生物多样性, 2022, 30(10): 22459 doi: 10.17520/biods.2022459

综述

自然保护地生物多样性保护研究进展

王伟1,2, 周越1,2, 田瑜1,2, 李俊生,3,*

1.中国环境科学研究院国家环境保护区域生态过程与功能评估重点实验室, 北京 100012

2.中国环境科学研究院生态研究所, 北京 100012

3.中国地质调查局自然资源综合调查指挥中心, 北京 100055

Biodiversity conservation research in protected areas: A review

Wei Wang1,2, Yue Zhou1,2, Yu Tian1,2, Junsheng Li,3,*

1. State Environmental Protection Key Laboratory of Regional Eco-process and Function Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012

2. Institute of Ecology, Chinese Research Academy of Environmental Sciences, Beijing 100012

3. Command Center for Comprehensive Survey of Natural Resources, China Geological Survey Bureau, Beijing 100055

通讯作者: * E-mail:lijunsheng001@mail.cgs.gov.cn

编委: 徐卫华

责任编辑: 黄祥忠

收稿日期: 2022-08-11   接受日期: 2022-10-24  

基金资助: 国家自然科学基金(32171664)

Corresponding authors: * E-mail:lijunsheng001@mail.cgs.gov.cn

Received: 2022-08-11   Accepted: 2022-10-24  

摘要

建立自然保护地是保护生物多样性最为重要的措施之一。总体来看, 自然保护地生物多样性保护研究主要围绕关键生态系统以及珍稀濒危物种等保护对象的状态以及变化两个层面进行, 并重点关注自然保护地数量与面积、保护了多少重要生态系统和物种、能否有效保护生物多样性等一系列科学问题。然而, 在自然保护地生物多样性保护研究方面, 还缺少针对上述研究领域的系统性综述。为此, 本文系统梳理了自然保护地空间布局及其与生物多样性分布的关系、自然保护地生物多样性变化及其保护成效等近20年来相关领域的研究进展。自然保护地的空间布局以及与生物多样性分布的关系主要围绕自然保护地与生物多样性在某一阶段的状态开展研究, 致力于探究自然保护地“保护多少” “代表性如何” “在哪儿保护”等一系列关键科学问题。同时, 自然保护地内的生物多样性会随着气候变化、人类活动以及自身演替等发生时空动态变化, 基于自然保护地生物多样性变化分析, 各国学者在全球尺度、国家尺度和单个自然保护地进行了大量的保护成效评估研究, 并逐渐发展出了自然保护地内外配对分析方法以提升保护成效评估的精度, 进而识别出不同自然保护地的主要影响因素。在此基础上, 本文进一步对自然保护地生物多样性保护研究提出了展望, 主要包括: (1)综合考虑自然保护地生物多样性状态和变化; (2)开展多目标协同的自然保护地空间优化布局; (3)强化自然保护地主要保护对象的识别、调查与监测; (4)提升自然保护地的质量和连通性; (5)探究自然保护地管理措施与保护成效的关联机制。本文可为“2020年后全球生物多样性框架”的制定与实施特别是在自然保护地体系建设与优化方面提供参考与借鉴。

关键词: 爱知目标; 保护成效; 代表性; 国家公园; 生物多样性关键区; 自然保护区; 2020年后全球生物多样性框架

Abstract

Background & Aims: The establishment of protected areas (PAs) is one of the most important measures to protect biodiversity. Generally speaking, recent studies on biodiversity conservation in PAs have focused on key ecosystems and rare and endangered species, and explored the status and changes of these conservation objects. There have been a series of scientific debates on issues such as the number and size of PAs, how many important ecosystems and species can be protected in PAs, and whether PAs effectively protect biodiversity. However, there are still few systematic reviews of the above-mentioned research issues; thus, this paper systematically covers research progress in these fields in recent years, from the spatial layout of PAs and their relationship to the distribution of biodiversity, to biodiversity change and the conservation-effectiveness of PAs.
Advances: Studies on the spatial layout of PAs and biodiversity distribution generally focused the status of biodiversity, mainly investigating topics we label as “how much is enough?”, “representativeness and conservation gaps”, and “where to protect?”. Based on the analysis of biodiversity changes in PAs, scholars from different countries have conducted substantial research on conservation-effectiveness assessment at the global, national, and individual-PA scale, and gradually developed a method of pairwise analysis inside and outside of PAs to improve the accuracy of assessments.
Prospects: We conclude by proposing a potential future studies on biodiversity conservation in PAs, which mainly include: (1) Integrating studies on conservation status and biodiversity change in PAs; (2) Studying the optimal spatial layout of PAs under multi objectives; (3) Strengthening the identification, investigation, and monitoring of major conservation objects in PAs; (4) Improving the quality and connectivity of PAs; and (5) Exploring the relationship between management measures and conservation effectiveness of PAs. We hope this paper can provide a reference for the formulation and implementation of the Post-2020 Global Biodiversity Framework, especially in the construction and optimization of PAs in the next 10 years.

Keywords: the Aichi biodiversity targets; conservation effectiveness; representativeness; national parks; key biodiversity areas; nature reserves; Post-2020 Global Biodiversity Framework

PDF (400KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

王伟, 周越, 田瑜, 李俊生 (2022) 自然保护地生物多样性保护研究进展. 生物多样性, 30, 22459. doi:10.17520/biods.2022459.

Wei Wang, Yue Zhou, Yu Tian, Junsheng Li (2022) Biodiversity conservation research in protected areas: A review. Biodiversity Science, 30, 22459. doi:10.17520/biods.2022459.

建立自然保护地是保护生物多样性最为重要的措施之一。按照世界自然保护联盟(International Union for Conservation of Nature, IUCN)的定义, 自然保护地是一个明确界定的地理空间, 通过法律或其他有效方式获得认可、得到承诺和进行管理, 以实现对自然及其所拥有的生态系统服务和文化价值的长期保护(Dudley et al, 2016)。1992年6月, 为了地球上生物多样性的保护和可持续利用这个共同目标, 150多个国家共同签署了《生物多样性公约》, 并于1993年12月29日正式生效。《生物多样性公约》第八条对各个缔约方在自然保护地生物多样性保护方面提出了明确的要求, 如建立自然保护地体系、恢复退化的生态系统、促进受威胁物种的保护与种群恢复、防控外来入侵物种等(王伟和李俊生, 2021)。2010年《生物多样性公约》第十次缔约方大会(COP10)制定了“爱知生物多样性目标” (“爱知目标”), 进一步量化了自然保护地建设与管理的相关指标(目标11): 到2020年, 保护至少17%的陆地和内陆水域以及至少10%的沿海和海洋区域; 同时, 保护生物多样性重要区域以及保护重要生态系统及物种; 实现公平有效地管理自然保护地, 并形成有效的自然保护地网络(Secretariat of the Convention on Biological Diversity, 2014)。2021年10月, 《生物多样性公约》第十五次缔约方大会(COP15)第一阶段会议在中国昆明顺利举办, 发布了《昆明宣言》等重要文件; 2022年12月, COP15第二阶段会议将在加拿大蒙特利尔举行, 以推动达成一个凝聚广泛共识、既雄心勃勃又务实可行的“2020年后全球生物多样性框架”。根据框架的草案初稿, 各国科学家正在商讨将全球至少30%的陆地和海洋地区划入自然保护地或其他有效的基于区域的保护措施(other effective area-based conservation measures, OECMs)中(https://www.cbd.int/conferences/post2020/wg2020-04/documents)。

为确保最迟在2030年使生物多样性走上恢复之路, 进而全面实现“人与自然和谐共生”的2050年愿景, 优化和建立有效的自然保护地体系成为了世界各国一致的目标。近年来, 随着“2020年后全球生物多样性框架”的制定进程日益临近, 自然保护地生物多样性保护领域的研究也不断深入。总体来看, 该领域研究主要围绕关键生态系统以及珍稀濒危物种等保护对象, 从这些保护对象的状态和变化两个层面进行研究, 并重点关注自然保护地数量与面积、保护了多少重要生态系统和物种、能否有效保护生物多样性等一系列科学问题。然而, 在自然保护地生物多样性保护研究方面, 还缺少针对上述研究领域的系统性综述。

为此, 本文旨在系统梳理近20年特别是近10年来自然保护地生物多样性保护研究所取得的主要进展, 从自然保护地空间布局以及与生物多样性分布的关系、自然保护地内生物多样性的变化等方面, 整理和综述了国内外近年来的相关报道, 并对未来发展方向提出展望, 以期为“2020年后全球生物多样性框架”的制定与实施特别是在自然保护地体系建设与优化方面提供参考与借鉴。

1 自然保护地空间布局以及与生物多样性分布的关系

自然保护地的空间布局以及与生物多样性分布的关系主要围绕自然保护地与生物多样性在某一阶段的状态开展研究, 致力于探究自然保护地“保护多少” “代表性如何”以及“在哪儿保护”等一系列关键科学问题。

1.1 保护多少?

全球需要建设多少自然保护地才能真正有效保护足够的生物多样性, 一直是各国学者关注的一个重点问题(Baillie & Zhang, 2018)。早在《生物多样性公约》第七次缔约方大会通过的2010年自然保护地相关目标中, 就包括“使世界上每个生态区(ecoregion)至少10%的面积得到有效保护”的目标(Coad et al, 2009)。随后的“爱知目标”将这一目标进一步提高至到2020年保护至少17%的陆地和内陆水域以及至少10%的沿海和海洋区域。2021年, 联合国环境规划署(United Nations Environment Programme, UNEP)发布的《2020保护地球报告》显示, 如今全球所有记录的自然保护地和受保护区域(conserved areas)占陆域和海域的比例分别达到16.64%和7.74%; 考虑到许多自然保护地和受保护区域尚未被统计, 该报告认定在统计全部数据后, 陆地自然保护地和受保护区域的覆盖率将大大超过17%的目标(UNEP-WCMC & IUCN, 2021)。然而, 一些学者认为由于这个目标是政治驱动的, 严重低于许多科学研究结果所提出的保护目标(Noss et al, 2012), 因此近年来许多学者都提出了到2030年自然保护地和受保护区域应覆盖全球30%的陆地、淡水和海洋的目标(Baillie & Zhang, 2018; Dinerstein et al, 2019)。这一目标已被写入“2020年后全球生物多样性框架”的草案初稿中, 目前已得到超过100个国家的支持(https://www.hacfornatureandpeople.org)。

近年来, 各国学者也愈发加强了对受保护区域的关注。这里提的受保护区域的概念, 是指自然保护地以外的一些其他有效的基于区域的保护措施(OECMs), 根据《生物多样性公约》的定义, OECMs指“自然保护地以外的地理定义地区, 对其治理和管理为推动生物多样性就地保护起到了积极、持续的作用, 并取得相关的生态系统功能和服务, 以及在适用情况下实现文化、精神、社会经济价值和其他与当地相关的价值” (靳彤等, 2022), 例如政府经营的集水区、原住民和当地社区保护的区域, 以及一些私人保护措施等(Maxwell et al, 2020)。这些区域可以由当地社区自发组织或一些社会组织通过与政府或当地社区合作等方式保护自然保护地外重要的生态系统、栖息地和野生动物廊道, 可以作为自然保护地的有益补充, 对于提升自然保护地之间生物多样性保护的连通性方面具有重要意义(IUCN-WCPA Task Force on OECMs, 2019; Bhola et al, 2021)。Harvey Locke在2009年第9届世界荒野大会(World Wilderness Congress)中提出了在全球尺度应设置至少50%的区域用于自然保护地或OECMs (曹越等, 2019)。当代著名生物学家威尔逊(E. O. Wilson)也呼吁将50%的陆地及海洋区域设置为某种形式的自然保护地或OECMs, 并估算这些区域能够保护85%的物种免于灭绝(Wilson, 2016)。我国魏辅文院士团队进一步建议设定一系列里程碑目标, 以实现50%的目标: 到2030年, 维护1/4个地球以保持完整、具有功能和连续的生态系统支持自然与人类的可持续性, 同时解决其他生物多样性丧失的直接驱动因素; 到2040年, 将这个比例增加到1/3个地球; 到2050年, 将这个比例增加到1/2个地球, 并最终实现2050年愿景——“天人合一” (Ma et al, 2020)。

1.2 代表性如何?

