生物多样性, 2023, 31(1): 22423 doi: 10.17520/biods.2022423

中国野生脊椎动物鸣声监测与生物声学研究专题

现代生物声学的学科发展趋势及中国机遇

肖治术,,1,7,*, 崔建国2, 王代平3, 王志陶4, 罗金红5, 谢捷6

1.中国科学院动物研究所农业虫害鼠害综合治理研究国家重点实验室, 北京 100101

2.中国科学院成都生物研究所, 成都 610041

3.中国科学院动物研究所动物生态与保护生物学(院)重点实验室, 北京 100101

4.中国科学院水生生物研究所, 武汉 430072

5.华中师范大学生命科学学院, 武汉 430079

6.南京师范大学, 南京 210016

7.中国科学院大学生命科学学院, 北京 100049

Interdisciplinary development trends of contemporary bioacoustics and the opportunities for China

Zhishu Xiao,,1,7,*, Jianguo Cui2, Daiping Wang3, Zhitao Wang4, Jinhong Luo5, Jie Xie6

1. State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101

2. Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041

3. Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101

4. Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072

5. School of Life Sciences, Central China Normal University, Wuhan 430079

6. Nanjing Normal University, Nanjing 210016

7. School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049

通讯作者: *E-mail:xiaozs@ioz.ac.cn

编委: 丁平

责任编辑: 李会丽

收稿日期: 2022-07-23   接受日期: 2023-01-16  

基金资助: 国家重点研发计划(2022YFF1301401)
中国科学院生物多样性监测与研究网络运行经费

Corresponding authors: *E-mail:xiaozs@ioz.ac.cn

Received: 2022-07-23   Accepted: 2023-01-16  

摘要

随着数字录音技术、电子学和微电子学、人工智能、信息科学等跨学科领域的技术革新, 现代生物声学逐渐与生物学、生态学等学科及关联学科之间形成了广泛的交叉前沿领域。现阶段, 现代生物声学主要以生物学、生态学等基础学科的理论方法为指导, 着重于揭示环境中各类声音在生物之间以及生物与人类、环境之间的相互作用及相关科学规律, 为人类认识、保护和利用生物声学资源提供理论基础和解决方案。本文重点阐述了现代生物声学的学科内涵和学科特征, 介绍了动物生物声学、生态声学、水下生物声学、环境生物声学、保护生物声学、计算生物声学以及现代生物声学研究的技术框架等前沿热点和发展趋势, 评估了中国生物声学研究的学科现状与发展机遇, 并对未来学科建设进行了展望。

关键词: 动物生物声学; 生态声学; 水下生物声学; 环境生物声学; 保护生物声学; 计算生物声学; 人类噪声; 被动声学监测; 交叉科学

Abstract

Background: Contemporary bioacoustics is an interdisciplinary science by combining biology and ecology with acoustics. Through the mutual penetration and integration of technological innovation and many disciplinary fields from natural and social science, it has gradually formed the characteristics of transdisciplinary fields, such as strong compatibility, high technological dependence, and wide application scenarios. Though bioacoustics has expanded into many interdisciplinary fields and application scenarios, a comprehensive understanding of bioacoustics as a discipline in scientific communities at home and abroad are still lacking. Therefore, it is necessary to systematically evaluate the development status, main research issues and frontier topics of contemporary bioacoustics.

Scope of bioacoustics: Contemporary bioacoustics is a new interdisciplinary science that studies the relationship between sounds of organisms and their ecological environment. With the technological innovation and application of interdisciplinary fields such as digital recording, electronics and microelectronics, artificial intelligence and information science, the research depth and breadth of contemporary bioacoustics are continually expanding, and it has gradually formed a diversified frontier issues with biology, ecology and other disciplines. Currently, bioacoustics is mainly guided by theories and methods from basic disciplines of biology and ecology. The research focus is to reveal the interaction and scientific theories of various sounds among organisms, and among organisms, human beings and the environment in the natural and man-made environment, so as to provide theoretical basis and solutions for human beings to recognize, protect and utilize bioacoustic resources.

Aims: By reviewing relevant literature at home and abroad, combined with our practice and thinking, this paper focuses on the interdisciplinary properties and key topics of contemporary bioacoustics, and introduces frontier topics and development trends in animal bioacoustics, ecological acoustics, underwater bioacoustics, environmental bioacoustics, conservation bioacoustics, computational bioacoustics, and bioacoustic monitoring and analysis. The status and development opportunities of bioacoustics research in China are also evaluated and analyzed, and the future discipline construction is prospected.

Conclusions: Bioacoustic research is conducive to the fully understanding and scientific use of bioacoustic resources and related scientific theories. Its achievements can be used as scientific guidance and decision-making basis for life health and biosafety, the conservation and utilization of bioacoustic resources and the protection of ecological environment. In sum, interdisciplinary development of bioacoustics can provide high-quality services for the progress of ecological civilization and the construction of a beautiful and healthy China.

Keywords: animal bioacoustics; ecoacoustics; underwater bioacoustics; environmental bioacoustics; conservation bioacoustics; computational bioacoustics; anthropogenic noise; passive acoustic monitoring; interdisciplinary science

PDF (5521KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

肖治术, 崔建国, 王代平, 王志陶, 罗金红, 谢捷 (2023) 现代生物声学的学科发展趋势及中国机遇. 生物多样性, 31, 22423. doi:10.17520/biods.2022423.

Zhishu Xiao, Jianguo Cui, Daiping Wang, Zhitao Wang, Jinhong Luo, Jie Xie (2023) Interdisciplinary development trends of contemporary bioacoustics and the opportunities for China. Biodiversity Science, 31, 22423. doi:10.17520/biods.2022423.

现代生物声学(contemporary bioacoustics)是生物学、生态学和声学相结合的一门新型交叉科学。生物声学研究及学科发展高度依赖于声音相关的科学技术进步。得益于近代和当代声学、电子学与通信技术的发展, 生物声学研究的相关技术方法有了广泛的进步, 对推动生物学、生态学及相关分支学科的发展发挥了重要作用。20世纪中叶, 示波器的发明极大地促进了声音录放和分析技术的发展, 即通过可视化声音来改进动物发声研究, 使生物声学进入了崭新的发展阶段(Obrist et al, 2010)。自20世纪80年代以来, 信号处理、频谱分析和人工智能算法等技术方法的发展和应用, 极大地拓展了生物声学的研究对象和应用场景(Stowell, 2022)。目前, 现代生物声学研究涉及生物大分子、细胞、组织器官及个体、种群、群落、生态系统和景观等生命组织层次, 这搭建起了生物声学与生命科学、生命健康和生态环境科学之间更广泛的紧密联系和应用纽带。

1956年4月, 第一届国际生物声学学术研讨会在美国宾夕法尼亚州召开。1963年, 法国科学家Rene G. Busnel编著的Acoustic Behavior of Animals成为生物声学发展的一个里程碑。1969年, 国际生物声学委员会(the International Bioacoustics Society, IBAC)在丹麦正式成立, 标志着生物声学作为一个学科的正式诞生(https://www.ibac.info/history)。1988年创刊的Bioacoustics杂志为生物声学作为独立学科发展提供了关键科学成果交流平台(https://www.tandfonline.com/journals/tbio20)。近20年来, 随着生物声学在生态学、环境科学研究和应用中的重要性不断突显, 以声景生态学(soundscape ecology)为代表的生态声学等新兴交叉学科也逐渐形成并得到了快速发展(Pijanowski et al, 2011a, b; Farina, 2014; Sueur & Farina, 2015; Farina & Gage, 2017)。随着生物声学作为独立学科的发展, 相关研究成果已被广泛应用于人类的生活和生产实践, 为生命健康与生物安全、生物多样性保护利用和生态环境建设提供了理论指导和技术支撑。

在过去数十年里, 随着数字录音技术和声音分析方法的革新, 生物声学的研究内容和研究范式正在发生显著变化(Roe et al, 2021; Parsons et al, 2022; Tuia et al, 2022), 生物声学各分支领域得到了蓬勃发展, 其研究论文数量剧增(Sugai et al, 2019; Xie et al, 2020)。当前数字录音技术和人工智能分析算法正在催生一系列与生物声学相关的科学技术创新, 包括采用标准化文件格式作为声学数据存储和交流的媒介, 音频压缩技术的改进, 低成本、便携式(自动)录音设备的持续增长, 以及全球、国家及区域声学监测网络及音频数据库等基础设施建设(Berger-Tal & Lahoz-Monfort, 2018; Lahoz-Monfort & Magrath, 2021; Roe et al, 2021; Tuia et al, 2022)。与此同时, 基于被动声学监测(passive acoustic monitoring)所获得的大量生物声学数据, 为生物多样性和生态系统监测、评估和保护提供了宝贵的新兴资源(Sugai et al, 2019; Odom et al, 2021)。

声音信号的产生、传播、接收和响应不仅在动物和人类中广泛存在, 而且环境中各类声音还可表征生态环境质量和生态系统健康状态, 是生物声学形成交叉学科的重要基础。传统生物声学着重于研究非人类动物的声音。声音的最大优点是几乎可以在任何环境中传播(从陆地到海洋, 且不受自然光的限制), 通常具有较远的传播距离、并可携带较为丰富的生物和环境信息。早期人们对动物声音的认识主要源于生活和生产实践, 但随着人们对生物声学重要性的认知和相关声学技术方法的发展, 生物声学研究快速拓展到陆地、淡水和海洋等生态系统各类动物的声音。目前, 现代生物声学研究所涉及的主要发声动物包括无脊椎动物(昆虫)、鱼类、两栖动物、爬行动物、鸟类和哺乳动物等重点类群。近年来, 有关研究发现一些植物也存在声音感知或对声音产生一定的生理响应, 并且有关植物与发声动物(特别是回收定位蝙蝠)之间存在密切的声学联系(Schöner et al, 2016)。尽管生物声学研究有着上百年的历史, 但不同学科领域多以生物声学作为研究工具来拓展有关研究方向, 且各自的发展极不均衡, 核心研究内容也缺乏整合分析。进入21世纪以来, 以人工智能和网络信息等现代声学技术方法的创新应用, 推动了以生态声学、计算生物声学等为代表的前沿交叉领域的创立和快速发展, 从而进一步拓展和丰富了现代生物声学的研究内涵和应用领域, 其研究范式也在不断创新和完善中。因此, 迫切需要对现代生物声学的概念内涵和学科领域进行梳理和完善, 以便更好地认识现代生物声学的学科特征及其应用前景。

通过综合梳理国内外相关文献资料, 结合作者的实践和思考, 本文结合生物学、生态学等学科背景探讨现代生物声学的学科发展趋势及前沿领域。本文将重点阐述现代生物声学的学科内涵、学科特征及主要学科领域, 详细介绍动物生物声学、生态声学、水下生物声学、环境生物声学、保护生物声学、计算生物声学以及生物声学研究的技术框架等前沿热点及其发展趋势, 评估分析中国生物声学研究的学科现状与发展机遇, 并对未来学科建设进行展望。

1 现代生物声学的概念和学科特征

生物和环境的各种声音代表了生命系统及其与生态环境系统之间复杂联系的一个独特维度和特有功能属性。因此, 区别于以往以动物生物声学为基础的传统生物声学, 现代生物声学涵盖了更广泛的自然科学和社会科学领域, 可被定义为一门研究声音信号在生命系统及其与生态环境系统之间相互关系的新兴交叉科学。作为交叉学科, 现代生物声学的研究重点在于揭示环境中各类声音在生物之间以及生物与人类、环境之间的相互作用及相关科学规律, 为人类认识、保护和利用生物声学资源提供理论基础和解决方案。

随着生物声学相关技术和方法的革新和应用, 本文提出通过整合生物(细胞、组织器官和个体)和生态(个体、种群、群落、生态系统和景观)等生命组织层次来构建现代生物声学跨学科领域的整体框架(图1)。在该框架中, 以生物学(动物学、行为学、生理学、神经生物学、进化生物学等)和生态学(生物多样性、生物地理学、景观生态学、保护生物学、海洋和水生生物学、人类噪声等)等学科理论和方法为基础, 现代生物声学逐渐形成以动物生物声学(animal bioacoustics)、生态声学(ecoacoustics)、水下生物声学(underwater bioacoustics)、保护生物声学(conservation bioacoustics)、环境生物声学(environmental bioacoustics)和计算生物声学(computational bioacoustics)等为主体的分支学科和前沿领域(图1)。作为交叉学科, 现代生物声学的上述分支领域均不同程度地涉及各类生命组织层次的研究和共同的应用场景, 体现了其学科构成的多样性、技术的兼容性和应用场景的广泛性(图1)。

图1

图1   现代生物声学的学科整体框架图

Fig. 1   Transdisciplinary framework for key topics in contemporary bioacoustics


虽然现代生物声学的每个前沿领域均有各自的核心研究内容和应用场景, 但又相互渗透、融合且互补优势, 并在应用场景方面也有着共同的任务, 相关研究成果以服务于生态环境危机、资源可持续利用、生命健康和生物安全等核心目标(图1)。动物生物声学和生态声学是现代生物声学的基础性核心分支领域。其中, 动物生物声学是生物声学学科发展的基石, 也是其他分支领域和应用领域拓展的重要基础。动物生物声学重点研究非人类动物的声学通讯、发声机制、听觉解剖学和功能、声呐、声学跟踪以及环境噪声对动物的影响(美国声学学会动物生物声学技术委员会, https://tcabasa.org/)。相比动物生物声学, 生态声学则在近10年里才逐渐发展为现代生物声学领域里特别活跃的分支学科(Pijanowski et al, 2011a, b; Sueur & Farina, 2015; Farina & Gage, 2017)。生态声学研究不仅关注动物声音, 也特别强调自然和人为环境中各类声音对动物、人类和生态系统的影响。因此, 以声景生态学为核心内容所建立的生态声学, 拓展了动物生物声学在种群、群落、生态系统和景观等更宏观尺度的理论探索和应用, 对生物多样性、生物地理学和景观生态学等生态学分支学科和生物声学其他分支领域的发展均有非常重要的推动作用。由于海洋军事、海洋测绘、航运和海洋渔业等行业领域的广泛应用, 水下生物声学得到了良好发展, 其中以鲸豚类为代表的海洋生物声学和仿生学研究尤为突出(张宇等, 2021)。环境生物声学是对环境声学(environmental acoustics)的拓展, 有关环境噪声对人类、野生动物及其栖息地的影响的研究在过去20年里也取得了一些广泛进展(Kight & Swaddle, 2011; Francis & Barber, 2013; Luo et al, 2015; 程建春等, 2021)。保护生物声学和计算生物声学则是近期被提出的新兴前沿领域(Laiolo, 2010; Ritts & Bakker, 2021; Stowell, 2022), 仍处于发展初期, 但由于当前生物声学数据应用和资源保护等重大需求, 这些领域有望在未来10年中得到快速发展。

2 现代生物声学的学科领域

基于现代生物声学的学科整体框架, 本文从动物生物声学、生态声学、水下生物声学、环境生物声学、保护生物声学和计算生物声学等6个学科领域来介绍现代生物声学的主要研究内容及发展趋势。

2.1 动物生物声学

动物生物声学研究以动物之间的声音信号交流为主线, 主要通过声学技术来记录、存储和分析动物声学数据, 从而揭示以声学信号为核心的相关生命科学规律。因此, 动物生物声学的核心目标是研究各类发声动物及有听觉动物的声信号产生与听觉感知的相关机制, 研究声信号器官和行为的个体发育、生理和演化规律, 监测和评估发声群落中的发声行为、声学特征与环境变化之间的关系, 为认识、利用和保护发声动物及其栖息环境提供理论基础和具体解决方案。

早期动物生物声学研究主要涉及对动物声音的描述, 并常被用来识别物种。直到19世纪最后10年, 留声机的发明和商业化应用才开始被用来录制和复制野生动物的声音, 为动物生物声学研究及发展提供了机会。随后的生物声学研究逐渐融合了生物学、生态学和声学等领域的技术方法和理论知识, 并受到电生理学技术、电子学和微电子学技术、信号处理和信息技术的发展以及录放、存储、复制、分析等领域的其他技术创新的影响(Popper & Dooling, 2002)。从学科发展历史来看, 早期的动物生物声学研究是作为动物学和行为学的分支学科开始的, 属于博物学和自然史方面的研究范畴(Busnel, 1963)。目前, 动物生物声学的研究范围十分广泛, 包括陆地和水体环境中各类动物(包括人类)的声音监测、识别、分类和信号功能分析, 并以动物声音通讯、听觉感知和生理等为重点形成了较为完整的理论方法体系(Gerhardt & Huber, 2002; Bradbury & Vehrenkamp, 2011)。此外, 所考虑的声信号的频率范围也非常广泛, 包括次声(< 20 Hz, 如大象)、可听声(20 Hz‒20 kHz)和超声(> 20 kHz, 如鲸豚类、蝙蝠、一些昆虫)等声波信号(Browning et al, 2017)。由于发声动物类群的多样性及其发声和听觉感知的复杂性, 动物生物声学常按动物类群被划分为不同分支领域, 如节肢动物(昆虫)声学、鱼类声学、鸟类声学、啮齿动物声学和蝙蝠声学等。目前, 每个动物类群的声学研究均有各自的鲜明特点, 在国际上也有相应的专题研讨会或联合主题交流, 并取得了很多有趣的科学发现和相关应用。

声信号是许多动物形态结构和功能相适应的结果。发声物种或个体通常产生物种或个体特异的声音, 因此通过记录和分析动物的声音可以揭示物种的分布及其相关生态和行为规律(Popper & Dooling, 2002; Obrist et al, 2010; Blumstein et al, 2011; Teixeira et al, 2019)。此外, 比较生物声学的方法还促进了声音信号处理算法的开发, 并用于对各类发声物种和群落的识别和分类, 以及对发声和听觉感知机制的演变规律的揭示(Odom et al, 2021)。过去的20多年里, 动物生物声学研究在各类动物声信号的产生与传播、听觉系统对声信号的处理以及鸣声信号的进化等主题领域取得了显著进展(Mellinger, 2011; Odom et al, 2021)。例如, 基于声学特征的调查分析为许多动物物种或类群的分类提供了关键的识别证据(Lei et al, 2005; Köhler et al, 2017), 以及在种内或社群个体的识别(Ryan & Rand, 2003)、隐存种的发现(Li et al, 2019)以及地理种群的声学特征变异(Ryan, 1988; Deng et al, 2021)、方言与动物文化(Henry et al, 2015)和社群通讯交流(Cui et al, 2012)等方面的科学发现, 为客观认识发声动物的行为、分布和演化规律提供了理论和方法。

由于传统录音和分析工具的限制, 加上人工成本和专业技术要求高, 以往动物生物声学研究多限于单一物种(类群)的调查研究, 且时间延续性和空间范围也十分有限。当前, 被动声学监测设备和人工智能算法等新技术方法的发展在更大的时空尺度上为发声动物的监测、分类和评估研究提供助力。此外, 动物生物声学研究也利用声学仪器和相关声学技术措施来防控有害动物, 促进畜牧业生产(如早期疾病诊断), 减少人类与野生动物之间的冲突等。目前, 相关研究成果可广泛应用于濒危物种保护、有害动物预警与防控、野生动物及家养动物的疾病诊断、声学仿生产品开发、人类与动物声学文化相关产业开发、声环境质量监测与评估等场景。例如, 回放特定类型的超声信号可以有效地降低蝙蝠与风力发电机的接触和碰撞概率(Arnett et al, 2013)。

