX, He XJ, Chen SS, Rossi S, Smith NG, Liu JQ, Chen L (2021)

Contrasting temporal variations in responses of leaf unfolding to daytime and nighttime warming

Global Change Biology, 27, 5084-5093.

DOI:10.1111/gcb.15777      PMID:34263513      [本文引用: 1]

Earlier spring phenological events have been widely reported in plants under global warming. Recent studies reported a slowdown in the warming-induced advanced spring phenology in temperate regions. However, previous research mainly focused on daily mean temperature, thus neglecting the asymmetric phenological responses to daytime and nighttime temperature. Using long-term records of leaf unfolding in eight deciduous species at 1300 sites across central Europe, we assessed and compared the effects of daytime temperature, nighttime temperature, and photoperiod on leaf unfolding during 1951-1980 and 1981-2013. Although leaf unfolding was advanced by daytime warming during 1951-2013, the advancing responses of leaf unfolding significantly decreased from 1951-1980 to 1981-2013 due to a lower accumulation of chilling units by daytime warming. Nighttime warming delayed leaf unfolding during 1951-1980 but advanced it during 1981-2013 due to a higher accumulation of chilling units by nighttime warming. In contrast, critical daylength and plasticity of leaf unfolding dates remained unchanged between 1951 and 2013. Our study provided evidence that daytime warming instead of nighttime warming accounts for the slowdown in the advancing spring phenology and implied that nighttime warming-induced earlier spring phenology may be buffering the slowdown of the advanced spring phenology by daytime warming. The response of spring phenology to nighttime temperature may override that to daytime temperature under the actual trends in global warming.© 2021 John Wiley & Sons Ltd.

Wang Q, Zhang ZH, Du R, Wang SP, Duan JC, Iler AM, Piao SL, Luo CY, Jiang LL, WW, Zhang LR, Meng FD, Ji SN, Li YM, Li BW, Liu PP, Dorji T, Wang ZZ, Li YN, Du MY, Zhou HK, Zhao XQ, Wang YF (2019)

Richness of plant communities plays a larger role than climate in determining responses of species richness to climate change

Journal of Ecology, 107, 1944-1955.

DOI:10.1111/1365-2745.13148      [本文引用: 1]

Experimental warming in situ suggests that warming could lead to a loss of biodiversity. However, species that remain in situ and experience climate change will interact with species tracking climate change, which could also affect patterns of biodiversity. The relative contribution of species gains and losses to net changes in species richness is still unclear. We use transplanted plant communities to test the hypothesis that both the change in climate and ecological communities tracking climate change will influence how species richness responds to climate change. Three intact alpine plant communities were reciprocally transplanted to create scenarios in which species experienced warmer and wetter conditions (transferred to lower elevations) and cooler and drier conditions (transferred to higher elevations) over 10 years on the Tibetan Plateau. Communities transplanted into the same elevation as controls represent species tracking climate change. Transferring to lower elevations generally caused a net increase in richness and a higher rate of gains relative to the control plots; the magnitude of this effect depended on the specific elevation. Transferring to higher elevations lead to either net increases or decreases in richness and gains, depending on elevation. Species gains predicted much more variation in changes in species richness (50%) than did species loss (9%). Species richness at the receptor site and the donor site were both important predictors of variation in species richness, and the abiotic environment did not explain additional variation. Changes in cover of dominant plant species in response to transfers did not predict changes in species richness, species gain or species loss. Our results suggest that species gains from species tracking climate change at the receptor sites, rather than species loss from the donor sites, predicted changes in species richness. Synthesis. Warming experiments with physical barriers to dispersal may overestimate the negative effect of warming on plant diversity by not accounting for species gains. Our study highlights the importance of biotic factors in addition to the abiotic environment, when considering how climate change will affect plant diversity.

Wasof S, Lenoir J, Hattab T, Jamoneau A, Gallet-Moron E, Ampoorter E, Saguez R, Bennsadek L, Bertrand R, Valdès A, Verheyen K, Decocq G (2018)

Dominance of individual plant species is more important than diversity in explaining plant biomass in the forest understorey

Journal of Vegetation Science, 29, 521-531.

DOI:10.1111/jvs.2018.29.issue-3      URL     [本文引用: 1]

Whittaker RH (1972)

Evolusion and measurement of species diversity

Taxon, 21, 213-251.

DOI:10.2307/1218190      URL     [本文引用: 2]

Wolkovich EM, Cook BI, Allen JM, Crimmins TM, Betancourt JL, Travers SE, Pau S, Regetz J, Davies TJ, Kraft NJB, Ault TR, Bolmgren K, Mazer SJ, McCabe GJ, McGill BJ, Parmesan C, Salamin N, Schwartz MD, Cleland EE (2012)

Warming experiments underpredict plant phenological responses to climate change

Nature, 485, 494-497.