自然保护地代表性是通过集成并利用已有的信息(如物种分布数据库、植被类型分布图、现有的自然保护地体系等), 来确定重要生态系统及重要物种在当前的自然保护地中是否被保护, 并寻找保护的空白地区(conservation gaps), 进而在土地管理实践中通过新建自然保护地来填补这些保护空白, 这最早由Scott等(1993)在夏威夷付诸实践。随后在美国地质调查局Gap分析计划(gap analysis project)的推动下, 陆续在美国各级行政范围内开展了大量关于自然保护地代表性方面的研究(https://www.usgs.gov/programs/gap-analysis-project)。各国学者也分别在全球、国家、区域等不同尺度, 探究自然保护地是否覆盖了足够的重要生态系统和重要物种。

在生态系统方面, 全球尺度的研究可快速为当前全球自然保护地的布局是否合理提供依据。《2020保护地球报告》发现, 自2010年以来, 自然保护地和受保护区域网络覆盖且代表了世界越来越多的生态系统类型, 821个陆地生态区中有44.5%达到了17%的目标, 而232个海洋生态区中有47.4%达到了10%的目标(UNEP-WCMC & IUCN, 2021)。Sayre等(2020)进一步基于气候区域、全球地貌、土地利用及植被等数据, 将全球划分为431个生态系统, 其中278个为自然或半自然生态系统, 包括不同种类的林地、灌丛、草地、裸露区和冰雪区, 通过这些自然或半自然生态系统与全球自然保护地叠加分析, 发现自然保护地对91个生态系统的代表性超过了17%的爱知目标, 但仍有41个生态系统被自然保护地的覆盖率不到5%。在国家层面上, 美国评估了当前自然保护地网络中生态系统的代表性, 发现在低海拔和中等至高生产力土壤中自然保护地对生态系统的代表性不足(Aycrigg et al, 2013)。Oldfield等(2004)通过将英格兰大陆划分为97个自然区域类型, 分别作为一个独特的生物地理区域, 并通过与国家级自然保护区和具有特殊科学价值的区域进行叠加, 发现许多自然区域类型的保护水平非常低, 其中77种类型的保护率低于10%, 39种类型的保护率低于2%。类似的研究还有厄瓜多尔通过分析不同陆地生态系统类型的保护状况来评价自然保护地网络的代表性(Sierra et al, 2002), 发现有7种生态系统尚未被自然保护地覆盖; 中国学者研究了2,217个自然保护区对于植被类型的代表性(Wu et al, 2011), 发现湿地、草原、荒漠生态系统类型被自然保护区覆盖的比例较高, 而森林生态系统类型被自然保护区覆盖的比例较低。

在物种层面的研究, 则往往通过获取已知的物种分布点位数据, 再结合模型模拟物种的适宜分布范围或潜在栖息地, 进而与自然保护地叠加判断物种的保护状况。近年来, 随着生物多样性信息学的不断发展, 全球生物多样性信息网络(Global Biodiversity Information Facility, GBIF)、IUCN受威胁物种红色名录空间分布数据、国际鸟盟(BirdLife International)的全球鸟类分布数据等大量开放数据库, 为开展自然保护地在物种层面的代表性研究提供了基础保障。在全球尺度, Venter等(2014)评估了自然保护地对4,118种受威胁脊椎动物(陆生鸟类、哺乳动物和两栖动物)的保护状况, 发现仍然有17%的受威胁物种未被保护区覆盖。Williams等(2022)进一步评估了全球自然保护地内近4,000种陆地哺乳动物的个体种群的潜在规模, 以判断当前全球自然保护地网络能够在多大程度上防止物种局部灭绝, 结果发现许多现有的自然保护地太小或连接太差, 几乎无法为所有面临灭绝威胁的哺乳动物物种和目前未受到威胁的1,000多种物种提供足够保护。与陆域脊椎动物相比, 围绕植物(Pelletier, et al, 2018)、昆虫(Chowdhury et al, 2022)等类群的保护状况研究则相对不足。在全球海洋自然保护地方面, Klein等(2015)评估了较为严格的自然保护地类型(IUCN I-IV类型)对17,348种海洋物种(鱼类、哺乳动物、无脊椎动物)的覆盖情况, 结果发现97.4%的物种分布范围被这些严格自然保护地保护的比例不足10%。在国家尺度以及更精细尺度上, 各国学者均针对不同类群开展了大量研究, 如Ochoa-Ochoa等(2009)评估了墨西哥自然保护地以及私人和社区保护区域对两栖动物的代表性; Bosso等(2013)评估了意大利和邻近地区的自然保护地对受威胁甲虫Rosalia alpina的代表性; Guo等(2019)评估了中国湿地保护区网络对于216个国家重点保护物种和129个濒危物种的代表性; Yip等(2004)在香港的精细尺度下针对8种野生动植物类别(两栖类动物、爬行动物、哺乳动物、鸟类、蚂蚁、蝴蝶、蜻蜓以及稀有维管植物)的保护状况进行了分析和评价等。

1.3 在哪儿保护?

由于生物多样性在地球上并不是均匀分布的, 而且财力、物力、人力等保护资源的投入有限, 自然保护地的建设不可能实现对所有生物多样性的全面保护, 因此需要优先选择最为重要的区域从而高效地利用保护资源来最大限度地保护与恢复更多的生物多样性。因此, 往往需要找到生物多样性最为集中的区域进行优先保护, 并在此基础上平衡经济、社会和生态等多重效益, 从而实现最优化的自然保护地空间布局。“爱知目标”也把生物多样性重要区域的保护作为了一项重要任务, 通过识别生物多样性热点区域(biodiversity hotspots)以及生物多样性关键区(key biodiversity areas, KBAs)等生物多样性重要区域, 从而进一步回答“在哪儿保护”这个关键问题。

生物多样性热点区域被认为是本地物种多样性最丰富的地区或是特有物种集中分布的地区, 在这些地区优先建立自然保护地, 可以实现最大限度地保护区域生物多样性的目的。生物多样性热点区域的概念最早由Myers在1990年提出, 并于2000年对其进行修订, 包括了全球25个热点区域(Myers et al, 2000)。随后, 保护国际(Conservation International)对这一方案进行了推广, 目前全球生物多样性热点区域已增加到36个, 在这些区域建设自然保护地并实现物种的有效保护, 可以对全球生物多样性保护产生巨大影响(https://www.conservation.org/priorities/biodiversity-hotspots)。Orme等(2005)基于丰富度、特有性和濒危性对鸟类在全球范围的热点区域进行识别, 发现物种丰富度、特有性和濒危性的热点区域并没有表现出相同的地理分布, 说明不同类型的热点作为识别自然保护地的方法也有很大差异。中国的类似研究也发现, 中国脊椎动物和植物的热点区域之间存在明显不一致的情况, 并建议应考虑使用不同的分类群, 根据其不同的生态需求和生活史, 使用不同的方法确定需要建设自然保护地的区域(Xu et al, 2018)。考虑到不同物种类群之间的热点区域存在差异, 而且自然保护地往往分布在较为偏远的区域, 对于人类活动较为密集的区域往往保护不足, 因此学者提出了通过系统保护规划法构建不可替代性(irreplaceability)和脆弱性(vulnerability)优先级指标(Brooks et al, 2006), 即综合考虑生物多样性的互补性原则, 以优化生物多样性保护区域的选择, 同时最大限度地降低保护成本, 从而使用有限的资源实现明确的保护目标(Margules & Pressey, 2000; McIntosh et al, 2017)。

KBAs包括对陆地、淡水和海洋生态系统中濒危动植物至关重要的栖息地, 识别KBAs是在自然生态地理区划基础上对自然保护地数量和规模更加精细化的布局, 从而集中力量开展保护工作。IUCN提出了KBAs的识别技术框架, 目前已更新至version. 1.2 (https://portals.iucn.org/library/node/49979), 通过受威胁多样性、地理分布受限生物多样性、生态学完整性、生物学过程及不可替代性的综合定量分析来进行识别(KBA Standards and Appeals Committee of IUCN SSC/WCPA, 2022); 这些标准是数据驱动的、阈值明确的、定量化的标准, 能够在一定程度上确保KBAs的识别过程是透明的、客观的且可重复的, 评估结果不会因为评估人员的知识背景的不同而不同(赵莉娜等, 2016)。根据2020年的统计, 全球已识别大约16,000个KBAs。此外各国专家针对不同类群的KBAs识别也开展了大量广泛研究, 世界上已有170多个国家和地区识别了重要的鸟类区域和植物区域(Langhammer et al, 2007b), 例如国际鸟盟在世界范围内确定了13,000多个鸟类和生物多样性重要区(IBAs)。此外, 中国学者还利用土地覆盖、归一化植被指数和夜间灯光数据等, 从植被覆盖度和人类活动方面分别对“一带一路”沿线地区KBAs的生态状况进行了评估(Wang et al, 2022)。通过KBAs的识别、排序与空缺分析, 可以为自然保护地网络的扩展提供重要基础(Langhammer et al, 2007a), 成为评估全球生物多样性目标进展情况的重要手段。近年的研究表明全球约有55.8%的KBAs已被自然保护地所覆盖, 当进一步将全球KBAs内0.36%的陆地区域划为自然保护地, 则可以将受威胁脊椎动物的保护覆盖率平均提高约14.7% (Kullberg et al, 2019)。

2 自然保护地生物多样性保护变化与保护成效

自然保护地内的生物多样性会随着气候变化、人为活动以及自身演替等发生时空动态变化, 因此, 通过在自然保护地内进行长期野外监测获取科学的连续数据来反映自然保护地内生物多样性的变化, 一直是各国学者关注的热点问题。此外, 自然保护地作为生物多样性保护的核心区域之一, 是否能够有效保护区域内的生态系统以及野生动植物, 即自然保护地保护成效及其影响因素研究, 也是自然保护地领域的一个关键科学问题。

2.1 动态变化分析

自然保护地内生物多样性的动态变化研究往往围绕生物多样性的要素如生态系统、物种展开, 其中土地覆盖/利用和景观格局变化是分析自然保护地生物多样性变化的基础。随着最近几十年来遥感技术以及地理信息系统技术的飞速发展, 围绕自然保护地内土地覆盖/利用和景观格局变化开展了大量研究。总体来看, 尽管气候变化及人为干扰等对生物多样性的影响不断加剧, 但相比自然保护地外, 自然保护地内的土地覆盖/利用和景观格局变化通常较小(Nagendra, 2008; Rodríguez-Rodríguez et al, 2019), 体现了自然保护地在应对外界干扰时的稳定性。从生态系统来看, 自然保护地内森林(Armenteras et al, 2003; Clerici et al, 2020; Liu et al, 2022)、湿地(靳勇超等, 2014; Xu et al, 2019)、草原(杜金鸿等, 2017)、荒漠(郑凯, 2013(①郑凯 (2013) 安西极旱荒漠区植物群落结构变化规律及其机理研究. 硕士毕业论文, 兰州大学, 兰州.))、海洋(李利红等, 2013)等生态系统的变化研究虽均有所涉及, 但 围绕自然保护地内森林和湿地生态系统变化方面的研究比在草原、荒漠及海洋生态系统变化方面的研究相对较多(辛利娟等, 2014, 2015; 宋瑞玲等, 2018)。从物种层面来看, 各国学者多围绕自然保护地重点保护的珍稀濒危物种或旗舰物种开展了较为系统的监测, 因此对于这些物种的种群数量变化了解得比较清楚。最为突出的案例是中国在大熊猫(Ailuropoda melanoleuca)保护与研究方面(Fan et al, 2020), 建设了67个自然保护区对大熊猫进行保护, 目前其种群数量增加、栖息地扩大, 增加了生存机会, 降低了灭绝风险, 在2016年发布的《IUCN濒危物种红色名录》中, 其濒危等级经过重新评估后从濒危下调为易危(蒋志刚, 2016)。不过, 除这类受关注较多的物种外, 许多物种都面临数据本底资料不足等问题, 其数量、分布、受威胁程度等仍有待进一步查明(王伟和李俊生, 2021; Williams et al, 2022)。

与自然保护地外相比, 虽然总体上自然保护地在生物多样性各个层级体现了相对积极的变化, 但也有一些案例表明, 有些自然保护地内的生物多样性要素发生了明显恶化的趋势。例如, 研究表明, 由于流域污染物径流、气候变化以及渔业的影响, 澳大利亚大堡礁(Great Barrier Reef)世界自然遗产地的许多物种和生态系统状况不佳, 而且还在继续恶化(Brodie & Pearson, 2016); 中国在保护大熊猫的自然保护地中, 尽管对大熊猫保护取得了显著成效, 但保护地内豹(Panthera pardus)、雪豹(P. uncia)、狼(Canis lupus)、豺(Cuon alpinus)等大型食肉动物种群数量出现了明显下降(Li et al, 2020); 另外, 中国为保护长臂猿而设立的自然保护地中, 长臂猿的栖息地存在退化现象(Zhang et al, 2010), 物种的种群数量也出现减少的情况(Zhang et al, 2021)。