动物生物声学的主要研究方向有: (1)研发各类发声动物调查、监测和研究的工具和方法, 开展动物声音收集、保藏与识别。采用主动和被动声学监测、麦克风阵列、声音自动识别等新技术为各动物类群建立声学信息参考库, 并从更大时空尺度上对更多动物类群及重要物种开展声学研究, 发展用于物种、个体和行为识别和评估的声学方法以及动物生物声学研究相关的仪器、算法和工具。(2)研究发声在动物生命周期中的作用及相关机制。研究发声动物和有听觉动物的发声机制与声信号特征, 声信号接收、处理和识别, 以及在动物生命周期中与声音相关的形态、行为、生理、生态和进化机制, 阐明与声音有关的生命活动规律及其影响因素。(3)动物声学的应用。揭示动物声学相关的认知、学习机制, 以动物声学为理论方法, 研究动物与人类之间在发声和听觉感知障碍相关疾病的发生规律和治疗恢复技术, 深入开展生物声学相关的动物声学模型、语言文化模型、声音相关疾病治疗和仿生声学等应用基础研究。

2.2 生态声学

生态声学以生物声、自然声和人为声等所有声音为研究对象, 着重于研究生态过程与声景(景观中声音的时空变化)之间的关系, 反映重要的生态系统过程、声环境质量和人类活动的影响, 并揭示声景的时空变化和相关生态机制。因此, 生态声学研究的核心目标是利用环境中各类声音来评估分析个体、种群、群落、生态系统和景观等宏观生命系统各层次在广泛时空尺度上的动态及驱动机制, 以解决自然和人为环境系统中面临的各类生态问题。

生态声学研究不仅关注生物声音的时空格局, 也注重自然和人为环境各类声音的时空分布及其对野生动物和人类的影响。声学时空是同种和异种动物相互利用的稀缺资源。目前, 声生态位假说(acoustic niche hypothesis)和声适应假说(acoustic adaptation hypothesis)已成为诠释发声群落构建的重要生态理论。声生态位假说从声学时空生态位的有效利用出发, 认为声学群落中不同物种可通过发声时间或声音频率的分化来减少种间声信号的重叠和干扰, 从而降低彼此间的竞争(Krause, 1993)。声适应假说则从提高声音信号的环境传输效率出发, 认为环境倾向于筛选和保留传播距离远且保真度高的声音信号, 不同物种或种群可根据环境条件而做出适应性调整(Morton, 1975)。尽管强调声景作为景观或生态系统整体描述或评估的一个特有维度(Schafer, 1977), 可以从生态系统和景观尺度来揭示各类声音的多样性及时空分布特征, 但以往动物声学研究多利用动物声音来调查个体(物种)、种群和群落。过去10年里, 在景观生态学基础上形成的声景生态学(Pijanowski et al, 2011b; Farina, 2014), 现已明确为生态声学的分支领域(Farina, 2014; Sueur & Farina, 2015)。

此外, 生态声学作为生态学的一个分支学科或交叉学科, 被视为是对传统生态学概念的补充(Lomolino et al, 2015; Sueur & Farina, 2015), 而且也注重以人为中心的研究, 探究各类生态环境系统中人类与各类声音之间的关系和相互作用, 如听觉感知、声学设计和噪声影响等(Barber et al, 2010; Pijanowski et al, 2011b; Sueur & Farina, 2015)。同时, 由于现代声学数据具有丰富的时空分辨率、保真性和稳定性, 因此生态声学方法可作为对现有生态学技术方法的一种重要补充。目前, 生态声学指标和声学生物多样性指数均以声音信号组成、信号多样性和信号强度为基本单元形成了不同尺度、不同层次和不同维度的各项指标(Sueur et al, 2014; Towsey et al, 2014a; Buxton et al, 2018)。例如, 基于声音频率分布和结构特性所建立的各类声学指数广泛用于表征声景和声学群落, 或用作表征生物多样性的替代指标(Sueur et al, 2014; Gasc et al, 2015; Buxton et al, 2018; Eldridge et al, 2018)。

被动声学监测是生态声学研究的关键技术, 因为它的使用避免了声学监测和调查过程中的人为干扰, 并有助于积累大量声学数据, 可进一步通过人工智能和可视化分析技术来估计物种丰富度及种群多度、识别个体、探测繁殖事件等重要生态指标。之前被动声学方法多被应用于研究鲸目动物和回声定位蝙蝠等视觉隐秘动物类群(Walters et al, 2012; Nowacek et al, 2016)。目前被动声学监测已被用于揭示物种多度、物候和分布格局的变化(Laiolo, 2010; Sueur & Farina, 2015), 以及在较大的地理空间和时间尺度上监测物种和生态系统(Buxton et al, 2017; Roe et al, 2021; Parsons et al, 2022)。而且, 生态声学研究还将在未来帮助研究人员从存档的历史录音记录中提取越来越多的可靠信息, 为生态系统质量评估提供一系列动态指标(如历史参考基线数据), 为生态系统变化提供早期预警, 或用于衡量人为环境或生态系统修复措施是否有效的重要依据(Pijanowski et al, 2011b; Sugai & Llusia, 2019; Znidersic & Watson, 2022)。除此之外, 生态声学研究还广泛应用于城市生态空间规划、景观生态恢复、自然保护地(国家公园)建设、海洋动物保护、噪声污染治理等应用场景(Buxton et al, 2017; Farina & Gage, 2017; Roe et al, 2021; Parsons et al, 2022)。

生态声学的主要研究方向有: (1)生态声学研究的工具和共享应用平台研发。研发陆地和水生环境各类生态系统声音相关调查和研究所需的最佳技术和方法, 以声学传感器网络建设为重点来构建国家和区域尺度的生态声学观测网络和生态声学大数据信息共享平台。(2)生态声学的时空格局及相关驱动机制。研究各种环境及生态系统所发出声音的时空特征及来自非生物因素(如气候变化)和生物因素(如人类活动干扰)的影响, 从个体、种群、群落及生态系统和景观尺度掌握和预测各类环境声音的时空动态及分布特征, 揭示生态声学的时空格局及相关驱动机制。(3)生态声学的应用。评估气候变化、噪声污染和人类活动对各类环境及生态系统声景质量、人类和野生动物的影响及所产生的生态和进化后果, 缓解城市生态环境、气候变化、外来物种入侵、人类活动等对生态系统和野生动物的影响。

2.3 水下生物声学

为了适应水生环境, 水生动物进化出了多样的声音感受器官来感知水体中的粒子运动和声压(如, 无脊椎动物中能够感受水下震动的平衡器、低等动物中感受应力的听毛细胞、爬行动物和哺乳动物中的鼓膜中耳等) (Duarte et al, 2021)。水生动物的声信号涵盖了从次声(< 20 Hz)到超声(> 20 kHz)的范围(Au & Hastings, 2008)。不同的水生动物类群所能接收到的声音信号的频率范围也不一样, 例如鱼类和爬行动物能感知的信号的频率范围通常是< 5 kHz, 而齿鲸类却能感知到频率超过200 kHz的信号(Au & Hastings, 2008)。在海洋和淡水生态系统中, 具有听觉能力的主要水生动物类群包括: 刺细胞动物(如水母) (Solé et al, 2016)、软体动物(如乌贼和贝类) (André et al, 2011)、节肢动物(如虾和蟹) (Au & Hastings 2008)、鱼类(如软骨鱼类中的鲨鱼以及各种硬骨鱼类) (Ladich, 2014)、爬行动物(如海蛇和海龟) (Au & Hastings, 2008)、哺乳动物(如鲸目的齿鲸和须鲸、食肉目的海狮和海豹) (Duarte et al, 2021)。具有发声能力的主要水生动物类群包括: 贝类、虾类、蟹类、鱼类、齿鲸、须鲸、海狮和海豹等(Duarte et al, 2021)。

水下生物声学研究的核心目标是以认识、保护和开发利用海洋和淡水系统中的水生生物为核心任务, 利用水下生物声学工具来研究水生动物的听觉能力、发声及水体噪声等与其生命活动相关的内容, 为更好地利用和保护海洋和淡水系统中的水生生物资源提供理论基础和解决方案。自20世纪40年代以来, 随着水听器等设备和技术方法的发明和应用, 水下生物声学研究在理论方法和应用领域均取得了显著进展, 并在相关交叉学科领域也日益受到重视。目前, 水下生物声学研究在海洋/淡水系统中的濒危物种保护、水生生物资源开发利用与人工水产养殖、基于仿生声呐技术和声学装备的海底油气田勘探及海洋军事国防等均有广泛的应用(张宇等, 2021)。

声音在水体传播过程中的衰减程度相对较小, 在水体中比在空气中的传播速度快, 可达1,500 m/s。与其他类型的感觉信号相比, 声音在水体中能够传播得更快和更远。水生动物可利用声音(无论是通过主动的回声定位或被动倾听方式)来完成各项生命功能(如通信、导航定向、躲避障碍、躲避捕食者和猎物探测等。例如, 南极磷虾Euphausia superba在捕食过程中会发出类似燃烧竹子的爆裂声来震晕猎物(Au & Hastings, 2008), 蟾鱼Opsanus beta的雄性守卫着底栖巢穴并发出“嗡嗡声”来吸引雌性, 大西洋鳕鱼Gadus morhua和石首科鱼类等会利用声音聚集在一起并协调产卵活动(Ladich, 2014)。鳍脚类动物, 如髯海豹Erignathus barbatus则在空气中和水下都会发出与领域主权和交配行为相关的声音, 尤其是在其繁殖季节。抹香鲸Physeter macrocephalus和许多其他鲸豚类, 也拥有复杂的生物声呐系统, 可以发出回声定位信号来探测和追踪水下猎物。

从第二次世界大战到20世纪70年代中期, 美国海军在水体中布放了大量的水声接收装置来定位和追踪舰艇和水下潜艇。冷战结束后, 这些数据被生物学家用来研究不同海洋生物声音的特性, 以及不同声音可能承载的信息以及功能用途。例如, 有研究发现长须鲸Balaenoptera physalus发出的声波接触到海底沉积物和地壳后, 反射和折射出的信号会被记录在地震仪上, 通过分析这些记录到动物源性的信号就能获得地壳结构的图像(Kuna & Nábělek, 2021)。鲸豚类的回声定位系统能够在水下复杂环境实现高准确率的探测, 具有众多当前人工声呐无法比拟的优势和巨大的仿生价值。仿生声呐技术的发展和仿生声学装置的研制, 将极大地促进和提升我们在海底油气田勘探、水下考古和海难救助以及军事中对水面舰艇、潜艇的探测以及反蛙人等水下作战任务中的成效(白春礼, 2019), 例如基于仿真海豚宽带声呐信号的水下探测技术(Paihas et al, 2013)和仿生隐蔽主动声呐技术已经得到了极大的提升(Jiang et al, 2018)。此外, 水体中不同类型的水声信号通常交织在一起, 这就对目标水声信号的识别和处理提出了较高的要求。随着水声信号处理技术的发展, 例如目标动物信号自动识别和追踪技术(将海洋背景噪声、船舰信号和水生动物信号等目标进行自动识别和追踪)及人工智能技术和算法(如机器学习和深度学习等)在水声信号处理方面的应用将会极大地推动水下动物声学领域的发展(Beyan & Browman, 2020)。通过搭建水下浮标实时在线监测系统(李风华等, 2019), 可以实现声学监测从传统的录音回放向现场直播的形式转变, 并进一步提高对濒危动物监测和动态管理的效能和人为干预的时效性(Oestreich et al, 2020)。例如在抹香鲸的保护中, 通过实时在线监测浮标实现了对其声呐信号的监测和定位跟踪, 并对抹香鲸邻近水域的船舶发出实时预警来降低航运对抹香鲸的撞击和误伤风险(Sanguineti et al, 2021)。

人类活动向水体引入大量噪音污染, 对水生动物基于声信号的通讯交流和导航定位、繁殖、躲避天敌的捕食、生长发育和聚群行为等产生了严重干扰(Slabbekoorn, 2019)。目前, 人们在认识和精准评价水体噪声污染对水生动物影响的能力(Montgo- mery & Radford, 2017)在不断提升。例如, 近期研究表明头足纲动物(如4种乌贼Loligo vulgaris, Sepia officinalis, Octopus vulgarisIllex coindetii) (André et al, 2011)和刺细胞动物(如地中海水域的两种水母Cotylorhiza tuberculataRhizostoma pulmo)能够感受水声信号(Solé et al, 2016), 水体噪声暴露能对其造成声学创伤, 在人工增养殖过程中, 工业循环水养殖系统中的水体噪声对幼年大口鲈鱼(Micropterus salmoides)的生长、生理和行为的影响(Hang et al, 2021)也开始得到关注。相较对海洋水体噪声污染的日益高涨的关注, 目前有关淡水水体(包括河流和湖泊)中的水体噪声污染及其对淡水水生动物的影响还没有引起足够的重视(Wang et al, 2021a, b)。

水下生物声学的主要研究方向有: (1)水生动物的听觉和发声机制及驱动因素。研究水生动物不同类群的听觉和发声机制, 如声音从水中传导到动物头部, 继而进入听觉器官的声音传导物理过程和相关机制; 听觉器官内的神经冲动传送到大脑中的相关机理; 水生动物不同类群各类声信号的功能及实现机理; 水生动物各类发声器官的结构和发声机理以及相应的驱动因素等。(2)水体噪声及其对水生动物的影响和有关噪声缓解对策。通过研究不同噪声污染源的声学特性及其对水生动物不同类群的影响机理和影响程度(包括个体水平和群体水平), 研发对水体噪声的缓解对策和相关措施。(3)水声信号处理技术和水下技术装备研发。基于数字信号处理、阵列信号处理、声呐原理和声传播原理等基本理论, 发展水声信号处理技术。通过研发水下技术装备, 实现对目标动物的发声等水下活动进行长时间跟踪记录、连续监测和预警。

2.4 环境生物声学

人为噪声是一种普遍存在且在不断扩大的全球性污染物。人为噪声主要来自交通、工业、建筑施工和社会生活(Barber et al, 2010; Slabbekoorn et al, 2018)。自18世纪工业革命以来, 人为噪声几乎已经触及到了地球的每一个角落(Buxton et al, 2017)。人为噪声的来源与人类活动密切相关, 其时空分布格局具有复杂性、广泛性和区域性等特征(Hildebrand, 2004)。随着人类工业化发展进程的加快, 噪声污染问题越来越严重(Brumm, 2013; Francis & Barber, 2013; Slabbekoorn et al, 2018), 于是人们便开始关注这些噪声污染对自身健康的影响。因此, 世界卫生组织将噪声污染列为了仅次于空气和水污染的第三大最危险污染物(WHO, 2005), 是近年来最受关注的环境污染类型之一(Brumm, 2013; Francis & Barber, 2013; Slabbekoorn et al, 2018)。

作为声学分支学科, 环境声学的发展主要源于自20世纪50年代以来人类工业生产、交通运输等的迅速发展而引发的日益严重的噪声污染问题(Barber et al, 2010)。在早期发展阶段, 该学科主要探究如何为人们创造舒适的听觉感受, 但随着科学技术的发展, 人们更多地关注于将其与工程技术的结合, 以加快成果的转化与应用。目前, 环境声学以环境噪声及其对人类健康的影响为核心内容, 主要研究环境噪声的产生、传播和接收机制, 评估噪声暴露对人类行为、生理、心理健康等影响(如声音感知障碍与听觉障碍), 从而制定出科学的、合理的声环境质量评价理论和方法, 并为改善和控制声环境质量提供相应的技术支持和管理措施等(Zaharna & Guilleminault, 2010; Dzhambov & Dimitrova, 2017; Themann & Masterson, 2019)。由于噪声污染所造成的健康风险受到越来越多的关注, 这也使得与噪声控制相关的技术得到了迅速的发展, 如安装消声器、使用新型吸声材料等。

除了影响人类的健康和生活环境以外, 环境噪声也威胁着许多动物的生存和健康。环境噪声对生活在其附近的动物往往产生消极影响, 因为噪声可以掩盖动物的发声, 使其无法与其群体成员进行交流。研究表明, 环境噪声所引起的动物行为改变造成了种间和种内相互作用的变化, 从而影响发声物种种群和群落的分布以及栖息地质量(Siemers & Schaub, 2011; Estabrook et al, 2016)。但是, 由于环境噪声的长期作用, 一些动物可能调整或进化其声学信号, 以便与同种动物进行通讯交流。生物声学研究为环境声学的应用提供了一个新的视角, 以了解声音信号与生物的行为、环境和健康之间的关系。因此, 环境声学的研究领域体现了一定的局限性, 有必要对其研究目标和学科内涵进行拓展和延伸。

在此, 我们提出了“环境生物声学”的概念, 它不限于与环境噪声治理相关的环境物理学和环境工程学以及与人类健康风险相关的环境生物学, 而是重点聚焦噪声污染下的生物声学研究。环境生物声学研究的核心目标是以噪声污染及其对物种、人类和生态系统健康的影响为核心内容, 构建环境噪声监测网络及噪声大数据信息共享服务平台和高效分析工具, 调查、监测、评估陆地和海洋各类自然和人为环境中的噪声来源及其声学特征、传播机制、时空动态及环境影响, 评估和认识各类噪声污染源对野生动物、人类和生态系统的影响及生态环境后果, 为噪声污染的生态治理及建设健康、安全、舒适的声环境提供理论基础和系统解决方案。研究成果将为陆地和海洋各类生态系统的声环境质量检测与健康风险评估提供质量评价标准、技术支持和管理措施, 并在陆地与海洋环境中的动物及其生态系统保护和恢复、噪声污染生态治理、城市生态环境治理以及声环境的生态保护等相关领域都有紧密关联和广泛应用。

作为生物声学的前沿领域, 环境生物声学与其他生物声学的分支学科之间相互渗透, 有着极为紧密的联系(图1)。从研究层次来看, 环境生物声学既涉及环境噪声在基因、细胞、组织器官和个体等生物组织水平上对生物的影响, 也涵盖了这些噪声在种群、群落、生态系统和景观等生态组织水平上对物种、人类和生态系统的影响。环境噪声污染是一种强大的环境力量, 对物种和生态系统构成了不同程度的威胁和影响。在个体水平上, 噪声污染不仅会改变动物的通讯、捕食和求偶等诸多行为(Slabbekoorn & Peet, 2003; Halfwerk et al, 2011; Luo et al, 2015; Zhu et al, 2022b), 也会影响动物的生长发育、生理状态、免疫功能等(Kleist et al, 2018; Brumm et al, 2021)。此外, 噪声污染会降低某些动物的繁殖成功率, 或增加其死亡率(Kight & Swaddle, 2011; Simpson et al, 2016; Senzaki et al, 2020)。这些影响最终可能会降低物种生存的适合度, 进而导致种群数量和物种多样性的下降(Barber et al, 2010; Senzaki et al, 2020)。在生态系统层面, 噪声污染可以改变物种间的互作关系和群落结构, 对生态系统完整性产生级联效应, 从而影响群落和生态系统的功能(Francis et al, 2009, 2012, 2013)。

