生物多样性, 2023, 31(10): 23196 doi: 10.17520/biods.2023196

生物编目

北京市大型真菌物种多样性调查与资源评价

徐维启1, 李玥1, 李海蛟2, 刘冬梅3, 杨宁4, 张琦1, 何双辉,1,*

1.北京林业大学生态与自然保护学院微生物研究所, 北京 100083

2.中国疾病预防控制中心职业卫生与中毒控制所, 北京 100050

3.中国环境科学研究院, 北京 100012

4.北京市生态环境保护科学研究院, 北京 100037

Species diversity and resource evaluation of macrofungi in Beijing

Weiqi Xu1, Yue Li1, Haijiao Li2, Dongmei Liu3, Ning Yang4, Qi Zhang1, Shuanghui He,1,*

1. Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083

2. National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050

3. Chinese Research Academy of Environmental Sciences, Beijing 100012

4. Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing 100037

通讯作者: *E-mail:heshuanghui@bjfu.edu.cn

编委: 杨祝良

责任编辑: 李会丽

收稿日期: 2023-06-10   接受日期: 2023-08-14  

基金资助: 国家自然科学基金(32070005)
国家自然科学基金(32270014)
国家自然科学基金(32270021)

Corresponding authors: *E-mail:heshuanghui@bjfu.edu.cn

Received: 2023-06-10   Accepted: 2023-08-14  

摘要

大型真菌作为生态系统的主要组成部分, 具有重要的生态功能与经济价值。本研究于2020-2022年采用样线法和随机踏查法对北京市大型真菌资源进行调查, 共采集标本5,448份。通过形态学与分子生物学方法鉴定物种608种, 进一步结合相关文献资料确定北京市大型真菌共619种, 隶属于2门6纲22目93科277属, 其中担子菌门595种, 子囊菌门24种, 中国新记录种5种, 北京新记录种120种。基于以上物种名录开展物种组成和区系地理分析以及资源评价, 结果表明: 含10种以上的优势科共19科, 占总物种数的59.61%, 主要有: 蘑菇科、多孔菌科、小脆柄菇科、红菇科、口蘑科等; 含5种以上的优势属有33属, 占总物种数的38.13%, 主要有: 丝膜菌属(Cortinarius)、裸脚伞属(Gymnopus)、丝盖伞属(Inocybe)、白环蘑属(Leucoagaricus)、红菇属(Russula)等。北京市大型真菌以世界广布属(61.37%)和北温带分布属(31.05%)为主, 其次是泛热带分布属(5.42%)。北京市共有食用菌71种、药用菌43种、有毒菌22种、食药兼用菌45种。本研究结果为北京市大型真菌的物种多样性保护以及资源利用提供了科学依据。

关键词: 新记录种; 特有种; 优势类群; 真菌区系; 经济真菌

Abstract

Aims: As the main component of ecosystem, macrofungi have important ecological functions and economic values. In this study, we aim to understand the species diversity, compositions, and resources of macrofungi in Beijing by performing comprehensive investigations, identifications, and analyses.

Methods: The macrofungal investigations were carried out in 2020-2022 by using line transect and random sampling methods. Specimens were identified by using morphological and molecular methods, and the complete list of macrofungi in Beijing was obtained based on both identification results and literature surveys. Species composition analyses, floristic geographical component analyses and resource evaluations were carried out based on the list by using statistical methods and literature surveying.

Results: A total of 5,448 specimens were collected, and 608 species were identified. The complete list of macrofungi in Beijing containing 619 species belong to 277 genera, 93 families, 22 orders, 6 classes, 2 phyla. Among all the species, 24 belong to Ascomycota, 595 belong to Basidiomycota, five were records new to China, 120 were new to Beijing. There were 19 dominant families with more than 10 species, accounting for 59.61% of the total species, including Agaricaceae, Polyporaceae, Psathyrellaceae, Russulaceae, Tricholomataceae, and so on. There were 33 dominant genera with more than 5 species, accounting for 38.13% of the total species, including Cortinarius, Gymnopus, Inocybe, Leucoagaricus, Russula, and so on. Cosmopolitan, north temperate, and pantropical genera accounted for 61.37%, 31.05%, and 5.42%, respectively. There were 71 edible, 43 medicinal, 22 poisonous, 45 both edible and medicinal fungi.

Conclusion: The species diversity of macrofungi in Beijing is high, and the economic resources are rich. The geographical composition of the flora reflects typical north temperate distribution characteristics. The species number of macrofungi in Beijing could be increased in the future since some large genera of mushrooms, such as, Cortinarius, Entoloma, Inocybe, Russula have not been sufficiently studied.

Keywords: newly recorded species; endemic species; dominant taxa; funga; economic fungi

PDF (2936KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

徐维启, 李玥, 李海蛟, 刘冬梅, 杨宁, 张琦, 何双辉 (2023) 北京市大型真菌物种多样性调查与资源评价. 生物多样性, 31, 23196. doi:10.17520/biods.2023196.

Weiqi Xu, Yue Li, Haijiao Li, Dongmei Liu, Ning Yang, Qi Zhang, Shuanghui He (2023) Species diversity and resource evaluation of macrofungi in Beijing. Biodiversity Science, 31, 23196. doi:10.17520/biods.2023196.

北京市自然条件优越, 地处太行山、燕山山脉向华北平原的过渡地带, 东部与天津市毗邻, 其余均与河北省交界, 位于115°20′-117°32′ E, 39°23′- 41°05′ N之间。气候属于典型温带大陆性季风气候, 年均气温10-12℃, 年均降水量约600 mm, 夏季高温多雨, 降水占全年降水比例约为72.3%; 冬季寒冷干燥(汲欣愉和黄弘, 2022)。地貌由西北山地和东南平原组成, 山区原始植被类型为暖温带落叶阔叶林, 分布规律受地形、气候及土壤的影响甚为显著, 特别是坡向和海拔高度制约着水热条件, 导致自然植被呈现不同的水平分布和垂直分布, 现存植被多为松栎林、杨桦林或灌丛草本群落(贾忠奎等, 2006)。