为了获取自然保护地内生物多样性的动态变化数据, 需要开展长期系统的连续监测, 因此世界各国纷纷在自然保护地内建立了大量生物多样性监测网络和野外台站, 通过现场对生态系统和物种等的定量监测数据来衡量生物多样性的变化情况(Geldmann et al, 2021)。例如, 据初步统计, 目前中国生态系统研究网络(CERN)、中国森林生物多样性监测网络(CForBio)、国家陆地生态系统定位观测研究网络(CTERN)、国家生态系统观测研究网络(CNERN)等生物多样性主要监测网中, 位于自然保护地内的监测站点超过100个。自然保护地生物多样性调查监测一般依靠卫星遥感解译结合地面样线样方调查, 以及通过GPS跟踪项圈和红外相机监测等手段。近年来, 随着小型轻量级无人机低空遥感技术的飞速发展, 该技术已能在任意时间内收集足够精细空间分辨率的影像和空间数据, 并在自然保护地生态环境探测、航摄测绘、生境预测与变化分析等方面发挥着越来越重要的作用(刘方正等, 2018)。

2.2 保护成效评估

“爱知目标”对自然保护地的建设管理及保护成效提出了明确要求, 并将“增进生物多样性和生态系统服务给所有人带来的惠益”作为一项战略目标(Secretariat of the Convention on Biological Diversity, 2014)。自然保护地保护成效评估即是研究自然保护地在维持生物多样性和保障生态系统服务等方面的综合成效, 从而判断自然保护地在多大程度上实现了预期的保护目标(王伟等, 2016)。近年来, 自然保护地保护成效成为研究的热点, 世界各国学者在全球尺度、国家尺度以及单个自然保护地进行了大量的研究。其中, 全球和国家等大尺度的研究可以快速评判所有自然保护地在某项生物多样性要素方面的保护成效, 并在一定程度上进行横向对比(王伟等, 2016)。例如, 全球尺度上, Tang等(2011)基于归一化植被指数对全球1,015个大型自然保护地的保护成效进行了研究, 整体来看自然保护地在保护植被生产力方面取得了较好的保护成效; Yang等(2021)基于全球森林观察(Global Forest Watch)数据, 量化了2000-2015年全球54,792个自然保护地在减缓森林丧失方面的成效, 结果表明大部分自然保护地(71.4%)有助于防止森林丧失。国家尺度上, 研究表明孟加拉国自然保护地内的森林在2010-2018年间破碎化程度加剧, 对自然保护地能否维系生态系统的完整性提出了质疑(Rahman & Islam, 2021); Liu等(2022)进一步分析了中国69处国家级自然保护区不同功能分区对森林的保护成效, 结果表明缓冲区同核心区的森林保护成效相近, 且两者的保护成效均优于实验区。相对于全球、国家等大尺度的评估, 单个自然保护地的保护成效评估则通常采用较多指标来进行综合评判。例如, 辛利娟等(2015)综合考虑自然保护区的完整性、多样性、代表性和稀有性, 构建了包括20项评估指标的荒漠自然保护区保护成效评估指标体系, 可从不同方面反映荒漠自然保护区主要保护对象的动态变化, 并在我国安西极旱荒漠国家级自然保护区进行了案例研究。一些国家也逐渐发展形成了比较成熟的评估标准, 如我国原国家林业局2014年发布的“自然保护区保护成效评估技术导则”系列标准, 以及我国生态环境部2021年发布的《自然保护区生态环境保护成效评估标准(试行)》(HJ 1203-2021)等。

随着技术方法的不断进步, 自然保护地保护成效评估从早期的自然保护地建立前后直接对比(Liu et al, 2001)或自然保护地内外直接对比(Linkie et al, 2004)的方法, 逐渐发展出了自然保护地内外配对分析方法(matching)以提升保护成效评估的精度。配对分析方法主要考虑到自然保护地及周边区域的气候、土壤、生物等环境因素在时间或空间上存在一定差异, 仅通过简单的自然保护地建立前后或自然保护地内外的对比分析, 难以准确判别相关指标的变化是保护工作所取得的成效, 还是由于环境因素的差异而导致的(王伟等, 2016), 因此需要通过将环境变量的差异通过样本配对的方法进行消除(Joppa & Pfaff, 2010; Ren et al, 2015; Sarathchandra et al, 2018), 例如倾向评分配比算法(Gaveau et al, 2009; 陈冰等, 2017; Feng CT et al, 2021)、差异的差异模型(difference in differences, DID) (Feng YH et al, 2021)等。

2.3 影响因素研究

自然保护地的生物多样性变化或保护成效受到气候变化、人为干扰以及相关政策等多种影响因素的共同作用。通过识别最主要的影响因素, 并了解这些因素对自然保护地保护成效的作用, 是近年来自然保护地生物多样性变化研究的关键科学问题之一。

其中, 气候变化对于自然保护地生物多样性变化的影响成为了研究的热点。例如, 气候变化导致一些物种为寻找新的适宜栖息地而不断迁徙, 有些物种甚至迁徙到自然保护地外的栖息地上, 致使这些物种在自然保护地内消失, 将不利于自然保护地对这些物种的有效保护(Klausmeyer & Shaw, 2009; D’Amen et al, 2011)。因此, 《生物多样性公约》第十次缔约方大会明确提出“把减缓和适应气候变化纳入自然保护地管理有效性评估” “发展适应性管理和加强自然保护地的管理有效性, 解决气候变化对生物多样性产生的影响”等一系列要求。此外, 气候变化还会影响自然保护地生态系统的固碳服务, 联合国教科文组织(UNESCO)、世界资源研究所(WRI)和IUCN的研究人员估算了2001-2020年间世界自然遗产地内森林吸收和排放的碳总量和净吸收/排放量, 发现至少有10个重要的世界自然遗产地在过去20年中成为净碳源(Osipova et al, 2020)。

与气候等自然因素相比, 人为因素的作用也会对自然保护地生物多样性的变化产生正面或负面的作用, 进而影响自然保护地保护成效。尽管自然保护地的设立在一定程度上减缓了人为干扰的影响(Guetté et al, 2018; Feng et al, 2022), 但一项全球的研究还是表明, 与自然保护地外相比, 一些地区如印度-马来亚(the Indomalaya)、非洲热带(the Afrotropics)以及新热带地区(the Neotropics)从1995年到2010年自然保护地内的平均人为干扰程度显著增加(Geldmann et al, 2019)。人为干扰的增加对自然保护地在保护生态系统(Feng et al, 2022)或物种(如大熊猫, Wei et al, 2020)等方面的成效产生了明显的影响。人为干扰与气候变化的共同作用也一直是世界自然遗产地保护最主要的影响因素(Osipova et al, 2020)。此外, 自然保护地周边区域所受到的人为干扰有可能因为自然保护地的存在而明显增加, 这种现象被称为自然保护地的“泄露效应” (leakage effect), 不利于自然保护地的整体保护成效(Ewers & Rodrigues, 2008)。

国家政策也是一个重要的影响因素。近年来的研究也关注了自然保护地降级、缩减和撤销(protected area downgrading, downsizing, and degazettement, PADDD)事件对自然保护地保护成效的影响(Qin et al, 2019)。巴西的一项研究表明大部分PADDD事件与水电和农村居民点有关, 说明自然保护地还存在向开发建设让路的情况(Pack et al, 2016)。在刚果、马来西亚和秘鲁的研究也表明PADDD事件给森林砍伐和森林碳排放带来了重大风险(Forrest et al, 2015)。海洋自然保护地同时也面临着PADDD的影响, 研究发现至少6个国家的海洋自然保护地出现了43项PADDD事件, 其中大部分发生在澳大利亚(Albrecht et al, 2021)。

3 展望

本文从自然保护地生物多样性保护状态与变化两个层面, 系统梳理了近年来相关领域的研究进展。在此基础上, 本文从以下几个方面进一步对自然保护地生物多样性保护研究提出了展望。

3.1 综合考虑生物多样性保护状态和变化

过去大量研究往往仅关注其中一个环节, 从而无法体现自然保护地整体保护目标的实现情况。单纯关注自然保护地的面积、数量以及保护比例等目标, 而忽视了其中生物多样性变化的情况, 使得很多自然保护地难以实现有效保护(Nagendra, 2008; di Minin & Toivonen, 2015)。而围绕自然保护地保护成效评估的研究中, 大多数主要关注自然保护地内生物多样性随时间的变化分析, 较少考虑自然保护地的初始背景状态及当前状态的差异, 这可能会过高或过低地评估其保护成效(Feng et al, 2022)。因此, 建议在将来的研究中, 综合考虑自然保护地生物多样性的保护状态和变化, 首先通过代表性分析识别达到保护目标比例的生物多样性要素, 其次通过动态变化分析判断自然保护地对这些生物多样性要素的保护成效, 并结合气候变化、人为活动等影响下可能的变化趋势预测, 以及尚存在的保护空缺和不足, 最后研究提出未来需要在哪儿保护的建议。

3.2 开展多目标协同的空间优化布局

由于生物多样性的不均匀分布, 以及不同生态系统和物种类群之间的关键区域存在差异, 因此单独关注某一类生物多样性要素(或某一关键物种的保护)往往会影响其他生物多样性要素的保护效果(Li & Pimm, 2016; Li et al, 2020)。除生态系统与物种层次的研究以外, 近年来的学者也关注了自然保护地在遗传多样性(Fan et al, 2021)、谱系多样性(侯勤曦等, 2018; Quan et al, 2018)以及功能多样性(Cottee-Jones et al, 2015)等方面的保护效果。另外, 由于自然保护地在保护生物多样性的同时, 还兼具减缓气候变化(Dinerstein et al, 2019)、提供生态系统服务(杜金鸿等, 2019)的作用, 因此近年来一些研究也开始逐渐关注自然保护地在多个目标之间的协同作用。例如, 通过分析生物多样性与固碳能力的协同保护作用, 可以探索实现既能优先保护重要的生物多样性地区, 又能减缓气候变化的双赢目标(Soto-Navarro et al, 2020; Jung et al, 2021; Zhu et al, 2021); 亦有学者通过整合生态系统服务和生物多样性的保护目标, 以探究二者的协同保护并进行了空间评估(Cao et al, 2022; Huang et al, 2022)。建议在未来研究中进一步关注自然保护地在生物多样性保护、维系生态系统服务和固碳能力中的综合作用, 通过综合分析这些多目标的协同作用以更加合理有效地规划自然保护地的空间布局, 并结合未来趋势变化预测研判潜在的重要区域。

3.3 强化主要保护对象的识别、调查与监测

识别自然保护地的重点保护对象是开展保护行动最为关键的步骤之一, 即选择出代表和涵盖自然保护地生物多样性的物种、群落、生态系统集合体, 是设定自然保护地保护目标、执行保护行动、评估保护成效的基础(The Nature Conservancy, 2007)。虽然很多自然保护地在设立之初就明确了主要保护对象, 但是因为这些保护对象之间可能存在协同与权衡关系, 因此需要识别哪些是可以用于“粗筛” (coarse filter)的保护对象, 即一旦保护了它们就可以保护一大批与之共生的生态系统或物种; 这类粗筛的保护对象往往是自然保护地内的生态系统或群落, 以及一些“景观物种” (landscape species) (Coppolillo et al, 2004)或“伞护种”。此外, 由于一些主要保护对象的实际分布范围、动态变化仍缺少调查监测, 特别是许多物种都面临数据本底资料不足等问题, 其数量、分布、受威胁程度等仍有待进一步查明, 因此还需要进一步加强自然保护地的本底调查, 并围绕各个自然保护地在实际工作中的需求, 构建科学合理的保护成效评估指标体系, 结合各项指标长期监测数据的动态变化分析, 以实现对自然保护地保护成效的系统评估(王伟等, 2016)。

3.4 提升质量和连通性

《2020保护地球报告》提出, 虽然全球陆地自然保护地和受保护区域的覆盖率已达到17%的既定目标, 但保护质量有待提高, 而且各自然保护地之间需加强连通性, 确保物种可以迁移到新的适应区域并维持生态过程(UNEP-WCMC & IUCN, 2021)。近年来关于自然保护地保护成效的研究也表明, 一些国家的森林生态系统、大型食肉动物等重要保护对象也出现了保护状况不容乐观的情况(Li et al, 2020; Rahman & Islam, 2021)。此外, 由于单一的自然保护地难以有足够大的面积来维持和保护所有的生物多样性, 因此需要提升自然保护地之间的连通性, 建设合适的廊道将这些自然保护地节点连接成为大的自然保护地网络, 从而实现全国或区域尺度生物多样性保护的统筹实施与协调管理(Saura et al, 2017)。“爱知目标”和即将发布的“2020年后全球生物多样性框架”都针对“连通性良好的自然保护地”提出了相应目标(赵智聪和王沛, 2022)。2018年的一项相关研究表明, 全球能够满足“连通性良好”条件的陆地自然保护地仅覆盖了全球7.5%的陆域面积(Saura et al, 2018)。Brennan等(2022)进一步绘制了全球自然保护地的关键连通区域, 并提出减缓人类足迹的干扰可能比增加新的自然保护地更能改善连通性。因此, 需要综合自然保护地空间优化布局、保护成效评估、主要保护对象变化等方面的研究成果, 以识别和明确新建自然保护地及规划廊道的区域, 切实提升自然保护地的质量和连通性。