以往关于噪声污染对动物的影响的研究主要集中在短期效应, 而关于其长期慢性效应的研究还比较有限, 阻碍了人们对噪声污染的潜在生态后果的理解(Senzaki et al, 2020)。鉴于目前全世界范围内几乎无处不在的人为噪声, 揭示慢性噪声暴露对野生动物的潜在影响是及时和必要的。通过调查环境噪声对研究系统中多个生物类群的影响, 可以深入探索噪声影响的复杂性, 特别是在生态系统中具有关键联系的物种(Wale et al, 2013)。在不同研究层次、不同时空尺度上研究噪声污染对动物个体、种群、群落及其生态系统的影响是生物多样性保护的重点内容(Buxton et al, 2013)。环境生物声学将是未来生物声学领域的关键领域, 该学科的发展和应用不但拓宽了声环境研究的领域, 也为陆地和海洋环境中的野生动物保护注入了新理念, 对理解环境噪声和生物之间的关系以及进一步为噪声污染生态治理提供新见解。

环境生物声学的主要研究方向有: (1)噪声污染源的调查、监测和评估。构建全国性和区域性的环境噪声观测网络及噪声大数据信息共享服务平台和高效分析工具, 绘制环境噪声的分布地图, 明确陆地和海洋等各类生态系统的噪声污染源的分布及时空动态, 揭示环境噪声的声学和传播特征及对社会、经济和生态的影响。(2)评估和认识各类噪声污染及缓减措施对野生动物、人类和生态系统的影响及其生态环境后果, 明确噪声污染源对各类动物和人类的行为、发育、生理和心理等的影响。(3)开展噪声污染的科学治理及其对声环境的科学保护, 从污染源控制、传播介质缓减和环境科学保护来实现对噪声污染的科学管理和有效防控。

2.5 保护生物声学

由于濒危物种及其栖息地本身是生物声学资源保护的载体, 因此保护濒危物种及其栖息地本身就是保护珍贵的生物声学资源。由于物种丧失、灭绝以及人类活动对生态环境的破坏导致了大量宝贵声音资源的遗失, 因此需要更多努力来记录、注释和保存现有生物和自然的各种声音。此外, 以往及现有生物声学资源也面临相关采集、存贮、挖掘和利用等技术方法的诸多限制, 为生物声学资源的保护和可持续利用带来了前所未有的挑战(Sugai & Llusia, 2019)。为了应对这些挑战, 保护生物声学作为现代生物声学研究的前沿领域正在日益受到重视(Laiolo, 2010; Teixeira et al, 2019; Lewis et al, 2021), 具体体现在以下两个方面:

首先, 保护生物声学研究为生物多样性、生物地理学和保护生物学等学科的发展提供了独特的研究内容。它通过研究关键物种和栖息环境中各类声音的时空格局及其对全球环境变化的响应适应机制, 有助于深刻认识声音信号在濒危动物生命周期中的作用, 为多层次、多尺度的生物多样性保护和珍稀物种及其栖息地保护和恢复提供科学依据(Lewis et al, 2021)。例如, 通过促进人工繁育的珍稀鸟类(如波多黎各鹦鹉Amazona vittata)对野生种群的鸣声文化的学习, 有利于其再引入(Martinez & Logue, 2020)。

其次, 许多动物声音和自然声景蕴含了丰富的生物、自然地理和社会文化价值(Pijanowski et al, 2011b)。类似于博物馆里生物标本和其他材料, 作为生物声学的时间胶囊, 任何时间范围内的录音数据都需要长期保存和开放利用, 用于支持分类学(Köhler et al, 2017)、行为学(Guerra et al, 2018)和保护生物学(Laiolo, 2010)等不同学科领域的研究。例如, 通过对生物声学资源的保护与可持续利用可为濒危物种及生态系统保护与恢复评估提供声音参考数据库(声音化石)和时空参考基线(声音时间胶囊) (Sugai & Llusia, 2019)。此外, 深入认识和评价声音在动物社会文化中的关键作用, 将产生更多对动物和人类语言文化的多元化理解, 有助于提升保护生物声学在社会文化领域的显著影响, 推动人们对动物声学文化和人类文明的理解和广泛应用。

基于上述分析, 保护生物声学研究的核心目标是以濒危物种及其栖息地保护、生物声学资源保护为核心内容, 构建和完善以声学资源为核心的数据信息共享平台和高效分析工具, 对声学资源进行录制、保存、挖掘、注释和共享利用, 为人类认识、保护和利用生物声学资源提供理论基础和解决方案。研究成果将为全球变化背景下的生物多样性保护与生态系统恢复、濒危物种及栖息地保护、生物入侵的风险评估与预警防控、自然保护地建设与迁地保护、生物资源的保护和可持续利用、生物多样性保护相关的国际行动以及自然教育、科学文化传播等方面提供广泛应用。

得益于现代科学技术的巨大进步和当代生态环境保护的急迫需求, 目前保护生物声学研究得到了大量关注, 并有望发展为生物声学未来的前沿热点。“感知自然以拯救自然”作为生物多样性保护的新概念框架(McAfee, 1999), 国家尺度的声学观测网络等基础设施已经在澳大利亚、美国等一些国家逐渐建立, 通过大量自动录音传感器布设等基础设施将采集和存贮具有广泛时空尺度的声学资源数据(Buxton et al, 2017; Roe et al, 2021), 有望为保护生物声学研究提供新的发展机遇。近期, 海洋科学家呼吁建立一个全球水下生物声音库(Global Library of Underwater Biological Sounds), 将为海洋生态保护提供所需的可靠信息(Parsons et al, 2022)。人工智能分析工具和自动录音设备正在涌现, 越来越多的大数据企业和科研机构积极投身于相关的技术研发, 为保护生物声学研究的快速发展提供了关键技术支撑(Berger-Tal & Lahoz-Monfort, 2018; Lahoz-Monfort & Magrath, 2021; Tuia et al, 2022)。保护生物声学研究正在不断创新自然保护范式——如何更好地保护和利用可听的自然及其中的野生动物, 并期望为保护生物学、自然资源科学保护利用和人类生态文明进步提供新的发展机遇和研究内涵。

保护生物声学的主要研究方向有: (1)濒危物种声音及其栖息地的声景保护。结合新兴技术尤其是信息科学、公民科学等, 系统录制和保存各种动物(特别是濒危物种)及其栖息环境的各类声音, 构建和完善以声学资源为核心的数据信息共享平台和高效分析工具。(2)研究生物声学资源保护的相关理论方法和应对机制。揭示声音信号在濒危物种保护、生态系统保护恢复与威胁因素评估等方面的关键作用, 有效减缓物种灭绝风险, 遏制和扭转生物多样性丧失, 更好地保护和恢复生态系统功能。(3)认识、评价和利用生物声学资源, 挖掘声学资源保护的社会文化服务价值, 更好地服务于生态文明建设和生态环境建设。

2.6 计算生物声学

对动物声信号的分析以及对相关行为的认识能够为物种分类、动物通讯交流、生物多样性评估和生物声学资源保护提供关键信息。各类动物的声学特征多种多样, 通常涉及时域、频域等潜在特征的提取、识别和分析, 对动物声学数据记录、处理和最佳声学特征选择是个挑战, 且通过提升自动识别分析能力来帮助快速处理和精准解决生物声学大数据中的各类问题已成为一种关键需求。现代生物声学通过将声学功能与自动声学传感器、物联网、人工智能、云计算等新技术的集成, 提高生物声学数据采集的质量和数量, 并对这些声学数据进行准确分类和快速处理分析, 以提高研究人员对生物及环境各类声音的发现和认知。现代计算方法和科学技术的集成将通过合适的音频信号处理、数据收集、数据预处理、声学特征提取以及特征分类、动物通讯、行为分析和信号模式分析等多学科应用, 有助于解决生物声学研究中最紧迫的挑战。基于此, 计算生物声学顺势而生, 并日益突显了生物声学在跨学科交叉融合研究中的重要性和必要性。

结合现代生物声学研究的发展趋势, 计算生物声学研究的核心目标是通过集成信号处理、人工智能、物联网等现代科学技术来实现各类生物声学数据的采集、存储、标签、注释、解析、可视化和共享应用, 开发从音频信号中自动识别和提取有用信息的计算方法和在线分析工具, 并借助分析结果为更大时空尺度的生物声学应用提供理论方法和解决方案。研究成果有望实现在陆地和海洋环境中不同时空尺度上野生动物监测、生物多样性评估、声环境质量监控和有害动物预警与防控等方面的广泛应用。

计算生物声学的各类方法最初是为了满足语音、音频或图像处理的需要而开发的。计算生物声学研究可追溯到20世纪80年代, 最初致力于开发计算机程序和设备以转换模拟录音为数字信号以进行处理和可视化(Torricelli et al, 1990)。早期研究主要采用人工和统计学方法来分析所采集的生物声音, 该阶段的计算生物声学研究具有“小”数据、少物种、间断性等特点。应对声学大数据诸多应用的挑战, 基于专家人工方法来挖掘和分析声音数据难以实现(Towsey et al, 2014b)。与此同时, 信号处理、人工智能等计算机技术的发展, 使得自动分析大量的各类声学数据成为可能。相应地, 计算生物声学研究从“小”数据转变为“大”数据, 少物种(类群)转变为多物种(类群), 间断性转变为持续性(Xie et al, 2016)。针对生物声学信号的智能降噪、分割、特征化和识别等, 主要使用决策树、支持向量机、神经网络等机器学习方法来实现。近年来, 以卷积神经网络、图神经网络、Transformers等为主的深度学习算法在各种模式识别任务中展现了优越性能, 被广泛用于生物声学信号的分析(Stowell, 2022)。目前, 通过生物声学与现代科学技术的跨领域交叉融合, 计算生物声学通过整合生物和环境各类声音的相关研究, 为识别自然界中的新声音和物种开辟新的途径。

从研究层次来看, 计算生物声学主要涉及计算机科学技术在生物种群监测、定位和测距、物种识别、动物声学通讯等领域的研究, 但对于生物个体的声学识别、智能模型的鲁棒性等研究仍然较少(Stowell, 2022)。现代声学各类数据的采集和计算能力意味着计算生物声学在此类任务中将扮演越来越重要的角色, 这得益于聚类和可视化方法, 以及声音单元及其时间序列的自动识别分析。计算生物声学将是未来生物声学学科发展的核心领域, 该领域的发展和应用不仅为生物声学研究及其分支学科发展提供更多的有效分析工具, 也促进了计算机技术应用的发展, 对理解计算机科学技术与生物学、生态学之间的关系以及大尺度的生物多样性和生态系统监测与评估也提供了更多新的视角。

计算生物声学的主要研究方向有: (1)研发基于生物声学监测、研究和评估的智能化工具和共享应用平台, 构建智能生物声信号分析系统和相关工具, 创建持续的、大尺度生物声学联网监测与自动分析平台。(2)研究大尺度生物声学的时空格局及相关声学生物多样性机制, 揭示生物声音在大尺度生物多样性形成与维持中的关键作用。(3)评估自然和人工环境中生物多样性的时空动态以及人类活动、气候变化的影响, 监控濒危动物种群和发声动物群落之间的交流, 利用声景观的声学指数来评估生态系统质量和健康动态。

3 现代生物声学研究的技术框架

3.1 生物声学研究的工作流程

近年来, 被动声学监测技术体系的发展为现代生物声学监测、研究与应用提供了多样化的科学大数据和广泛应用前景, 也使野外录音调查覆盖了更长时间和更宽空间, 从而减小相应的调查偏差(Sugai et al, 2019), 成为生物多样性调查以及相关生态、行为和保护生物学研究强有力的技术方法之一。

在通过无干扰自动录音获得发声族群声音数据后, 分析声音数据是生物声学研究的重要一步。数据分析主要包括某特定(如某个物种)声音的信号检测(signal detection)以及其后的识别分类(classification)两步(图2)。由于自动获取的声音数据是该采样地区所有发声族群的声音集合, 因此以上两个分析步骤是一项具有挑战性的任务。对于此类无干扰自动录音数据进行生物信息(如发声物种等)提取和分析, 传统方法主要通过手动分析, 因而往往需要大量的人力。随着人工智能和信息科学的发展, 机器学习和深度学习被广泛应用到声音数据分析中。这使得声音数据半自动乃至完全自动分析成为了可能(图2)。近年来, 人工智能技术的不断更新和发展促使声音数据自动分析技术和方法在分析效率和准确度上都得到了迅速的改善, 促进了生物声学相关分支领域的快速发展。

图2

图2   现代生物声学研究与数据分析的工作流程

Fig. 2   Workflow for contemporary bioacoustics research and data analysis


3.2 生物声学相关的算法研究

目前通过人工智能方法来进行声音数据自动分析主要是监督式机器学习(supervised machine learning)的相关方法技术(Browning et al, 2017)。其主要流程是首先通过已知物种声音数据库来进行算法训练, 然后根据训练好的算法对新的声音数据进行分析识别。具体来讲, 典型的声音人工智能识别过程包括声音时空维度特征(如声音时长、最高频率、频宽等)的提取, 然后识别算法通过已有的训练数据集与需要分析的未知数据进行最佳匹配从而得出分析的结果(图2)。以深度卷积神经网络(deep convolutional neural network)为例, 该算法通过直接对音频声谱数据的识别学习, 不仅可以得到很高的识别准确率, 而且在一定程度上能避免其他噪声的干扰。

截至目前, 生物声学相关算法研究主要集中于声学信号的预处理、特征提取和自动识别3个方面(图2)。其中预处理相关研究主要侧重于声学信号的降噪、检测等分析。声学信号特征提取主要致力于设计具有高识别率、强鲁棒性的信号标识, 进而达到声音识别的目的。声学信号的识别研究主要通过构建基于特征的智能模型, 实现声音识别, 最终实现生物多样性监测、动物行为分析等目的。

(1)信号降噪

鉴于生物声信号去噪和语音增强的目的都是为了提高信号的信噪比, 许多用于语音增强的方法已成功地被应用于生物声信号去噪。然而, 生物声学信号和语音之间存在着明显的差异, 如(a)信号源依赖于目标动物; (b)噪声来源众多(Alonso et al, 2017); (c)信噪比通常较低, 特别是当声传感器与声源较远时; (d)生物声信号通常不具有特定的声学结构(Chandrakala & Jayalakshmi, 2019)。目前, 生物声学录音的降噪方法主要包括最优有限脉冲响应滤波法、谱减法、基于最小均方误差的语音幅度谱估计降噪法、小波降噪法、基于图像处理的降噪法、深度学习降噪法(Xie et al, 2021)。采用以上方法提高生物声学录音的信噪比, 并进一步提升后续分析的性能, 如物种分类、种群估计等。

(2)生物声学信号的检测

生物声学信号检测的目的是从背景噪声中分离出目标信号, 为后续的特征提取与识别做准备。目前的检测算法包括手工检测和自动检测, 然而随着声音传感器的普及, 大量连续生物声学信号被获取, 因此生物声学信号的自动检测被大量使用。其中, 通过提取时域特征, 并结合预设的阈值实现生物声学信号的自动检测是使用最为广泛的方法(Xie et al, 2018)。

(3)生物声学特征提取

传统的机器学习算法在构建生物声学智能模型时, 模型最终的性能极大程度依赖于声学信号特征, 因此, 如何设计高识别率、强鲁棒性的声学特号预处理阶段的降噪、检测等步骤直接影响最终所提取的特征。与传统机器学习相比较, 深度学习算法可以直接从原始数据中自动提取多层次声学特征, 即分别在浅层和深层自动获取低层次特征和深层次特征, 无需针对某一任务设计新的特征提取器。

(4)生物声学信号的识别

针对生物声学信号的识别, 传统机器学习算法在提取特征的基础上, 利用不同的机器学习算法完成识别, 其中使用较为广泛的有贝叶斯分类器、决策树、k近邻算法、支持向量机、随机森林等。与传统机器学习算法不同, 深度学习模型可以结合特征提取与识别实现“端到端”的方法识别生物声学信号。

4 中国生物声学的学科现状与发展机遇

4.1 学科现状

生物声学研究在我国的起步较晚, 在新中国成立前后至20世纪末期间所发表的研究论文较少, 研究主题有限。从20世纪80年代开始, 我国学者主要针对兽类(白暨豚Lipotes vexillifer和长江江豚Neophocaena phocaenoides asiaeorientalis, 荆显英等, 1981; 王丁等, 1989; 陈佩薰等, 1996; 大熊猫Ailuropoda melanoleuca, 朱靖和孟智斌, 1987; 猕猴Macaca mulatta, 江海声等, 1990; 川金丝猴Rhinopithecus roxellanae, Li et al, 1993; 西黑冠长臂猿Nomascus concolor, 蒋学龙和王应祥, 1997)和鸟类(绿尾虹雉Lophophorus lhuysii, 卢汰春等, 1986; 白腹锦鸡Chrysolophus amherstiae, 韩联宪等, 1988; 黄喉鹀Emberiza elegans, 李佩珣等, 1989; 白头鹎Pycnonotus sinenesis, 姜仕仁等, 1996a, b)等少数物种(类群)开展有关鸣声描述和调查, 同时也涉及少量昆虫的鸣声研究(沈钧贤, 1989, 1994)。

自21世纪以来, 特别是最近10年来, 我国生物声学研究在哺乳类(鲸豚类、灵长类、蝙蝠类为多) (Li et al, 2012; Wang et al, 2013, 2022; Yang et al, 2017; Fan et al, 2019; Jiang et al, 2019; Wang TL et al, 2019)、鸟类(Lei et al, 2005; Zhang et al, 2006; Xing et al, 2013)、无尾两栖类(Feng et al, 2006; Shen at al, 2011; Cui et al, 2012, 2016; Xu et al, 2012; Zhu et al, 2021, 2022a)、鱼类(刘猛等, 2013; Wang et al, 2017; 项杰等, 2022; 邢彬彬等, 2018; Hang et al, 2021)和部分昆虫(Luo & Wei, 2015; Hou et al, 2022)等主要发声类群都开展了相关研究, 并取得了许多重要进展和科研成果。其中, 动物声学相关主题内容在日益丰富和拓展, 涉及基于鸣声的分类学和种内鸣声变异(Zheng et al, 2000; 丁平和姜仕仁, 2005; Zhang et al, 2006)、声学通讯行为和性选择(Cui et al, 2012, 2016; Zhu et al, 2021, 2022a)、鸣声学习机制(Zhao et al, 2022)、发声和听觉机制(Lu et al, 2020; Luo et al, 2022)、神经生物学(Fang et al, 2014, 2015)、蝙蝠回声定位及进化(冯江等, 2002; Zhang et al, 2007; 付子英等, 2009)、物种间相互作用(Liu SL et al, 2022; Zhao et al, 2022)和环境噪声的影响(韩轶才等, 2004; Song et al, 2020; Wang WW et al, 2022; Zhu et al, 2022b)等。