大型真菌是一种功能多样化的有机体, 主要生长在森林生态系统中, 是地球生物多样性的基本组成部分, 具有重要的生态功能和经济价值(魏玉莲和戴玉成, 2004; Clemmensen et al, 2015; 戴玉成等, 2021)。北京自然环境独特, 大型真菌资源丰富, 但是有关其物种多样性调查和资源评价的研究不够全面。戴玉成等(2006)记录了北京地区非褶菌72种, 其中大部分为首次报道; 刘晶磊等(2006)在喇叭沟门地区共发现162种大型真菌; 郝德旺等(2009)鉴定出小龙门国家森林公园大型真菌47种; 王小燕和魏玉莲(2013)对北京东灵山自然保护区的木材腐朽真菌进行调查和分析发现大型真菌128种; 张孝然等(2017)对北京八达岭森林公园大型真菌资源进行了初步调查及分析, 共发现127种; 卢维来等(2015)对北京地区大型真菌资源状况进行系统整理, 记录北京地区大型真菌867种, 隶属于2门20目72科281属, 但是其结果中的738个名称主要来自于中国科学院菌物标本馆记录和文献记载, 并未得到现代分类学方法的确认; 金莹杉等(2021)采用野外调查和文献查询相结合的方法对北京小西山大型真菌进行研究共发现2门5纲10目33科65属148种; 最近, Man等(2023)和Zhou等(2023)在北京门头沟发现2个大型真菌新种。

本文针对北京市自然地理环境特点, 通过全面的大型真菌野外调查和采集, 采用现代分类学方法对所采集的标本进行鉴定, 旨在: (1)得出准确全面的北京市大型真菌名录; (2)明确北京市大型真菌物种组成、区系地理成分和资源分布等。本研究结果可为北京市生物多样性保护和大型真菌资源开发利用提供基础数据与科学依据。

1 方法

1.1 调查与鉴定方法

2020-2022年, 采用样线法和踏查法, 对北京16个区的所有自然保护区、森林公园、风景名胜区和大部分主要城市公园的80个调查位点(图1)进行大型真菌调查, 共采集到5,448份标本。野外采集时记录大型真菌采集地点、照片编号、生境、宏观形态、生态习性等。采集标本保存于北京林业大学标本馆(BJFC)。在实验室采用形态学与分子生物学相结合的方法对标本进行鉴定。采用CTAB法进行总DNA的提取(赵长林, 2016), 并通过PCR扩增获得内转录间隔区(internal transcribed spacer, ITS)和大亚基核糖体DNA (large subunit nuclear ribosomal DNA, LSU)。扩增产物送至北京华大基因研究中心有限公司进行测序, 将获得的序列在NCBI数据库(https://blast.ncbi.nlm.nih.gov/)中进行BLAST序列比对。拉丁名参照真菌Index Fungrum (http://www.indexfungorum.org/)及MycoBank (http://www.mycobank.org/)数据库公布的名称。

图1

图1   北京市大型真菌调查地点

Fig. 1   Investigation sites of macrofungi in Beijing


1.2 区系分析与资源评价方法

依据北京地区大型真菌名录, 利用Excel软件进行统计归类, 按物种数量以及物种出现频率进行综合排序, 确定优势科、属。并依据采集记录, 按北京市大型真菌物种分布频率, 以及个数确定优势种。科、属的区系地理成分参照孙渤洋等(2023)进行划分。区系地理组成参考图力古尔和李玉(2000)、王妍等(2021)、武英达等(2021, 2022)、牟光福和图力古尔(2022)、郭婷等(2022)和GBIF网站(https://www.gbif.org)。由于目前对各科属的现代分布区尚未完全了解, 所以地理成分分析的准确性只能是相对的。大型真菌的食用、药用、毒性以及特有种类通过查阅相关文献所报道的相关名录进行确定(戴玉成和杨祝良, 2008, 2018; 戴玉成等, 2010, 2012; 图力古尔等, 2013, 2014; 李玉等, 2015; Wu et al, 2019)。

2 结果

综合调查鉴定结果和文献记载, 确定目前北京市大型真菌619种(附录1), 隶属于2门6纲22目93科277属(附录2) 其中, 担子菌门2纲17目81科263属595种, 占总种数的96.12%; 子囊菌门4纲5目12科14属24种, 占总种数的3.88%。本研究发现中国新记录种5种: 路易斯安那异射脉菌(Allophlebia ludoviciana)、梭孢粉孢革菌(Coniophora fusispora)、简单无锁革菌(Efibula gracilis)、狭囊小原毛平革菌(Phanerochaetella angustocystidiata)和凯莱小原毛平革菌(P. queletii); 以及北京新记录种120种, 主要包括: 原毛平革菌属(Phanerochaete) 8种, 无锁革菌属(Efibula) 5种, 隔孢伏革菌属(Peniophora) 5种, 炭团菌属(Hypoxylon)和伏齿革菌属(Lyomyces)各4种, 以及马鞍菌属(Helvella)、纹革菌属(Hypochnicium)、趋木齿菌属(Xylodon)各3种等(图2, 附录1)。

图2

图2   部分北京市大型真菌子实体。a: 中国根刺革菌; b: 北京蘑菇; c: 北京地星; d: 孔韧革状原毛平革菌; e: 暗绿白环菇; f: 红鳞囊小伞; g: 鼠李嗜蓝孢孔菌; h: 兴安棒瑚菌; i: 契诺炭团菌; j: 中条马鞍菌; k: 狭囊小原毛平革菌。

Fig. 2   Representative macrofungi occurring in Beijing. a, Rhizochaete chinensis; b, Agaricus beijingensis; c, Geastrum beijingense; d, Phanerochaete porostereoides; e, Leucoagaricus atroviridis; f, Cystolepiota squamulosa; g, Fomitiporia rhamnoides; h, Clavariadelphus khinganensis; i, Hypoxylon ticinense; j, Helvella zhongtiaoensis; k, Phanerochaetella angustocystidiata.