3.5 探究管理措施与保护成效的关联机制

自然保护地的管理措施(如规划、投入、管理过程等)及公平性(如文化认同、知情同意机制、保护负担的分配等) (Zafra-Calvo et al, 2017)与自然保护地保护成效是密不可分的。过去的研究多围绕自然保护地保护对象的变化来评估保护成效, 但由于很多自然保护地缺少公开的管理措施数据, 因此尚不清楚哪些管理措施能够切实有效提升自然保护地的保护成效(Geldmann et al, 2021)。近年来虽然有一些研究探究了自然保护地管理措施对减缓自然保护地人为干扰的作用(Geldmann et al, 2019; Feng CT et al, 2021), 但还未能进一步明确管理措施如何最终实现保护成效的提升。此外, 自然保护地的保护成效往往还受到区域发展的影响, 而自然保护地对所在区域的社会经济发展也可能起到正面或者负面的作用, 进而反过来又影响自然保护地的保护成效(den Braber et al, 2018; Naidoo et al, 2019)。因此, 需要逐步建立自然保护地管理措施的指标库, 公开自然保护地在治理体系、规划设计、管理流程、财务和人员等方面的信息(Geldmann et al, 2021); 然后与反映自然保护地保护成效的关键指标进行关联, 可通过情景分析或机器学习模型, 探究管理措施的改变可能对哪些关键指标起作用, 进而最终影响自然保护地保护成效。同时, 将自然保护地与所在区域的可持续发展结合起来, 进一步探究如何在提升或维持自然保护地保护成效的前提下, 促进自然保护地内及周边区域探索人地和谐的可持续发展模式。

参考文献

Albrecht R, Cook CN, Andrews O, Roberts KE, Taylor MFJ, Mascia MB,Golden Kroner RE (2021)

Protected area downgrading, downsizing, and degazettement (PADDD) in marine protected areas

Marine Policy, 129, 104437.

[本文引用: 1]

Armenteras D, Gast F, Villareal H (2003)

Andean forest fragmentation and the representativeness of protected natural areas in the eastern Andes, Colombia

Biological Conservation, 113, 245-256.

DOI:10.1016/S0006-3207(02)00359-2      URL     [本文引用: 1]

Aycrigg JL, Davidson A, Svancara LK, Gergely KJ, McKerrow A, Scott JM (2013)

Representation of ecological systems within the protected areas network of the Continental United States

PLoS ONE, 8, e54689.

DOI:10.1371/journal.pone.0054689      URL     [本文引用: 1]

Baillie J, Zhang YP (2018)

Space for nature

Science, 361, 1051.

DOI:10.1126/science.aau1397      PMID:30213888      [本文引用: 2]

Bhola N, Klimmek H, Kingston N, Burgess ND, van Soesbergen A, Corrigan C, Harrison J, Kok MTJ (2021)

Perspectives on area-based conservation and its meaning for future biodiversity policy

Conservation Biology, 35, 168-178.

DOI:10.1111/cobi.13509      URL     [本文引用: 1]

Bosso L, Rebelo H, Garonna AP, Russo D (2013)

Modelling geographic distribution and detecting conservation gaps in Italy for the threatened beetle Rosalia alpina

Journal for Nature Conservation, 21, 72-80.

DOI:10.1016/j.jnc.2012.10.003      URL     [本文引用: 1]

Brennan A, Naidoo R, Greenstreet L, Mehrabi Z, Ramankutty N, Kremen C (2022)

Functional connectivity of the world’s protected areas

Science, 376, 1101-1104.

DOI:10.1126/science.abl8974      PMID:35653461      [本文引用: 1]

Global policies call for connecting protected areas (PAs) to conserve the flow of animals and genes across changing landscapes, yet whether global PA networks currently support animal movement-and where connectivity conservation is most critical-remain largely unknown. In this study, we map the functional connectivity of the world's terrestrial PAs and quantify national PA connectivity through the lens of moving mammals. We find that mitigating the human footprint may improve connectivity more than adding new PAs, although both strategies together maximize benefits. The most globally important areas of concentrated mammal movement remain unprotected, with 71% of these overlapping with global biodiversity priority areas and 6% occurring on land with moderate to high human modification. Conservation and restoration of critical connectivity areas could safeguard PA connectivity while supporting other global conservation priorities.

Brodie J, Pearson RG (2016)

Ecosystem health of the Great Barrier Reef: Time for effective management action based on evidence

Estuarine, Coastal and Shelf Science, 438-451.

[本文引用: 1]

Brooks TM, Mittermeier RA, da Fonseca GAB, Gerlach J, Hoffmann M, Lamoreux JF, Mittermeier CG, Pilgrim JD, Rodrigues ASL (2006)

Global biodiversity conservation priorities

Science, 313, 58-61.

DOI:10.1126/science.1127609      PMID:16825561      [本文引用: 1]

The location of and threats to biodiversity are distributed unevenly, so prioritization is essential to minimize biodiversity loss. To address this need, biodiversity conservation organizations have proposed nine templates of global priorities over the past decade. Here, we review the concepts, methods, results, impacts, and challenges of these prioritizations of conservation practice within the theoretical irreplaceability/vulnerability framework of systematic conservation planning. Most of the templates prioritize highly irreplaceable regions; some are reactive (prioritizing high vulnerability), and others are proactive (prioritizing low vulnerability). We hope this synthesis improves understanding of these prioritization approaches and that it results in more efficient allocation of geographically flexible conservation funding.

Cao Y, Wang F, Tseng TH, Carver S, Chen X, Zhao J, Yu L, Li F, Zhao Z, Yang R (2022)

Identifying ecosystem service value and potential loss of wilderness areas in China to support post-2020 global biodiversity conservation

Science of the Total Environment, 846, 157348.

DOI:10.1016/j.scitotenv.2022.157348      URL     [本文引用: 1]

Cao Y, Yang R, Martin VG (2019)

Nature needs half: A new vision for global protected areas

Landscape Architecture, 26(4), 39-44. (in Chinese with English abstract)

[本文引用: 1]

[曹越, 杨锐, 万斯•马丁 (2019)

自然需要一半: 全球自然保护地新愿景

风景园林, 26(4), 39-44.]

[本文引用: 1]

Chen B, Liu FZ, Zhang YB, Du JH, Wang W, Li JS (2017)

Assessment of forest conservation in the Cangshan Nature Reserve based on propensity score matching

Biodiversity Science, 25, 999-1007. (in Chinese with English abstract)

DOI:10.17520/biods.2017086      [本文引用: 1]

The establishment of protected areas is one of the most common measures of biodiversity conservation. Regular assessment can help improve management and promote conservation in protected areas. According to administrative divisions, we divided the Cangshan Nature Reserve into three parts: Dali City, Eryuan County and Yangbi County, as sub-study areas. The evaluation was based on propensity score matching and paired-samples t-test. Elevation, slope, distance to the nearest settlement, and distance to the nearest road were four chosen covariates. Since the Cangshan Nature Reserve was upgraded to the national level in 1994, we compared forest changes between 1995 and 2015. Partial correlation analysis was carried out between each covariate and forest change to analyze the impact factors. Results indicated that in Dali City, the forest change value inside the Cangshan Nature Reserve was significantly higher than that found outside. Forest coverage inside the Cangshan Nature Reserve in Dali City was the highest among all regions. The forest change rates both inside and outside the Cangshan Nature Reserve in Eryuan County were higher than the other two counties. There was no significant difference in forest change value between areas inside and outside of the nature reserve in Eryuan County. In Yangbi County, the forest change rates both inside and outside of Cangshan Nature Reserve were the lowest among three counties, but the forest change value found within 10 km outside of the nature reserve was significantly higher than that found in areas beyond 10 km, which indicates that the existence of the Cangshan Nature Reserve performed positive neighborhood leakage in surrounding areas within 10 km. The four covariates all affected forest change in different areas in a variety of ways. The propensity score matching and sub-regional methodology for the assessment of the Cangshan Nature Reserve provided a new technical method and example for other conservation assessment studies.

[陈冰, 刘方正, 张玉波, 杜金鸿, 王伟, 李俊生 (2017)

基于倾向评分配比法评估苍山自然保护区的森林保护成效

生物多样性, 25, 999-1007.]

DOI:10.17520/biods.2017086      [本文引用: 1]

对自然保护区的定期评估有助于提升其管理和保护水平。本研究以苍山自然保护区所在的大理市、洱源县、漾濞县3个市/县作为子研究区域, 构建了基于倾向评分配比(propensity score matching)和配对t检验(paired-samples t-test)的保护成效评估技术方案。选取海拔、坡度、与最近居民点的距离、与最近道路的距离4个因子作为环境变量, 通过对每个县单独进行分析, 分别对比了自然保护区晋升国家级时(1995年)与20年后(2015年)其森林覆盖面积的变化, 以此来评估苍山自然保护区的森林保护成效, 并对各环境变量与森林覆盖变化值的关系进行了偏相关分析(partial correlation analysis)。结果表明: 大理市境内苍山自然保护区内的森林覆盖变化值显著高于保护区外部, 且该区段的森林覆盖率最高。洱源县境内苍山自然保护区内、外的森林覆盖变化率均高于其他2个市/县, 且保护区内、外森林覆盖变化值差异不显著。漾濞县境内苍山自然保护区内、外森林覆盖变化率最低, 但其保护区外0-10 km区域的森林覆盖变化值显著高于10 km以外区域, 保护区的存在对其周边0-10 km区域产生了正面的溢出效应 (neighborhood leakage)。海拔、坡度、与最近居民点的距离、与最近道路的距离4个协变量在3个市/县的不同研究区段内均与森林覆盖变化值呈现出了不同程度的相关性。本研究所采用的倾向评分配比法和按照行政区划对自然保护区分区进行评估的方法, 为自然保护区整体保护成效的评价提供了新的技术思路。

Chowdhury S, Jennions MD, Zalucki MP, Maron M, Watson JEM, Fuller RA (2022)

Protected areas and the future of insect conservation

Trends in Ecology & Evolution, doi: 10.1016/j.tree.2022.09.004.

[本文引用: 1]

Clerici N, Armenteras D, Kareiva P, Botero R, Ramírez-Delgado JP, Forero-Medina G, Ochoa J, Pedraza C, Schneider L, Lora C, Gómez C, Linares M, Hirashiki C, Biggs D (2020)

Deforestation in Colombian protected areas increased during post-conflict periods

Scientific Reports, 10, 4971.

DOI:10.1038/s41598-020-61861-y      PMID:32188909      [本文引用: 1]

Protected areas (PAs) are a foundational and essential strategy for reducing biodiversity loss. However, many PAs around the world exist on paper only; thus, while logging and habitat conversion may be banned in these areas, illegal activities often continue to cause alarming habitat destruction. In such cases, the presence of armed conflict may ultimately prevent incursions to a greater extent than the absence of conflict. Although there are several reports of habitat destruction following cessation of conflict, there has never been a systematic and quantitative "before-and-after-conflict" analysis of a large sample of PAs and surrounding areas. Here we report the results of such a study in Colombia, using an open-access global forest change dataset. By analysing 39 PAs over three years before and after Colombia's peace agreement with the Revolutionary Armed Forces of Colombia (FARC), we found a dramatic and highly significant increase in the deforestation rate for the majority of these areas and their buffer zones. We discuss the reasons behind such findings from the Colombian case, and debate some general conservation lessons applicable to other countries undergoing post-conflict transitions.

Coad L, Burgess ND, Loucks C, Fish L, Scharlemann JPW, Duarte L, Besançon B (2009)

The ecological representativeness of the global protected areas estate in 2009: Progress towards the CBD 2010 target

UNEP World Conservation Monitoring Centre, Cambridge, United Kingdom.

[本文引用: 1]

Coppolillo P, Gomez H, Maisels F, Wallace R (2004)

Selection criteria for suites of landscape species as a basis for site-based conservation

Biological Conservation, 115, 419-430.

DOI:10.1016/S0006-3207(03)00159-9      URL     [本文引用: 1]

Cottee-Jones HEW, Matthews TJ, Bregman TP, Barua M, Tamuly J, Whittaker RJ (2015)

Are protected areas required to maintain functional diversity in human-modified landscapes?