综合利用比较基因组学和电生理学等方法, 我国研究人员对哺乳动物回声定位这一复杂性状的起源进行了系统性研究(Liu et al, 2014, 2018; Li et al, 2017), 研究结果支持回声定位在蝙蝠类群中“一次起源”假说(Liu Z et al, 2022)。通过行为学和比较进化研究证实啮齿目猪尾鼠属(Typhlomys)也具有回声定位能力, 为适应性复杂性状回声定位在哺乳动物类群的起源和趋同演化提供了新的认识(He et al, 2021)。最近, Wang HM等(2022)发现回声定位蝙蝠使用与人类言语类似的状态反馈控制的原理进行精准的实时发声频率控制。在蛙类声通讯方面, 研究人员在黄山分布的凹耳臭蛙(Odorrana tormota)中首次发现超声通讯行为, 并首次将拥有超声通讯的动物类群扩展到无尾两栖类(Feng et al, 2006; Shen et al, 2011); 发现动物可通过声音信号向其配偶传递其建造物的信息(Cui et al, 2012)。在蛙类视-听多模信号的进化机制方面, 发现锯腿原指树蛙(Kurixalus odontotarsus)雌性多模求偶信号的记忆可通过性选择来促进多模信号的进化(Zhu et al, 2021); 通过对小湍蛙(Amolops torrentis)驱赶寄生蚊虫的肢体动作的分析, 提出了物种间相互作用可能是驱动蛙类视-听多模式信号进化的新机制(Zhao et al, 2022)。

此外, 以鲸豚类为代表类群的海洋和水下生物声学(Wang et al, 2013, 2015)、环境噪声相关的环境生物声学(Wang et al, 2019; Zhu et al, 2022b)以及针对声学数据自动采集和智能分析的计算生物声学(Chen et al, 2020; 郝佩佩和张雁云, 2020; Dufourq et al, 2021; Zhang et al, 2021; 钟恩主等, 2021)等均逐渐有所发展, 但仍需要更多的努力, 并有望在未来10年内取得更迅速的进展。在应用方面, 以水下生物声学领域较为突出, 相关研究为水产养殖、水生动物资源开发利用、珍稀濒危物种尤其是鲸豚类的保护、淡水和海洋生态系统的水体噪声污染治理以及生物声学仿生和军事国防等领域发挥了重要作用(Dong et al, 2020; Hang et al, 2021; Wang et al, 2021a, b)。我国研究人员在淡水和海洋鲸豚类动物的回声定位信号分析、声呐和仿生机理方面取得了一系列重要进展(张宇等, 2021)。例如, 研究人员采用人工复合超材料, 重构了江豚的声学结构并实现了与江豚声呐极其相似的指向性瞬态声发射和目标探测的功能(Dong et al, 2019); 基于海豚声学结构, 提出了超凝胶阻抗变换器的人工结构并实现了水下宽带声传输与目标探测的目标(Dong et al, 2020)。

从上述情况可知, 生物声学作为学科发展在我国大致可分为3个阶段, 而且其理论方法在中国野生动物调查和研究中逐渐得到了不同程度的发展和应用。(1)在20世纪80年代以前, 生物声学处于萌芽阶段, 有关野生动物调查研究中陆续采用了动物鸣声方法, 并积累一些物种(类群)鸣声识别经验, 在物种分类时考虑其鸣声分类特征(蓝书成, 1958; 庞秉璋, 1960, 1964)。(2) 20世纪80年代至21世纪初为生物声学研究的探索阶段, 主要是以兽类和鸟类中的重要物种或常见物种为主, 开始采用声学方法来录制和分析动物鸣声, 并以动物声学相关研究为主。(3)第三阶段则从21世纪初到现在, 为快速发展阶段, 通过现代生物声学相关技术方法的应用不仅促进了我国动物生物声学领域的快速发展, 而且在近10年来的相关研究也逐渐拓展到了生物声学的其他分支领域, 为下一阶段的学科建设做了必要的准备。在近期出版的《声学学科现状以及未来发展趋势》(程建春等, 2021)一书中, 大体明确了我国生物声学的学科研究范畴, 主要涉及生物组织的声学特性、生物介质的声传播理论、生物的声产生与接收、声信号处理、动物通信与生物声呐、生物的声学效应以及声对生物的影响等内容(张宇等, 2021)。这些研究内容多隶属于动物生物声学的范围。同时, 张宇等(2021)重点分析了国内外海豚声学、蝙蝠声学相关的回声定位理论和应用进展以及学科重点发展方向, 但未能全面体现现代生物声学的交叉学科发展趋势和众多应用领域的广泛需求。

4.2 发展机遇

鉴于上述情况, 我国现阶段的生物声学研究仍未发展为成熟的分支学科, 而有关学科体系建设和行业应用仍任重道远, 挑战与机遇并存。相比欧美国家在生物声学领域的相关研究进展, 中国生物声学研究虽然在近10年来也取得了长足进步, 但整体上起步较晚, 基础设施设备较为落后, 以生物声学监测研究网络及动物鸣声数据库为代表的学科基础研究平台有待建设, 学科能力建设也亟待全面提升。

目前, 在生物多样性保护和噪声污染科学治理等生命科学及生态环境保护方面的重大国家需求, 凸显了在我国加快建设生物声学学科的必要性和紧迫性。随着现代声学技术方法的不断发展和应用, 在未来10年或更长时间, 中国生物声学研究将逐渐进入学科建设阶段, 并迎来新的发展机遇, 具体体现在以下方面:

(1)虽然我国生物声学研究散布于物理学(声学)、生物学(动物学、行为学)、生态学、地球科学(地理学)、信息科学、环境科学等学科领域, 但在各个研究方向均有了较好的发展, 为生物声学的学科整体建设奠定了重要基础。因此, 通过学科交叉融合和应用领域拓展将加快我国生物声学的学科建设, 并有望发展为主流研究方向。

(2)由于生物声学研究对技术和设备依赖性强,导致我国以生物声学为主的基础研究平台和基础设施建设较为落后。我国现有动物鸣声录制设备和分析软件大多购自国外相关产品, 而当前对动物鸣声自动化监测的应用需求在日渐增长。因此, 我们建议通过系统集成相关生物声学技术、人工智能方法和网络信息技术, 加快我国生物声学设备的国产化和相关产业发展, 早日应用于我国各类生态系统生物声学长期数据的自动收集、智能分析和共享应用。同时, 通过我国生物声学的学科基础平台和基础设施的建设和完善, 可全面促进在跨学科领域的前沿科学研究。

(3)由于生物声学所涉及动物类群和相关应用领域多样而广泛, 因此通过在生命健康、生态环境等行业领域的整合研究和创新应用可加强生物声学相关的科技服务, 以获得对学科建设的长期支持和持续发展。

(4)在学科建设和发展的同时, 通过跨学科领域的交叉合作促进我国生物声学各分支领域的关键人才培养和相关研究团队建设。争取获得以国家级学会为主的组织机构和行业领域的支持, 尽早成立生物声学相关的分会组织、团体或相关行业协会, 并尽快创办中国生物声学相关的专业期刊, 加强国际合作交流, 以更好地促进生物声学研究的学科建设和高质量发展。

4.3 学科使命

现阶段, 生物声学各分支学科和前沿领域之间存在深度交叉和融合, 是未来生物声学作为学科发展的重要源泉和驱动力。因此, 发展和完善生物声学研究的技术方法体系, 深化生物声学各分支学科的理论和技术创新研究, 推进现代生物声学科学的理论方法体系建设, 有助于进一步巩固生物声学在生物学、生态学及交叉科学学科体系中的跨学科地位, 为满足生物声学相关的国家重大战略需求和社会经济可持续发展做出更重要的学科贡献。

作为交叉科学的一个学科分支, 现代生物声学的学科使命体现在以下3个方面:

(1)作为跨学科领域的研究和应用工具。随着科学技术的不断进步和革新, 现代生物声学的整体技术方法体系将不断发展和完善, 为生物学、生态学及相关分支学科和跨学科领域的理论创新和应用研究提供科学、可靠、高效且不断完善的调查研究工具和技术方法, 并逐渐发展相应分支学科及交叉领域的关键技术方法体系。伴随着开放科学、人工智能和生态信息学的兴起, 以及计算能力的指数式增长, 加上自动声学传感器的成本在持续降低和广泛应用, 生物声学工具的创新正在全面改变人们感知、评价和利用动物和环境声音的方式。

(2)作为交叉科学的分支学科和前沿领域。依托理论和技术创新, 现代生物声学在不断深化与生物学、生态学、物理学(声学)、化学、信息科学、社会学及相关分支学科和其他关联学科之间跨学科领域的融合和整合研究, 从早期的博物学和自然史研究, 到逐渐形成当前诸多独具特色的分支学科和前沿领域, 而且不同分支学科之间也在逐渐融合并互补优势(图1)。近年来, 以自动数字录音、人工智能和信息科学为核心技术的被动声学监测技术体系建设为生物声学研究提供了多样化的科学大数据和整合研究, 同时推动了生物声学与生命健康、生态环境保护、自然资源可持续利用、军事国防等跨学科领域的合作研究。同时, 现代生物声学以生物声学为核心命题、以声学大数据为牵引, 不断发展和完善生物声学的核心理论和研究体系, 同时以生物声学的科学视角和理论方法来审视和解答生物学、生态学及其他关联学科中存在的重大科学前沿问题和核心关键技术, 以促进交叉科学领域的更大发展。

(3)跨学科领域的成果共享和应用场景的优势互补。由于生物声学相关技术和分析工具在研究生物学和生态学问题时具有通用性、兼容性和共享利用等特征, 因此生物声学所取得的研究成果在生态环境建设和生物资源保护利用等跨学科领域形成了广泛的应用场景, 并各自形成了良好的独特优势。我们知道, 解决诸如噪声污染等人类引起的环境问题是一项关键的生态安全和生物安全挑战, 最终将决定生态系统和生物(包括人类)的健康。当今世界噪声污染对人类、野生动物和生态环境的影响几乎无处不在, 因此加强对陆地和水体环境中噪声污染的生态治理需要生物声学与生物学、生态学、物理学、化学、环境科学、公共健康、信息科学、社会学等领域进行跨学科联合攻关, 促进各学科领域诸多研究成果的共享应用。

4.4 展望

近年来, 科学团体、社会公众和政府机构对生物声学资源保护和可持续利用的兴趣正在逐渐增长, 加上对全球气候变化、资源过度利用和生物安全等生态环境危机的日益担忧, 因此生物声学研究将迎来新的发展机遇, 有助于推动生物声学的学科发展和更广泛的应用。

基于上述综合分析, 我们就生物声学进行学科建设的需求提出以下建议:

(1)深刻认识生物声学作为交叉学科的建设需求, 加强生物声学的学科基础研究平台和关键基础设施建设。针对生物声学领域的重大科学问题及关键核心技术, 构建以生物声学为核心命题的交叉学科及相关基础研究平台是学科建设的重要保障。进一步明确生物声学学科建设的必要性和需求, 加强整合性研究和基础研究投入, 以科学、开放、标准、共享利用为核心目标, 结合国家生态文明建设及生命健康和生态环境保护的重大需求, 分别在陆地、淡水、海洋等各类生态系统建立和完善国家和区域尺度的生物声学监测与研究网络, 研发以生物各类群及环境声学数据为重点的声学大数据信息共享服务平台以及生物声学在线分析工具, 逐步形成生物声学的关键理论和技术创新研究体系, 为生物声学的学科发展奠定坚实基础。

(2)加强生物声学在国家重大需求、国民经济主战场和科学前沿领域的科技服务。加强生物声学跨学科领域的广泛应用、成果共享和科技服务, 为国家生态文明建设和生态环境保护提供更多的重要理论支持和系统解决方案, 并在社会经济可持续发展、公共健康、生态安全和军事国防等领域发挥重要的保障和支撑作用。同时, 生物声学研究也有望为2022年实施的《中华人民共和国噪声污染防治法》提供科技支撑和关键服务。

(3)加强对生物声学资源的保护利用、科学传播和自然教育。通过建立法律法规来加强国家对生物声学资源的保护和利用, 同时加强对生物声学科学知识的有效传播和自然教育, 促进人们对声学时空的深切感知和美好体验, 增强全社会对生物声学资源的保护意识。建议在国家公园、自然保护区、自然公园、风景名胜区、人文景观和城市公园等场所逐步建立各类声音体验场馆和宁静空间, 建设一批国家和地方各级生物声学博物馆和科普教育示范基地, 让“宁静中国”为国家生态文明建设及美丽中国、健康中国建设增添更多新的内涵。

(4)加强生物声学学科的组织管理、人才队伍建设和学术交流。加强国内外生物声学领域的合作交流和整合性研究, 同时加强对青年科技人员、研究生和本科生进行技术方法和科学理论培训, 为本学科领域培养更多优秀青年人才, 加强生物声学专业学会的组织建设, 拓宽和深化学科发展领域。

参考文献

Alonso JB, Cabrera J, Shyamnani R, Travieso CM, Bolaños F, García A, Villegas A, Wainwright M (2017)

Automatic anuran identification using noise removal and audio activity detection

Expert Systems with Applications, 72, 83-92.

DOI:10.1016/j.eswa.2016.12.019      URL     [本文引用: 1]

André M, Solé M, Lenoir M, Durfort M, Quero C, Mas A, Lombarte A, van der Schaar M, López-Bejar M, Morell M, Zaugg S, Houégnigan L (2011)

Low-frequency sounds induce acoustic trauma in cephalopods

Frontiers in Ecology and the Environment, 9, 489-493.

DOI:10.1890/100124      URL     [本文引用: 2]

Arnett EB, Hein CD, Schirmacher MR, Huso MMP, Szewczak JM (2013)

Evaluating the effectiveness of an ultrasonic acoustic deterrent for reducing bat fatalities at wind turbines

PLoS ONE, 8, e65794.

[本文引用: 1]

Au WWL, Hastings MC (2008) Principles of Marine Bioacoustics. Springer, New York.

[本文引用: 1]

Bai C (2019)

Preface of special issue on underwater acoustical signal processing and sonar technology

Bulletin of Chinese Academy of Sciences, 34, 251-252. (in Chinese)

[本文引用: 1]

[白春礼 (2019)

“水声信号处理和声呐技术发展现状和展望”专题序言. 中国科学院院刊

34, 251-252.]

[本文引用: 1]

Barber JR, Crooks KR, Fristrup KM (2010)

The costs of chronic noise exposure for terrestrial organisms

Trends in Ecology & Evolution, 25, 180-189.

DOI:10.1016/j.tree.2009.08.002      URL     [本文引用: 4]

Berger-Tal O, Lahoz-Monfort JJ (2018)

Conservation technology: The next generation

Conservation Letters, 11, e12458.

[本文引用: 2]

Beyan C, Browman HI (2020)

Setting the stage for the machine intelligence era in marine science

ICES Journal of Marine Science, 77, 1267-1273.

[本文引用: 1]

Blumstein DT, Mennill DJ, Clemins P, Girod L, Yao K, Patricelli G, Deppe JL, Krakauer AH, Clark C, Cortopassi KA, Hanser SF, McCowan B, Ali AM, Kirschel ANG (2011)

Acoustic monitoring in terrestrial environments using microphone arrays: Applications, technological considerations and prospectus

Journal of Applied Ecology, 48, 758-767.

DOI:10.1111/j.1365-2664.2011.01993.x      URL     [本文引用: 1]

Bradbury JW, Vehrenkamp SL. 2011. Principles of Animal Communication, 3rd edn. Sinaur Associates Inc., New York.

[本文引用: 1]

Browning E, Gibb R, Glover-Kapfer P, Jones KE (2017)

Passive Acoustic Monitoring in Ecology and Conservation

WWF Conservation Technology Series, 1(2), 1-75.

URL     [本文引用: 2]

Brumm H (2013) Animal Communication and Noise (Vol. 2). Springer, Heidelberg, Berlin.

[本文引用: 2]

Brumm H, Goymann W, Derégnaucourt S, Geberzahn N, Zollinger SA (2021)

Traffic noise disrupts vocal development and suppresses immune function

Science Advances, 7, eabe2405.

[本文引用: 1]

Burivalova Z, Towsey M, Boucher T, Truskinger A, Apelis C, Roe P, Game ET (2018)

Using soundscapes to detect variable degrees of human influence on tropical forests in Papua New Guinea

Conservation Biology, 32, 205-215.

DOI:10.1111/cobi.12968      PMID:28612939     

There is global concern about tropical forest degradation, in part, because of the associated loss of biodiversity. Communities and indigenous people play a fundamental role in tropical forest management and are often efficient at preventing forest degradation. However, monitoring changes in biodiversity due to degradation, especially at a scale appropriate to local tropical forest management, is plagued by difficulties, including the need for expert training, inconsistencies across observers, and lack of baseline or reference data. We used a new biodiversity remote-sensing technology, the recording of soundscapes, to test whether the acoustic saturation of a tropical forest in Papua New Guinea decreases as land-use intensity by the communities that manage the forest increases. We sampled soundscapes continuously for 24 hours at 34 sites in different land-use zones of 3 communities. Land-use zones where forest cover was fully retained had significantly higher soundscape saturation during peak acoustic activity times (i.e., dawn and dusk chorus) compared with land-use types with fragmented forest cover. We conclude that, in Papua New Guinea, the relatively simple measure of soundscape saturation may provide a cheap, objective, reproducible, and effective tool for monitoring tropical forest deviation from an intact state, particularly if it is used to detect the presence of intact dawn and dusk choruses.© 2017 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.

Busnel RG (1963) Acoustic Behavior of Animals. Elsevier, New York.

[本文引用: 1]

Buxton RT, Currey CA, Lyver PO, Jones CJ (2013)

Incidence of plastic fragments among burrow-nesting seabird colonies on offshore islands in northern New Zealand

Marine Pollution Bulletin, 74, 420-424.

DOI:10.1016/j.marpolbul.2013.07.011      PMID:23899612      [本文引用: 1]

Marine plastic pollution is ubiquitous throughout the world's oceans, and has been found in high concentrations in oceanic gyres of both the northern and southern hemispheres. The number of studies demonstrating plastic debris at seabird colonies and plastic ingestion by adult seabirds has increased over the past few decades. Despite the recent discovery of a large aggregation of plastic debris in the South Pacific subtropical gyre, the incidence of plastics at seabird colonies in New Zealand is unknown. Between 2011 and 2012 we surveyed six offshore islands on the northeast coast of New Zealand's North Island for burrow-nesting seabird colonies and the presence of plastic fragments. We found non-research related plastic fragments (0.031 pieces/m(2)) on one island only, Ohinau, within dense flesh-footed shearwater (Puffinus carneipes) colonies. On Ohinau, we found a linear relationship between burrow density and plastic density, with 3.5 times more breeding burrows in areas with plastic fragments found. From these data we conclude that plastic ingestion is a potentially a serious issue for flesh-footed shearwaters in New Zealand. Although these results do not rule out plastic ingestion by other species, they suggest the need for further research on the relationship between New Zealand's pelagic seabirds and marine plastic pollution.Copyright © 2013 Elsevier Ltd. All rights reserved.