2.1 优势科、属、种组成

2.1.1 优势科组成

北京市大型真菌类群有19个优势科(≥ 10种) (表1, 附录2), 包含377种, 主要有: 蘑菇科、多孔菌科、小脆柄菇科、红菇科、口蘑科等, 占北京市大型真菌总科数的20.43%, 占总种数的59.61%。

表1   北京市大型真菌优势科列表(≥ 10种)

Table 1  List of the dominant families (≥ 10 species) of macrofungi in Beijing


Family
属数
No. of
genus
种数
No. of
species
占总种数比例
Proportion of
total species (%)

Family
属数
No. of
genus
种数
No. of
species
占总种数比例
Proportion of
total species (%)
多孔菌科 Polyporaceae25477.59类脐菇科 Omphalotaceae2152.42
蘑菇科 Agaricaceae12315.01隔孢伏革菌科 Peniophoraceae7152.42
口蘑科 Tricholomataceae11315.01裂孔菌科 Schizoporaceae6142.26
红菇科 Russulaceae2294.68拟层孔菌科 Fomitopsidaceae5132.10
小脆柄菇科 Psathyrellaceae8274.36光柄菇科 Pluteaceae3132.10
原毛平革菌科 Phanerochaetaceae10243.88泡头菌科 Physalacriaceae7111.78
锈革孔菌科 Hymenochaetaceae14223.55球盖菇科 Strophariaceae5111.78
皱皮菌科 Meruliaceae9162.58牛肝菌科 Boletaceae8101.62
丝盖伞科 Inocybaceae3152.42丝膜菌科 Cortinariaceae1101.62
耙齿菌科 Irpicaceae6152.42合计 Total14436959.61

新窗口打开| 下载CSV


2.1.2 优势属组成

北京市大型真菌类群有33个优势属(≥ 5种) (表2, 附录2), 包含236种, 主要有: 丝膜菌属(Cortinarius)、裸脚伞属(Gymnopus)、丝盖伞属(Inocybe)、白环蘑属(Leucoagaricus)、红菇属(Russula)等, 优势属占总属数的11.91%, 所包含物种数占总种数的38.13%。

表2   北京市大型真菌的优势属列表(≥ 5种)

Table 2  List of the dominant genera (≥ 5 species) of macrofungi in Beijing


Genus
种数
No. of
species
占总种数比例
Proportion of total
species (%)

Genus
种数
No. of
species
占总种数比例
Proportion of total
species (%)
红菇属 Russula213.39丝毛伏革菌属 Hyphoderma60.97
裸脚伞属 Gymnopus132.10伏齿革菌属 Lyomyces60.97
丝膜菌属 Cortinarius101.62小菇属 Mycena60.97
丝盖伞属 Inocybe91.45栓孔菌属 Trametes60.97
白环蘑属 Leucoagaricus91.45口蘑属 Tricholoma60.97
隔孢伏革菌属 Peniophora91.45趋木齿菌属 Xylodon60.97
原毛平革菌属 Phanerochaete91.45丽蘑属 Calocybe50.81
光柄菇属 Pluteus91.45粉孢革菌属 Coniophora50.81
黏滑菇属 Hebeloma81.29小鬼伞属 Coprinellus50.81
乳菇属 Lactarius81.29拟鬼伞属 Coprinopsis50.81
蘑菇属 Agaricus71.13靴耳属 Crepidotus50.81
地星属 Geastrum71.13粉褶菌属 Entoloma50.81
铦囊蘑属 Melanoleuca71.13拟层孔菌属 Fomitopsis50.81
鹅膏属 Amanita60.97小皮伞属 Marasmius50.81
黄盖小脆柄菇属 Candolleomyces60.97假盖伞属 Pseudosperma50.81
无锁革菌属 Efibula60.97乳牛肝菌属 Suillus50.81
马鞍菌属 Helvella60.97合计 Total23638.13

新窗口打开| 下载CSV


2.1.3 优势种组成

北京市大型真菌优势种(≥ 30次)包含36种(表3), 占总种数的5.82%, 主要有: 黄盖小脆柄菇(Candolleomyces candolleanus)、晶粒小鬼伞(Coprinellus micaceus)、膨大革孔菌(Coriolopsis strumosa)、乳白耙齿菌(Irpex lacteus)、裂褶菌(Schizophyllum commune)等。本研究中大型真菌优势种主要生态习性为腐生, 仅有部分为共生。

表3   北京市大型真菌的优势种列表(≥ 30次)

Table 3  List of thedominant species (≥ 30 frequency) of macrofungi in Beijing

物种 Species出现频次 Frequency物种 Species出现频次 Frequency
乳白耙齿菌 Irpex lacteus 191融合小皮伞小孢变种 Marasmius confertus40
裂褶菌 Schizophyllum commune 123派氏拟射脉菌 Phlebiopsis pilatii 40
黄盖小脆柄菇属 Candolleomyces candolleanus 105北京蘑菇 Agaricus beijingensis39
晶粒小鬼伞 Coprinellus micaceus 93撕裂耙齿菌 Irpex laceratus39
膨大革孔菌 Coriolopsis strumosa 91接骨木伏齿革菌 Lyomyces sambuci 39
硬毛栓菌 Trametes hirsuta87点柄乳牛肝菌 Suillus granulatus*39
角质木耳 Auricularia cornea82乳液黏革菌 Gloiothele lactescens 36
特罗格粗毛盖菌 Funalia trogii 79亚裸裸伞 Gymnopus subnudus 36
苹果褐孔菌 Brunneoporus malicola71喜干铦囊蘑 Melanoleuca communis36
冠状环柄菇 Lepiota cristata 63变色栓菌 Trametes versicolor36
银杏硬孔菌 Rigidoporus ginkgonis 60树舌灵芝 Ganoderma applanatum 35
黄斑蘑菇 Agaricus xanthodermus 50干小皮伞 Marasmius siccus 35
梨生多年卧孔菌 Perenniporia pyricola 49费赖斯铦囊蘑 Melanoleuca friesii35
结晶小隔孢伏革菌 Peniophorella crystallifera48枣红孔韧菌 Porostereum spadiceum 35
日本多年卧孔菌 Perenniporia japonica44一色齿毛菌 Cerrena unicolor34
五棱散尾鬼笔 Lysurus mokusin*43石榴嗜蓝孢孔菌 Fomitiporia punicata34
中国根刺革菌 Rhizochaete chinensis42白漏斗辛格杯伞 Singerocybe alboinfundibuliformis 32
奇异齿脉菌 Lopharia mirabilis 40血红色钉菇 Chroogomphus rutilus*30

* 本研究中生态习性为共生的大型真菌。

* Macrofungi with symbiotic ecological habits in the study.