DOI:10.1038/nature11014      [本文引用: 1]

Xia L, Zhang SR, Liu PP, WW, Hong H, Zhou Y, Li BW, Wang Q, A W, Jiang LL, Dorji T, Wang SP, Zhang LR (2022)

Effects of climate change and N deposition on plant diversity in grassland in China

Grassland and Turf, 42, 158-165. (in Chinese with English abstract)

[本文引用: 1]

[夏露, 张苏人, 刘培培, 吕汪汪, 洪欢, 周阳, 李博文, 王奇, 阿旺, 姜丽丽, 斯确多吉, 汪诗平, 张立荣 (2022)

增温和增/减水及氮沉降对中国草地植物多样性影响的研究进展

草原与草坪, 42, 158-165.]

[本文引用: 1]

Xu MH, Du R, Yang XH, Yang XY, Yu XL (2021)

Response of plants to simulated warming in under-canopy herbaceous layers on the guancen mountain

Chinese Wild Plant Resources, 40(10), 45-52. (in Chinese with English abstract)

[本文引用: 2]

[徐满厚, 杜荣, 杨晓辉, 杨晓艳, 于秀立 (2021)

管涔山林下草本层植物对模拟增温的响应

中国野生植物资源, 40(10), 45-52.]

[本文引用: 2]

Xu MH, Li XL (2021)

Review of response of grassland community stability to global warming based on correlation between species biodiversity and biomass

Acta Botanica Boreali-Occidentalia Sinica, 41, 348-358. (in Chinese with English abstract)

[本文引用: 1]

[徐满厚, 李晓丽 (2021)

基于物种多样性与生物量关系的草地群落稳定性对全球变暖的响应研究进展

西北植物学报, 41, 348-358.]

[本文引用: 1]

Xu MM, Dong Q, Yu JG, Xuan ZL, Xia FC (2016)

Biomass distribution research of florescence organs of Meehania fargesii

Journal of Jilin Forestry Science and Technology, 45(2), 19-23. (in Chinese with English abstract)

[本文引用: 1]

[徐敏敏, 董琼, 于建国, 轩志龙, 夏富才 (2016)

荨麻叶龙头草花期器官生物量分配研究

吉林林业科技, 45(2), 19-23.]

[本文引用: 1]

Yang XY, Zhang SX, Wen J, Xu MH (2018)

Spatial pattern of herbaceous plant species diversity and its changes due to simulated warming in the forest community of the Lüliang Mountains

Acta Ecologica Sinica, 38, 6642-6654. (in Chinese with English abstract)

[本文引用: 2]

[杨晓艳, 张世雄, 温静, 徐满厚 (2018)

吕梁山森林群落草本层植物物种多样性的空间格局及其对模拟增温的响应

生态学报, 38, 6642-6654.]

[本文引用: 2]

Yang Y, Halbritter AH, Klanderud K, Telford RJ, Wang GX, Vandvik V (2018)

Transplants, open top chambers (OTCs) and gradient studies ask different questions in climate change effects studies

Frontiers in Plant Science, 9, 1574.

DOI:10.3389/fpls.2018.01574      PMID:30450107      [本文引用: 1]

Long-term monitoring, space-for-time substitutions along gradients, and in situ temperature manipulations are common approaches to understand effects of climate change on alpine and arctic plant communities. Although general patterns emerge from studies using different approaches, there are also some inconsistencies. To provide better estimates of plant community responses to future warming across a range of environments, there have been repeated calls for integrating different approaches within single studies. Thus, to examine how different methods in climate change effect studies may ask different questions, we combined three climate warming approaches in a single study in the Hengduan Mountains of southwestern China. We monitored plant communities along an elevation gradient using the space-for-time approach, and conducted warming experiments using open top chambers (OTCs) and plant community transplantation toward warmer climates along the same gradient. Plant species richness and abundances were monitored over 5 years addressing two questions: (1) how do plant communities respond to the different climate warming approaches? (2) how can the combined approaches improve predictions of plant community responses to climate change? The general trend across all three approaches was decreased species richness with climate warming at low elevations. This suggests increased competition from immigrating lowland species, and/or from the species already growing inside the plots, as indicated by increased biomass, vegetation height or proportion of graminoids. At the coldest sites, species richness decreased in OTCs and along the gradient, but increased in the transplants, suggesting that plant communities in colder climates are more open to invasion from lowland species, with slow species loss. This was only detected in the transplants, showing that different approaches, may yield different results. Whereas OTCs may constrain immigration of new species, transplanted communities are rapidly exposed to new neighbors that can easily colonize the small plots. Thus, different approaches ask slightly different questions, in particular regarding indirect climate change effects, such as biotic interactions. To better understand both direct and indirect effects of climate change on plant communities, we need to combine approaches in future studies, and if novel interactions are of particular interest, transplants may be a better approach than OTCs.