Buxton RT, McKenna MF, Clapp M, Meyer E, Stabenau E, Angeloni LM, Crooks K, Wittemyer G (2018)

Efficacy of extracting indices from large-scale acoustic recordings to monitor biodiversity

Conservation Biology, 32, 1174-1184.

DOI:10.1111/cobi.13119      PMID:29676813      [本文引用: 2]

Passive acoustic monitoring could be a powerful way to assess biodiversity across large spatial and temporal scales. However, extracting meaningful information from recordings can be prohibitively time consuming. Acoustic indices (i.e., a mathematical summary of acoustic energy) offer a relatively rapid method for processing acoustic data and are increasingly used to characterize biological communities. We examined the relationship between acoustic indices and the diversity and abundance of biological sounds in recordings. We reviewed the acoustic-index literature and found that over 60 indices have been applied to a range of objectives with varying success. We used 36 of the most indicative indices to develop a predictive model of the diversity of animal sounds in recordings. Acoustic data were collected at 43 sites in temperate terrestrial and tropical marine habitats across the continental United States. For terrestrial recordings, random-forest models with a suite of acoustic indices as covariates predicted Shannon diversity, richness, and total number of biological sounds with high accuracy (R  ≥ 0.94, mean squared error [MSE] ≤170.2). Among the indices assessed, roughness, acoustic activity, and acoustic richness contributed most to the predictive ability of models. Performance of index models was negatively affected by insect, weather, and anthropogenic sounds. For marine recordings, random-forest models poorly predicted Shannon diversity, richness, and total number of biological sounds (R ≤ 0.40, MSE ≥ 195). Our results suggest that using a combination of relevant acoustic indices in a flexible model can accurately predict the diversity of biological sounds in temperate terrestrial acoustic recordings. Thus, acoustic approaches could be an important contribution to biodiversity monitoring in some habitats.© 2018 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.

Buxton RT, McKenna MF, Mennitt D, Fristrup K, Crooks K, Angeloni L, Wittemyer G (2017)

Noise pollution is pervasive in U.S. protected areas

Science, 356, 531-533.

DOI:10.1126/science.aah4783      PMID:28473587      [本文引用: 4]

Anthropogenic noise threatens ecological systems, including the cultural and biodiversity resources in protected areas. Using continental-scale sound models, we found that anthropogenic noise doubled background sound levels in 63% of U.S. protected area units and caused a 10-fold or greater increase in 21%, surpassing levels known to interfere with human visitor experience and disrupt wildlife behavior, fitness, and community composition. Elevated noise was also found in critical habitats of endangered species, with 14% experiencing a 10-fold increase in sound levels. However, protected areas with more stringent regulations had less anthropogenic noise. Our analysis indicates that noise pollution in protected areas is closely linked with transportation, development, and extractive land use, providing insight into where mitigation efforts can be most effective.Copyright © 2017, American Association for the Advancement of Science.

Chandrakala S, Jayalakshmi SL (2019)

Generative model driven representation learning in a hybrid framework for environmental audio scene and sound event recognition

IEEE Transactions on Multimedia, 22, 3-14.

DOI:10.1109/TMM.2019.2925956      URL     [本文引用: 1]

Chen PX, Liu RJ, Wang D, Zhang XF (1996) Biology, Breeding and Species Protection of Chinese River Dolphin. Science Press, Beijing. (in Chinese)

[本文引用: 1]

[陈佩薰, 刘仁俊, 王丁, 张先锋 (1996) 白暨豚生物学及饲养与物种保护. 科学出版社, 北京.]

[本文引用: 1]

Chen X, Zhao J, Chen YH, Zhou W, Hughes AC (2020)

Automatic standardized processing and identification of tropical bat calls using deep learning approaches

Biological Conservation, 241, 108269.

[本文引用: 1]

Cheng JC, Li XD, Yang J (2021) Status and Future Development Trends for Acoustics Discipline. Science Press, Beijing. (in Chinese)

[本文引用: 2]

[程建春, 李晓东, 杨军 (2021) 声学学科现状以及未来发展趋势, 科学出版社, 北京.]

[本文引用: 2]

Cui JG, Song XW, Zhu BC, Fang GZ, Tang YZ, Ryan MJ (2016)

Receiver discriminability drives the evolution of complex sexual signals by sexual selection

Evolution, 70, 922-927.

DOI:10.1111/evo.12889      PMID:26920078      [本文引用: 2]

A hallmark of sexual selection by mate choice is the evolution of exaggerated traits, such as longer tails in birds and more acoustic components in the calls of birds and frogs. Trait elaboration can be opposed by costs such as increased metabolism and greater predation risk, but cognitive processes of the receiver can also put a brake on trait elaboration. For example, according to Weber's Law traits of a fixed absolute difference will be more difficult to discriminate as the absolute magnitude increases. Here, we show that in the Emei music frog (Babina daunchina) increases in the fundamental frequency between successive notes in the male advertisement call, which increases the spectral complexity of the call, facilitates the female's ability to compare the number of notes between calls. These results suggest that female's discriminability provides the impetus to switch from enhancement of signaling magnitude (i.e., adding more notes into calls) to employing a new signal feature (i.e., increasing frequency among notes) to increase complexity. We suggest that increasing the spectral complexity of notes ameliorates some of the effects of Weber's Law, and highlights how perceptual and cognitive biases of choosers can have important influences on the evolution of courtship signals. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

Cui JG, Tang YZ, Narins PM (2012)

Real estate ads in Emei music frog vocalizations: Female preference for calls emanating from burrows

Biology Letters, 8, 337-340.

DOI:10.1098/rsbl.2011.1091      PMID:22158736      [本文引用: 4]

During female mate choice, both the male's phenotype and resources (e.g. his nest) contribute to the chooser's fitness. Animals other than humans are not known to advertise resource characteristics to potential mates through vocal communication; although in some species of anurans and birds, females do evaluate male qualities through vocal communication. Here, we demonstrate that calls of the male Emei music frog (Babina dauchina), vocalizing from male-built nests, reflect nest structure information that can be recognized by females. Inside-nest calls consisted of notes with energy concentrated at lower frequency ranges and longer note durations when compared with outside-nest calls. Centre frequencies and note durations of the inside calls positively correlate with the area of the burrow entrance and the depth of the burrow, respectively. When given a choice between outside and inside calls played back alternately, more than 70 per cent of the females (33/47) chose inside calls. These results demonstrate that males of this species faithfully advertise whether or not they possess a nest to potential mates by vocal communication, which probably facilitates optimal mate selection by females. These results revealed a novel function of advertisement calls, which is consistent with the wide variation in both call complexity and social behaviour within amphibians.

Deng K, Yang Y, Cui JG (2021)

Call characteristic network reveal geographical patterns of call similarity: Applying network analysis to frog’s call research

Asian Herpetological Research, 12, 110-116.

[本文引用: 1]

Ding P, Jiang SR (2005)

Microgeographic song variation in the Chinese bulbul (Pycnonotus sinenesis) in urban areas of Hangzhou City

Zoological Research, 26, 453-459. (in Chinese with English abstract)

[本文引用: 1]

[丁平, 姜仕仁 (2005)

杭州市区白头鹎鸣声的微地理差异

动物学研究, 26, 453-459.]

[本文引用: 1]

Dong EQ, Song ZC, Zhang Y, Ghaffari Mosanenzadeh S, He Q, Zhao XH, Fang NX (2020)

Bioinspired metagel with broadband tunable impedance matching

Science Advances, 6, eabb3641.

[本文引用: 2]

Dong EQ, Zhang Y, Song ZC, Zhang TY, Cai C, Fang NX (2019)

Physical modeling and validation of porpoises’ directional emission via hybrid metamaterials

National Science Review, 6, 921-928.

DOI:10.1093/nsr/nwz085      URL     [本文引用: 1]

Duarte CM, Chapuis L, Collin SP, Costa DP, Devassy RP, Eguiluz VM, Erbe C, Gordon TAC, Halpern BS, Harding HR, Havlik MN, Meekan M, Merchant ND, Miksis-Olds JL, Parsons M, Predragovic M, Radford AN, Radford CA, Simpson SD, Slabbekoorn H, Staaterman E, Van Opzeeland IC, Winderen J, Zhang XL, Juanes F (2021)

The soundscape of the anthropocene ocean

Science, 371, eaba4658.

[本文引用: 3]

Dufourq E, Durbach I, Hansford JP, Hoepfner A, Ma HD, Bryant JV, Stender CS, Li WY, Liu ZW, Chen Q, Zhou ZL, Turvey ST (2021)

Automated detection of Hainan gibbon calls for passive acoustic monitoring

Remote Sensing in Ecology and Conservation, 7, 475-487.

DOI:10.1002/rse2.201      URL     [本文引用: 1]

Dzhambov A, Dimitrova D (2017)

Occupational noise exposure and the risk for work-related injury: A systematic review and meta-analysis

Annals of Work Exposures and Health, 61, 1037-1053.

DOI:10.1093/annweh/wxx078      PMID:29136415      [本文引用: 1]

Occupational noise exposure has been linked to work-related injuries. Strategies to control occupational hazards often rely on dose-response relationships needed to inform policy, but quantitative synthesis of the relevant literature has not been done so far. This study aimed to systematically review the epidemiological literature and to perform meta-analysis of the risk for work-related injury due to occupational noise exposure.PRISMA and MOOSE guidelines were followed. PubMed, ScienceDirect, and Google Scholar were searched up until 15 December 2016 in English, Russian, and Spanish. Reference lists, grey literature, and expert archives were searched as well. The risk of bias was assessed for each study and incorporated into the meta-analysis weights using the quality effects model.Overall, 21 studies were included at the qualitative review stage: 9 cross-sectional, 6 case-control, 4 cohort, 1 case-crossover, and 1 ecological. Noise exposure was assessed objectively in 13 studies. Information on occupational injuries was elicited from medical records/registry in 13 studies. Meta-analyses showed RR = 1.22 (95% CI: 1.15, 1.29) (n = 59028) per 5 dB increase in noise exposure (Cochran's Q = 27.26, P < 0.001, I2 = 67%) and RR = 2.16 (95% CI: 1.61, 2.90) (n = 96023) in the most exposed group (>90-95 dB) compared with the least exposed group (Cochran's Q = 180.46, P < 0.001, I2 = 90%). Subgroup analysis with meta-regression revealed an overall robust pooled risk per 5 dB.There is a dose-response association between occupational noise exposure and work-related injury risk. However, the quality of evidence is 'very low'; therefore, the magnitude of this association should be interpreted with caution.© The Author 2017. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

Eldridge A, Guyot P, Moscoso P, Johnston A, Eyre-Walker Y, Peck M (2018)

Sounding out ecoacoustic metrics: Avian species richness is predicted by acoustic indices in temperate but not tropical habitats

Ecological Indicators, 95, 939-952.

DOI:10.1016/j.ecolind.2018.06.012      URL     [本文引用: 1]

Estabrook BJ, Ponirakis DW, Clark CW, Rice AN (2016)

Widespread spatial and temporal extent of anthropogenic noise across the northeastern Gulf of Mexico shelf ecosystem

Endangered Species Research, 30, 267-282.

DOI:10.3354/esr00743      URL     [本文引用: 1]

Fan PL, Liu RS, Grueter CC, Li F, Wu F, Huang TP, Yao H, Liu DZ, Liu XC (2019)

Individuality in coo calls of adult male golden snub-nosed monkeys (Rhinopithecus roxellana) living in a multilevel society

Animal Cognition, 22, 71-79.

DOI:10.1007/s10071-018-1222-y      PMID:30460512      [本文引用: 1]

Vocal individuality is a prerequisite for individual recognition, especially when visual and chemical cues are not available or effective. Vocalizations encoding information of individual identity have been reported in many social animals and should be particularly adaptive for species living in large and complexly organized societies. Here, we examined the individuality in coo calls of adult male golden snub-nosed monkeys (Rhinopithecus roxellana) living in a large and multilevel society. Coo calls are one of the most frequently occurring call types in R. roxellana and likely serve as the signals for contact maintenance or advertisement in various contexts including group movement, foraging, and resting. From April to October 2016, April to July 2017, and September to October 2017, we recorded a total of 721 coo calls from six adult males in a provisioned, free-ranging group and one adult male in captivity in Shennongjia National Park, China. We selected 162 high-quality recordings to extract 14 acoustic parameters based on the source-filter theory. Results showed that each of all parameters significantly differed among individuals, while pairwise comparisons failed to detect any parameter that was different between all pairs. Furthermore, a discriminant function analysis indicated that the correct assignment rate was 80.2% (cross-validation: 67.3%), greater than expected by chance (14.3%). In conclusion, we found evidence that coo calls of adult male R. roxellana allowed the reliable accuracy of individual discrimination complementarily enhanced by multiple acoustic parameters. The results of our study point to the selective pressures acting on individual discrimination via vocal signals in a highly gregarious forest-living primate.

Fang GZ, Xue F, Yang P, Cui JG, Brauth SE, Tang YZ (2014)

Right ear advantage for vocal communication in frogs results from both structural asymmetry and attention modulation

Behavioural Brain Research, 266, 77-84.

DOI:10.1016/j.bbr.2014.02.042      PMID:24613236      [本文引用: 1]

Right-ear/left-hemisphere advantage (REA) in processing species-specific vocalizations has been demonstrated in mammals including humans. Two models for REA are typically proposed, a structural model and an attentional model. These hypotheses were tested in an anuran species, the Emei music frog (Babina daunchina) in which females strongly prefer male calls produced from inside mud-retuse burrows (high sexual attractiveness or HSA calls) to those produced in open fields (low sexual attractiveness or LSA calls). Isochronic playbacks were used to control for attention to stimuli presented to either the left or right sides of female subjects while electroencephalogram (EEG) signals were recorded from the left and right midbrain and telencephalon. The results show that relative EEG power in the delta band declined while those of the alpha and beta bands increased with time in the left but not the right midbrain. Since the anuran midbrain receives auditory information derived primarily from the contralateral auditory nerve, these results support the idea that REA occurs in frogs because communication sounds are processed preferentially in the left midbrain. Furthermore, though differences in the dynamic changes of the delta, alpha and beta bands in the left midbrain between acoustic stimuli were not statistically significant, these changes were stronger during the playback of HSA calls toward which females tend to allocate greater attentional resources. These results imply that REA in frogs results from the combined effects of structural asymmetry and attention modulation. Copyright © 2014 Elsevier B.V. All rights reserved.

Fang GZ, Yang P, Xue F, Cui JG, Brauth SE, Tang YZ (2015)

Sound classification and call discrimination are decoded in order as revealed by event-related potential components in frogs

Brain, Behavior and Evolution, 86, 232-245.

DOI:10.1159/000441215      URL     [本文引用: 1]

Farina A (2014)

Soundscape Ecology: Principles, Patterns, Methods and Applications

Springer, New York.

[本文引用: 3]

Farina A, Gage SH (2017)

Ecoacoustics: The Ecological Role of Sounds

Wiley, Hoboken.

[本文引用: 3]

Feng AS, Narins PM, Xu CH, Lin WY, Yu ZL, Qiu Q, Xu ZM, Shen JX (2006)

Ultrasonic communication in frogs

Nature, 440, 333-336.

DOI:10.1038/nature04416      URL     [本文引用: 2]

Feng J, Chen M, Li ZX, Zhao HH, Zhou J, Zhang SY (2002)

Relationship between echolocation frequency and body size in eight species of horseshoe bats (Rhinolophidae)

Acta Zoologica Sinica, 48, 819-823. (in Chinese with English abstract)

[本文引用: 1]

[冯江, 陈敏, 李振新, 赵辉华, 周江, 张树义 (2002)

八种菊头蝠回声定位声波频率与体型的相关性

动物学报, 48, 819-823.]

[本文引用: 1]

Francis CD, Barber JR (2013)

A framework for understanding noise impacts on wildlife: An urgent conservation priority

Frontiers in Ecology and the Environment, 11, 305-313.

DOI:10.1890/120183      URL     [本文引用: 4]

Francis CD, Kleist NJ, Ortega CP, Cruz A (2012)

Noise pollution alters ecological services:Enhanced pollination and disrupted seed dispersal

Proceedings of the Royal Society B: Biological Sciences, 279, 2727-2735.

[本文引用: 1]

Francis CD, Ortega CP, Cruz A (2009)

Noise pollution changes avian communities and species interactions

Current Biology, 19, 1415-1419.

DOI:10.1016/j.cub.2009.06.052      PMID:19631542      [本文引用: 1]

Humans have drastically changed much of the world's acoustic background with anthropogenic sounds that are markedly different in pitch and amplitude than sounds in most natural habitats. This novel acoustic background may be detrimental for many species, particularly birds. We evaluated conservation concerns that noise limits bird distributions and reduces nesting success via a natural experiment to isolate the effects of noise from confounding stimuli and to control for the effect of noise on observer detection biases. We show that noise alone reduces nesting species richness and leads to different avian communities. Contrary to expectations, noise indirectly facilitates reproductive success of individuals nesting in noisy areas as a result of the disruption of predator-prey interactions. The higher reproductive success for birds within noisy habitats may be a previously unrecognized factor contributing to the success of urban-adapted species and the loss of birds less tolerant of noise. Additionally, our findings suggest that noise can have cascading consequences for communities through altered species interactions. Given that noise pollution is becoming ubiquitous throughout much of the world, knowledge of species-specific responses to noise and the cumulative effects of these novel acoustics may be crucial to understanding and managing human-altered landscapes.

Fu ZY, Tang J, Hung-Sun JP, Chen QC (2009)

Spectrum characteristics of echolocation call and frequency tuning of inferior collicular neurons in Hipposideros armiger

Chinese Journal of Zoology, 44, 128-132. (in Chinese with English abstract)

[本文引用: 1]

[付子英, 唐佳, Hung-Sun JP, 陈其才 (2009)

大蹄蝠回声定位信号特征与下丘神经元频率调谐

动物学杂志, 44, 128-132.]

[本文引用: 1]

Gasc A, Pavoine S, Lellouch L, Grandcolas P, Sueur J (2015)

Acoustic indices for biodiversity assessments: Analyses of bias based on simulated bird assemblages and recommendations for field surveys

Biological Conservation, 191, 306-312.

DOI:10.1016/j.biocon.2015.06.018      URL     [本文引用: 1]

Gerhardt HC, Huber F (2002) Acoustic Communication in Insects and Frogs:Common Problems and Diverse Solutions. University of Chicago Press, Chicago.

[本文引用: 1]

Guerra V, Llusia D, Gambale PG, de Morais AR, Márquez R, Bastos RP (2018)

The advertisement calls of Brazilian anurans: Historical review, current knowledge and future directions

PLoS ONE, 13, e0191691.