PLoS ONE, 10, e0123952.

DOI:10.1371/journal.pone.0123952      URL     [本文引用: 1]

D’Amen M, Bombi P, Pearman PB, Schmatz DR, Zimmermann NE, Bologna MA (2011)

Will climate change reduce the efficacy of protected areas for amphibian conservation in Italy?

Biological Conservation, 144, 989-997.

DOI:10.1016/j.biocon.2010.11.004      URL     [本文引用: 1]

den Braber B, Evans KL, Oldekop JA (2018)

Impact of protected areas on poverty, extreme poverty, and inequality in Nepal

Conservation Letters, 11, e12576.

DOI:10.1111/conl.12576      URL     [本文引用: 1]

di Minin E, Toivonen T (2015)

Global protected area expansion: Creating more than paper parks

BioScience, 65, 637-638.

PMID:26955080      [本文引用: 1]

Dinerstein E, Vynne C, Sala E, Joshi AR, Fernando S, Lovejoy TE, Mayorga J, Olson D, Asner GP, Baillie JEM, Burgess ND, Burkart K, Noss RF, Zhang YP, Baccini A, Birch T, Hahn N, Joppa LN, Wikramanayake E (2019)

A global deal for nature: Guiding principles, milestones, and targets

Science Advances, 5, eaaw2869.

DOI:10.1126/sciadv.aaw2869      URL     [本文引用: 2]

Du JH, Liu FZ, Zhou Y, Zhang LB, Feng CT, Wang W (2019)

A review of ecosystem services assessment and valuation of protected areas

Research of Environmental Sciences, 32, 1475-1482. (in Chinese with English abstract)

[本文引用: 1]

[杜金鸿, 刘方正, 周越, 张立博, 冯春婷, 王伟 (2019)

自然保护地生态系统服务价值评估研究进展

环境科学研究, 32, 1475-1482.]

[本文引用: 1]

Du JH, Zhang YB, Liu FZ, Chen B, Li JS, Wang W (2017)

Construction of an indicator system and a case study of eco-environmental quality assessment of China’s grassland nature reserves

Pratacultural Science, 34, 2378-2387. (in Chinese with English abstract)

[本文引用: 1]

[杜金鸿, 张玉波, 刘方正, 陈冰, 李俊生, 王伟 (2017)

中国草地类自然保护区生态环境质量动态评价指标体系构建与案例

草业科学, 34, 2378-2387.]

[本文引用: 1]

Dudley N (translated by Zhu CQ, Ouyang ZY) (2016) Guidelines for Applying Protected Area Management Categories. China Forestry Publishing House, Beijing. (in Chinese)

[本文引用: 1]

[朱春全, 欧阳志云 (译) (2016) IUCN自然保护地管理分类应用指南. 中国林业出版社, 北京.]

[本文引用: 1]

Ewers RM, Rodrigues ASL (2008)

Estimates of reserve effectiveness are confounded by leakage

Trends in Ecology & Evolution, 23, 113-116.

DOI:10.1016/j.tree.2007.11.008      URL     [本文引用: 1]

Fan PF, Yang L, Liu Y, Lee TM (2020)

Build up conservation research capacity in China for biodiversity governance

Nature Ecology & Evolution, 4, 1162-1167.

[本文引用: 1]

Fan X, Njeri HK, Pu Y, La Q, Li W, Li X, Chen Y (2021)

Contrasting relationships between genetic diversity and species diversity in conserved and disturbed submerged macrophyte communities of Honghu Lake, a typical freshwater lake of Yangtze River Basin

Global Ecology and Conservation, 31, e01873.

DOI:10.1016/j.gecco.2021.e01873      URL     [本文引用: 1]

Feng CT, Cao M, Wang W, Wang H, Liu FZ, Zhang LB, Du JH, Zhou Y, Huang WJ, Li JS (2021)

Which management measures lead to better performance of China’s protected areas in reducing forest loss?

Science of the Total Environment, 764, 142895.

DOI:10.1016/j.scitotenv.2020.142895      URL     [本文引用: 2]

Feng CT, Cao M, Liu FZ, Zhou Y, Du JH, Zhang LB, Huang WJ, Luo JW, Li JS, Wang W (2022)

Improving protected area effectiveness through consideration of different human-pressure baselines

Conservation Biology, 36, e13887.

[本文引用: 3]

Feng YH, Wang YP, Su HJ, Pan JM, Sun YF, Zhu JL, Fang JY, Tang ZY (2021)

Assessing the effectiveness of global protected areas based on the difference in differences model

Ecological Indicators, 130, 108078.

DOI:10.1016/j.ecolind.2021.108078      URL     [本文引用: 1]

Forrest JL, Mascia MB, Pailler S, Abidin SZ, Araujo MD, Krithivasan R, Riveros JC (2015)

Tropical deforestation and carbon emissions from protected area downgrading, downsizing, and degazettement (PADDD)

Conservation Letters, 8, 153-161.

DOI:10.1111/conl.12144      URL     [本文引用: 1]

Gaveau DLA, Epting J, Lyne O, Linkie M, Kumara I, Kanninen M, Leader-Williams N (2009)

Evaluating whether protected areas reduce tropical deforestation in Sumatra

Journal of Biogeography, 36, 2165-2175.

DOI:10.1111/j.1365-2699.2009.02147.x      URL     [本文引用: 1]

Geldmann J, Deguignet M, Balmford A, Burgess ND, Dudley N, Hockings M, Kingston N, Klimmek H, Lewis AH, Rahbek C, Stolton S, Vincent C, Wells S, Woodley S, Watson JEM (2021)

Essential indicators for measuring site- based conservation effectiveness in the post-2020 global biodiversity framework

Conservation Letters, 14, e12792.

[本文引用: 3]

Geldmann J, Manica A, Burgess ND, Coad L, Balmford A (2019)

A global-level assessment of the effectiveness of protected areas at resisting anthropogenic pressures

Proceedings of the National Academy of Sciences, USA, 116, 23209-23215.

[本文引用: 2]

Guetté A, Godet L, Juigner M, Robin M (2018)

Worldwide increase in Artificial Light At Night around protected areas and within biodiversity hotspots

Biological Conservation, 223, 97-103.

DOI:10.1016/j.biocon.2018.04.018      URL     [本文引用: 1]

Guo ZL, Cui GF, Zhang MY, Li XY (2019)

Analysis of the contribution to conservation and effectiveness of the wetland reserve network in China based on wildlife diversity

Global Ecology and Conservation, 20, e00684.

DOI:10.1016/j.gecco.2019.e00684      URL     [本文引用: 1]

Hou QX, Ci XQ, Liu ZF, Xu WM, Li J (2018)

Assessment of the evolutionary history of Lauraceae in Xishuangbanna National Nature Reserve using DNA barcoding

Biodiversity Science, 26, 217-228. (in Chinese with English abstract)

DOI:10.17520/biods.2017336      [本文引用: 1]

Global biodiversity is diminishing at an unprecedented rate due to anthropogenic changes in the environment and establishing nature reserve is one of the most effective strategies for reducing biodiversity loss. Xishuangbanna, located in Southwest China, is a famous biodiversity hotspot and Lauraceae plants play an important role in the composition of its forest vegetation. To assess the role of Xishuangbanna National Nature Reserve (XNNR, established in 1958) in the conservation of evolutionary history of Lauraceae and to demonstrate the importance of combining phylogenetic information with biodiversity conservation, the evolutionary distinctiveness (ED), phylogenetic diversity (PD), species richness (SR), and endangerment categories of Lauraceae plants in Xishuangbanna were investigated. Results show that XNNR conserves only half of Lauraceae species (54.5%) found in Xishuangbanna, while 88.8% of PD was protected. However, there are still some areas (e.g. Daluo Town and Yiwu Town) with high PD that are not listed as conservation areas. A total of 19 species with high ED values (> 0.1) were found in Xishuangbanna, of which five species (26.3%) were not conserved in the XNNR, while 20 (37.0%) of 54 endangered species were not distributed in the nature reserve. Only three species with both high ED and endangerment categories were not found in the nature reserve. Our study shows that the XNNR has protected a large proportion of PD and species with high conservation value, however, some important evolutionary history and endangered species of Lauraceae are still not conserved in the XNNR, indicating that the traditional assessment solely based on species richness could not incorporate phylogenetic information completely. We therefore conclude that PD should be considered in establishing nature reserves to maximize the evolutionary potential in an uncertain future.

[侯勤曦, 慈秀芹, 刘志芳, 徐武美, 李捷 (2018)

基于DNA条形码评估西双版纳国家级自然保护区对樟科植物进化历史的保护

生物多样性, 26, 217-228.]

DOI:10.17520/biods.2017336      [本文引用: 1]

为评估西双版纳国家级自然保护区对樟科这一重要植物类群进化潜力的保护情况, 揭示将物种进化历史纳入生物多样性保护评估的重要性, 本研究通过对西双版纳地区长期的野外调查并查阅标本记录与文献资料, 整理出该地区樟科13属121种物种的具体分布信息, 以植物条形码ITS序列作为分子标记构建了反映整个西双版纳地区樟科植物系统发育关系的系统发育树。我们以此为基础, 从物种层面分析了各物种的进化特异性(evolutionary distinctiveness, ED), 从区域层面分析了自然保护区内、外以及32个行政乡镇的系统发育多样性(phylogenetic diversity, PD), 并结合物种丰富度(species richness, SR)与物种濒危等级, 综合探讨了西双版纳国家级自然保护区对樟科植物进化历史的保护情况。研究发现, 西双版纳国家级自然保护区仅拥有整个西双版纳地区54.5%的樟科物种数, 却保护了该地区樟科植物约88.8%的进化历史, 没有被列入保护范围但却拥有高系统发育多样性的区域有打洛镇、易武乡等。就物种而言, 进化特异性相对较高的19个物种中, 有5种(26.3%)在自然保护区内没有分布; 濒危等级高的54个物种中, 有20种(37.0%)在自然保护区没有分布, 同时拥有高进化特异性和濒危等级的物种仅有1种不在保护区内分布。结果表明, 虽然西双版纳国家级自然保护区对樟科这一植物类群的系统发育多样性以及高保护价值物种的保护较好, 但仍有部分重要樟科植物的进化历史没有涵盖在现有自然保护区范围内; 按照传统方法设定的自然保护区虽能在一定程度上保护樟科物种的进化历史, 但仍然存在与标准化系统发育多样性保护策略相矛盾的地方。因此, 今后在建立自然保护区时, 应将系统发育多样性考虑在内, 以保护生物多样性应对环境变化的潜力。

Huang Z, Qian L, Cao W (2022)

Developing a novel approach integrating ecosystem services and biodiversity for identifying priority ecological reserves

Resources, Conservation and Recycling, 179, 106128.

DOI:10.1016/j.resconrec.2021.106128      URL     [本文引用: 1]

IUCN-WCPA Task Force on OECMs (2019)

Recognising and Reporting Other Effective Area-based Conservation Measures

IUCN, Gland, Switzerland.

[本文引用: 1]

Jiang ZG (2016)

On the similarity and dissimilarity of “Endangered Species” and “Protected Species”

Biodiversity Science, 24, 1082-1083. (in Chinese)

DOI:10.17520/biods.2016249      URL     [本文引用: 1]

[蒋志刚 (2016)

论“濒危物种”与“保护物种”概念的异同

生物多样性, 24, 1082-1083.]

DOI:10.17520/biods.2016249      [本文引用: 1]

Jin T, Bu JY, Ma JZ (2022)

Other-effective area-based measures of global experiences and implications for post-2020 biodiversity conservation in China

Journal of West China Forestry Science, 51(1), 1-8. (in Chinese with English abstract)

[本文引用: 1]

[靳彤, 卜君玉, 马建忠 (2022)

其他有效的区域保护措施的国际经验及对中国2020年后生物多样性保护的启示

西部林业科学, 51(1), 1-8.]

[本文引用: 1]

Jin YC, Wang W, Xin LJ, Diao ZY, Li JS (2014)

Changes of land-cover and landscape pattern in Huihe National Nature Reserve

Pratacultural Science, 31, 1859-1866. (in Chinese with English abstract)

[本文引用: 1]

[靳勇超, 王伟, 辛利娟, 刁兆岩, 李俊生 (2014)

辉河国家级自然保护区土地覆盖与景观格局变化分析

草业科学, 31, 1859-1866.]

[本文引用: 1]

Joppa LN, Pfaff A (2010)

Global protected area impacts

Proceedings of the Royal Society B: Biological Sciences, 278, 1633-1638.