新窗口打开| 下载CSV


2.2 区系地理成分分析

2.2.1 科的地理成分分析

北京市大型真菌93个科中, 世界广布科有73个, 包括: 蘑菇科、多孔菌科、口蘑科等, 占总科数的78.49%; 北温带分布科有18个, 包括: 拟层孔菌科、类脐菇科、马鞍菌科等, 占总科数的19.35%; 泛热带分布科有2个, 包括: 革耳科、柄杯菌科, 占总科数的2.15%。通过科的区系分析来看, 北温带占比接近20%, 整体符合北温带分布特征。

2.2.2 属的地理成分分析

本研究将北京市大型真菌277个属划分为5个类型(附录3): 世界广布属(D1)有170个, 包括: 丝膜菌属裸脚伞属红菇属等, 占总属数61.37%; 北温带分布属(D2)有86个, 包括: 黏滑菇属(Hebeloma)、丝盖伞属、隔孢伏革菌属等, 占总属数的31.05%; 泛热带分布属(D3)有15个, 包括: 粉孢菌属Amylosporus、革孔菌属Coriolopsis、新棱孔菌属Neofavolus等, 占总属数的5.42%; 东亚分布属(D4)有3个, 包括: 黏革菌属(Gloeomyces)、无锁齿革菌属(Odontoefibula)、小原毛平革菌属(Phanerochaetella), 占总属数的1.08%; 东亚-北美洲分布属(D5)有3个, 包括: 异射脉菌属(Allophlebia)、齿射脉菌属(Hydnophlebia)、柄笼头菌属(Simblum), 占总属数的1.08%。北京市大型真菌属的区系以世界广布属和北温带分布属为主, 其次是泛热带分布属, 整体体现北温带分布特征。

2.3 资源评价

北京市大型真菌中, 具有经济价值的大型真菌共181种, 其中食用菌71种, 占总种数的11.47%; 药用菌43种, 占总种数的6.95%; 有毒菌22种, 占总种数的3.55%; 食药兼用菌45种, 占总种数的7.27%。

2.3.1 食用菌

在已鉴定的北京市大型真菌中, 食用菌共71种。主要包括: 双孢蘑菇(Agaricus bisporus)、黑木耳(Auricularia heimuer)、蜜环菌(Armillaria mellea)、鸡油菌(Cantharellus pallens)、血红铆钉菇(Chroogomphus rutilus)、金针菇(Flammulina filiformis)、猴头菇(Hericium erinaceus)、香菇(Letinula edodes)、紫丁香蘑(Lepista nuda)、肺形侧耳(Pleurotus pulmonarius)、青头菌(Russula virescens)、点柄乳牛肝(Suillus granulatus)、太原块菌(Tuber taiyuanense)等。

2.3.2 药用菌

在已鉴定的北京市大型真菌中, 药用菌、食药兼用共88种。这些药用真菌有众多功效, 例如二年残孔菌(Abortiporus biennis)、平田头菇(Agrocybe pediades)、烟管孔菌(Bjerkandera adusta)、一色齿毛菌(Cerrena unicolor)、高雄山虫草(Cordyceps takaomontana)、灵芝(Ganoderma lingzhi)、树舌灵芝(G. applanatum)、无柄灵芝(G. resinaceum) 、硫磺菌(Laetiporus cremeiporus)、鲍姆桑黄(Sanghuangporus baumii)有抑制肿瘤生长等功效; 猴头菇(Hericium erinaceus)有增强免疫力、抗血栓、保护肝胃粘膜、抗菌、抗疲劳作用; 网纹马勃(Lycoperdon perlatum)、梨形马勃(L. pyriforme)、赭色马勃(L. umbrinum)有消肿止血解毒作用; 硬柄小皮伞(Marasmius oreades)等有治疗腰腿疼痛、肢体麻木等功效。

2.3.3 有毒菌

在已鉴定的北京市大型真菌中, 有毒菌共22种, 主要包括: 胃肠炎型: 黄斑蘑菇(Agaricus xanthodermus)、栎裸柄伞(Gymnopus dryophilus)、泪褶毡毛脆柄菇(Lacrymaria lacrymabunda)等; 神经精神型: 黄盖鹅膏(Amanita subjunquillea)、暗蓝斑褶菇(Panaeolus cyanescens)、褐红斑褶菇(P. subbalteatus); 肝肾损害型: 白霜杯伞(Clitocybe dealbata)、肉褐鳞环柄菇(Lepiota brunneoincarnata)、卷边桩菇(Paxillus involutus); 呼吸衰竭型: 洁小菇(Mycena pura); 溶血型: 臭红菇(Russula foetens)、褐环乳牛肝菌(Suillus luteus)。

3 讨论

本研究共发现北京市大型真菌277属619种。由于北京市地理位置和地形特殊, 蕴含了一些特殊的大型真菌种类, 本研究分析发现北京蘑菇(Agaricus beijingensis)、小棕蘑菇(A. parvibrunneus)、北京粉孢革菌(Coniophora beijingensis)、北京地星(Geastrum beijingense)、单系全缘孔菌(Haploporus monomitica)、戴氏拟革裥菌(Lenzitopsis daii)、中国根刺革菌(Rhizochaete chinensis)、地生根刺革菌(R. terrestris)这些种类目前仅发现在北京地区(图2)。北京大型真菌物种组成的优势科包括多孔菌科、蘑菇科、口蘑科、红菇科等19个科, 优势属包括红菇属、裸脚伞属、丝盖伞属、丝膜菌属等33个属。在众多的经济价值大型真菌中, 民众经常食用的野生大型真菌主要有: 蜜环菌、点柄乳牛肝菌、血红铆钉菇、鸡油菌等; 有毒大型真菌主要有: 黄盖鹅膏、肉褐鳞环柄菇、欧式鹅膏(Amanita oberwinklerana)等。

北京市大型真菌种类丰富, 从科、属的区系地理成分来看, 以世界广布成分为主, 其次是北温带成分和泛热带成分, 同时有较多其他区系成分, 组成复杂多样, 但整体体现北温带区系特征。北京地处华北平原与燕山、太行山山脉交界处, 气候属于典型温带大陆性季风气候, 各垂直分布带的森林植被群落的建群种和优势种主要区系特征为北温带分布类型, 并具一定热带亲缘性(贺文同, 1992), 本研究对于大型真菌的区系地理成分分析结果与植被区系地理成分具有一致性, 说明两者在起源演化上密切相关。

本研究基于2020-2022年对于北京市大型真菌进行全面调查研究, 覆盖区域广泛, 获取标本充足, 采用形态学和分子系统学相结合的鉴定方法, 较为准确地反映了该地区物种多样性组成以及区系特征。本研究发现的新记录和特有种多数为木材腐朽真菌, 这主要是由于: 一方面前人对一些木腐菌的类群研究较少, 另一方面北京市的山区地形复杂多样, 植被类型丰富, 倒腐木较多, 为木腐菌的生长提供了很好的条件。但是, 对于物种数量较多的一些伞菌和子囊菌类群, 由于研究时间和现状的限制, 大量标本没有得到准确鉴定, 名称存疑, 鉴定结果未加入到本研究的分析中, 今后有待于对一些类群进行专门研究, 以补充和完善对北京市大型真菌物种多样性的认识。