[本文引用: 1]

Halfwerk W, Bot S, Buikx J, van der Velde M, Komdeur J ten Cate C, Slabbekoorn H (2011)

Low-frequency songs lose their potency in noisy urban conditions

Proceedings of the National Academy of Sciences, USA, 108, 14549-14554.

[本文引用: 1]

Han LX, Yang L, Zheng BL (1988)

The sound spectrographic analyses on the calls of lady amherst’s pheasants (Chrysolophus amherstiae)

Zoological Research, 9, 127-132. (in Chinese with English abstract)

[本文引用: 1]

[韩联宪, 杨岚, 郑宝赉 (1988)

白腹锦鸡鸣声的声谱分析

动物学研究, 9, 127-132.]

[本文引用: 1]

Han YC, Jiang SR, Ding P (2004)

Effects of ambient noise on the vocal frequency of Chinese bulbuls, Pycnonotus sinenesis in Linan and Fuyang Cities

Zoological Research, 25, 122-126. (in Chinese with English abstract)

[本文引用: 1]

[韩轶才, 姜仕仁, 丁平 (2004)

环境噪声对临安和阜阳两地白头鹎鸣声频率的影响

动物学研究, 25, 122-126.]

[本文引用: 1]

Hang SY, Zhao J, Ji BM, Li HJ, Zhang YD, Peng ZQ, Zhou F, Ding XY, Ye ZY (2021)

Impact of underwater noise on the growth, physiology and behavior of Micropterus salmoides in industrial recirculating aquaculture systems

Environmental Pollution, 291, 118152.

[本文引用: 3]

Hao PP, Zhang YY (2020)

Acoustic characteristics and vocal rhythms of three pheasant species using automatic recording in Xiaolongmen, Beijing

Chinese Journal of Zoology, 55, 552-559. (in Chinese with English abstract)

[本文引用: 1]

[郝佩佩, 张雁云 (2020)

基于自动录音技术研究三种雉类鸣叫特征和节律

动物学杂志, 55, 552-559.]

[本文引用: 1]

He K, Liu Q, Xu DM, Qi FY, Bai J, He SW, Chen P, Zhou X, Cai WZ, Chen ZZ, Liu Z, Jiang XL, Shi P (2021)

Echolocation in soft-furred tree mice

Science, 372, eaay1513.

[本文引用: 1]

Henry L, Barbu S, Lemasson A, Hausberger M (2015)

Dialects in animals: Evidence, development and potential functions

Animal Behavior and Cognition, 2, 132-155.

DOI:10.12966/abc.05.03.2015      URL     [本文引用: 1]

Hildebrand J (2004)

Sources of Anthropogenic Sound in the Marine Environment

International Policy Workshop on Sound and Marine Mammals, London, UK.

[本文引用: 1]

Hou ZH, Liu YX, Wei SS, Wei C (2022)

Females prefer males producing a high-rate song with shorter timbal-stridulatory sound intervals in a cicada species

Current Zoology, 68, 103-112.

DOI:10.1093/cz/zoab061      PMID:35169633      [本文引用: 1]

Uncovering mate choice and factors that lead to the choice are very important to understanding sexual selection in evolutionary change. Cicadas are known for their loud sounds produced by males using the timbals. However, males in certain cicada species emit 2 kinds of sounds using respectively timbals and stridulatory organs, and females may produce their own sounds to respond to males. What has never been considered is the mate choice in such cicada species. Here, we investigate the sexual selection and potential impact of predation pressure on mate choice in the cicada Chen. It possesses stridulatory sound-producing organs in both sexes in addition to the timbals in males. Results show that males producing calling songs with shorter timbal-stridulatory sound intervals and a higher call rate achieved greater mating success. No morphological traits were found to be correlated with mating success in both sexes, suggesting neither males nor females display mate preference for the opposite sex based on morphological traits. Males do not discriminate among responding females during mate searching, which may be due to the high energy costs associated with their unusual mate-seeking activity and the male-biased predation pressure. Females generally mate once but a minority of them re-mated after oviposition which, combined with the desirable acoustic traits of males, suggest females may maximize their reproductive success by choosing a high-quality male in the first place. This study contributes to our understanding mechanisms of sexual selection in cicadas and other insects suffering selective pressure from predators.© The Author(s) (2021). Published by Oxford University Press on behalf of Editorial Office, Current Zoology.

Jiang HS, Feng M, Lin SR (1990)

Preliminary investigation on communication behavior of rhesus monkey Macaca mulatta in field

Zoological Research, 11, 303-309. (in Chinese with English abstract)

[本文引用: 1]

[江海声, 冯敏, 林淑然 (1990)

野生猕猴(Macaca mulatta)通讯行为的初步研究

动物学研究, 11, 303-309.]

[本文引用: 1]

Jiang JJ, Wang XQ, Duan FJ, Li CY, Fu X, Huang TT, Bu LR, Ma L, Sun ZB (2018)

Bio-inspired covert active sonar strategy

Sensors, 18, 2436.

DOI:10.3390/s18082436      URL     [本文引用: 1]

Jiang SR, Ding P, Shi QS, Zhuge Y (1996a)

Studies on the song dialects in Chinese bulbuls

Acta Zoologica Sinica, 42, 361-367. (in Chinese with English abstract)

[本文引用: 1]

[姜仕仁, 丁平, 施青松, 诸葛阳 (1996a)

白头鹎方言的初步研究

动物学报, 42, 361-367.]

[本文引用: 1]

Jiang SR, Ding P, Zhuge Y, Wu YC (1996b)

Characteristics off songs of the Chinese bulbul (Pycnonotus sinenesis) in the breeding season

Acta Zoologica Sinica, 42, 253-259. (in Chinese with English abstract)

[姜仕仁, 丁平, 诸葛阳, 邬艳春 (1996b)

白头鹎繁殖期鸣声行为的研究

动物学报, 42, 253-259.]

Jiang TL, Guo X, Lin AQ, Wu H, Sun CN, Feng J, Kanwal JS (2019)

Bats increase vocal amplitude and decrease vocal complexity to mitigate noise interference during social communication

Animal Cognition, 22, 199-212.

[本文引用: 1]

Jiang XL, Wang YX (1997)

The singing ecology and behavior of black-crested gibbons

Acta Anthropologica Sinica, 16, 40-48. (in Chinese with English abstract)

[本文引用: 1]

[蒋学龙, 王应祥 (1997)

黑长臂猿(Hylobates concolor)鸣叫行为研究

人类学学报, 16, 40-48.]

[本文引用: 1]

Jing XY, Xiao YF, Jing RC (1981)

Acoustic signals and behavior of Chinese river dolphin

(Lipotes vexillifer). Scientia Sinca, 2, 233-239. (in Chinese with English abstract)

[本文引用: 1]

[荆显英, 肖友芙, 景荣才 (1981)

白暨豚(Lipotes vexillifer)的声信号及声行为

中国科学, 2, 233-239.]

[本文引用: 1]

Kight CR, Swaddle JP (2011)

How and why environmental noise impacts animals: An integrative, mechanistic review

Ecology Letters, 14, 1052-1061.

DOI:10.1111/j.1461-0248.2011.01664.x      PMID:21806743      [本文引用: 2]

The scope and magnitude of anthropogenic noise pollution are often much greater than those of natural noise and are predicted to have an array of deleterious effects on wildlife. Recent work on this topic has focused mainly on behavioural responses of animals exposed to noise. Here, by outlining the effects of acoustic stimuli on animal physiology, development, neural function and genetic effects, we advocate the use of a more mechanistic approach in anthropogenic environments. Specifically, we summarise evidence and hypotheses from research on laboratory, domestic and free-living animals exposed to biotic and abiotic stimuli, studied both observationally and experimentally. We hope that this molecular- and cellular-focused literature, which examines the effects of noise on the neuroendocrine system, reproduction and development, metabolism, cardiovascular health, cognition and sleep, audition, the immune system, and DNA integrity and gene expression, will help researchers better understand results of previous work, as well as identify new avenues of future research in anthropogenic environments. Furthermore, given the interconnectedness of these physiological, cellular and genetic processes, and their effects on behaviour and fitness, we suggest that much can be learned from a more integrative framework of how and why animals are affected by environmental noise.© 2011 Blackwell Publishing Ltd/CNRS.

Kleist NJ, Guralnick RP, Cruz A, Lowry CA, Francis CD (2018)

Chronic anthropogenic noise disrupts glucocorticoid signaling and has multiple effects on fitness in an avian community

Proceedings of the National Academy of Sciences, USA, 115, E648-E657.

[本文引用: 1]

Köhler J, Jansen M, Rodríguez A, Kok PJR, Toledo LF, Emmrich M, Glaw F, Haddad CFB, Rödel MO, Vences M (2017)

The use of bioacoustics in anuran taxonomy: Theory, terminology, methods and recommendations for best practice

Zootaxa, 4251, 1-124.

DOI:10.11646/zootaxa.4251.1.1      PMID:28609991      [本文引用: 2]

Vocalizations of anuran amphibians have received much attention in studies of behavioral ecology and physiology, but also provide informative characters for identifying and delimiting species. We here review the terminology and variation of frog calls from a perspective of integrative taxonomy, and provide hands-on protocols for recording, analyzing, comparing, interpreting and describing these sounds. Our focus is on advertisement calls, which serve as premating isolation mechanisms and, therefore, convey important taxonomic information. We provide recommendations for terminology of frog vocalizations, with call, note and pulse being the fundamental subunits to be used in descriptions and comparisons. However, due to the complexity and diversity of these signals, an unequivocal application of the terms call and note can be challenging. We therefore provide two coherent concepts that either follow a note-centered approach (defining uninterrupted units of sound as notes, and their entirety as call) or a call-centered approach (defining uninterrupted units as call whenever they are separated by long silent intervals) in terminology. Based on surveys of literature, we show that numerous call traits can be highly variable within and between individuals of one species. Despite idiosyncrasies of species and higher taxa, the duration of calls or notes, pulse rate within notes, and number of pulses per note appear to be more static within individuals and somewhat less affected by temperature. Therefore, these variables might often be preferable as taxonomic characters over call rate or note rate, which are heavily influenced by various factors. Dominant frequency is also comparatively static and only weakly affected by temperature, but depends strongly on body size. As with other taxonomic characters, strong call divergence is typically indicative of species-level differences, whereas call similarities of two populations are no evidence for them being conspecific. Taxonomic conclusions can especially be drawn when the general advertisement call structure of two candidate species is radically different and qualitative call differences are thus observed. On the other hand, quantitative differences in call traits might substantially vary within and among conspecific populations, and require careful evaluation and analysis. We provide guidelines for the taxonomic interpretation of advertisement call differences in sympatric and allopatric situations, and emphasize the need for an integrative use of multiple datasets (bio-acoustics, morphology, genetics), particularly for allopatric scenarios. We show that small-sized frogs often emit calls with frequency components in the ultrasound spectrum, although it is unlikely that these high frequencies are of biological relevance for the majority of them, and we illustrate that detection of upper harmonics depends also on recording distance because higher frequencies are attenuated more strongly. Bioacoustics remains a prime approach in integrative taxonomy of anurans if uncertainty due to possible intraspecific variation and technical artifacts is adequately considered and acknowledged.

Krause BL (1993)

The niche hypothesis: A virtual symphony of animal sounds, the origins of musical expression and the health of habitats

The Soundscape Newsletter, 6, 6-10.

[本文引用: 1]

Kuna VM, Nábělek JL (2021)

Seismic crustal imaging using fin whale songs

Science, 371, 731-735.

DOI:10.1126/science.abf3962      PMID:33574212      [本文引用: 1]

Fin whale calls are among the strongest animal vocalizations that are detectable over great distances in the oceans. We analyze fin whale songs recorded at ocean-bottom seismometers in the northeast Pacific Ocean and show that in addition to the waterborne signal, the song recordings also contain signals reflected and refracted from crustal interfaces beneath the stations. With these data, we constrain the thickness and seismic velocity of the oceanic sediment and basaltic basement and the -wave velocity of the gabbroic lower crust beneath and around the ocean bottom seismic stations. The abundant and globally available fin whale calls may be used to complement seismic studies in situations where conventional air-gun surveys are not available.Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

Ladich F (2014)

Fish bioacoustics

Current Opinion in Neurobiology, 28, 121-127.

DOI:10.1016/j.conb.2014.06.013      PMID:25062472      [本文引用: 2]

Bony fishes have evolved a diversity of sound generating mechanisms and produce a variety of sounds. By contrast to sound generating mechanisms, which are lacking in several taxa, all fish species possess inner ears for sound detection. Fishes may also have various accessory structures such as auditory ossicles to improve hearing. The distribution of sound generating mechanisms and accessory hearing structures among fishes indicates that acoustic communication was not the driving force in their evolution. It is proposed here that different constraints influenced hearing and sound production during fish evolution, namely certain life history traits (territoriality, mate attraction) in the case of sound generating mechanisms, and adaptation to different soundscapes (ambient noise conditions) in accessory hearing structures (Ecoacoustical constraints hypothesis). Copyright © 2014 Elsevier Ltd. All rights reserved.

Lahoz-Monfort JJ, Magrath MJL (2021)

A comprehensive overview of technologies for species and habitat monitoring and conservation

BioScience, 71, 1038-1062.

DOI:10.1093/biosci/biab073      PMID:34616236      [本文引用: 2]

The range of technologies currently used in biodiversity conservation is staggering, with innovative uses often adopted from other disciplines and being trialed in the field. We provide the first comprehensive overview of the current (2020) landscape of conservation technology, encompassing technologies for monitoring wildlife and habitats, as well as for on-the-ground conservation management (e.g., fighting illegal activities). We cover both established technologies (routinely deployed in conservation, backed by substantial field experience and scientific literature) and novel technologies or technology applications (typically at trial stage, only recently used in conservation), providing examples of conservation applications for both types. We describe technologies that deploy sensors that are fixed or portable, attached to vehicles (terrestrial, aquatic, or airborne) or to animals (biologging), complemented with a section on wildlife tracking. The last two sections cover actuators and computing (including web platforms, algorithms, and artificial intelligence).© The Author(s) 2021. Published by Oxford University Press on behalf of the American Institute of Biological Sciences.

Laiolo P (2010)

The emerging significance of bioacoustics in animal species conservation

Biological Conservation, 143, 1635-1645.

DOI:10.1016/j.biocon.2010.03.025      URL     [本文引用: 4]

Lan SC (1958)

Songs of birds

Chinese Journal of Zoology, 2, 230-233. (in Chinese)

[本文引用: 1]

[蓝书成 (1958)

鸟类的鸣叫

动物学杂志, 2, 230-233.]

[本文引用: 1]

Lei FM, Wang AZ, Wang G, Yin ZH (2005)

Vocalizations of red-necked snow finch, Pyrgilauda ruficollis on the Tibetan Plateau, China—A syllable taxonomic signal?

Folia Zoologica, 54, 135-146.

[本文引用: 2]

Lewis RN, Williams LJ, Gilman RT (2021)

The uses and implications of avian vocalizations for conservation planning

Conservation Biology, 35, 50-63.

DOI:10.1111/cobi.13465      URL     [本文引用: 2]

Li BG, Chen FG, Luo SY, Xie WZ (1993)

Major categories of vocal behavior in wild Sichuan golden monkey (Rhinopithecus roxellanae)

Acta Theriologica Sinica, 13, 181-187.

[本文引用: 1]

Li FH, Lu YG, Wang HB, Guo YG, Zhang F (2019)

Technological progress and development trend of ocean bottom observatory network

Bulletin of Chinese Academy of Sciences, 34, 321-330. (in Chinese with English abstract)

[本文引用: 2]

[李风华, 路艳国, 王海斌, 郭永刚, 张飞 (2019)

海底观测网的研究进展与发展趋势

中国科学院院刊, 34, 321-330.]

[本文引用: 2]

Li PX, Yu XF, Chi Q (1989)

The preliminary studies on the structure of sound of breeding yellow throated bunting

Wildlife, 52, 47-50. (in Chinese with English abstract)

[本文引用: 1]

[李佩珣, 于学锋, 迟清 (1989)

黄喉鹀繁殖期鸣声结构的初步研究

野生动物, 52, 47-50.]

[本文引用: 1]

Li S, Wei G, Xu N, Cui J, Fei L, Jiang J, Liu J, Wang B (2019)

A new species of the Asian music frog genus Nidirana (Amphibia, Anura, Ranidae) from Southwestern China

PeerJ, 7, e7157.

Li SH, Wang D, Wang KX, Taylor EA, Cros E, Shi WJ, Wang ZT, Fang L, Chen YF, Kong FM (2012)

Evoked-potential audiogram of an Indo-Pacific humpback dolphin (Sousa chinensis)

Journal of Experimental Biology, 215, 3055-3063.

[本文引用: 1]

Li YY, Liu Z, Qi FY, Zhou X, Shi P (2017)

Functional effects of a retained ancestral polymorphism in prestin

Molecular Biology and Evolution, 34, 88-92.

DOI:10.1093/molbev/msw222      URL     [本文引用: 1]

Lin TH, Tsao Y (2020)

Source separation in ecoacoustics: A roadmap towards versatile soundscape information retrieval

Remote Sensing in Ecology and Conservation, 6, 236-247.

DOI:10.1002/rse2.141      URL    

Liu M, Wei QW, Du H, Fu ZY, Chen QC (2013)

Auditory thresholds of Chinese sucker Myxocyprinus asiaticus

Journal of Fishery Sciences of China, 20, 750-757. (in Chinese with English abstract)

DOI:10.3724/SP.J.1118.2013.00750      URL     [本文引用: 1]

[刘猛, 危起伟, 杜浩, 付子英, 陈其才 (2013)

胭脂鱼听觉阈值研究

中国水产科学, 20, 750-757.]

[本文引用: 1]

Liu SL, Xie Q, Jiang AW, Goodale E (2022)

Investigating how different classes of nest predators respond to the playback of the begging calls of nestling birds

Avian Research, 13, 100044.

[本文引用: 1]

Liu Z, Chen P, Xu DM, Qi FY, Guo YT, Liu Q, Bai J, Zhou X, Shi P (2022)

Molecular convergence and transgenic evidence suggest a single origin of laryngeal echolocation in bats

iScience, 25, 104114.

[本文引用: 1]

Liu Z, Qi FY, Xu DM, Zhou X, Shi P (2018)

Genomic and functional evidence reveals molecular insights into the origin of echolocation in whales

Science Advances, 4, eaat8821.

[本文引用: 1]

Liu Z, Qi FY, Zhou X, Ren HQ, Shi P (2014)

Parallel sites implicate functional convergence of the hearing gene prestin among echolocating mammals

Molecular Biology and Evolution, 31, 2415-2424.