[本文引用: 1]

Jung M, Arnell A, de Lamo X, García-Rangel S, Lewis M, Mark J, Merow C, Miles L, Ondo I, Pironon S, Ravilious C, Rivers M, Schepaschenko D, Tallowin O, van Soesbergen A, Govaerts R, Boyle BL, Enquist BJ, Feng X, Gallagher R, Maitner B, Meiri S, Mulligan M, Ofer G, Roll U, Hanson JO, Jetz W, Di Marco M, McGowan J, Rinnan DS, Sachs JD, Lesiv M, Adams VM, Andrew SC, Burger JR, Hannah L, Marquet PA, McCarthy JK, Morueta-Holme N, Newman EA, Park DS, Roehrdanz PR, Svenning JC, Violle C, Wieringa JJ, Wynne G, Fritz S, Strassburg BBN, Obersteiner M, Kapos V, Burgess N, Schmidt-Traub G, Visconti P (2021)

Areas of global importance for conserving terrestrial biodiversity, carbon and water

Nature Ecology & Evolution, 5, 1499-1509.

[本文引用: 1]

KBA Standards and Appeals Committee of IUCN SSC/WCPA (2022)

Guidelines for using A Global Standard for the Identification of Key Biodiversity Areas (Version 1.2)

IUCN, Gland, Switzerland.

[本文引用: 1]

Klausmeyer KR, Shaw MR (2009)

Climate change, habitat loss, protected areas and the climate adaptation potential of species in Mediterranean ecosystems worldwide

PLoS ONE, 4, e6392.

DOI:10.1371/journal.pone.0006392      URL     [本文引用: 1]

Klein CJ, Brown CJ, Halpern BS, Segan DB, McGowan J, Beger M, Watson JEM (2015)

Shortfalls in the global protected area network at representing marine biodiversity

Scientific Reports, 5, 17539.

[本文引用: 1]

Kullberg P, di Minin E, Moilanen A (2019)

Using key biodiversity areas to guide effective expansion of the global protected area network

Global Ecology and Conservation, 20, e00768.

DOI:10.1016/j.gecco.2019.e00768      URL     [本文引用: 1]

Langhammer PF, Bakarr M, Bennun L, Brooks T, Clay R, Darwall W, De Silva N, Edgar G, Eken G, Fishpool L, Fonseca G, Foster M, Knox D, Matiku P, Radford E, Rodrigues ASL, Salaman P, Sechrest W, Tordoff A (2007a)

Identification and Gap Analysis of Key Biodiversity Areas: Targets for Comprehensive Protected Area Systems

IUCN, Gland, Switzerland.

[本文引用: 1]

Langhammer PF, Bakarr MI, Bennun LA, Brooks TM, Clay RP, Darwall W, De Silva N, Edgar GJ, Eken G, Fishpool LDC, Fonseca GABd, Foster MN, Knox DH, Matiku P, Radford EA, Rodrigues ASL, Salaman P, Sechrest W, Tordoff AW (2007b)

Identification and Gap Analysis of Key Biodiversity Areas: Targets for Comprehensive Protected Area Systems

IUCN, Gland, Switzerland.

[本文引用: 1]

Li BV, Pimm SL (2016)

China’s endemic vertebrates sheltering under the protective umbrella of the giant panda

Conservation Biology, 30, 329-339.

DOI:10.1111/cobi.12618      URL     [本文引用: 1]

Li LH, Zhang HG, Shi AQ, Li DL (2013)

Study on wetland landscape pattern change in the Ximen Island Marine Special Protected Area based on RS and GIS

Remote Sensing Technology and Application, 28, 129-136. (in Chinese with English abstract)

[本文引用: 1]

[李利红, 张华国, 史爱琴, 厉冬玲 (2013)

基于RS/GIS的西门岛海洋特别保护区滩涂湿地景观格局变化分析

遥感技术与应用, 28, 129-136.]

[本文引用: 1]

Li S, McShea WJ, Wang D, Gu X, Zhang X, Zhang L, Shen XL (2020)

Retreat of large carnivores across the giant panda distribution range

Nature Ecology & Evolution, 4, 1327-1331.

[本文引用: 3]

Linkie M, Smith RJ, Leader-Williams N (2004)

Mapping and predicting deforestation patterns in the lowlands of Sumatra

Biodiversity and Conservation, 13, 1809-1818.

DOI:10.1023/B:BIOC.0000035867.90891.ea      URL     [本文引用: 1]

Liu FZ, Du JH, Zhou Y, Huang ZP, Li YP, Wang W, Xiao W (2018)

Monitoring technology and practice on protected area biodiversity by integrating unmanned aerial vehicle (UAV) and ground approaches

Biodiversity Science, 26, 905-917. (in Chinese with English abstract)

DOI:10.17520/biods.2018049      [本文引用: 1]

The application of UAV technology brings new opportunities and revolutions to the monitoring and research on biodiversity in protected area. However, we find that no monitoring technology solutions combining UAV and ground approaches have been formed yet, due to the lack of concerns on protected objects. Considering to better perform various monitoring technology strengths and to effectively support management and monitoring in protected area, we review study cases on UAV and ground investigation domestic and overseas firstly, and then compare the demands from conservation, management and monitoring of all kinds protected area in China. In general, the ecosystems, species, site relics and landscape are regarded as protected objects in all kinds of protected area. Meanwhile, conservation, recovering, study, education, recreation, and sustainable development become the management goals. Based on the demands mentioned above, we present an integrated technology solution which composed of four categories and 14 subjects for UAV and ground to monitor biodiversity coherently. This solution includes image recognition and classification, data inversion and pattern analysis, digital modeling and surface measuring, patrolling and inspection. In addition, monitoring time and frequency, index, integration approach, data postprocessing can be acquired in the solution. Furthermore, monitoring subjects were chosen to apply and test in the Three Parallel Rivers World Heritage, such as plant identification, vegetation growth, landscape pattern, surface measuring, and law enforcement. While achieving good results on the solution verification, we hope that this monitoring solution will do significant help to improve the protected area biodiversity conservation and management level, also be part of technological storage in assessment and supervision.

[刘方正, 杜金鸿, 周越, 黄志旁, 李延鹏, 王伟, 肖文 (2018)

无人机和地面相结合的自然保护地生物多样性监测技术与实践

生物多样性, 26, 905-917.]

DOI:10.17520/biods.2018049      [本文引用: 1]

无人机技术的运用为自然保护地生物多样性监测与研究带来了新的机遇和变革。然而, 对自然保护地主要保护对象的关注不足, 导致了无人机和地面相结合的监测技术尚未形成。为更好地发挥多种调查监测技术的各自优势, 为自然保护地生物多样性管护和监测提供支撑, 我们总结了国内外已开展的无人机和地面相结合的监测工作进展, 梳理了我国不同类型自然保护地生物多样性保护管理和监测的需求。总的来看, 不同类型自然保护地的主要保护对象围绕在生态系统、物种、遗址遗迹等或由上述要素构成的景观资源上; 管理目标定位则集中在保护、恢复、科研、宣教、游憩和可持续发展等方面。基于上述需求, 我们归纳提出了包括图像识别与分类解译、数据反演与格局分析、数字建模与地表测量、巡护巡检4个类别共计14个专题的无人机和地面相结合的监测技术方案, 明确了监测时期与频次、监测指标、监测技术的结合途径以及数据后处理方法等。同时, 我们在三江并流世界遗产地云岭片区内选择植物识别、植被长势、景观格局、地表测量以及执法检查等技术专题开展了应用试验。在技术方案取得良好验证结果的同时, 实现了对自然保护地生物多样性保护和管理的技术支撑, 为未来自然保护地精细化管理提供了技术储备。

Liu FZ, Feng CT, Zhou Y, Zhang LB, Du JH, Huang WJ, Luo JW, Wang W (2022)

Effectiveness of functional zones in national nature reserves for the protection of forest ecosystems in China

Journal of Environmental Management, 308, 114593.

DOI:10.1016/j.jenvman.2022.114593      URL     [本文引用: 2]

Liu J, Linderman M, Ouyang Z, An L, Yang J, Zhang H (2001)

Ecological degradation in protected areas: The case of Wolong Nature Reserve for Giant Pandas

Science, 292, 98-101.

PMID:11292872      [本文引用: 1]

It is generally perceived that biodiversity is better protected from human activities after an area is designated as a protected area. However, we found that this common perception was not true in Wolong Nature Reserve (southwestern China), which was established in 1975 as a "flagship" protected area for the world-renowned endangered giant pandas. Analyses of remote sensing data from pre- and post-establishment periods indicate that the reserve has become more fragmented and less suitable for giant panda habitation. The rate of loss of high-quality habitat after the reserve's establishment was much higher than before the reserve was created, and the fragmentation of high-quality habitat became far more severe. After the creation of the reserve, rates of habitat loss and fragmentation inside the reserve unexpectedly increased to levels that were similar to or higher than those outside the reserve, in contrast to the situation before the reserve was created.

Ma T, Hu Y, Wang M, Yu L, Wei F (2020)

Unity of Nature and Man: A new vision and conceptual framework for the Post-2020 Global Biodiversity Framework

National Science Review, 8, nwaa265.

DOI:10.1093/nsr/nwaa265      URL     [本文引用: 1]

Margules CR, Pressey RL (2000)

Systematic conservation planning

Nature, 405, 243-253.

DOI:10.1038/35012251      URL     [本文引用: 1]

Maxwell SL, Cazalis V, Dudley N, Hoffmann M, Rodrigues ASL, Stolton S, Visconti P, Woodley S, Kingston N, Lewis E, Maron M, Strassburg BBN, Wenger A, Jonas HD, Venter O, Watson JEM (2020)

Area-based conservation in the twenty-first century

Nature, 586, 217-227.

DOI:10.1038/s41586-020-2773-z      URL     [本文引用: 1]

McIntosh EJ, Pressey RL, Lloyd S, Smith RJ, Grenyer R (2017)

The impact of systematic conservation planning

Annual Review of Environment and Resources, 42, 677-697.

DOI:10.1146/annurev-environ-102016-060902      URL     [本文引用: 1]

Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GA, Kent J (2000)

Biodiversity hotspots for conservation priorities

Nature, 403, 853-858.

DOI:10.1038/35002501      URL     [本文引用: 1]

Nagendra H (2008)

Do parks work? Impact of protected areas on land cover clearing

Ambio, 37, 330-337.

DOI:10.1579/06-R-184.1      URL     [本文引用: 2]

Naidoo R, Gerkey D, Hole D, Pfaff A, Ellis AM, Golden CD, Herrera D, Johnson K, Mulligan M, Ricketts TH, Fisher B (2019)

Evaluating the impacts of protected areas on human well-being across the developing world

Science Advances, 5, eaav3006.

DOI:10.1126/sciadv.aav3006      URL     [本文引用: 1]

Noss RF, Dobson AP, Baldwin R, Beier P, Davis CR, Dellasala DA, Francis J, Locke H, Nowak K, Lopez R, Reining C, Trombulak SC, Tabor G (2012)

Bolder thinking for conservation

Conservation Biology, 26, 1-4.

DOI:10.1111/j.1523-1739.2011.01738.x      PMID:22280321      [本文引用: 1]

Ochoa-Ochoa L, Urbina-Cardona JN, Vázquez LB, Flores-Villela O, Bezaury-Creel J (2009)

The effects of governmental protected areas and social initiatives for land protection on the conservation of Mexican amphibians

PLoS ONE, 4, e6878.

DOI:10.1371/journal.pone.0006878      URL     [本文引用: 1]

Oldfield TEE, Smith RJ, Harrop SR, Leader-Williams N (2004)

A gap analysis of terrestrial protected areas in England and its implications for conservation policy

Biological Conservation, 120, 303-309.

DOI:10.1016/j.biocon.2004.03.003      URL     [本文引用: 1]

Orme CDL, Davies RG, Burgess M, Eigenbrod F, Pickup N, Olson VA, Webster AJ, Ding TS, Rasmussen PC, Ridgely RS, Stattersfield AJ, Bennett PM, Blackburn TM, Gaston KJ, Owens IPF (2005)

Global hotspots of species richness are not congruent with endemism or threat

Nature, 436, 1016-1019.

DOI:10.1038/nature03850      URL     [本文引用: 1]

Osipova E, Emslie-Smith M, Osti M, Murai M, Åberg U, Shadie P (2020)

IUCN World Heritage Outlook 3: A Conservation Assessment of All Natural World Heritage Sites

IUCN, Gland, Switzerland.

[本文引用: 2]

Pack S, Ferreira M, Krithivasan R, Mullinax J, Bernard E, Mascia M (2016)

Protected area downgrading, downsizing, and degazettement (PADDD) in the Amazon

Biological Conservation, 197, 32-39.