附录 Supplementary Material

附录1 北京市大型真菌名录

Appendix 1 List of macrofungi in Beijing

附录2 北京市大型真菌在门、纲、目、科和属水平上的分类分布

Appendix 2 Taxonomic distribution of macrofungi in Beijing at phyla, class, order, family and genus levels

附录3 北京市大型真菌属的地理成分分析

Appendix 3 Geographic component of macrofungal genera in Beijing

致谢

感谢北京林业大学戴玉成教授在野外调查、标本鉴定以及论文修改方面提供的指导与帮助。

参考文献

Bau T, Bao HY, Li Y (2014)

A revised checklist of poisonous mushrooms in China

Mycosystema, 33, 517-548. (in Chinese with English abstract)

[本文引用: 1]

[图力古尔, 包海鹰, 李玉 (2014)

中国毒蘑菇名录

菌物学报, 33, 517-548.]

[本文引用: 1]

Bau T, Li Y (2000)

Study on fungal flora diversity in Daqinggou Nature Reserve

Chinese Biodiversity 8, 73-80. (in Chinese with English abstract)

[本文引用: 1]

[图力古尔, 李玉 (2000)

大青沟自然保护区大型真菌区系多样性的研究

生物多样性, 8, 73-80.]

[本文引用: 1]

Bau T, Wang JR, Cui BK, Liu Y (2013)

Diversity of macrofungi in Shandong Province, China

Mycosystema, 32, 643-670. (in Chinese with English abstract)

[本文引用: 1]

[图力古尔, 王建瑞, 崔宝凯, 刘宇 (2013)

山东省大型真菌物种多样性

菌物学报, 32, 643-670.]

[本文引用: 1]

Clemmensen KE, Finlay RD, Dahlberg A, Stenlid J, Wardle DA, Lindal BD (2015)

Carbon sequestration is related to mycorrhizal fungal community shifts during long-term succession in boreal forests

New Phytologist, 205, 1525-1536.

DOI:10.1111/nph.13208      PMID:25494880      [本文引用: 1]

Boreal forest soils store a major proportion of the global terrestrial carbon (C) and below-ground inputs contribute as much as above-ground plant litter to the total C stored in the soil. A better understanding of the dynamics and drivers of root-associated fungal communities is essential to predict long-term soil C storage and climate feedbacks in northern ecosystems. We used 454-pyrosequencing to identify fungal communities across fine-scaled soil profiles in a 5000 yr fire-driven boreal forest chronosequence, with the aim of pinpointing shifts in fungal community composition that may underlie variation in below-ground C sequestration. In early successional-stage forests, higher abundance of cord-forming ectomycorrhizal fungi (such as Cortinarius and Suillus species) was linked to rapid turnover of mycelial biomass and necromass, efficient nitrogen (N) mobilization and low C sequestration. In late successional-stage forests, cord formers declined, while ericoid mycorrhizal ascomycetes continued to dominate, potentially facilitating long-term humus build-up through production of melanized hyphae that resist decomposition. Our results suggest that cord-forming ectomycorrhizal fungi and ericoid mycorrhizal fungi play opposing roles in below-ground C storage. We postulate that, by affecting turnover and decomposition of fungal tissues, mycorrhizal fungal identity and growth form are critical determinants of C and N sequestration in boreal forests.© 2014 The Authors New Phytologist © 2014 New Phytologist Trust.

Dai YC (2010)

Species diversity of wood-decaying fungi in Northeast China

Mycosystema, 29, 801-818. (in Chinese with English abstract)

[戴玉成 (2010)

中国东北地区木材腐朽菌的多样性

菌物学报, 29, 801-818.]

Dai YC, Bau T, Cui BK, Qin GF (2012) Illustrations of Medicinal Fungi in China. Northeast Forestry University Press, Harbin. (in Chinese)

[本文引用: 1]

[戴玉成, 图力古尔, 崔宝凯, 秦国夫 (2012) 中国药用真菌图志. 东北林业大学出版社, 哈尔滨.]

[本文引用: 1]

Dai YC, Yang ZL (2008)

A revised checklist of medicinal fungi in China

Mycosystema, 27, 801-824. (in Chinese)

[本文引用: 1]

[戴玉成, 杨祝良 (2008)

中国药用真菌名录及部分名称的修订

菌物学报, 27, 801-824.]

[本文引用: 1]

Dai YC, Yang ZL (2018)

Notes on the nomenclature of five important edible fungi in China

Mycosystema, 37, 1572-1577. (in Chinese with English abstract)

[本文引用: 1]

[戴玉成, 杨祝良 (2018)

中国五种重要食用菌学名新注

菌物学报, 37, 1572-1577.]

[本文引用: 1]

Dai YC, Yang ZL, Cui BK, Wu G, Yuan HS, Zhou LW, He SH, Ge ZW, Wu F, Wei YL, Yuan Y, Si J (2021)

Diversity and systematics of the important macrofungi in Chinese forests

Mycosystema, 40, 770-805. (in Chinese with English abstract)

[本文引用: 1]

[戴玉成, 杨祝良, 崔宝凯, 吴刚, 袁海生, 周丽伟, 何双辉, 葛再伟, 吴芳, 魏玉莲, 员瑗, 司静 (2021)

中国森林大型真菌重要类群多样性和系统学研究

菌物学报, 40, 770-805.]

[本文引用: 1]

Dai YC, Yuan HS, He W, Decock C (2006)

Polypores from Beijing area, northern China

Mycosystema, 25, 368-373. (in Chinese with English abstract)

[本文引用: 1]

[戴玉成, 袁海生, 贺伟, Decock C (2006)

中国北京地区的多孔菌

菌物学报, 25, 368-373.]

[本文引用: 1]

Dai YC, Zhou LW, Yang ZL, Wen HA, Bau T, Li TH (2010)

A revised checklist of edible fungi in China

Mycosystema, 29, 1-21. (in Chinese with English abstract)

[本文引用: 1]

[戴玉成, 周丽伟, 杨祝良, 文华安, 图力古尔, 李泰辉 (2010)

中国食用菌名录

菌物学报, 29, 1-21.]