DOI:10.1093/molbev/msu194      PMID:24951728      [本文引用: 1]

Echolocation is a sensory system whereby certain mammals navigate and forage using sound waves, usually in environments where visibility is limited. Curiously, echolocation has evolved independently in bats and whales, which occupy entirely different environments. Based on this phenotypic convergence, recent studies identified several echolocation-related genes with parallel sites at the protein sequence level among different echolocating mammals, and among these, prestin seems the most promising. Although previous studies analyzed the evolutionary mechanism of prestin, the functional roles of the parallel sites in the evolution of mammalian echolocation are not clear. By functional assays, we show that a key parameter of prestin function, 1/α, is increased in all echolocating mammals and that the N7T parallel substitution accounted for this functional convergence. Moreover, another parameter, V1/2, was shifted toward the depolarization direction in a toothed whale, the bottlenose dolphin (Tursiops truncatus) and a constant-frequency (CF) bat, the Stoliczka's trident bat (Aselliscus stoliczkanus). The parallel site of I384T between toothed whales and CF bats was responsible for this functional convergence. Furthermore, the two parameters (1/α and V1/2) were correlated with mammalian high-frequency hearing, suggesting that the convergent changes of the prestin function in echolocating mammals may play important roles in mammalian echolocation. To our knowledge, these findings present the functional patterns of echolocation-related genes in echolocating mammals for the first time and rigorously demonstrate adaptive parallel evolution at the protein sequence level, paving the way to insights into the molecular mechanism underlying mammalian echolocation. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

Lomolino MV, Pijanowski BC, Gasc A (2015)

The silence of biogeography

Journal of Biogeography, 42, 1187-1196.

DOI:10.1111/jbi.12525      URL     [本文引用: 1]

Lu MM, Zhang GM, Luo JH (2020)

Echolocating bats exhibit differential amplitude compensation for noise interference at a sub-call level

Journal of Experimental Biology, 223, jeb225284.

[本文引用: 1]

Lu TC, He FQ, Lu CL (1986)

On the call of the Chinese monal (Lophophorus lhuysii)

Acta Ecologica Sinica, 6, 87-88. (in Chinese with English abstract)

[本文引用: 1]

[卢汰春, 何芬奇, 卢春雷 (1986)

绿尾虹雉叫声的声谱分析

生态学报, 6, 87-88.]

[本文引用: 1]

Luo CQ, Wei C (2015)

Intraspecific sexual mimicry for finding females in a cicada: Males produce ‘female sounds’ to gain reproductive benefit

Animal Behaviour, 102, 69-76.

DOI:10.1016/j.anbehav.2015.01.013      URL     [本文引用: 1]

Luo JH, Lu MM, Wang XD, Wang HM, Moss CF (2022)

Doppler shift compensation performance in Hipposideros pratti across experimental paradigms

Frontiers in Systems Neuroscience, 16, 920703.

[本文引用: 1]

Luo JH, Siemers BM, Koselj K (2015)

How anthropogenic noise affects foraging

Global Change Biology, 21, 3278-3289.

DOI:10.1111/gcb.12997      PMID:26046451      [本文引用: 2]

The influence of human activity on the biosphere is increasing. While direct damage (e.g. habitat destruction) is relatively well understood, many activities affect wildlife in less apparent ways. Here, we investigate how anthropogenic noise impairs foraging, which has direct consequences for animal survival and reproductive success. Noise can disturb foraging via several mechanisms that may operate simultaneously, and thus, their effects could not be disentangled hitherto. We developed a diagnostic framework that can be applied to identify the potential mechanisms of disturbance in any species capable of detecting the noise. We tested this framework using Daubenton's bats, which find prey by echolocation. We found that traffic noise reduced foraging efficiency in most bats. Unexpectedly, this effect was present even if the playback noise did not overlap in frequency with the prey echoes. Neither overlapping noise nor nonoverlapping noise influenced the search effort required for a successful prey capture. Hence, noise did not mask prey echoes or reduce the attention of bats. Instead, noise acted as an aversive stimulus that caused avoidance response, thereby reducing foraging efficiency. We conclude that conservation policies may seriously underestimate numbers of species affected and the multilevel effects on animal fitness, if the mechanisms of disturbance are not considered. © 2015 John Wiley & Sons Ltd.

Martínez TM, Logue DM (2020)

Conservation practices and the formation of vocal dialects in the endangered Puerto Rican parrot, Amazona vittata

Animal Behaviour, 166, 261-271.

DOI:10.1016/j.anbehav.2020.06.004      URL     [本文引用: 1]

McAfee K (1999)

Selling nature to save it? Biodiversity and green developmentalism

Environment and Planning D: Society and Space, 17, 133-154.

DOI:10.1068/d170133      URL     [本文引用: 1]

Mellinger DK (2011)

Introduction to animal bioacoustics

The Journal of the Acoustical Society of America, 129, 2406.

[本文引用: 1]

Montgomery JC, Radford CA (2017)

Marine bioacoustics

Current Biology, 27, R502-R507.

[本文引用: 1]

Morton ES (1975)

Ecological sources of selection on avian sounds

The American Naturalist, 109, 17-34.

DOI:10.1086/282971      URL     [本文引用: 1]

Nowacek DP, Christiansen F, Bejder L, Goldbogen JA, Friedlaender AS (2016)

Studying cetacean behaviour: New technological approaches and conservation applications

Animal Behaviour, 120, 235-244.

DOI:10.1016/j.anbehav.2016.07.019      URL     [本文引用: 1]

Obrist MK, Pavan G, Sueur J, Riede K, Llusia D, Marquez R (2010)

Bioacoustics approaches in biodiversity inventories

Abc Taxa, 8, 68-99.

[本文引用: 2]

Odom KJ, Araya-Salas M, Morano JL, Ligon RA, Leighton GM, Taff CC, Dalziell AH, Billings AC, Germain RR, Pardo M, de Andrade LG, Hedwig D, Keen SC, Shiu Y, Charif RA, Webster MS, Rice AN (2021)

Comparative bioacoustics: A roadmap for quantifying and comparing animal sounds across diverse taxa

Biological Reviews of the Cambridge Philosophical Society, 96, 1135-1159.

DOI:10.1111/brv.12695      PMID:33652499      [本文引用: 3]

Animals produce a wide array of sounds with highly variable acoustic structures. It is possible to understand the causes and consequences of this variation across taxa with phylogenetic comparative analyses. Acoustic and evolutionary analyses are rapidly increasing in sophistication such that choosing appropriate acoustic and evolutionary approaches is increasingly difficult. However, the correct choice of analysis can have profound effects on output and evolutionary inferences. Here, we identify and address some of the challenges for this growing field by providing a roadmap for quantifying and comparing sound in a phylogenetic context for researchers with a broad range of scientific backgrounds. Sound, as a continuous, multidimensional trait can be particularly challenging to measure because it can be hard to identify variables that can be compared across taxa and it is also no small feat to process and analyse the resulting high-dimensional acoustic data using approaches that are appropriate for subsequent evolutionary analysis. Additionally, terminological inconsistencies and the role of learning in the development of acoustic traits need to be considered. Phylogenetic comparative analyses also have their own sets of caveats to consider. We provide a set of recommendations for delimiting acoustic signals into discrete, comparable acoustic units. We also present a three-stage workflow for extracting relevant acoustic data, including options for multivariate analyses and dimensionality reduction that is compatible with phylogenetic comparative analysis. We then summarize available phylogenetic comparative approaches and how they have been used in comparative bioacoustics, and address the limitations of comparative analyses with behavioural data. Lastly, we recommend how to apply these methods to acoustic data across a range of study systems. In this way, we provide an integrated framework to aid in quantitative analysis of cross-taxa variation in animal sounds for comparative phylogenetic analysis. In addition, we advocate the standardization of acoustic terminology across disciplines and taxa, adoption of automated methods for acoustic feature extraction, and establishment of strong data archival practices for acoustic recordings and data analyses. Combining such practices with our proposed workflow will greatly advance the reproducibility, biological interpretation, and longevity of comparative bioacoustic studies.© 2021 Cambridge Philosophical Society.

Oestreich WK, Fahlbusch JA, Cade DE, Calambokidis J, Margolina T, Joseph J, Friedlaender AS, McKenna MF, Stimpert AK, Southall BL, Goldbogen JA, Ryan JP (2020)

Animal-borne metrics enable acoustic detection of blue whale migration

Current Biology, 30, 4773-4779.

DOI:10.1016/j.cub.2020.08.105      URL     [本文引用: 1]

Paihas Y, Capus C, Brown K, Lane D (2013)

Benefits of dolphin inspired sonar for underwater object identification

In: In: Biomimetic and Biohybrid Systems (eds Lepora NF, Mura A, Krapp HG, Verschure PFMJ, Prescott TJ), pp. 36-46. Heidelberg, Berlin.

[本文引用: 1]

Pang BZ (1960)

Songs of birds

Chinese Journal of Zoology, 4, 304-307. (in Chinese)

[本文引用: 1]

[庞秉璋 (1960)

鸟类的效鸣Ⅱ

动物学杂志, 4, 304-307.]

[本文引用: 1]

Pang BZ (1964)

Songs of birds Ⅱ

Chinese Journal of Zoology, 8, 213-215. (in Chinese)

[本文引用: 1]

[庞秉璋 (1964)

鸟类的效鸣Ⅱ

动物学杂志, 8, 213-215.]

[本文引用: 1]

Parsons MJG, Lin TH, Mooney TA, Erbe C, Juanes F, Lammers M, Li SH, Linke S, Looby A, Nedelec SL, Van Opzeeland I, Radford C, Rice AN, Sayigh L, Stanley J, Urban E, Di Iorio L (2022)

Sounding the call for a global library of underwater biological sounds

Frontiers in Ecology and Evolution, 10, 810156.

[本文引用: 4]

Pijanowski BC, Farina A, Gage SH, Dumyahn SL, Krause BL (2011a)

What is soundscape ecology? An introduction and overview of an emerging new science

Landscape Ecology, 26, 1213-1232.

DOI:10.1007/s10980-011-9600-8      URL     [本文引用: 2]

Pijanowski BC, Villanueva-Rivera LJ, Dumyahn SL, Farina A, Krause BL, Napoletano BM, Gage SH, Pieretti N (2011b)

Soundscape ecology: The science of sound in the landscape

BioScience, 61, 203-216.

DOI:10.1525/bio.2011.61.3.6      URL     [本文引用: 4]

Popper AN, Dooling RJ (2002)

History of animal bioacoustics

The Journal of the Acoustical Society of America, 112, 2368.

[本文引用: 2]

Ritts M, Bakker K (2021)

Conservation acoustics: Animal sounds, audible natures, cheap nature

Geoforum, 124, 144-155.

DOI:10.1016/j.geoforum.2021.04.022      URL     [本文引用: 1]

Roe P, Eichinski P, Fuller RA, McDonald PG, Schwarzkopf L, Towsey M, Truskinger A, Tucker D, Watson DM (2021)

The Australian Acoustic Observatory

Methods in Ecology and Evolution, 12, 1802-1808.

DOI:10.1111/2041-210X.13660      URL     [本文引用: 5]

Ryan MJ (1988)

Coevolution of sender and receiver: Effect on local mate preferecnce in cricket frogs

Science, 240, 1786.

PMID:17842431      [本文引用: 1]

Mate recognition in frogs requires congruence of call characters, such as dominant frequency, and properties ofthe auditory system, such as frequency sensitivity of inner ear organs. Two neighboring populations of cricket frogs (Acri crepitans) exhibit statistically significant differences in the dominant frequency of the advertisement call and the frequency to which the basilar papilla of the inner ear is most sensitive. Call frequency and frequency sensitivity are matched within but differ between populations. These characters usually are negatively correlated with body size, and thus their congruence and coevolution often is explained by pleiotropic effects of size. However, within this species call frequency and frequency sensitivity ofthe basilar papilla evolved independent of body size, yielding local mate preferences that could contribute to genetic differentiation among neighboring populations.

Ryan MJ, Rand AS (2003)

Sexual selection in female perceptual space: How female túngara frogs perceive and respond to complex population variation in acoustic mating signals

Evolution, 57, 2608-2618.

PMID:14686535      [本文引用: 1]

Female preferences for male mating signals are often evaluated on single parameters in isolation or small suites of characters. Most signals, however, are composites of many individual parameters. In this study we quantified multivariate traits in the advertisement call of the túngara frog, Physalaemus pustulosus. We represented the calls in multidimensional scaling space and chose nine test calls to represent the range of population variation. We then tested females for phonotactic preference between calls in each pair of the nine test calls. We used statistics developed for paired comparisons in such "round robin" competitions to evaluate the null hypothesis of equal attractiveness, and to examine the degree to which females responded to calls as being different from or similar to one another in attractiveness. We then examined the attractiveness of each test call relative to all other test calls as a function of their location in multivariate acoustic space (the acoustic landscape) to visualize sexual selection on calls. Finally, we used methods from cognitive psychology to illustrate the females' perception of call attractiveness in multivariate space, and compared this perceptual landscape to the acoustic landscape of quantitative call variation. We show that correlations between individual call characters are not strong and thus there are few biomechanical constraints on their independent evolution. Most call variables differed among males, and there was high repeatability of call characters within males. Females often discriminated between pairs of calls from the population, and there were significant differences among calls in their attractiveness. Female preferences for calls were not stabilizing. The region of the acoustic landscape that was most attractive to females included the mean call but was not centered around it. The females' perceptual or preference landscape did not correlate with the call's acoustic landscape, and female perception of calls decreased rather than enhanced call differences.

Sanguineti M, Alessi J, Brunoldi M, Cannarile G, Cavalleri O, Cerruti R, Falzoi N, Gaberscek F, Gili C, Gnone G, Grosso D, Guidi C, Mandich A, Melchiorre C, Pesce A, Petrillo M, Taiuti MG, Valettini B, Viano G (2021)

An automated passive acoustic monitoring system for real time sperm whale (Physeter macrocephalus) threat prevention in the Mediterranean Sea

Applied Acoustics, 172, 107650.

[本文引用: 1]

Schafer RM (1977) The Tuning of the World. Knopf, New York.

[本文引用: 1]

Schöner MG, Simon R, Schöner CR (2016)

Acoustic communication in plant-animal interactions

Current Opinion in Plant Biology, 32, 88-95.

DOI:S1369-5266(16)30094-2      PMID:27423052      [本文引用: 1]

Acoustic communication is widespread and well-studied in animals but has been neglected in other organisms such as plants. However, there is growing evidence for acoustic communication in plant-animal interactions. While knowledge about active acoustic signalling in plants (i.e. active sound production) is still in its infancy, research on passive acoustic signalling (i.e. reflection of animal sounds) revealed that bat-dependent plants have adapted to the bats' echolocation systems by providing acoustic reflectors to attract their animal partners. Understanding the proximate mechanisms and ultimate causes of acoustic communication will shed light on an underestimated dimension of information transfer between plants and animals.Copyright © 2016 Elsevier Ltd. All rights reserved.

Senzaki M, Barber JR, Phillips JN, Carter NH, Cooper CB, Ditmer MA, Fristrup KM, McClure CJW, Mennitt DJ, Tyrrell LP, Vukomanovic J, Wilson AA, Francis CD (2020)

Sensory pollutants alter bird phenology and fitness across a continent

Nature, 587, 605-609.

DOI:10.1038/s41586-020-2903-7      URL     [本文引用: 3]

Shen JX (1989)

Frequency selectivity of primary auditory neurons in the bushcricket Gampsocleis gratiosa

Acta Acoustica, 6, 415-419. (in Chinese with English abstract)

[本文引用: 1]

[沈钧贤 (1989)

螽斯Gampsocleis gratiosa初级听觉神经元的频率选择特性

声学学报, 6, 415-419.]

[本文引用: 1]

Shen JX (1994)

Time parameter coding of acoustic signal of auditory interneurons in cicada

Chinese Science Bulletin, 39, 265-268. (in Chinese)

[本文引用: 1]

[沈钧贤 (1994)

蚱蝉听觉中间神经元对声信号时间参数的编码

科学通报, 39, 265-268.]

[本文引用: 1]

Shen JX, Xu ZM, Yu ZL, Wang S, Zheng DZ, Fan SC (2011)

Ultrasonic frogs show extraordinary sex differences in auditory frequency sensitivity

Nature Communications, 2, 342.

DOI:10.1038/ncomms1339      URL     [本文引用: 2]

Siemers BM, Schaub A (2011)

Hunting at the highway:Traffic noise reduces foraging efficiency in acoustic predators

Proceedings of the Royal Society B: Biological Sciences, 278, 1646-1652.

[本文引用: 1]

Simpson SD, Radford AN, Nedelec SL, Ferrari MCO, Chivers DP, McCormick MI, Meekan MG (2016)

Anthropogenic noise increases fish mortality by predation

Nature Communications, 7, 10544.

DOI:10.1038/ncomms10544      PMID:26847493      [本文引用: 1]

Noise-generating human activities affect hearing, communication and movement in terrestrial and aquatic animals, but direct evidence for impacts on survival is rare. We examined effects of motorboat noise on post-settlement survival and physiology of a prey fish species and its performance when exposed to predators. Both playback of motorboat noise and direct disturbance by motorboats elevated metabolic rate in Ambon damselfish (Pomacentrus amboinensis), which when stressed by motorboat noise responded less often and less rapidly to simulated predatory strikes. Prey were captured more readily by their natural predator (dusky dottyback, Pseudochromis fuscus) during exposure to motorboat noise compared with ambient conditions, and more than twice as many prey were consumed by the predator in field experiments when motorboats were passing. Our study suggests that a common source of noise in the marine environment has the potential to impact fish demography, highlighting the need to include anthropogenic noise in management plans.

Slabbekoorn H (2019)

Noise pollution

Current Biology, 29, R957-R960.

[本文引用: 1]

Slabbekoorn H, Dooling RJ, Popper AN, Fay RR (2018) Effects of Anthropogenic Noise on Animals. Springer, New York.

[本文引用: 3]

Slabbekoorn H, Peet M (2003)

Birds sing at a higher pitch in urban noise

Nature, 424, 267.

[本文引用: 1]

Solé M, Lenoir M, Fontuño JM, Durfort M, van der Schaar M, André M (2016)

Evidence of Cnidarians sensitivity to sound after exposure to low frequency noise underwater sources

Scientific Reports, 6, 37979.

DOI:10.1038/srep37979      URL     [本文引用: 2]

Song SJ, Chang Y, Wang DP, Jiang TL, Feng J, Lin AQ (2020)

Chronic traffic noise increases food intake and alters gene expression associated with metabolism and disease in bats

Journal of Applied Ecology, 57, 1915-1925.

DOI:10.1111/1365-2664.13710      URL     [本文引用: 1]

Stowell D (2022)

Computational bioacoustics with deep learning: A review and roadmap

PeerJ, 10, e13152.

[本文引用: 4]

Sueur J, Farina A (2015)

Ecoacoustics: The ecological investigation and interpretation of environmental sound

Biosemiotics, 8, 493-502.

DOI:10.1007/s12304-015-9248-x      URL     [本文引用: 6]

Sueur J, Farina A, Gasc A, Pieretti N, Pavoine S (2014)

Acoustic indices for biodiversity assessment and landscape investigation

Acta Acustica United with Acustica, 100, 772-781.

DOI:10.3813/AAA.918757      URL     [本文引用: 2]

Sugai LSM, Llusia D (2019)

Bioacoustic time capsules: Using acoustic monitoring to document biodiversity

Ecological Indicators, 99, 149-152.