DOI:10.1016/j.biocon.2016.02.004      URL     [本文引用: 1]

Pelletier TA, Carstens BC, Tank DC, Sullivan J, Espíndola A (2018)

Predicting plant conservation priorities on a global scale

Proceedings of the National Academy of Sciences, USA, 115, 13027-13032.

[本文引用: 1]

Qin SY, Golden Kroner RE, Cook C, Tesfaw AT, Braybrook R, Rodriguez CM, Poelking C, Mascia MB (2019)

Protected area downgrading, downsizing, and degazettement as a threat to iconic protected areas

Conservation Biology, 33, 1275-1285.

DOI:10.1111/cobi.13365      PMID:31192510      [本文引用: 1]

Protected areas (PAs) are expected to conserve nature and provide ecosystem services in perpetuity, yet widespread protected area downgrading, downsizing, and degazettement (PADDD) may compromise these objectives. Even iconic protected areas are vulnerable to PADDD, although these PADDD events are often unrecognized. We identified 23 enacted and proposed PADDD events within World Natural Heritage Sites and examined the history, context, and consequences of PADDD events in 4 iconic PAs (Yosemite National Park, Arabian Oryx Sanctuary, Yasuní National Park, and Virunga National Park). Based on insights from published research and international workshops, these 4 cases revealed the diverse pressures brought on by competing interests to develop or exploit natural landscapes and the variety of mechanisms that enables PADDD. Knowledge gaps exist in understanding of the conditions through which development pressures translate to PADDD events and their impacts, partially due to a lack of comprehensive PADDD records. Future research priorities should include comprehensive regional and country-level profiles and analysis of risks, impacts, and contextual factors related to PADDD. Policy options to better govern PADDD include improving tracking and reporting of PADDD events, establishing transparent PADDD policy processes, coordinating among legal frameworks, and mitigating negative impacts of PADDD. To support PADDD research and policy reforms, enhanced human and financial capacities are needed to train local researchers and to host publicly accessible data. As the conservation community considers the achievements of Aichi Target 11 and moves toward new biodiversity targets beyond 2020, researchers, practitioners, and policy makers need to work together to better track, assess, and govern PADDD globally.© 2019 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.

Quan Q, Che X, Wu Y, Wu Y, Zhang Q, Zhang M, Zou F (2018)

Effectiveness of protected areas for vertebrates based on taxonomic and phylogenetic diversity

Conservation Biology, 32, 355-365.

DOI:10.1111/cobi.12986      PMID:28703325      [本文引用: 1]

Establishing protected areas is the primary goal and tool for preventing irreversible biodiversity loss. However, the effectiveness of protected areas that target specific species has been questioned for some time because targeting key species for conservation may impair the integral regional pool of species diversity and phylogenetic and functional diversity are seldom considered. We assessed the efficacy of protected areas in China for the conservation of phylogenetic diversity based on the ranges and phylogenies of 2279 terrestrial vertebrates. Phylogenetic and taxonomic diversity were strongly and positively correlated, and only 12.1-43.8% of priority conservation areas are currently protected. However, the patterns and coverage of phylogenetic diversity were affected when weighted by species richness. These results indicated that in China, protected areas targeting high species richness protected phylogenetic diversity well overall but failed to do so in some regions with more unique or threatened communities (e.g., coastal areas of eastern China, where severely threatened avian communities were less protected). Our results suggest that the current distribution of protected areas could be improved, although most protected areas protect both taxonomic and phylogenetic diversity.© 2017 Society for Conservation Biology.

Rahman MF, Islam K (2021)

Effectiveness of protected areas in reducing deforestation and forest fragmentation in Bangladesh

Journal of Environmental Management, 280, 111711.

DOI:10.1016/j.jenvman.2020.111711      URL     [本文引用: 2]

Ren G, Young SS, Wang L, Wang W, Long Y, Wu R, Li J, Zhu J, Yu DW (2015)

Effectiveness of China’s National Forest Protection Program and nature reserves

Conservation Biology, 29, 1368-1377.

DOI:10.1111/cobi.12561      URL     [本文引用: 1]

Rodríguez-Rodríguez D, Martínez-Vega J, Echavarría P (2019)

A twenty year GIS-based assessment of environmental sustainability of land use changes in and around protected areas of a fast developing country: Spain

International Journal of Applied Earth Observation and Geoinformation, 74, 169-179.

DOI:10.1016/j.jag.2018.08.006      URL     [本文引用: 1]

Sarathchandra C, Dossa GGO, Ranjitkar NB, Chen H, Zhai DL, Ranjitkar S, de Silva KHWL, Wickramasinghe S, Xu J, Harrison RD (2018)

Effectiveness of protected areas in preventing rubber expansion and deforestation in Xishuangbanna, Southwest China

Land Degradation and Development, 29, 2417-2427.

DOI:10.1002/ldr.2970      URL     [本文引用: 1]

Saura S, Bastin L, Battistella L, Mandrici A, Dubois G (2017)

Protected areas in the world’s ecoregions: How well connected are they?

Ecological Indicators, 76, 144-158.

DOI:10.1016/j.ecolind.2016.12.047      URL     [本文引用: 1]

Saura S, Bertzky B, Bastin L, Battistella L, Mandrici A, Dubois G (2018)

Protected area connectivity: Shortfalls in global targets and country-level priorities

Biological Conservation, 219, 53-67.

DOI:10.1016/j.biocon.2017.12.020      PMID:29503460      [本文引用: 1]

Connectivity of protected areas (PAs) is crucial for meeting their conservation goals. We provide the first global evaluation of countries' progress towards Aichi Target 11 of the Convention on Biological Diversity that is to have at least 17% of the land covered by well-connected PA systems by 2020. We quantify how well the terrestrial PA systems of countries are designed to promote connectivity, using the Protected Connected (ProtConn) indicator. We refine ProtConn to focus on the part of PA connectivity that is in the power of a country to influence, i.e. not penalizing countries for PA isolation due to the sea and to foreign lands. We found that globally only 7.5% of the area of the countries is covered by protected connected lands, which is about half of the global PA coverage of 14.7%, and that only 30% of the countries currently meet the Aichi Target 11 connectivity element. These findings suggest the need for considerable efforts to improve PA connectivity globally. We further identify the main priorities for improving or sustaining PA connectivity in each country: general increase of PA coverage, targeted designation of PAs in strategic locations for connectivity, ensuring permeability of the unprotected landscapes between PAs, coordinated management of neighbouring PAs within the country, and/or transnational coordination with PAs in other countries. Our assessment provides a key contribution to evaluate progress towards global PA connectivity targets and to highlight important strengths and weaknesses of the design of PA systems for connectivity in the world's countries and regions.

Sayre R, Karagulle D, Frye C, Boucher T, Wolff NH, Breyer S, Wright D, Martin M, Butler K, van Graafeiland K, Touval J, Sotomayor L, McGowan J, Game ET, Possingham H (2020)

An assessment of the representation of ecosystems in global protected areas using new maps of World Climate Regions and World Ecosystems

Global Ecology and Conservation, 21, e00860.

DOI:10.1016/j.gecco.2019.e00860      URL     [本文引用: 1]

Scott JM, Davis F, Csuti B, Noss R, Butterfield B, Groves C, Anderson H, Caicco S, D’Erchia F, Edwards JTC, Ulliman J, Wright RG (1993)

Gap analysis: A geographic approach to protection of biological diversity

Journal of Wildlife Management, 57, 1-41.

DOI:10.2307/3808993      URL     [本文引用: 1]

Secretariat of the Convention on Biological Diversity (2014)

Global Biodiversity Outlook 4

Secretariat of the Convention on Biological Diversity, Montréal, Canada.

[本文引用: 2]

Sierra R, Campos F, Chamberlin J (2002)

Assessing biodiversity conservation priorities: Ecosystem risk and representativeness in continental Ecuador

Landscape and Urban Planning, 59, 95-110.

DOI:10.1016/S0169-2046(02)00006-3      URL     [本文引用: 1]

Song RL, Yao JX, Wu KY, Zhang XC, Z, Zhu ZG, Yin LJ (2018)

Evaluation of the effectiveness of marine protected areas: Methodologies and progress

Biodiversity Science, 26, 286-294. (in Chinese with English abstract)

DOI:10.17520/biods.2018005      [本文引用: 1]

The continued decline of global biodiversity presents a huge challenge for biodiversity conservation, especially for marine biodiversity conservation. As an effective way to protect biodiversity, evaluating the effectiveness of MPAs (Marine Protected Areas) is becoming a critical issue. However, only limited assessment methodologies were specially designed for MPAs so far. Moreover, evaluation indicators have mainly focused on management effectiveness. Recently, the establishment of global biodiversity monitoring networks and databases and the application of new technologies (including remote sensing, sonar system, satellite tracking, and genomics) have provided available data and information for quantified conservation effectiveness evaluations at multiple levels from ecosystems to genes. Future evaluation should be based on long-term scientific monitoring with the assistance of new technologies, promoting the establishment of the biodiversity monitoring database and information sharing, and developing integrated and interdisciplinary evaluation systems to evaluate conservation effectiveness.

[宋瑞玲, 姚锦仙, 吴恺悦, 张晓川, 吕植, 朱争光, 殷丽洁 (2018)

海洋保护区管理与保护成效评估的方法与进展

生物多样性, 26, 286-294.]

DOI:10.17520/biods.2018005      [本文引用: 1]

全球物种多样性的持续下降使得生物多样性保护面临巨大挑战, 海洋生物多样性的保护任务尤其艰巨。海洋保护区是保护生物多样性的有效方式之一, 如何对其成效进行评估是当前研究热点。然而, 目前针对海洋保护区的评估体系较少, 而且评估指标多侧重于管理成效。近年来随着全球生物多样性监测网络和数据库的建立, 以及多种新技术(如遥感、声呐系统、卫星追踪、基因组学等)在海洋生物多样性监测中的应用, 使得从生态系统到基因水平的多层次连续监测成为可能。基于此, 建议未来我国海洋保护区成效评估应在充分利用新技术方法的基础上, 加强长期科学监测, 建立并完善生物多样性监测数据库和信息共享机制, 发展跨学科的综合保护成效评估体系, 加强基于生物多样性监测的保护成效评估。

Soto-Navarro C, Ravilious C, Arnell A, de Lamo X, Harfoot M, Hill SLL, Wearn OR, Santoro M, Bouvet A, Mermoz S, Le Toan T, Xia J, Liu S, Yuan W, Spawn SA, Gibbs HK, Ferrier S, Harwood T, Alkemade R, Schipper AM, Schmidt-Traub G, Strassburg B, Miles L, Burgess ND, Kapos V (2020)

Mapping co-benefits for carbon storage and biodiversity to inform conservation policy and action

Philosophical Transactions of the Royal Society of London B: Biological sciences, 375, 20190128.

[本文引用: 1]

Tang ZY, Fang JY, Sun JY, Gaston KJ (2011)

Effectiveness of protected areas in maintaining plant production

PLoS ONE, 6, e19116.

DOI:10.1371/journal.pone.0019116      URL     [本文引用: 1]

The Nature Conservancy (2007)

Conservation Action Planning Handbook

The Nature Conservancy, Arlington, USA.

[本文引用: 1]

UNEP-WCMC, IUCN (2021)

Protected Planet Report 2020

UNEP-WCMC, Cambridge, United Kingdom & IUCN, Gland, Switzerland.

[本文引用: 3]

Venter O, Fuller RA, Segan DB, Carwardine J, Brooks T, Butchart SH, Di Marco M, Iwamura T, Joseph L, O’Grady D, Possingham HP, Rondinini C, Smith RJ, Venter M, Watson JE (2014)

Targeting global protected area expansion for imperiled biodiversity

PLoS Biology, 12, e1001891.

[本文引用: 1]

Wang B, Yan H, Feng Z, Yang Y (2022)

Changes in the ecological characteristics of key biodiversity areas in the BRI region

Journal of Resources and Ecology, 13, 328-337.

DOI:10.5814/j.issn.1674-764x.2022.02.015      [本文引用: 1]

Key Biodiversity Areas (KBAs) are ecological conservation priorities proposed by IUCN and widely recognized by most countries. Evaluating the changes in the ecological characteristics in KBAs is important for biodiversity conservation and the construction of Protected Areas (PAs). There are various ecosystem types in the Belt and Road Initiative (BRI) region, which has an extremely high value of biodiversity conservation, and the KBAs should be the prime targets of ecological protection efforts. Using the data of land cover, NDVI and Nighttime Light (NTL), we analyzed the ecological conditions of the KBAs in the BRI region, and their temporal and spatial variations, from the perspectives of vegetation coverage and human activities. The conclusions are: (1) There is generally no significant difference in the land cover of the KBAs, among which forest, wilderness and grassland are the main types; (2) The NDVI of the KBAs showed an increase, indicating that the vegetation was gradually improving, while a few KBAs presenting vegetation degradation were mainly distributed in the Indochina Peninsula, Qinghai-Tibet Plateau and Central and Western Asia; and (3) The NTL in the KBAs was very low, indicating that the human pressure on the natural ecosystems was limited, and only a few KBAs distributed in Central and Eastern Europe, India, and the Indochina Peninsula have high human activity intensity which also showed an increase. This study emphasizes that we should make full use of the biome succession law, and limit the interference of human activities on natural ecosystems for ecological protection of the KBAs, so as to continuously make new breakthroughs in the construction of Protected Areas (PA) in the BRI region.