[本文引用: 1]

Guo T, Yang RH, Tang MX, Hou T, Sun XL, Wang L, Li Y, Bao DP, Zhou XW (2022)

Species diversity of macrofungi in the Mount Huangshan, east China

Mycosystema, 41, 1398-1415. (in Chinese with English abstract)

[本文引用: 1]

[郭婷, 杨瑞恒, 汤明霞, 侯娣, 孙鑫良, 王立, 李焱, 鲍大鹏, 周选围 (2022)

黄山大型真菌的物种多样性

菌物学报, 41, 1398-1415.]

[本文引用: 1]

Hao DW, Zhang YF, Yang GH, Wang SG, Song Y, Wang HX, Liu QH (2009)

A list of macrofungi in Xiaolongmen National Forest Park in Beijing

Edible Fungi of China, 28, 14-15. (in Chinese)

[本文引用: 1]

[郝德旺, 张艺扉, 杨光辉, 王守规, 宋渊, 王贺祥, 刘庆洪 (2009)

北京市小龙门国家森林公园大型真菌名录

中国食用菌, 28, 14-15.]

[本文引用: 1]

He WT (1992)

Florogeographical analysis of woody plants in Beijing

Journal of Beijing Forestry University, 14, 102-106. (in Chinese with English abstract)

[本文引用: 1]

[贺文同 (1992)

北京木本植物区系地理分析

北京林业大学学报, 14, 102-106.]

[本文引用: 1]

Ji XY, Huang H (2023)

Research on temporal variation of extreme precipitation in Beijing under climate changes

Journal of Catastrophology, 38, 177-185. (in Chinese with English abstract)

[本文引用: 1]

[汲欣愉, 黄弘 (2023)

气候变化背景下北京市极端降水时序特征研究

灾害学, 38, 177-185.]

[本文引用: 1]

Jia ZK, Ma LY, Xu CY, Wang JZ, Li RS (2006)

Analysis on the dynamic changes of forest resources and sustainable development in Beijing

Journal of Arid Land Resources and Environment, 20, 30-36. (in Chinese with English abstract)

[本文引用: 1]

[贾忠奎, 马履一, 徐程扬, 王金增, 李瑞生 (2006)

北京市森林资源动态及可持续经营对策

干旱区资源与环境, 20, 30-36.]

[本文引用: 1]

Jin YS, Zhou XD, Ma RG, Wang QC, Li H, Ren YM (2021)

Species diversity of macrofungi in Xiaoxishan Mountain of Beijing

Biotic Resources, 43, 482-488. (in Chinese with English abstract)

[本文引用: 1]

[金莹杉, 周晓东, 马润国, 王清春, 李晖, 任云卯 (2021)

北京小西山大型真菌多样性研究

生物资源, 43, 482-488.]

[本文引用: 1]

Li Y, Li TH, Yang ZL, Bau T, Dai YC (2015) Atlas of Chinese Macrofungal Resources. Zhongyuan Farmers Press, Zheng zhou. (in Chinese)

[本文引用: 1]

[李玉, 李泰辉, 杨祝良, 图力古尔, 戴玉成 (2015) 中国大型菌物资源图鉴. 中原农民出版社, 郑州.]

[本文引用: 1]

Liu JL, Wang XS, Niu Y, Zhong YH, Cui GF (2006)

Study on diversity of macrofungus in Labagoumen Nature Reserve in Beijing

Journal of Henan University of Science and Technology (Natural Science), 27(1), 54-56. (in Chinese with English abstract)

[本文引用: 1]

[刘晶磊, 王小爽, 牛洋, 钟亚华, 崔国发 (2006)

北京喇叭沟门自然保护区大型真菌多样性调研

河南科技大学学报(自然科学版), 27(1), 54-56.]

[本文引用: 1]

Lu WL, Wei TZ, Wang XL, Li Y, HM, Yang L, Wang WJ, Yao YJ (2015)

Species diversity of macrofungi in Beijing, China

Mycosystema, 34, 982-995. (in Chinese with English abstract)

[本文引用: 1]

[卢维来, 魏铁铮, 王晓亮, 李熠, 吕鸿梅, 杨柳, 王文婧, 姚一建 (2015)

北京地区大型真菌多样性分析

菌物学报, 34, 982-995.]

[本文引用: 1]

Man XW, Dai YC, Bian LS, Zhou M, Zhao H, Vlasák J (2023)

Two new species of Haploporus (Polyporales, Basidiomycota) from China and Ecuador based on morphology and phylogeny

Frontiers in Cellular and Infection Microbiology, 13, 1133839.

DOI:10.3389/fcimb.2023.1133839      URL     [本文引用: 1]

At present, 25 species are accepted in Haploporus and are distributed in Asia, Europe, North America, South America, Australia, and Africa. In this study, two new species, Haploporus ecuadorensis from Ecuador and H. monomitica from China, are described and illustrated based on morphological examination and phylogenetic analyses. H. ecuadorensis is characterized by annual, resupinate basidiomata with pinkish buff to honey yellow hymenophore when dry, round to angular pores of 2–4 per mm, a dimitic hyphal structure with generative hyphae bearing clamp connections, hyphae at dissepiment edge usually with one or two simple septa, the presence of dendrohyphidia and cystidioles, and oblong to ellipsoid basidiospores measuring 14.9–17.9 × 6.9–8.8 µm. Haploporus monomitica differs from other Haploporus species in that it has a monomitic hyphal system and strongly dextrinoid basidiospores. The differences between the new species and morphologically similar and phylogenetically related species are discussed. In addition, an updated key to 27 species of Haploporus is provided.

Mou GF, Bau T (2022)

Fungal composition and characteristics in three karst forests of Guangxi, Southern China

Mycosystema, 42, 1461-1484. (in Chinese with English abstract)

[本文引用: 1]

[牟光福, 图力古尔 (2022)

广西喀斯特三主要林区大型真菌区系组成及其特点

菌物学报, 42, 1461-1484.]

[本文引用: 1]

Sun BY, Wu YD, Yuan Y (2023)

Species diversity and floral characteristics of wood-inhabiting macrofungi growing on Quercus mongolica in Northeast China

Mycosystema, 42, 278-289. (in Chinese with English abstract)

[本文引用: 1]

[孙渤洋, 武英达, 员瑗 (2023)

东北地区蒙古栎木生大型真菌物种多样性和区系特征

菌物学报, 42, 278-289.]