DOI:10.1016/j.ecolind.2018.12.021      URL     [本文引用: 3]

Sugai LSM, Llusia D, Siqueira T, Silva TSF (2021)

Revisiting the drivers of acoustic similarities in tropical anuran assemblages

Ecology, 102, e03380.

Sugai LSM, Silva TSF, Ribeiro JW, Llusia D (2019)

Terrestrial passive acoustic monitoring: Review and perspectives

BioScience, 69, 15-25.

DOI:10.1093/biosci/biy147      [本文引用: 2]

Passive acoustic monitoring (PAM) is quickly gaining ground in ecological research, following global trends toward automated data collection and big data. Using unattended sound recording, PAM provides tools for long-term and cost-effective biodiversity monitoring. Still, the extent of the potential of this emerging method in terrestrial ecology is unknown. To quantify its application and guide future studies, we conducted a systematic review of terrestrial PAM, covering 460 articles published in 122 journals (1992-2018). During this period, PAM-related studies showed above a fifteenfold rise in publication and covered three developing phases: establishment, expansion, and consolidation. Overall, the research was mostly focused on bats (50%), occurred in northern temperate regions (65%), addressed activity patterns (25%), recorded at night (37%), used nonprogrammable recorders (61%), and performed manual acoustic analysis (58%), although their applications continue to diversify. The future agenda should include addressing the development of standardized procedures, automated analysis, and global initiatives to expand PAM to multiple taxa and regions.

Teixeira D, Maron M, van Rensburg BJ (2019)

Bioacoustic monitoring of animal vocal behavior for conservation

Conservation Science and Practice, 1, e72.

[本文引用: 2]

Themann CL, Masterson EA (2019)

Occupational noise exposure: A review of its effects, epidemiology, and impact with recommendations for reducing its burden

The Journal of the Acoustical Society of America, 146, 3879-3905.

DOI:10.1121/1.5134465      URL     [本文引用: 1]

Torricelli P, Lugli M, Pavan G (1990)

Analysis of sounds produced by male Padogobius martensi (Pisces, Gobiidae) and factors affecting their structural properties

Bioacoustics, 2, 261-275.

[本文引用: 1]

Towsey M, Wimmer J, Williamson I, Roe P (2014a)

The use of acoustic indices to determine avian species richness in audio-recordings of the environment

Ecological Informatics, 21, 110-119.

DOI:10.1016/j.ecoinf.2013.11.007      URL     [本文引用: 1]

Towsey M, Zhang L, Cottman-Fields M, Wimmer J, Zhang J, Roe P (2014b)

Visualization of long-duration acoustic recordings of the environment

Procedia Computer Science, 29, 703-712.

DOI:10.1016/j.procs.2014.05.063      URL     [本文引用: 1]

Tuia D, Kellenberger B, Beery S, Costelloe BR, Zuffi S, Risse B, Mathis A, Mathis MW, van Langevelde F, Burghardt T, Kays R, Klinck H, Wikelski M, Couzin ID, van Horn G, Crofoot MC, Stewart CV, Berger-Wolf T (2022)

Perspectives in machine learning for wildlife conservation

Nature Communications, 13, 792.

DOI:10.1038/s41467-022-27980-y      PMID:35140206      [本文引用: 3]

Inexpensive and accessible sensors are accelerating data acquisition in animal ecology. These technologies hold great potential for large-scale ecological understanding, but are limited by current processing approaches which inefficiently distill data into relevant information. We argue that animal ecologists can capitalize on large datasets generated by modern sensors by combining machine learning approaches with domain knowledge. Incorporating machine learning into ecological workflows could improve inputs for ecological models and lead to integrated hybrid modeling tools. This approach will require close interdisciplinary collaboration to ensure the quality of novel approaches and train a new generation of data scientists in ecology and conservation.© 2022. The Author(s).

Wale MA, Simpson SD, Radford AN (2013)

Noise negatively affects foraging and antipredator behaviour in shore crabs

Animal Behaviour, 86, 111-118

DOI:10.1016/j.anbehav.2013.05.001      URL     [本文引用: 1]

Walters CL, Freeman R, Collen A, Dietz C, Brock Fenton M, Jones G, Obrist MK, Puechmaille SJ, Sattler T, Siemers BM, Parsons S, Jones KE (2012)

A continental-scale tool for acoustic identification of European bats

Journal of Applied Ecology, 49, 1064-1074.

DOI:10.1111/j.1365-2664.2012.02182.x      URL     [本文引用: 1]

Wang D, Wang KX, Liu RJ, Chen PX, Chen G, Wang ZF, Lu WX, Yang SZ (1989)

A preliminary study of the acoustic behavior and auditory sensitivity of Lipotes vexillifer

Natural Science Journal of Xiangtan University, 11, 116-121. (in Chinese with English abstract)

[本文引用: 1]

[王丁, 王克雄, 刘仁俊, 陈佩薰, 谌刚, 王治藩, 卢文祥, 杨叔子 (1989)

白鳍豚声行为及听觉灵敏度的初步研究

湘潭大学自然科学学报, 11,116-121.]

[本文引用: 1]

Wang HM, Zhou YX, Li HH, Moss CF, Li XX, Luo JH (2022)

Sensory error drives fine motor adjustment

Proceedings of the National Academy of Sciences, USA, 119, e2201275119.

[本文引用: 1]

Wang TL, Li HD, Cui JG, Zhai XF, Shi HT, Wang JC (2019)

Auditory brainstem responses in the red-eared slider Trachemys scripta elegans (Testudoformes: Emydidae) reveal sexually dimorphic hearing sensitivity

Journal of Comparative Physiology A, 205, 847-854.

DOI:10.1007/s00359-019-01372-y      URL     [本文引用: 1]

Wang WW, Gao HM, Li CR, Deng YC, Zhou DY, Li YQ, Zhou WY, Luo B, Liang HY, Liu WQ, Wu P, Jing W, Feng J (2022)

Airport noise disturbs foraging behavior of Japanese pipistrelle bats

Ecology and Evolution, 12, e8976.

[本文引用: 1]

Wang ZT, Akamatsu T, Mei ZG, Dong LJ, Imaizumi T, Wang KX, Wang D (2015)

Frequent and prolonged nocturnal occupation of port areas by Yangtze finless porpoises (Neophocaena asiaeorientalis): Forced choice for feeding?

Integrative Zoology, 10, 122-132.

DOI:10.1111/1749-4877.12102      PMID:24920210      [本文引用: 1]

During the Yangtze Freshwater Dolphin Expedition 2012, Yangtze finless porpoises (Neophocaena asiaeorientalis) were acoustically monitored in 9 port areas at night. During 6566 min of nocturnal monitoring, porpoise sonar was detected for 488 min (7.43% of the total time). Of all 81 encounters, the longest echolocation span obtained was 102.9 min, suggesting frequent and prolonged porpoise occupation of the port areas. A combined total of 2091 click trains were recorded, with 129 (6.2%) containing minimum inter-click intervals (ICIs) below 10 ms (termed a buzz). Buzzes with a decrease in ICIs and search and approach phases that resembled feeding echolocation signals accounted for 44.2% (N=52) of all buzzes. Buzzes with an increase in ICIs, suggesting a mirrored prey capture phase, accounted for 20.2% (N=26) and could reflect attempts to locate escaped prey because they were followed by approach-phase feeding buzzes. Anecdotal evidence of porpoises fleeing the proximity of vessels was observed. The recordings indicating clusters of porpoises feeding near the port areas suggest a forced choice for feeding due to the relatively higher prey availability in the port areas compared to other areas in the Yangtze River that are probably overfished.© 2014 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and Wiley Publishing Asia Pty Ltd.

Wang ZT, Akamatsu T, Nowacek DP, Yuan J, Zhou L, Lei PY, Li J, Duan PX, Wang KX, Wang D (2019)

Soundscape of an Indo-Pacific humpback dolphin (Sousa chinensis) hotspot before windfarm construction in the Pearl River Estuary, China: Do dolphin engage in noise avoidance and passive eavesdropping behavior

Marine Pollution Bulletin, 140, 509-522.

DOI:10.1016/j.marpolbul.2019.02.013      URL     [本文引用: 1]

Wang ZT, Duan PX, Akamatsu T, Chen YW, An X, Yuan J, Lei PY, Li J, Zhou L, Liu MC, Yang YN, Fan F, Wang KX, Wang D (2021a)

Riverside underwater noise pollution threaten porpoises and fish along the middle and lower reaches of the Yangtze River, China

Ecotoxicology and Environmental Safety, 226, 112860.

[本文引用: 2]

Wang ZT, Duan PX, Chen M, Mei ZG, Sun XD, Nong ZW, Liu MH, Akamatsu T, Wang KX, Wang D (2022)

Vocalization of bryde’s whales (Balaenoptera edeni) in the Beibu Gulf, China

Marine Mammal Science, 38, 1118-1139.

DOI:10.1111/mms.12917      URL     [本文引用: 1]

Wang ZT, Duan PX, Wang KX, Wang D (2021b)

Noise pollution disrupts freshwater cetaceans

Science, 374, 1332-1333.

[本文引用: 2]

Wang ZT, Fang L, Shi WJ, Wang KX, Wang D (2013)

Whistle characteristics of free-ranging Indo-Pacific humpback dolphins (Sousa chinensis) in Sanniang Bay, China

The Journal of the Acoustical Society of America, 133, 2479-2489.

DOI:10.1121/1.4794390      URL     [本文引用: 2]

Wang ZT, Nowacek DP, Akamatsu T, Wang KX, Liu JC, Duan GQ, Cao HJ, Wang D (2017)

Diversity of fish sound types in the Pearl River Estuary, China

PeerJ, 5, e3924.

[本文引用: 1]

WHO World Health Organization (2005) Occupancy and Community Noise, WHO-OMS. http://www.who.int.inffs/ en/fact.html.

URL     [本文引用: 1]

Xiang J, Zou QL, Du H, Wang CY, Wei QW (2022)

Threshold of the Juvenile Acipenser dabryanus Dumeril

Acta Hydrobiologica Sinica, 46, 1564-1568. (in Chinese with English abstract)

[本文引用: 1]

[项杰, 邹巧林, 杜浩, 王成友, 危起伟 (2022)

长江鲟幼鱼的听觉阈值研究

水生生物学报, 46, 1564-1568.]

[本文引用: 1]

Xie J, Colonna JG, Zhang JL (2021)

Bioacoustic signal denoising: A review

Artificial Intelligence Review, 54, 3575-3597.

DOI:10.1007/s10462-020-09932-4      URL     [本文引用: 1]

Xie J, Hu K, Zhu MY, Guo Y (2020)

Data-driven analysis of global research trends in bioacoustics and ecoacoustics from 1991 to 2018

Ecological Informatics, 57, 101068.

[本文引用: 1]

Xie J, Towsey M, Zhang JL, Roe P (2016)

Adaptive frequency scaled wavelet packet decomposition for frog call classification

Ecological Informatics, 32, 134-144.

DOI:10.1016/j.ecoinf.2016.01.007      URL     [本文引用: 1]

Xie J, Towsey M, Zhang JL, Roe P (2018)

Frog call classification: A survey

Artificial Intelligence Review, 49, 375-391.

DOI:10.1007/s10462-016-9529-z      URL     [本文引用: 1]

Xing BB, Wang ZY, Zhang GS, Zhuang X, Yin LM, Wang YN, Li HQ, Liu J, Liu HC, Xu LX (2018)

Study on hearing capacities of Paralichthys olivaceus using an ECG

Journal of Fishery Sciences of China, 25, 467-474. (in Chinese with English abstract)

DOI:10.3724/SP.J.1118.2018.17252      URL     [本文引用: 1]

[邢彬彬, 王振宇, 张国胜, 庄鑫, 殷雷明, 王羿宁, 李泓泉, 刘景, 刘宏超, 许柳雄 (2018)

基于心电图法(ECG)的牙鲆听觉特性研究

中国水产科学, 25, 467-474.]

[本文引用: 1]

Xu F, Cui JG, Song J, Brauth SE, Tang YZ (2012)

Male competition strategies change when information concerning female receptivity is available

Behavioral Ecology, 23, 307-312.

DOI:10.1093/beheco/arr187      URL     [本文引用: 1]

Yang LL, Xu XM, Zhang PJ, Han JB, Li B, Berggren P (2017)

Classification of underwater vocalizations of wild spotted seals (Phoca largha) in Liaodong Bay, China

The Journal of the Acoustical Society of America, 141, 2256-2262.

DOI:10.1121/1.4979056      URL     [本文引用: 1]

Zaharna M, Guilleminault C (2010)

Sleep, noise and health: Review

Noise & Health, 12, 64-69.

[本文引用: 1]

Zhang LB, Liang B, Parsons S, Wei L, Zhang S (2007)

Morphology, echolocation and foraging behaviour in two sympatric sibling species of bat (Tylonycteris pachypus and Tylonycteris robustula)(Chiroptera: Vespertilionidae)

Journal of Zoology, 271, 344-351.

DOI:10.1111/j.1469-7998.2006.00210.x      URL     [本文引用: 1]

Zhang Y, Hou R, Guo L, Liu P, Zhang S, Chen P, Zhao Q (2021)

Automatically distinguishing adult from young giant pandas based on their call

In: Chinese Conference on Biometric Recognition (eds Feng J, Zhang J, Liu M, Fang Y), pp. 92-101. Springer, Cham.

[本文引用: 1]

Zhang Y, Tao C, Zhang Q, Wang KX (2021)

Status and future development trends for bioacoustics

In: In: Status and Future Development Trends for Acoustics Discipline (eds Cheng JC, Li XD, Yang J), pp, 375-388. Science Press, Beijing. (in Chinese)

[本文引用: 5]

[张宇, 陶超, 庄桥, 王克雄 (2021)

生物声学研究现状以及未来发展趋势

见: 声学学科现状以及未来发展趋势(程建春, 李晓东, 杨军主编), 375-388页. 科学出版社, 北京.]

[本文引用: 5]

Zhao LH, Wang JC, Zhang HD, Wang TL, Yang Y, Tang YZ, Halfwerk W, Cui JG (2022)

Parasite defensive limb movements enhance acoustic signal attraction in male little torrent frogs

eLife, 11, e76083.

[本文引用: 3]

Zhao X, Sun S, Shi W, Sun X, Zhang Y, Zhu L, Sui Q, Xia B, Qu K, Chen B, Liu G (2021)

Mussel byssal attachment weakened by anthropogenic noise

Frontiers in Marine Science, 8, 828019.

Zhao Z, Xu ZY, Bellisario K, Zeng RW, Li N, Zhou WY, Pijanowski BC (2019)

How well do acoustic indices measure biodiversity? Computational experiments to determine effect of sound unit shape, vocalization intensity, and frequency of vocalization occurrence on performance of acoustic indices

Ecological Indicators, 107, 105588.

Zheng GM, Song J, Zhang ZW, Zhang YY, Guo DS (2000)

A new species of Flycather (Ficedula) fromchina (Aves: Passeriformes: Muscicapidae)

Journal of Beijing Normal University (Natural Science), 36, 405-409, 427.

[本文引用: 1]

Zhong EZ, Guan ZH, Zhou XC, Zhao YJ, Li H, Tan SB, Hu KR (2021)

Application of passive acoustic monitoring technology in the monitoring of western black crested gibbons

Biodiversity Science, 29, 109-117. (in Chinese with English abstract)

DOI:10.17520/biods.2020215      URL     [本文引用: 1]

[钟恩主, 管振华, 周兴策, 赵友杰, 李函, 谭绍斌, 胡坤融 (2021)

被动声学监测技术在西黑冠长臂猿监测中的应用

生物多样性, 29, 109-117.]

[本文引用: 1]

Zhu BC, Yang Y, Zhou Y, Deng K, Wang TL, Wang JC, Tang YZ, Ryan MJ, Cui JG (2022a)

Multisensory integration facilitates perceptual restoration of an interrupted call in a species of frog

Behavioral Ecology, 33, 876-883.

DOI:10.1093/beheco/arac053      URL     [本文引用: 2]

Zhu BC, Zhang HD, Chen QH, He QL, Zhao XM, Sun XQ, Wang TL, Wang JC, Cui JG (2022b)

Noise affects mate choice based on visual information via cross-sensory interference

Environmental Pollution, 308, 119680.

[本文引用: 3]

Zhu BC, Zhou Y, Yang Y, Deng K, Wang TL, Wang JC, Tang YZ, Ryan MJ, Cui JG (2021)

Multisensory modalities increase working memory for mating signals in a treefrog

Journal of Animal Ecology, 90, 1455-1465.

DOI:10.1111/1365-2656.13465      PMID:33666233      [本文引用: 3]

Animal choruses, such as those found in insects and frogs, are often intermittent. Thus females sampling males in the chorus might have to remember the location of the potential mates' calls during periods of silence. Although a number of studies have shown that frogs use and prefer multimodal mating signals, usually acoustic plus visual, it is not clear why they do so. Here we tested the hypothesis that preference for multimodal signals over unimodal signals might be due to multimodal signals instantiating longer memories than unimodal signals, particularly during the inter-chorus intervals. We tested this hypothesis in serrate-legged small treefrogs (Kurixalus odontotarsus) whose males produce advertisement calls accompanied by conspicuous vocal sac inflation. Females were tested with acoustic and acoustic + visual (video of inflating-deflating vocal sac) mating calls. We found that females prefer multimodal calls over unimodal, audio-only calls. Furthermore, multimodal calls are still preferred after a silent period of up to 30 seconds, a time that spans the average silent period of the chorus. This was not true of unimodal calls. Our results demonstrate that a multimodal signal can engage longer working memory than a unimodal signal, and thus female memory might favour the evolution of multimodal signals in males through sexual selection. Selection might also favor female preference for multimodal signals if longer memory facilitates mate searching and assessment. Our study does not allow us to elucidate the sequence of evolution of this trait and preference.This article is protected by copyright. All rights reserved.

Zhu J, Meng ZB (1987)

On the vocal behavior during the estrous period of the giant panda (Ailuropoda melanoleuca)

Acta Zoologica Sinica, 33, 285-292. (in Chinese with English abstract)

[本文引用: 1]

[朱靖, 孟智斌 (1987)

大熊猫(Ailuropoda melanoleuca)发情期叫声及其行为意义

动物学报, 33, 285-292.]

[本文引用: 1]

Znidersic E, Watson DM (2022)

Acoustic restoration: Using soundscapes to benchmark and fast-track recovery of ecological communities

Ecology Letters, 25, 1597-1603.

DOI:10.1111/ele.14015      PMID:35474408      [本文引用: 1]

We introduce a new approach-acoustic restoration-focusing on the applied utility of soundscapes for restoration, recognising the rich ecological and social values they encapsulate. Broadcasting soundscapes in disturbed areas can accelerate recolonisation of animals and the microbes and propagules they carry; long duration recordings are also ideal sources of data for benchmarking restoration initiatives and evocative engagement tools.© 2022 The Authors. Ecology Letters published by John Wiley & Sons Ltd.

/