Wang W, Li JS (2021)

Development course of biodiversity conservation policy in China

Environment and Sustainable Development, 46(6), 26-33. (in Chinese with English abstract)

[本文引用: 2]

[王伟, 李俊生 (2021)

中国生物多样性保护政策发展历程

环境与可持续发展, 46(6), 26-33.]

[本文引用: 2]

Wang W, Xin LJ, Du JH, Chen B, Liu FZ, Zhang LB, Li JS (2016)

Evaluating conservation effectiveness of protected areas: Advances and new perspectives

Biodiversity Science, 24, 1177-1188. (in Chinese with English abstract)

DOI:10.17520/biods.2016162      [本文引用: 4]

Conservation effectiveness of protected areas indicates the status of main protected objects, and achievements in maintaining biodiversity and ecosystem function. Evaluation of conservation effectiveness is becoming a popular issue surrounding protected areas. From multiple spatial scales, subjects, methods and indicators, we reviewed advances in evaluating conservation effectiveness of protected areas. Recent studies have represented global, regional, national, and individual scales. Evaluated projects include the most common ecosystems (forests, wetlands, grasslands, deserts) and wild species. Evaluation methods have been moving from traditional direct before-and-after or inside-outside comparisons to “matching” techniques, which allows one to control for known landscape or environmental biases when determining the impacts of protection. Some researchers have explored indicator systems to make systematic evaluations of the effectiveness of protected areas, meanwhile others have tested indicators using case studies. In China, nature reserve is the backbone of the country’s protected areas system. Different ministries and state-level authorities have initiated evaluation of conservation effectiveness of nature reserves. We suggest that future studies should explore the following issues to improve the quality of nature reserves: (1) conservation effectiveness of nature reserve networks; (2) conservation effectiveness of different types of reserves; (3) integration of conservation effectiveness and management evaluation; and (4) potential impacts on nature reserves.

[王伟, 辛利娟, 杜金鸿, 陈冰, 刘方正, 张立博, 李俊生 (2016)

自然保护地保护成效评估: 进展与展望

生物多样性, 24, 1177-1188.]

DOI:10.17520/biods.2016162      [本文引用: 4]

自然保护地(protected areas)保护成效是指自然保护地对主要保护对象的保护效果, 及其在维持生物多样性和保障生态系统服务功能等方面的综合成效。近年来自然保护地保护成效评估逐渐成为国内外的研究热点之一。 本文分别从不同空间尺度、评估对象、评估方法以及评估指标等方面综述了相关的研究进展。总体来看, 近年来的研究已基本覆盖了全球、区域、国家和单个自然保护地等不同尺度, 针对森林、湿地、草地和荒漠等代表性生态系统以及野生动植物等主要保护对象进行了评估, 发展了“matching”技术等更为有效的分析方法, 探索了系统的自然保护地保护成效评估指标体系, 并应用一些指标进行了保护成效的案例研究。自然保护区(nature reserve)是我国自然保护地的主体, 近年来我国自然保护区相关管理部门也相继开展了保护成效评估工作, 建议未来进一步加强自然保护区网络尺度和各类型自然保护区的保护成效评估研究, 将自然保护区保护成效评估与管理评估相结合, 研究自然保护区保护成效面临的新问题和潜在影响, 为提升我国自然保护区管理质量提供科学依据。

Wei W, Swaisgood RR, Pilfold NW, Owen MA, Dai Q, Wei F, Han H, Yang Z, Yang X, Gu X, Zhang J, Yuan S, Hong M, Tang J, Zhou H, He K, Zhang Z (2020)

Assessing the effectiveness of China’s panda protection system

Current Biology, 30, 1280-1286.

DOI:S0960-9822(20)30106-8      PMID:32197077      [本文引用: 1]

Protected areas form the backbone of biodiversity conservation, yet their effectiveness is often not known nor even evaluated [1-3]. China-best known for its record of ecological degradation in the face of rapidly increasing gross domestic product and resource consumption [4]-has in recent years enacted a series of policies and programs to conserve its natural resources. Chief among them is an ambitious protected area system covering 17% of its terrestrial land mass [4, 5]. An important early impetus for the establishment of this reserve system was the protection of the giant panda (Ailuropoda melanoleuca) [5-8]. Using data from two previous large-scale surveys [9, 10] separated by a decade, and including over 50,000 habitat plots, we examined the panda population and habitat trends inside and outside reserves. Despite ambitious ecocompensation programs in panda habitat outside reserves [11-13], the protection provided by reserves reduced most classes of human disturbance compared to outside reserves, and most disturbances decreased through time more strongly inside than outside reserves. Reserves also contained more and increasing suitable panda than found outside reserves [14, 15]. Comparing reserve performance, reserves with increasing older forests and bamboo correlated with increasing panda populations. Together these findings indicate that China's panda reserves have been effective and that they are functioning better over time, conserving more and better habitats and containing more pandas. While China's protected area system still has much room for improvement [4, 5], including to support pandas [16], these findings underscore the progress made in China's nascent environmental movement.Copyright © 2020 Elsevier Ltd. All rights reserved.

Williams DR, Rondinini C, Tilman D (2022)

Global protected areas seem insufficient to safeguard half of the world’s mammals from human-induced extinction

Proceedings of the National Academy of Sciences, USA, 119, e2200118119.

[本文引用: 2]

Wilson EO (2016) Half-Earth: Our Planet’s Fight for Life. W. W. Norton, New York.

[本文引用: 1]

Wu R, Zhang S, Yu DW, Zhao P, Li X, Wang L, Yu Q, Ma J, Chen A, Long Y (2011)

Effectiveness of China’s nature reserves in representing ecological diversity

Frontiers in Ecology and the Environment, 9, 383-389.

DOI:10.1890/100093      URL     [本文引用: 1]

Xin LJ, Jin YC, Zhu YP, Luo JW, Wang L, Chen B, Wang W (2015)

Development of effectiveness assessment indicators of desert nature reserve in China: A case study of the Anxi National Nature Reserve

Journal of Desert Research, 35, 1693-1699. (in Chinese with English abstract)

[本文引用: 2]

[辛利娟, 靳勇超, 朱彦鹏, 罗建武, 王亮, 陈冰, 王伟 (2015)

中国荒漠类自然保护区保护成效评估指标及其应用

中国沙漠, 35, 1693-1699.]

[本文引用: 2]

Xin LJ, Wang W, Jin YC, Diao ZY, Li JS (2014)

Indices of ecological effects of grassland nature reserves in China

Pratacultural Science, 31, 75-82. (in Chinese with English abstract)

[本文引用: 1]

[辛利娟, 王伟, 靳勇超, 刁兆岩, 李俊生 (2014)

全国草地类自然保护区的成效评估指标

草业科学, 31, 75-82.]

[本文引用: 1]

Xu H, Wu Y, Cao Y, Cao M, Tong W, Le Z, Lu X, Li J, Ma F, Liu L, Hu F, Chen M, Li Y (2018)

Low overlaps between hotspots and complementary sets of vertebrate and plant species in China

Biodiversity and Conservation, 27, 2713-2727.

DOI:10.1007/s10531-018-1564-4      URL     [本文引用: 1]

Xu W, Fan X, Ma J, Pimm SL, Kong L, Zeng Y, Li X, Xiao Y, Zheng H, Liu J, Wu B, An L, Zhang L, Wang X, Ouyang Z (2019)

Hidden loss of wetlands in China

Current Biology, 29, 3065-3071.

DOI:S0960-9822(19)30933-9      PMID:31474534      [本文引用: 1]

To counter their widespread loss, global aspirations are for no net loss of remaining wetlands [1]. We examine whether this goal alone is sufficient for managing China's wetlands, for they constitute 10% of the world's total. Analyzing wetland changes between 2000 and 2015 using 30-m-resolution satellite images, we show that China's wetlands expanded by 27,614 km but lost 26,066 km-a net increase of 1,548 km (or 0.4%). This net change hides considerable complexities in the types of wetlands created and destroyed. The area of open water surface increased by 9,110 km, but natural wetlands-henceforth "marshes"-decreased by 7,562 km. Of the expanded wetlands, restoration policies contributed 24.5% and dam construction contributed 20.8%. Climate change accounted for 23.6% but is likely to involve a transient increase due to melting glaciers. Of the lost wetlands, agricultural and urban expansion contributed 47.7% and 13.8%, respectively. The increase in wetlands from conservation efforts (6,765 km) did not offset human-caused wetland losses (16,032 km). The wetland changes may harm wildlife. The wetland loss in east China threatens bird migration across eastern Asia [2]. Open water from dam construction flooded the original habitats of threatened terrestrial species and affected aquatic species by fragmenting wetland habitats [3]. Thus, the "no net loss" target measures total changes without considering changes in composition and the corresponding ecological functions. It may result in "paper offsets" and should be used carefully as a target for wetland conservation.Copyright © 2019 The Author(s). Published by Elsevier Ltd.. All rights reserved.

Yang H, Viña A, Winkler JA, Chung MG, Huang Q, Dou Y, McShea WJ, Songer M, Zhang J, Liu J (2021)

A global assessment of the impact of individual protected areas on preventing forest loss

Science of the Total Environment, 777, 145995.

DOI:10.1016/j.scitotenv.2021.145995      URL     [本文引用: 1]

Yip JY, Corlett RT, Dudgeon D (2004)

A fine-scale gap analysis of the existing protected area system in Hong Kong, China

Biodiversity and Conservation, 13, 943-957.

DOI:10.1023/B:BIOC.0000014463.32427.cf      URL     [本文引用: 1]

Zafra-Calvo N, Pascual U, Brockington D, Coolsaet B, Cortes-Vazquez JA, Gross-Camp N, Palomo I, Burgess ND (2017)

Towards an indicator system to assess equitable management in protected areas

Biological Conservation, 211, 134-141.

DOI:10.1016/j.biocon.2017.05.014      URL     [本文引用: 1]

Zhang L, Turvey ST, Chapman C, Fan P (2021)

Effects of protected areas on survival of threatened gibbons in China

Conservation Biology, 35, 1288-1298.

DOI:10.1111/cobi.13664      URL     [本文引用: 1]

Zhang M, Fellowes JR, Jiang X, Wang W, Chan BPL, Ren G, Zhu J (2010)

Degradation of tropical forest in Hainan, China, 1991-2008: Conservation implications for Hainan Gibbon (Nomascus hainanus)

Biological Conservation, 143, 1397-1404.

DOI:10.1016/j.biocon.2010.03.014      URL     [本文引用: 1]

Zhao LN, Yang YC, Liu HY, Shan ZJ, Xie D, Qin HN (2016) Key biodiversity area: A new biodiversity conservation tool, In: Advances in Biodiversity Conservation and Research in China XII: Proceedings of the Twelfth National Conference on Biodiversity Science and Conservation in China (ed. Chinese National Committee), pp. 18-29. China Meteorological Press, Beijing. (in Chinese with English abstract)

[本文引用: 1]

[赵莉娜, 杨宇昌, 刘慧圆, 单章建, 谢丹, 覃海宁 (2016) 生物多样性关键区域(KBA)评估——保护生物多样性的新工具. 见: 中国生物多样性保护与研究进展XII: 第十二届全国生物多样性科学与保护研讨会论文集(国际生物多样性计划中国委员会编著), pp. 18-29. 气象出版社, 北京.]

[本文引用: 1]

Zhao ZC, Wang P (2022)

Significance and key issues of protected area connectivity in China

Landscape Architecture, 29(7), 12-17. (in Chinese with English abstract)

[本文引用: 1]

[赵智聪, 王沛 (2022)

中国自然保护地连通性的重要意义与关键议题

风景园林, 29(7), 12-17.]

[本文引用: 1]

Zhu L, Hughes AC, Zhao XQ, Zhou LJ, Ma KP, Shen XL, Li S, Liu MZ, Xu WB, Watson JEM (2021)

Regional scalable priorities for national biodiversity and carbon conservation planning in Asia

Science Advances, 7, eabe4261.

DOI:10.1126/sciadv.abe4261      URL     [本文引用: 1]

/