[本文引用: 1]

Wang XY, Wei YL (2015)

Floral composition and distribution characteristics of wood-decaying fungi in Dongling Mountain, Beijing

Chinese Journal of Ecology, 34, 2167-2172. (in Chinese with English abstract)

[本文引用: 1]

[王小燕, 魏玉莲 (2015)

北京东灵山木腐菌主要种类的区系组成及分布特征

生态学杂志, 34, 2167-2172.]

[本文引用: 1]

Wang Y, Liu S, Ji X, Sun YF, Song CG, Liu DM, Cui BK (2021)

Species diversity and floristic composition of polypores in the southern parts of Hengduan Mountains, Southwest China

Mycosystema, 40, 2599-2619. (in Chinese with English abstract)

[本文引用: 1]

[王妍, 刘顺, 冀星, 孙一翡, 宋长阁, 刘冬梅, 崔宝凯 (2021)

横断山区南段多孔菌的多样性与区系成分分析

菌物学报, 40, 2599-2619.]

[本文引用: 1]

Wei YL, Dai YC (2004)

Ecological function of wood-inhabiting fungi in forest ecosystem

Chinese Journal of Applied Ecology, 15, 1935-1938. (in Chinese with English abstract)

[本文引用: 1]

Wood-inhabiting fungi are one of the most important parts of forest ecosystem,and play an important role in degrading the wood in forest ecosystem.The major species of these fungi include the groups of Aphyllophorales (Basidiomycota),Discomycetes (Ascomycota) and some imperfect fungi.They have the ability to degrade cellulose,hemicelluloses and lignin of wood.Three type of wood decaying have been found,i.e.,white rot,brown rot and soft rot.Many other organisms of forest ecosystem have symbiosis relationship with wood-decaying fungi.Wood-inhabiting fungi could offer the nutrition for many insects and birds,and spores of many wood-rotting species are spread by some insects.The high biodiversity of wood-decaying fungi is one of the important factors for the health of forest ecosystem.

[魏玉莲, 戴玉成 (2004)

木材腐朽菌在森林生态系统中的功能

应用生态学报, 15, 1935-1938.]

[本文引用: 1]

木材腐朽菌是森林生态系统的重要组成部分,在森林生态系统中起着极为重要的降解还原作用,主要包括担子菌门非褶菌目、子囊菌门盘菌纲和半知菌类的部分真菌,能全部或部分降解木材中的木质素、纤维素和半纤维素,其降解机制有3种:白色腐朽、褐色腐朽和软腐朽.木材腐朽菌与生态系统中其它生物关系密切,为很多昆虫、鸟类提供营养,有些昆虫也能使木腐菌得到传播.保护木材腐朽菌的生物多样性是保护森林生态系统、维护生态系统健康的重要因素.

Wu F, Zhou LW, Yang ZL, Bau T, Li TH, Dai YC (2019)

Resource diversity of Chinese macrofungi: Edible, medicinal and poisonous species

Fungal Diversity, 98, 1-76.

DOI:10.1007/s13225-019-00432-7      [本文引用: 1]

Wu YD, Man XW, Yuan Y, Dai YC (2022)

Species diversity, distribution and composition of polypores occurring in botanical gardens in China

Biodiversity Science, 30, 22213. (in Chinese with English abstract)

DOI:10.17520/biods.2022213      [本文引用: 1]

Aims: Polypores are an important group of wood-decaying fungi with important ecological functions. Previous studies on the diversity and floristic composition of polypores were mostly in natural forests. Studies on the species, distribution and floristic composition of polypores in botanical gardens were largely unknown. This study systematically investigated the species, distribution and floristic composition of polypores in 31 botanical gardens in China, aiming to clarify whether the botanical gardens can effectively protect polypores while protecting plants. Methods: In this study, investigations on polypores in 31 botanical gardens from 31 Chinese provinces were carried out during 2010-2021. On the basis of species identification, we analyzed the species diversity, composition and distribution of polypores in botanical gardens and forest ecosystems. Results: A total of 164 polypore species was found based on the specimens collected from these gardens, and identified to 79 genera, 23 families and 6 orders. Among the 31 gardens, the species-richest gardens are Xishuangbanna Tropical Botanical Garden of the Chinese Academy of Sciences (XTGB) in Yunnan, Danzhou Tropical Botanical Garden in Hainan and Guangxi Botanical Garden of Medicinal Plant in Guangxi, and 90, 46 and 37 polypores were found, respectively; While the most species-poorest gardens are Lanzhou Botanical Garden in Gansu Province, Xining Botanical Garden in Qinghai Province and Urumqi Botanical Garden in Xinjiang Autonomous Region, where only 4, 3 and 2 polypores were found, respectively. Among the 164 polypores, the three most common species Trametes versicolor, Irpex lacteus and Bjerkandera adusta were found in 24, 18 and 18 botanical gardens, respectively. Other 32 species, like Abundisporus mollissimus, were found in a single botanical garden only. Among the 164 polypores, the common species, occasional species and rare species are respectively 114, 40 and 10. The polypore and rare species in the investigated gardens account for 16% and 3.1% of the total Chinese polypores and the rare ones, respectively. Among the ten rare species, six were found in natural forests in XTBG, four were only found in plantations, and they account for 2.4% of total polypores found in the gardens and 1.3% of total rare Chinese polypores, respectively. Tropical, subtropical, temperate, widely distributed in North Hemisphere and boreal elements were discovered in the garden polypores, and corresponding species are 50, 45, 38, 20 and 11, and they account for 30.5%, 27.4%, 23.2%, 12.2% and 6.7% of the total garden polypores, respectively. Conclusion: Botanical gardens have less function for conservation of polypores, particularly for rare species. The majority polypores growing in botanical garden in our investigations are the common species. Nature reserves, national park or forest parks are the most important areas for conservation of polypores, especially the rare species.

[武英达, 满孝武, 员瑗, 戴玉成 (2022)

中国各省植物园中多孔菌种类、分布和组成

生物多样性, 30, 22213.]