Zhang CH, Willis CG, Klein JA, Ma Z, Li JY, Zhou HK, Zhao XQ (2017)

Recovery of plant species diversity during long-term experimental warming of a species-rich alpine meadow community on the Qinghai-Tibet Plateau

Biological Conservation, 213, 218-224.

DOI:10.1016/j.biocon.2017.07.019      URL     [本文引用: 1]

Zhu JJ, Mao ZH, Hu LL, Zhang JX (2007)

Plant diversity of secondary forests in response to anthropogenic disturbance levels in montane regions of northeastern China

Journal of Forest Research, 12, 403-416.

DOI:10.1007/s10310-007-0033-9      URL     [本文引用: 1]

Zong N, Chai X, Shi PL, Jiang J, Niu B, Zhang XZ, He YT (2016)

Responses of plant community structure and species composition to warming and N addition in an alpine meadow, northern Tibetan Plateau, China

Chinese Journal of Applied Ecology, 27, 3739-3748. (in Chinese with English abstract)

DOI:10.13287/j.1001-9332.201612.007      [本文引用: 2]

Global climate warming and increasing nitrogen (N) deposition, as controversial global environmental issues, may distinctly affect the functions and processes of terrestrial ecosystems. It has been reported that the Qinghai-Tibet Plateau has been experiencing significant warming in recent decades, especially in winter. Previous studies have mainly focused on the effects of warming all the year round; however, few studies have tested the effects of winter warming. To investigate the effects of winter warming and N addition on plant community structure and species composition of alpine meadow, long-term N addition and simulated warming experiment was conducted in alpine meadow from 2010 in Damxung, northern Tibet. The experiment consisted of three warming patterns: Year-round warming (YW), winter warming (WW) and control (NW), crossed respectively with five N gradients: 0, 10, 20, 40, 80 kg N·hm<sup>-2</sup>·a<sup>-1</sup>. From 2012 to 2014, both warming and N addition significantly affected the total coverage of plant community. Specifically, YW significantly decreased the total coverage of plant community. Without N addition, WW remarkably reduced the vegetation coverage. However, with N addition, the total vegetation coverage gradually increased with the increase of N level. Warming and N addition had different effects on plants from different functional groups. Warming significantly reduced the plant coverage of grasses and sedges, while N addition significantly enhanced the plant coverage of grasses. Regression analyses showed that the total coverage of plant community was positively related to soil water content in vigorous growth stages, indicating that the decrease in soil water content resulted from warming during dry seasons might be the main reason for the decline of total community coverage. As soil moisture in semi-arid alpine meadow is mainly regulated by rainfalls, our results indicated that changes in spatial and temporal patterns of rainfalls under the future climate change scenarios would dramatically influence the vegetation coverage and species composition. Additionally, the effects of increasing atmospheric N deposition on vegetation community might also depend on the change of rainfall patterns.

[宗宁, 柴曦, 石培礼, 蒋婧, 牛犇, 张宪洲, 何永涛 (2016)

藏北高寒草甸群落结构与物种组成对增温与施氮的响应

应用生态学报, 27, 3739-3748.]

DOI:10.13287/j.1001-9332.201612.007      [本文引用: 2]

气候变暖和氮沉降增加作为全球环境问题,将严重影响陆地生态系统的结构与功能.研究发现,近几十年来青藏高原增温显著,其中冬季升温最明显.而已有的研究更多关注全年增温,对冬季增温研究较少.本文基于高寒草甸地区增温和氮素添加影响研究的不足,在青藏高原高寒草甸区开展模拟增温和氮添加试验,研究长期增温与氮添加对高寒草甸群落结构与物种组成的影响.试验布设于2010年7月,地点在西藏当雄高寒草甸区,共有3种增温方式:对照、全年增温、冬季增温;每种增温处理下设置5个氮素添加梯度:0、10、20、40、80 kg N·hm<sup>-2</sup>·a<sup>-1</sup>,系统研究气候变暖与氮添加对高寒草甸生态系统群落结构与物种组成的影响.结果表明: 2012—2014年,增温与施氮处理均显著影响群落总盖度:全年增温处理降低了群落总盖度;在不施氮处理下,冬季增温降低了群落盖度,但在施氮处理下,随着氮剂量的提高群落盖度逐渐升高.增温与施氮对不同功能群植物的影响不同,增温处理降低了禾草与莎草植物盖度,而施氮提高了禾草植物盖度.相关分析表明,植被群落总盖度与生长旺盛期土壤含水量呈正相关关系,推测在降雨较少的季节增温导致的土壤含水量降低是群落盖度降低的主要原因.半干旱区高寒草甸土壤水分主要受降雨的调控,未来气候变化情景下,降雨时空格局的改变会显著影响植被群落盖度及组成,且大气氮沉降的增加对植被群落的影响也依赖于降雨条件的变化.

/