DOI:10.17520/biods.2022213      [本文引用: 1]

多孔菌是木材腐朽菌中最关键的真菌类群, 是森林生态系统的重要组成部分。为了明确植物园对植物上真菌资源的保护状况, 在2010-2021年间, 作者对全国31个省(自治区、直辖市)的31个代表性植物园中木本植物上的多孔菌进行了系统调查、标本采集和种类鉴定, 记录多孔菌164种, 隶属于担子菌门伞菌纲6目23科79属。其中, 中国科学院西双版纳热带植物园、儋州热带植物园和广西药用植物园多孔菌种类最多, 分别有90种、46种和37种; 兰州植物园、西宁植物园和乌鲁木齐植物园物种数量最少, 分别有4种、3种和2种。在植物园中, 分布最多的物种是云芝栓孔菌(Trametes versicolor)、白囊耙齿菌(Irpex lacteus)和黑管孔菌(Bjerkandera adusta), 分别生长在24、18和18个植物园中, 而软多孢孔菌(Abundisporus mollissimus)等32种多孔菌只发现于中国科学院西双版纳热带植物园中。在164种多孔菌中, 常见种、偶见种和稀有种分别有114、40和10种。生长在植物园中的多孔菌仅占全国所有森林生态系统多孔菌总数的16%, 而植物园中发现的稀有种仅占全国稀有种总数的3.1%。在10种稀有多孔菌中, 有6种发现于中国科学院西双版纳热带植物园的天然林中, 其中4种稀有多孔菌发现于植物园内的人工林中, 占植物园所有多孔菌的2.4%, 占全国稀有多孔菌的1.3%。所调查植物园多孔菌包括了热带、亚热带、温带、北半球广布和寒温带成分, 分别包括50、45、38、20和11种, 占本研究多孔菌总数的30.5%、27.4%、23.2%、12.2%和6.7%。目前中国植物园保存了我国60%的植物种类, 包括85%的珍稀濒危植物, 但对生长在植物园中的多孔菌资源保护作用有限。因此, 对稀有多孔菌的保育仍需聚焦在森林生态系统的保护上。

Wu YD, Mao WL, Yuan Y (2021)

Comparison of polypore florae and diversity from temperate to subtropical forest zones in China

Biodiversity Science, 29, 1369-1376. (in Chinese with English abstract)

DOI:10.17520/biods.2021094      [本文引用: 1]

<p id="p00010"><strong>Background:</strong> Polypores are an important group of wood-decaying fungi and have important ecological functions and economic values. The unique geographical structure and complex vegetation types in China provide abundant substrates for the growth of polypores. Although the taxonomy of polypores has been well studied in China, few comparative studies on the diversity and flora of polypores among different climatic zones has been performed. This study is intended to compare the florae and populations of polypores in multiple forest zones with different climates and vegetations, and will provide the basis for the protection of species diversity and the development of application potential of polypores. <br><strong> Methods:</strong> In this study, we comparatively analyzed the polypore species, ecological habits and floral characteristics in the Altai Mountains, the Qinling Mountains and the Nanling Mountains which are respectively located in boreal, temperate and subtropical zones in China. <br><strong> Results:</strong> A total of 287 poroid wood-decaying fungal species belonging to 107 genera, 29 families, and 8 orders were obtained from the three mountain ranges. Of these species, 84, 132 and 160 were found in the Altai Mountains, the Qinling Mountains and the Nanling Mountains, respectively, and the community was dominated by families Polyporaceae and Hymenochaetaceae. In the generic and species levels, 25 genera and 14 species were common in the three mountain ranges. Floristic analysis found that polypores in the Altai Mountains and the Qinling Mountains were dominated by the cosmopolitan and the northern temperate elements, while polypores in the Nanling Mountains were dominated by the cosmopolitan and the pantropical taxa. In terms of host preference, polypores in the Altai Mountains preferentially grow on gymnosperms over angiosperms, while the opposite was true in the Qinling Mountains and Nanling Mountains. In the two rotting types caused by polypores, the species number of white rot polypores increased, but that of the brown rot decreased, gradually from boreal to subtropical zones. <br><strong> Conclusion:</strong> Climate and vegetation types are the major influencing factors on the flora composition of polypores, based on the analysis of species diversity, host preference and decaying type of polypores in the three mountains.</p>

[武英达, 茆卫琳, 员瑗 (2021)

我国寒温带至亚热带森林多孔菌区系和多样性比较

生物多样性, 29, 1369-1376.]

DOI:10.17520/biods.2021094      [本文引用: 1]

多孔菌是木材腐朽菌的重要类群, 具有重要的生态功能和经济价值。本文比较分析了我国寒温带至亚热带的阿尔泰山脉、秦岭山脉和南岭山脉的多孔菌物种、生态习性和区系特征。经调查, 在三个山脉共发现多孔菌8目29科107属287种, 其中阿尔泰山、秦岭和南岭分别为84种、132种、160种, 优势科均为多孔菌科和锈革孔菌科。三个山脉的共有属和共有种分别为25个和14个。区系地理分析发现, 阿尔泰山脉和秦岭山脉以世界广布成分和北温带成分为主, 南岭山脉以世界广布和泛热带成分为主。在寄主选择性方面, 阿尔泰山脉的多孔菌偏好生长在裸子植物上, 其比例高于被子植物, 而秦岭和南岭则相反。在腐朽类型方面, 从寒温带至亚热带白腐真菌物种数量呈现逐渐上升的趋势, 而褐腐真菌数量逐渐下降。通过比较分析3个不同气候带的多孔菌物种多样性、寄主偏好性和引起的腐朽类型, 发现气候和植被类型是影响多孔菌区系组成的主要因素。

Zhang XR, Zhou X, Huang ZH, Pu Z, Zhang XL, Wang QC, Xing SH (2017)

Ecological distribution of marcofungi in Badaling Forest Park, Beijing

Journal of Arid Land Resources and Environment, 31, 181-186. (in Chinese with English abstract)

[本文引用: 1]

[张孝然, 周鑫, 黄治昊, 蒲真, 张秀丽, 王清春, 邢韶华 (2017)

北京八达岭森林公园大型真菌的组成及生态分布

干旱区资源与环境, 31, 181-186.]

[本文引用: 1]

Zhao CL (2016) Taxonomy and Phylogeny of Tyromyces and Ceriporiopsis. PhD dissertation, Beijing Forestry University, Beijing. (in Chinese with English abstract)

[本文引用: 1]

[赵长林 (2016) 干酪菌属和拟蜡孔菌属真菌的分类与系统发育研究. 博士学位论文, 北京林业大学, 北京.]

[本文引用: 1]

Zhou M, Dai YC, Vlasák J, Liu HG, Yuan Y (2023)

Revision and updated systematics of Trichaptum s. l. (Hymenochaetales, Basidiomycota)

Mycosphere, 14, 815-917.

DOI:10.5943/mycosphere      URL     [本文引用: 1]

/